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Inflation, particle creation rate and stellar collapse in the framework of Rastall gravitation

In this work, we are investigating Rastall gravitation and its consequences in various cosmological scenarios and processes. Rastall relaxed Einstein's assumption that the covariant divergence of the energymomentum tensor should vanish by generalising Einstein's field equations.

Introduction

The covariant conservation of the energy-momentum tensor is a key component of Einstein's theory of gravity. Additionally, Noether's theorem demonstrates that the conservation of matter results in the conservation of globally specified variables expressed as integrals of the energy-momentum tensor across some hypersurface that resembles space. Therefore, according to general relativity, a system's total rest energy (mass) is retained, however there is no experimental proof for this assertion. This has led to several modifications to general relativity that do not take into account the covariant conservation of energy-momentum tensor. Rastall developed a modified theory of gravity [START_REF] Rastall | A Theory of Gravity[END_REF], [START_REF] Rastall | Generalization of the einstein theory[END_REF] in 1972, and it has recently received a lot of attention in the literature. Similar to general relativity, this theory uses the energy-momentum tensor and the metric of external space to describe the origin of matter. This modified gravity theory complies with Mach's principle [START_REF] Majernik | Rastall's gravity equations and Mach's principle[END_REF] in empty space because it coincides with Einstein gravity. There are numerous variations of Mach's principle in the literature ([18], [START_REF] Dicke | Gravitation and Relativity[END_REF], [20]) and no single, suitable "canonical" statement of the principle appears to exist at this time. Nonetheless, there appears to be broad agreement on the repercussions that should follow. According to Mach's principle, the existence and motions of large external masses in the universe must have an impact on the mass objects that exist there. It is commonly known that the Einstein equations of classical general relativity do not take Mach's principle into account. To be included, the standard general relativity equations must be modified. The energy-momentum tensor's vanishing divergence is fundamental to Einstein theory of gravitation.

∇ ν T µν = 0 (1) 
Rastall notes that observation has not adequately verified the local conservation of the energy-momentum tensor provided by this relation. Rastall loosened this requirement in order to generalise the Einstein field equations for this reason. Later, by adding a free parameter, Al-Rawaf and Taha found an analogous form of Rastall's equations. Their modified equations, which are used in this study, reduce to the Einstein equations when the free parameter equals 1. Rastall's equations for empty space reduce to general relativity equations regardless of the value of the parameter. The Rastall gravity theory has been widely applied in cosmological studies.Rastall's modified equations becomes important mainly when treating general relativistic problems including sources.

Since the source terms in Rastall's modified gravity equations include the components of the common energymomentum tensor T µν as well as additional terms of the form (1 -α)g µν T /2, the source terms of Rastall's equations depend on the metric determined by the mass and momentum distributions of the external space.

The first section of the current work investigates various cosmological scenarios for this modified gravity theory, primarily in the context of inflation and particle generation mechanisms. In terms of cosmic development, the particle formation process and this modified gravity theory are comparable in that neither respects the energymomentum tensor conservation. In fact, we consider the generalised Rastall gravity with a variable Rastall parameter in this paper. For a specific Rastall parameter setting, the emergent situation is obtained. Then, by making appropriate Rastall parameter selections, it is discovered that a complete cosmic scenario, from inflation to the present late-time acceleration, is achievable.

The second section of the work investigates gravitational collapse in Rastall gravity [START_REF] Ziaie | Gravitational Collapse in Rastall gravity[END_REF]. When a star with a mass many times that of the Sun runs out of nuclear fuel, it is thought to undergo an unending gravitational collapse with no final equilibrium state, such as a neutron star or white dwarf. Under physically reasonable circumstances, the Hawking and Penrose singularity theorems predict that the star will continue to shrink in radius, reaching higher and higher densities, and eventually the collapse process will culminate in the formation of a spacetime singularity, where densities and spacetime curvatures become infinitely large and blow up. This is examined under the equations of Rastall gravity.

