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An SDE perspective on stochastic convex optimization

Rodrigo Maulen S.∗ Jalal Fadili† Hedy Attouch‡

Abstract. In this paper, we analyze the global and local behavior of gradient-like flows under stochastic errors
towards the aim of solving convex optimization problems with noisy gradient input. We first study the unconstrained
differentiable convex case, using a stochastic differential equation where the drift term is minus the gradient of the ob-
jective function and the diffusion term is either bounded or square-integrable. In this context, under Lipschitz continuity
of the gradient, our first main result shows almost sure convergence of the objective and the trajectory process towards
a minimizer of the objective function. We also provide a comprehensive complexity analysis by establishing several
new pointwise and ergodic convergence rates in expectation for the convex, strongly convex and (local) Łojasiewicz
case. The latter, which involves local analysis, is challenging and requires non-trivial arguments from measure the-
ory. Then, we extend our study to the constrained case and more generally to certain nonsmooth situations. We show
that several of our results have natural extensions obtained by replacing the gradient of the objective function by a
cocoercive monotone operator. This makes it possible to obtain similar convergence results for optimization problems
with an additively "smooth + non-smooth" convex structure. Finally, we consider another extension of our results to
non-smooth optimization which is based on the Moreau envelope.

Key words. Convex optimization, Stochastic Differential Equation, Stochastic gradient descent, Łojasiewicz in-
equality, KL inequality, Convergence rate, Asymptotic behavior.

AMS subject classifications. 37N40, 46N10, 49M30, 65B99, 65K05, 65K10, 90B50, 90C25

1 Introduction

1.1 Problem Statement

We aim to solve convex minimization problems by means of stochastic differential equations whose drift
term is driven by the gradient of the objective function. This allows for noisy (inaccurate) gradient input to
be taken into account. Consider the minimization problem

min
x∈Rd

f(x), (P)

where the objective f satisfies the following standing assumptions:{
f is continuously differentiable and convex with L-Lipschitz continuous gradient;
S def
= argmin(f) ̸= ∅.

(H0)

We will also later deal with the constrained case, and more generally with additively structured "smooth +
nonsmooth" convex optimization.
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Let us first recall some basic facts about the deterministic case. To solve (P), a fundamental dynamic to
consider is the gradient flow of f , i.e. the gradient descent dynamic with initial condition X0 ∈ Rd:{

ẋ = −∇f(x), t > 0

x(0) = X0.
(GF)

It is well known since the founding papers of Brezis, Baillon, Bruck in the 1970s that, if the solution
set argmin f of (P) is non-empty, then each solution trajectory of (GF) converges, and its limit belongs to
argmin f . In fact, this result is true in a more general setting, simply assuming that the objective function f
is convex, lower semicontinuous (lsc) and proper (in which case we must consider the differential inclusion
obtained by replacing in (GF) the gradient of f by the sub-differential ∂f ).

In many cases, the gradient input is subject to noise, for example, if the gradient cannot be evaluated
directly, or due to some other exogenous factor. In such scenario, one can model these errors using a stochas-
tic integral with respect to the measure defined by a continuous Itô martingale. This entails the following
stochastic differential equation as a stochastic counterpart of (GF):{

dX(t) = −∇f(X(t))dt+ σ(t,X(t))dW (t), t > 0

X(0) = X0,
(SDE)

defined over a filtered probability space (Ω,F , {Ft}t≥0,P), where the diffusion (volatility) term σ : R+ ×
Rd → Rd×m is matrix-valued measurable function, and W is the m-dimensional Brownian motion.

Our goal is to study the dynamic of (SDE) and its long time behavior in order to solve (P). To iden-
tify the assumptions necessary to hope for such a behavior to occur, remember that when the diffusion
term σ is a positive real constant, it is well-known that X(t) in this case is a continuous-time diffusion
process known as Langevin diffusion, and has a unique invariant probability measure πσ with density ∝
e−2f(x)/σ2 [1]. It is easy to see that the measure πσ gets concentrated around argmin f as σ tends to 0+ with
limσ→0+ πσ(argmin f) = 1; see e.g. [2].

Motivated by this observation, our paper will then mostly focus on the case where σ(·, x) vanishes suffi-
ciently fast as t→ +∞ uniformly in x, and some guarantees will also be provided for uniformly bounded σ.
Therefore, throughout, the entries σik are assumed to satisfy:{

supt≥0,x∈Rd |σik(t, x)| <∞,

|σik(t, x′)− σik(t, x)| ≤ l0∥x′ − x∥,
(H)

for some l0 > 0 and for all t ≥ 0, x, x′ ∈ Rd. The Lipschitz continuity assumption is mild and required to
ensure well-posedness of (SDE).

1.2 Contributions

We study the properties of the processX(t) and f(X(t)) for the stochastic differential equation (SDE) from
an optimization perspective, under the assumptions (H0) and (H). When the diffusion term is uniformly
bounded, we show convergence of E[f(X(t)) − min f ] to a noise-dominated region both for the convex
and strongly convex case. When the diffusion term is square-integrable, we show in Theorem 3.1 that X(t)
converges almost surely to a solution of (P), which is a new result to the best of our knowledge. Moreover, in
Theorem 3.2 and Proposition 3.3, we provide new ergodic and pointwise convergence rates of the objective
in expectation, again for both the convex and strongly convex case.
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Then we turn to a local analysis relying on the Łojasiewicz inequality and its strong ties with error bounds.
Since this property is most often satisfied only locally, we deepen the discussion on the long time localization
of the process. This is fundamental, because in the recent literature on local convergence properties of
stochastic gradient descent, strong assumptions are imposed, such as X(t) or f(X(t)) is locally bounded
almost surely. Such assumptions are unfortunately unrealistic due to the presence of the Brownian Motion.
We manage to circumvent this problem by using arguments from measure theory, in particular Egorov’s
theorem. In turn, under the Łojasiewicz inequality assumption with exponent q ≥ 1/2, this allows us to
show local convergence rates of the objective and the trajectory itself in expectation over a set of events
whose probability is arbitrarily close to 1 (see Theorem 4.5).

Table 1 summarizes the local and global convergence rates obtained for E[f(X(t))−min f ]. In this table,
δ > 0 is a parameter which is intended to be taken arbitrarily close to 0 but different from it, σ∗ > 0 and
σ∞(·) are defined as

∥σ(t, x)∥2F ≤ σ2∗, ∀t ≥ 0,∀x ∈ Rd, and σ∞(t)
def
= sup

x∈Rd

∥σ(t, x)∥F , (1.1)

and σ∞(·) is a decreasing function. Łq(S) is the class of functions satisfying the Łojasiewicz inequality with
exponent q ∈ [0, 1] at each point of S (see Definition 4.1)1.

Property of f Gradient Flow SDE (supt≥0 σ∞(t) ≤ σ∗) SDE (σ∞ ∈ L2(R+))

Convex t−1 t−1 + σ2∗ t−1

µ−Strongly Convex e−2µt e−2µt + σ2∗ max{e−2µt, σ2∞(t)}
Convex ∩ Ł1/2(S) (coef. µ) e−µ2t ✘ max{e−µ2t, σ2∞(t)}+

√
δ

Convex ∩ Łq(S), q ∈ (12 , 1) t
− 1

2q−1 ✘ t
− 1

2q−1 2+
√
δ

Table 1: Summary of local and global convergence rates obtained for E[f(X(t))−min f ].

Although it is natural to think that we can take the limit when δ goes to 0+, the time from which these
convergence rates are valid depends on δ and increases (potentially to +∞) as δ approaches 0+. Assuming
only the boundedness of the diffusion and the Łojasiewicz inequality, we could not find better results (cells
marked with ✘) than those presented in the convex case. Since the Łojasiewicz inequality is local, a natural
approach would be to localize the process in the long term with high probability. However, it is not clear how
to achieve this.