Rastall Gravity Equations

The standard Einstein field equations read as [START_REF] Hartle | Gravity: An Introduction to Einstein's General Relativity[END_REF] G

µν = R µν - 1 2 g µν R = 8πT µν ( 2 
)
where R = R µ µ ; an alternative form of eq.( 2) is

R µν = 8π T µν - 1 2 g µν T (3)
The Rastall's adaptation of Einstein theory can be achieved by inserting a more general form of the Einstein tensor, as shown by Al-Rawaf and Taha [2]

G µν = X R µν + Yg µν R (4)
for the left-hand side of the eq.( 2), where X and Y are constants. In standard general relativity the values X = 1 and Y = 1/2 are based on the specifications that (i) eq.(2), after the Newtonian limit is reached, transforms into the standard Poisson equation for gravitational potential. and (ii) energy-momentum is locally conserved, i.e. eq.( 1) holds. However, if we relax the second condition, then the constants X and Y are linked only through the relation

If X = α, then Y = α(2 -α) 2(3 -2α) , α = 0, 3 2 (5) 
Using eq.( 4) one obtains the generalized field equations first published by Rastall [1]

R µν - 1 2 2 -α 3 -2α g µν R = 8π α T µν (6) 
In Rastall's theory, the conservation condition (1) is not generally satisfied. and according to eq.(3) it is replaced by [START_REF] Al-Rawaf | [END_REF] 

∇ ν T ν µ = (1 -α)α 16π(3 -2α) ∂ µ R = 1 -α 2 ∂ µ T (7) =⇒ G µν = 8π α T µr , where T µν = T µν + 1 -α 2 g µν T and ∇ ν T µν = 0 (8)
Therefore, using the modified energy-momentum tensor, which need not itself correspond to any physically plausible condition, it is theoretically conceivable to solve the standard Einstein equations (2). For instance, the energy-momentum tensor for the ideal fluid, a model crucial to both astrophysics and cosmology, reads

T µν = ( + p)u µ u ν + pg µν ,
where = (t) is the density, p = p(t) is the pressure four and u is the four-velocity (u µ u µ = -1). Using eq.( 7) and considering T = 3p -, we can introduce the tensor

T µν = (R + P)u µ u ν + Pg µν (9) where R = 1 2 (3 -α) - 3 2 (1 -α)p P = - 1 2 (1 -α) + 1 2 (5 -3α)p
Rastall's perfect fluid solutions (5) with "effective density" R and "effective pressure" P are thus formally equal to the fluid solutions to the Einstein equations. When examining specific cases, we take advantage of this fact. Also we can see here that if α = 1,

R ≡ P ≡ p

In the parts that follow, we'll assume that α is a constant parameter that applies to all physical systems universally. A reduction to known solutions of conventional general relativity for α = 1 should always be verified.

Cosmic scenario in Rastall gravitation

In this work, a homogeneous and isotropic flat FLRW space time model with a line element is taken into consideration.

ds 2 = -dt 2 + a 2 (t) dr 2 + r 2 dθ 2 + sin 2 θdφ 2 (10) 
Consider Einstein tensor 12)

G 00 = G tt = 3 ȧ a 2 = 3H 2 = 8π α T 00 (11) 
⇒ H 2 = 8π 3α (1 + α) 2 + 3p(α -1) 2 (
Let (1+α) 2 + 3p(α-1) 2 be Q ∴ H 2 = 8π 3α Q (at α = 1, Q ≡ ) ( 13 
)
Where H = ȧ a is the Hubble parameter.

Since we are considering only perfect fluids, equation of state can be written as p = ω , where ω is a dimensionless constant.

Therefore Q can be written as

Q = (1 + α) 2 + 3ω(α -1) 2 (14) 
Also from Eqs. ( 7) and ( 8), we know

∇ ν T ν µ = 0 =⇒ Ṙ P+R = - 3 ȧ a = -3H (15) =⇒ 3 -α 2 ˙ - 3(1 -α) 2 ṗ + 3H(p + ) = 0 ∴ d dt 3 -α -3w(1 -α) 2 + 3H(p + ) = 0 (16) 
At α = 1, we get the usual energy conservation result ˙ + 3H(p + ) = 0.