In Section 5, we turn to extending some of the preceding results to the structured convex minimization
problem

min
x∈Rd

f(x) + g(x), (Pc)

where f : Rd → R satisfies (H0), g : Rd → R ∪ {+∞} is proper, lsc and convex and argmin(f + g) ̸= ∅.
This obviously covers the case of constrained minimization of f over a non-empty closed convex set. We
take two different routes leading to different SDEs.

1Semialgebraic and more generally analytic functions is a typical class verifying the Łojasiewicz inequality at each point [3, 4].
2This is not yet proven, our conjecture is that it is true when σ∞ = O((t + 1)

− q
2q−1 ) (see the detailed discussion in Conjec-

ture 4.11).
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The first approach consists in reformulating (Pc) as finding for zeros of the operator Mµ : Rd → Rd

Mµ(x) =
1

µ

(
x− proxµg(x− µ∇f(x))

)
,

where µ > 0 and proxµg is the proximal mapping of µg. It is well-known that the operatorMµ is cocoercive
[5], hence monotone and Lipschitz continuous, and Mµ = ∇f when g vanishes. The idea is then to replace
the operator ∇f in (SDE) byMµ leading to an SDE which will have many of the convergence properties ob-
tained in the smooth convex case. This approach is in accordance with the deterministic theory for monotone
cocoercive operators (see [6, 7, 5]).

The second approach regularizes the nonsmooth component g of the objective function using its Moreau
envelope

gθ(x) = min
z∈Rd

g(z) +
1

2θ
∥x− z∥2.

This leads to studying the dynamic (SDE) with the function f+gθ, which has a continuous Lipschitz gradient.
This approximation method leads to a non-autonomous SDE. Note, however, that the noise in this case can
be considered on the evaluation of ∇f(x), while it is on Mµ(x) in the first approach.

1.3 Relation to prior work

The gradient system (GF), which is valid on a general real Hilbert spaceH, is a dissipative dynamical system,
whose study dates back to Cauchy [8]. It plays a fundamental role in optimization: it transforms the problem
of minimizing f into the study of the asymptotic behavior of the trajectories of (GF). This example was the
precursor to the rich connection between continuous dissipative dynamical systems and optimization. Its
Euler forward discretization (with stepsize γk > 0) is the celebrated gradient descent scheme

xk+1 = xk − γk∇f(xk). (GD)

Under (H0), and for (γk)k∈N ⊂]0, 2/L[, then we have both the convergence of the values f(xk)−min f =
O(1/k) (in fact even o(1/k)), and the weak convergence of iterates (xk)k∈N to a point in argmin f . More-
over, if the Łojasiewicz inequality (4.1) (see [9]) is satisfied, then we can ensure the strong convergence
of (xk)k∈N to a point in argmin f and faster convergence rates than those ensured by the simple convexity
hypothesis (see [10, 11]).

Now, let us focus on the finite-dimensional case (H = Rd). Although the Gradient Descent is a classical
algorithm to solve the convex minimization problem, with the need to handle large-scale problems (such
as in various areas of data science and machine learning), there has become necessary to find ways to get
around the high computational cost per iteration that these problems entail. The Robbins-Monro stochastic
approximation algorithm [12] is at the heart of Stochastic Gradient Descent (SGD), which, roughly speaking,
consists in cheaply and randomly approximating the gradient at the price of obtaining a random noise in the
solutions. Given an initial point x0 ∈ Rd, (SGD) updates the iterates according to

xk+1 = xk − γ∇f(xk)− γξk, (SGD)

where ξk denotes the (random) noise term at the k−th iteration.
Recent work (see [13, 14, 15, 16, 17, 18]) has linked algorithm (SGD) with dynamic (SDE), showing the

context under which (SDE) can be seen as an approximation (under a specific error) of (SGD) and vice-versa.
For example, (SDE) can be interpreted as the pathwise solution to the Fokker-Planck equation (see [19]).
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The Euler forward discretization (with stepsize γ > 0) of (SDE) when d = m and σ =
√
2Id is the

following algorithm:
Xk+1 = Xk − γ∇f(Xk) +

√
2γξk, (LMC)

where ξk ∼ N (0, Id) (multivariate standard normal distribution). This algorithm, which is known as
Langevin Monte Carlo (see [20]), is a standard sampling scheme, whose purpose is to generate samples
from an approximation of a target distribution, in our case, proportional to e−f(x). Under appropriate as-
sumptions on f , when γ is small and k is large such that kγ is large, the distribution of Xk converges in
different topologies or is close in various metrics to the target distribution with density ∝ e−f(x). Asymp-
totic and non-asymptotic (with convergence rates) results of this kind have been studied in a number of papers
under various conditions; see [21, 22, 23, 24, 25, 26] and references therein. By rescaling the problem, rela-
tion between sampling (i.e. (LMC)) and optimization (i.e. (SGD)) has been also investigated for the strongly
convex case in e.g. [21].

Concerning (SDE), one can easily infer from [27, Proposition 7.4] that assuming supx∈Rd ∥σ(t, x)∥F =
o(1/

√
log(t)), and conditioning on the event that X(t) is bounded, we have almost surely that the set of

limits of convergent sequences X(tk), tk → +∞ is contained in argmin f . Using results on asymptotic
pseudo-trajectories from [27], the work of [28, 29, 30] analyzed the behavior of the Stochastic Mirror Descent
dynamics:

dY (t) = −∇f(X(t))dt+ σ(t,X)dW (t),

X(t) = Q(ηY (t)),
(SMD)

where X ⊂ Rd is a closed convex feasible region, f is convex with Lipschitz continuous gradient on X , Q :
Rd → X is the mirror map induced by some strongly convex entropy, and η > 0 is a sensitivity parameter. In
[28, Theorem 4.1], it is shown that if X is also assumed bounded, that supx∈Rd ∥σ(t, x)∥F = o(1/

√
log(t)),

andQ satisfies some continuity assumptions3, then the solutionX(t) (SMD) converges to a point in argmin f
almost surely. Similar assumptions can be found in [30] to obtain almost sure convergence on the objective.
Let us observe that all these results do not apply to our setting. Indeed, if X = Rd (unconstrained problem),
Q(x) = x and η = 1, we recover (SDE). Our work does not assume any boundedness whatsoever to establish
our results. This comes however at somewhat stronger assumptions on σ(·, ·).

While finalizing this work, we became aware of the recent work of [31], which analyzes the behavior of
(SDE) for f ∈ C2(Rd) not necessarily convex and which satisfies supx∈Rd ∥σ(·, x)∥F ∈ L2(R+). Condi-
tioning on the event that lim supt→∞ ∥X(t)∥ < ∞, they showed that ∇f(X(t)) → 0 almost surely, almost
sure convergence of f(X(t)), and if the objective f is semialgebraic (and more generally tame), they also
showed almost sure convergence of X(t) towards a critical point of f . They also made attempt to get local
convergence rates under the Łojasiewicz inequality that are less transparent than ours. Our analysis on the
other hand leverages convexity of f to establish stronger results.

1.4 Organization of the paper

Section 2 introduces notations and reviews some necessary material from convex and stochastic analysis.
Section 3 states our main convergence results in the case of a convex differentiable objective function whose
gradient is Lipschitz continuous. We first show the almost sure convergence of the process towards the set
of minimizers, then we establish convergence rates for the values. Section 4 introduces further geometric
properties of the objective functions, namely Łojasiewicz property and related error bound, which allows to

3Compactness of X and the condition on σ(·, ·) are clearly reminiscent of [27, Proposition 7.4], though the latter is not discussed
in [28].
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obtain improved (local) convergence rates. This covers in particular the (locally) strongly convex case. In
section 5, we extend some results to the nonsmooth case by considering the additively structured "smooth
+ nonsmooth" convex minimization. We develop new stochastic differential equations that naturally lend
themselves to splitting techniques. Technical lemmas and theorems that are needed throughout the paper are
collected in the appendix.