Equation of energy density of fluid can be written as

˙ = -6H (1 + w) 3 -α -3ω(1 -α) ( 17 
)
From eq.( 13) we know that

ȧ2 = 8π 3α Qa 2 (18) 
Differentiating and substituting, we get

ä a = - 4π 3α 6Q(1 + ω) 3 -α -3ω(1 -α) -2Q (19) 
Again at α = 1 we get the usual equation for second derivative of scale factor a,

ä a = 4π 3 ( + 3p)
From eq.( 13), we also know that

Ḣ = ä a -H 2 = - 4π 3α 6Q(1 + ω) 3 -α -3ω(1 -α) -2Q - 4π 3α (2Q) ∴ Ḣ = - 4π 3α 6Q(1 + ω) 3 -α -3ω(1 -α) (20)
We now investigate a potential emergent scenario for the aforementioned generalised Rastall theory, which is a non-singular cosmological solution.

From field equations ( 13) and (20), we get

2 Ḣ 3H 2 = -2(1 + ω) 3 -α -3ω(1 -α) (21) Let (1+ω)
3-α-3ω(1-α) be β, which will be a constant for a given perfect fluid.

We get a first order equation for Hubble parameter

Ḣ + 3βH 2 = 0 (22) Solving it, we get 1 H - 1 H 0 = 3β (t -t 0 ) (23) 
eq.( 22) can also be written in terms of second order equation of scale parameter a as

ä q - ȧ a 2 = -3β ȧ a 2 (24) 
Solving it, we get ⇒ a(t) = 3

1 3β (c 1 tβ + c 2 β) 1 3β
(25) t0. Thus it is possible to have a scenario of emergent Universe in generalized Rastall gravitation representing a big-bang model of the universe.

Rastall theory of particle creation in continuous cosmic evolution

We examine whether a continuous cosmic evolution is possible with the appropriate Rastall parameter selections and whether the generalised Rastall theory may be employed as a particle generation formulation in Einstein gravity. The cosmic evolution can be modelled by the standard Friedmann equations with the particle generation mechanism as

[3]. 2 Ḣ 3H 2 = (1 + ω) Γ 3H -1 ( 26 
)
Where Γ is defined as the particle creation rate of the cosmic fluid particles

Γ = 3H 1 - 2 3 -α -3ω(1 -α) (27) 
It has been shown that the particle production rate may be selected from a thermodynamical perspective, enabling the FLRW model to obtain the entire cosmic evolution. Following that investigation, there are potential choices for the parameter that can yield the early inflationary era, the intermediate matter-dominated era, and finally the late time acceleration phase. It's important to note that these decisions for, like particle creation mechanisms, have no scientific foundation and are simply phenomenological in nature.

Early Inflationary Era

In early inflationary era i.e. (t < t 1 ), Here t 1 represents radiation epoch and

H 1 = H(a 1
) is the value of Hubble parameter at the epoch and a 1 is the value of the scale parameter at the epoch.

From [START_REF] Frolov | Black Hole Physics[END_REF], we know that during the early inflationary era standard equation for particle creation rate is defined as

Γ = 3η H 2 H 1 ( 28 
)
where η is a constant and the rastall parameter is chosen such that the particle creation rate is of this form.

=⇒ α = 3 (H -ηH 1 ) [ω -1] + 2 (H -ηH 1 ) (3ω -1) (29) 
From which we get the results,

a a 1 η e 2 (1-η) 3(1+ω) a a 1 3(1+ω) 2 -1 = e H1(t-t1) H H 1 = η Lambert W 1 -η η exp 2(1 -η) + 3(1 + ω)H 1 (t -t 1 ) 2η + 1 -1 1 = η Lambert W 1 -η η exp 2(1 -η) + 3(1 + ω)H 1 (t -t 1 ) 2η + 1 -2 , ( 30 
)
where η is constant and the function Lambert W (x) is defined by Lambert W (x)e Lambert W (x) = x.