2 Notation and Preliminaries

We will use the following shorthand notations: given d, n ∈ N, [n] def
= {1, . . . , n}, Rd×n is the set of real

matrices of size d × n, and Id is the identity matrix of dimension d. For M ∈ Rd×n, M⊤ ∈ Rn×d is its
transpose matrix and ∥M∥F is its Frobenius norm. For M,M ′ ∈ Rd×d, M ≼ M ′ if and only if u⊤(M ′ −
M)u ≥ 0 for every u ∈ Rd. For a set D, we denote its power set as P(D)

def
= {C : C ⊆ D}. The sublevel of

f at height r ∈ R is denoted [f ≤ r]
def
= {x ∈ Rd : f(x) ≤ r}.

2.1 On convex analysis

Let us recall some important definitions and results from convex analysis in the finite-dimensional case; for
a comprehensive coverage, we refer the reader to [32].

We denote by Γ0(Rd) the class of proper lsc and convex functions on Rd taking values in R∪{+∞}. For
µ > 0, Γµ(Rd) ⊂ Γ0(Rd) is the class of µ−strongly convex functions. We denote by Cs(Rd) the class of
s-times continuously differentiable functions on Rd. For L ≥ 0, C1,1

L (Rd) ⊂ C1(Rd) is the set of functions
on Rd whose gradient is L−Lipschitz continuous.

The following Descent Lemma which is satisfied by this class of functions plays a central role in optimiza-
tion.

Lemma 2.1. Let f ∈ C1,1
L (Rd), then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2, ∀x, y ∈ Rd.

Corollary 2.2. Let f ∈ C1,1
L (Rd) such that argmin f ̸= ∅, then

∥∇f(x)∥2 ≤ 2L(f(x)−min f), ∀x ∈ Rd.

Proof. Use Lemma 2.1 for an arbitrary x ∈ Rd and y = x− 1
L∇f(x). Then bound

f

(
x− 1

L
∇f(x)

)
≥ min f.

The subdifferential of a function f ∈ Γ0(Rd) is the set-valued operator ∂f : Rd → P(Rd) such that, for
every x in Rd,

∂f(x) = {u ∈ Rd : f(y) ≥ f(x) + ⟨u, y − x⟩ ∀y ∈ Rd}.

When f is continuous, ∂f(x) is non-empty convex and compact set for every x ∈ Rd. If f is differentiable,
then ∂f(x) = {∇f(x)}. For every x ∈ Rd such that ∂f(x) ̸= ∅, the minimum norm selection of ∂f(x) is
the unique element ∂0f(x) def

= argminu∈∂f(x) ∥u∥.
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2.2 On stochastic processes

Let us recall some elements of stochastic analysis; for a more complete account, we refer to [33, 34, 35].
Throughout the paper, (Ω,F ,P) is a probability space and {Ft|t ≥ 0} is a filtration of the σ−algebra F .
Given C ∈ P(Ω), we will denote σ(C) the σ−algebra generated by C. We denote F∞

def
= σ

(⋃
t≥0Ft

)
∈ F .

The expectation of a random variable ξ : Ω → Rd is denoted by

E(ξ) def
=

∫
Ω
ξ(ω)dP(ω).

An event E ∈ F happens almost surely if P(E) = 1, and it will be denoted as "E, P-a.s." or simply "E,
a.s.". The characteristic function of an event E ∈ F is denoted by

1E(ω)
def
=

{
1 if ω ∈ E,

0 otherwise.

An Rd-valued stochastic process is a function X : Ω × R+ → Rd. It is said to be continuous if X(ω, ·) ∈
C(R+;Rd) for almost all ω ∈ Ω. We will denote X(t)

def
= X(·, t). We are going to study (SDE), and in

order to ensure the uniqueness of a solution, we introduce a relation over stochastic processes. Two stochastic
processesX,Y : Ω× [0, T ] → Rd are said to be equivalent ifX(t) = Y (t), ∀t ∈ [0, T ], P-a.s. This leads us
to define the equivalence relation R, which associates the equivalent stochastic processes in the same class.

Furthermore, we will need some properties about the measurability of these processes. A stochastic pro-
cess X : Ω × R+ → Rd is progressively measurable if for every t ≥ 0, the map Ω × [0, t] → Rd defined
by (ω, s) → X(ω, s) is Ft ⊗ B([0, t])-measurable, where ⊗ is the product σ-algebra and B is the Borel
σ-algebra. On the other hand, X is Ft-adapted if X(t) is Ft-measurable for every t ≥ 0. It is a direct
consequence of the definition that if X is progressively measurable, then X is Ft-adapted.

Let us define the quotient space:

S0
d [0, T ]

def
=
{
X : Ω× [0, T ] → Rd : X is a prog. measurable cont. stochastic process

}/
R.

We set S0
d

def
=
⋂

T≥0 S
0
d [0, T ]. Furthermore, for ν > 0, we define Sν

d [0, T ] as the subset of processes X(t) in
S0
d [0, T ] such that

Sν
d [0, T ]

def
=

{
X ∈ S0

d [0, T ] : E

(
sup

t∈[0,T ]
∥Xt∥ν

)
< +∞

}
.

We define Sν
d

def
=
⋂

T≥0 S
ν
d [0, T ].

Theorem A.7 in the appendix provides us with sufficient conditions to ensure the existence and uniqueness
of the solution to (SDE). These conditions are met in our case under assumptions (H0) and (H).

Let us now present Itô’s formula which plays a central role in the theory of stochastic differential equations.

Proposition 2.3. [33, Chapter 4] Consider X the solution of (SDE), ϕ : R+ ×Rd → R such that ϕ(·, x) ∈
C1(R+) for every x ∈ Rd and ϕ(t, ·) ∈ C2(Rd) for every t ≥ 0. Then the process

Y (t) = ϕ(t,X(t)),
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is an Itô Process such that for all t ≥ 0

Y (t) = Y (0) +

∫ t

0

∂ϕ

∂t
(s,X(s))ds−

∫ t

0
⟨∇ϕ(s,X(s)),∇f(X(s))⟩ ds

+

∫ t

0

〈
σ⊤(s,X(s))∇ϕ(s,X(s)), dW (s)

〉
+

1

2

∫ t

0
tr
(
σ(s,X(s))σ⊤(s,X(s))∇2ϕ(s,X(s))

)
ds. (2.1)

Moreover, if for all T > 0

E
(∫ T

0
∥σ⊤(s,X(s))∇ϕ(s,X(s))∥2ds

)
< +∞,

then
∫ t

0

〈
σ⊤(s,X(s))∇ϕ(s,X(s)), dW (s)

〉
is a square-integrable continuous martingale and

E[Y (t)] = Y (0) + E
(∫ t

0

∂ϕ

∂t
(s,X(s))ds

)
− E

(∫ t

0
⟨∇ϕ(s,X(s)),∇f(X(s))⟩ ds

)
+

1

2
E
(∫ t

0
tr
(
σ(s,X(s))σ⊤(s,X(s))∇2ϕ(s,X(s))

)
ds

)
. (2.2)

The C2 assumption on ϕ(t, ·) in Itô’s formula is crucial. This can be weakened in certain cases leading to
the following inequality that will be useful in our context.

Proposition 2.4. ConsiderX the solution of (SDE), ϕ1 ∈ C1(R+), ϕ2 ∈ C1,1
L (Rd) andϕ(t, x) = ϕ1(t)ϕ2(x).

Then the process
Y (t) = ϕ(t,X(t)) = ϕ1(t)ϕ2(X(t)),

is an Itô Process such that

Y (t) ≤ Y (0) +

∫ t

0
ϕ′1(s)ϕ2(X(s))ds−

∫ t

0
ϕ1(s) ⟨∇ϕ2(X(s)),∇f(X(s))⟩ ds

+

∫ t

0

〈
σ⊤(s,X(s))ϕ1(s)∇ϕ2(X(s)), dW (s)

〉
+
L

2

∫ t

0
ϕ1(s)tr

(
σ(s,X(s))σ⊤(s,X(s))

)
ds. (2.3)