Intermediate matter Dominated Era

We know t 1 is the moment when the universe transitions from an inflationary to a matter-dominated state, and it is at this point that the particle formation rate is specified as [START_REF] Frolov | Black Hole Physics[END_REF] where (t

1 < t < t 2 ) Γ = 3Γ 0 H ,where Γ 0 is a constant. ( 31 
) ∴ Γ 0 = 1 - 2 3 -α -3ω(1 -α) or α = 3 (1 -ω) (1 -Γ 0 ) -2 (1 -3ω)(1 -Γ 0 ) (32) 
From which we get the results,

a a 1 = 1 + 3(1 + ω) 2 (1 -Γ 0 )H 1 (t -t 1 ) 2 3(1+ω)(1-Γ 0 ) H H 1 = 1 + 3(1 + ω) 2 (1 -Γ 0 )H 1 (t -t 1 ) -1 1 = 1 + 3(1 + ω) 2 (1 -Γ 0 )H 1 (t -t 1 ) 2 (33) 

Late Time Acceleration

Here t 2 > t 1 is the instant at which the Universe makes a transition from intermediate matter dominated Era to the late time acceleration and (a 2 , H 2 ) be the scale factor and Hubble parameter at these time instants. Particle creation rate is defined as (t > t 2 )

Γ = 3ψ H 2 H (34) =⇒ α = 3(1 -ω) 1 -3ω - 2H 2 (H 2 -ψH 2 )(1 -3ω) ( 35 
)
And we get the results,

a a 2 3(1+ω) 2 = 1 √ ψH 2 sinh ψH 2 (t -t 0 ) H = ψH 2 coth ψH 2 (t -t 0 ) 2 = ψ H 2 coth 2 ψH 2 (t -t 0 ) (36)

Gravitational Collapse

A class of homogeneous collapse solutions that result in the formation of a spacetime singularity in this location is what we are searching for. However, if we assumed fewer symmetries, such as integrating inhomogeneities or anisotropies within the collapsing object, there would be a lack of physically feasible exact solutions available due to the intrinsic mathematical challenges. To depict a spatially flat FLRW geometry, we thus limit our analysis to a homogeneous and isotropic interior line element.

ds 2 = -dt 2 + a 2 (t) dr 2 + r 2 dθ 2 + sin 2 θdφ 2 =⇒ ds 2 = -dt 2 + a 2 (t)dr 2 + R 2 (t, r)dΩ 2 (37) 
where R(t, r) = ra(t) is the physical radius of the collapsing body. a(t) is the scale factor of collapse and dΩ 2 is the standard line element on the unit 2-sphere.

The generalized Friedman-type field equations for an isotropic source.

3αH 2 -3α(1 -α) Ḣ = 8π (3 -2α) -3αH 2 + α(α -3) Ḣ = 8πp(3 -2α) (38) 
From which we again derive equations similar to Eqns. ( 16) and ( 22) and the solution as we know is given in eq.( 25)

a(t) = 3 1 3β (c 1 tβ + c 2 β) 1 3β (39) 
Where β =

(1+ω) 3-α-3ω(1-α) is a constant.
But here we can denote the time and scale factor at specific instances to get rid of constants. Let a(t 0 ) = a 0 and a(t s ) = 0 where t 0 is the time when the collapse starts, with a 0 being the scalar factor's initial value and t s being the moment the singularity forms. We then obtain the scale factor and collapse rate's time behaviour as

a(t) = a 0 t s -t t s -t 0 1 3β , H(t) = 1 3β (t -t s ) ( 40 
)
where t 0 ≤ t ≤ t s is the time interval of the collapse process. The process commences at t = t 0 , proceeds until t = t s .

For the scale factor to vanish after a finite amount of time, we require 1 3β > 0.

The collapse scenario needs to be consistent with the weak energy condition (WEC) in order to be physically feasible. This requirement states that the energy density measurement made by any local observer is non-negative. The energy momentum tensors of ordinary matter and effective fluids must therefore satisfy the following conditions along any non-spacelike vector field.

≥ 0, + p ≥ 0, R ≥ 0, R + P ≥ 0 ( 41 
)
where R and P are given by eq.( 9).

Using solution (40) in eq.( 38) we obtain equations for energy density and pressure as

(t) = 0 (t -t s ) -2 p(t) = ω (t) ( 42 
)
where 0 is given by

0 = 2α 3(1 + ω) 2 • (3 -α -3ω(1 -α)) ( 43 
)
As a result, for the collapse setting to be physically valid, the preceding conditions (41) must hold throughout the collapse's dynamical evolution.

=⇒ 0 ≥ 0 ω ≥ -1 (44) 
The energy density increases and diverges, as we can see at t = t s . Along with this behaviour, there is a divergence in the Kretschmann scalar.

K = R αβδ R αβδ = Ḣ2 + 2H 4 + 2H 2 Ḣ = (3 -2α) 2 . (6 -4α -3(1 -α)(1 + ω)) 2 81(1 + ω) 4 (t -t s ) 4 (45) 
where

= 5 + 6ω + 9ω 2 -18(1 + ω) 2 1 -α 3 -2α -( 1 -α 3 -2α ) 2
. This demonstrates the existence of a spacetime singularity. The next stage is to determine if the growing singularity can be seen by outside observers or is hidden behind a horizon. Essentially, whether or not the spacetime singularity is evident depends on the structure of trapped surfaces during the dynamical evolution of the collapse. Both families of incoming and egressing null geodesics must converge on these surfaces, which are compact two-dimensional space-like surfaces [START_REF] Frolov | Black Hole Physics[END_REF].

The interior metric (37) can be divided into a two-dimensional hyper-surface normal to the two-sphere and the surface of a two-sphere [5].

ds 2 = h µν dx µ dx ν + R(t, r) 2 dΩ 2 , h µν = diag -1, a(t) 2 (46) 
The interior solution for the metric can be obtained by introducing the null coordinates

dξ + = - 1 √ 2 [dt -a(t)dr], dξ -= - 1 √ 2 [dt + a(t)dr], (47) 
The line element (46) can be recast into double-null form as

ds 2 = -2dξ + dξ -+ R(t, r) 2 dΩ 2 (48) 
The radial null geodesics are given by the condition ds 2 = 0, whence, we find out that there exist two kinds of future-directed null geodesics which correspond to ξ + =constant and ξ -=constant. The expansion parameters along this geodesics are given by

Θ ± = 2 R(t, r) ∂ ∂ξ ± R(t, r) (49) 
where

∂ ∂ξ + = 1 √ 2 ∂ t + 1 a(t) ∂ r , ∂ ∂ξ -= 1 √ 2 ∂ t - 1 a(t) ∂ r . ( 50 
)
The expansion parameter determines whether null geodesics normal to a sphere are diverging or converging, i.e., whether the area radius along the light rays is rising or decreasing. If Θ + Θ -> 0, the space is referred to as trapped, Θ + Θ -< 0, the space is referred to as untrapped, Θ + Θ -= 0, the space is referred to as marginally trapped.

(51)

Whereas marginally trapped denotes the apparent horizon, which is the trapped region's outermost limit. If the apparent horizon occurs sufficiently early before the singularity forms, the singularity is hidden, but if it does not form at all or forms too late, the singularity may be seen to viewers on the outside [START_REF] Joshi | Global Aspects in Gravitation and Cosmology[END_REF].

Thus, if the apparent horizon forms sufficiently early before the singularity forms, the singularity is covered; nevertheless, if the apparent horizon fails to form or forms too slowly, the singularity may be seen to viewers on the outside. The Misner-Sharp energy [7], which describes the mass contained within the shell denoted by r at the time t, is a crucial component that controls the apparent horizon dynamics [8].

M (t, r) = R(t, r) 2 [1 -h µν ∂ µ R(t, r)∂ ν R(t, r)] = R(t, r) Ṙ(t, r) 2 2 (52)
From (52), field equations ( 6) can be rewritten in terms of an isotropic effective fluid source as [9]

2M (t, r) R 2 R = 3H 2 = 8π α R - 2 Ṁ (t, r) R 2 Ṙ = -3H 2 -2 Ḣ = 8π α P (53) 
where . ≡ ∂ t and ≡ ∂ r . From eq.( 32) we have

2M (t, r) = 8π 3α R R(t, r) 3 (54) 
From eq.( 49) we observe that

h µν ∂ µ R(t, r)∂ ν R(t, r) = -R 2 (t, r)Θ + Θ -/2, from which one has Θ + Θ -= 2 R 2 (t, r) 2M (t, r) R(t, r) -1 (55) 
Consequently, conditions [START_REF] Hayward | [END_REF] can be modified to be in terms of the ratio 2M (t, r)/R(t, r) as

2M (t, r) R(t, r) > 1, 2M (t, r) R(t, r) < 1, 2M (t, r) R(t, r) = 1 (56) 
where the equality provides us with the location of apparent horizon. Using then expressions (40) and (42) along with (54) we get

2M (t, r) R(t, r) = r 2 a 2 0 α[3 -α -3ω(1 -α)] 2 9(1 + w) 2 (t 0 -t s ) 2 t -t s t 0 -t s m-1 (57) 
where

m = (1 -3ω)(3 -2α) 3(1 + w) (58)
Now, if at initial epoch we have the ratio 2M (t 0 , r) /R (t 0 , r) < 1 as required by regularity of the initial conditions [START_REF] Joshi | Global Aspects in Gravitation and Cosmology[END_REF], then for m > 1, this ratio will remain less than unity till the singularity formation and thus the apparent horizon will not form. For m < 1, as the collapse proceeds we reach the time t 0 < t ah < t s so that 2M (t ah , r) /R (t ah , t) > 1 and thus the apparent horizon forms to cover the singularity. A homogeneous perfect fluid collapse, 1. As a result, a spacetime singularity develops. (that is, m > 0) 2. The inequalities stated in (44) hold throughout the collapse process, which is why the WEC holds.

3. Starting matter profiles are well behaved and preserve the regularity of the initial conditions by not exhibiting any singularities.

4. At the beginning of the collapse, the ratio 2M/R should be smaller than unity 5. The singularity is not covered by any discernible horizon. So any pair of (α, ω) picked up from the feasible region in the collapse situation may result in the development of a naked singularity. Additionally, an apparent horizon will form to hide the singularity if we select the EoS and Rastall parameters from the grey region, and in this case, the collapse process results in the production of a black hole. For α = 1, the formation or otherwise of the apparent horizon will be decided by those values of EoS parameter for which ω > -1/3 or ω < 1 respectively. We note that these conditions on EoS parameter hold only on the blue dashed line where we actually deal with GR.

Conclusion

As a result of changing the second term in the Einstein tensor, Rastall gravity can be thought of as a modified theory of Einstein gravity. The advantage of this substitution is that it converts Rastall's equations into Einstein's equations for empty space-time. Einstein's and Rastall's equations diverge when analysing gravitational systems with non-zero sources. We have shown that the two theories differ significantly in their treatment of the incorporation of Mach's principle into the theory of gravity. Rastall's equations therefore make up a set of gravity equations that also includes Einstein's. In this sense, they might be seen as a generalisation of general relativity. We looked into whether there are any non-singular universe models that work with this gravity theory, and we found that a model of emergent scenario may be defined with the right Rastall parameter choice and equation of state parameter limit. For homogeneous and isotropic FLRW models, it has been demonstrated that this gravity model is comparable to Einstein gravity with particle creation mechanism. It is possible to have a whole cosmic scenario for this gravity model, from the early inflationary epoch to the present accelerating phase via the matter-dominated era of evolution, with a continuous choice of Rastall parameter.

The variable Rastall parameter in extended Rastall gravity, which is equivalent to Einstein gravity with particle generation, is related to the particle production parameter. Both generalised Rastall gravity and Einstein gravity with particle production mechanism exhibit continuous cosmic evolution from the inflationary age to the present. An emergent phase is conceivable for both generalised Rastall gravity and the particle creation process in Einstein gravity. Additionally, we looked into the collapse of a homogeneous perfect fluid in Rastall gravity and discovered that, depending on the EoS and Rastall parameter values, collapsing configurations from regular beginning data could lead to the formation of a black hole or a naked singularity. We discovered that, for ω1/3, the Rastall parameter can affect the formation of an apparent horizon, allowing naked singularities to form in homogeneous perfect fluid collapse as opposed to the black hole formation that takes place for these EoS parameter values in GR. The Rastall parameter can be thought of as the strength of mutual non-minimal coupling between matter and geometry.
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 1 Figure 1: The allowed values for EoS and Rastall parameters that determine the formation or failure of apparent horizon is shown by dashed line. Any point (γ, ω) lying of the solid curve satisfies equation ω -γ(1 + ω) = 0 .