Moreover, if for all T > 0

E
(∫ T

0
∥σ⊤(s,X(s))ϕ1(s)∇ϕ2(X(s))∥2ds

)
< +∞,

then

E[Y (t)] ≤ Y (0) + E
(∫ t

0
ϕ′1(s)ϕ2(X(s))ds

)
− E

(∫ t

0
ϕ1(s) ⟨∇ϕ2(X(s)),∇f(X(s))⟩ ds

)
+
L

2
E
(∫ t

0
ϕ1(s)tr

(
σ(s,X(s))σ⊤(s,X(s))

)
ds

)
. (2.4)

Proof. Proof. Analogous to the proof of [28, Proposition C.2].
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3 Convergence properties for convex differentiable functions

We consider f (called the potential) and study the dynamic (SDE) under hypotheses (H0) (i.e. f ∈ C1,1
L (Rd)∩

Γ0(Rd)) and (H). Recall the definitions of σ∗ and σ∞(t) from (1.1). Observe that from (H) one can take
σ2∗ = md supt≥0,x∈Rd |σik(t, x)|2. Throughout the rest of the paper, we will use the shorthand notation

Σ(t, x)
def
= σ(t, x)σ(t, x)⊤.

3.1 Almost sure convergence of trajectory

Our first main result establish almost convergence of X(t) to an S-valued random variable as t→ +∞.

Theorem 3.1. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H0) and (H). Then,
there exists a unique solution X ∈ Sν

d of (SDE), for every ν ≥ 2. Additionally, if σ∞ ∈ L2(R+), then:
(i) supt≥0 E[∥X(t)∥2] < +∞.
(ii) ∀x⋆ ∈ S, limt→∞ ∥X(t)− x⋆∥ exists a.s. and supt≥0 ∥X(t)∥ < +∞ a.s.
(iii) limt→∞ ∥∇f(X(t))∥ = 0 a.s. As a result, limt→∞ f(X(t)) = min f a.s.
(iv) In addition to (iii), there exists an S-valued random variable x⋆ such that limt→∞X(t) = x⋆ a.s.

Proof. The existence and uniqueness of a solution follows directly from the fact that the conditions of The-
orem A.7 are satisfied under (H0) and (H). The architecture of the proof of Theorem 3.1 consists of three
steps that we briefly describe:

• The first step is based on Itô’s formula (Proposition 2.3). Theorem A.9 then allows us to conclude that
for all x⋆ ∈ S, limt→∞ ∥X(t)− x⋆∥ exists a.s. Then, a separability argument is used to conclude that
almost surely, for every x⋆ ∈ S, limt→∞ ∥X(t)− x⋆∥ exists.

• The second step consists in using another conclusion of Theorem A.9 to conclude that ∥∇f(X(·))∥2 ∈
L1(R+) a.s. After proving that this function is eventually uniformly continuous, we proceed according
to Barbalat’s Lemma (see [36]) to conclude that limt→∞ ∥∇f(X(t))∥ = 0 a.s. As a consequence of
the convexity of f we deduce that limt→∞ f(X(t)) = min f a.s.

• Finally, the third step consists in using Opial’s Lemma to conclude that there exists anS-valued random
variable x⋆ such that limt→∞X(t) = x⋆ a.s.

(i) Let x⋆ be taken arbitrarily in S. Let us define the corresponding anchor function ϕ(x) = ∥x−x⋆∥2
2 .

Using Itô’s formula we obtain

ϕ(X(t)) =
∥X0 − x⋆∥2

2︸ ︷︷ ︸
ξ

+
1

2

∫ t

0
tr (Σ(s,X(s))) ds︸ ︷︷ ︸

At

−
∫ t

0
⟨∇f(X(s)), X(s)− x⋆⟩ ds︸ ︷︷ ︸

Ut

+

∫ t

0

〈
σ⊤(s,X(s)) (X(s)− x⋆) , dW (s)

〉
︸ ︷︷ ︸

Mt

. (3.1)

Since X ∈ S2
d by Proposition 2.3, we have for every T > 0, that

E
(∫ T

0
∥σ⊤(s,X(s)) (X(s)− x⋆) ∥2ds

)
≤ E

(
sup

t∈[0,T ]
∥X(t)− x⋆∥2

)∫ T

0
σ2∞(s)ds < +∞.
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Therefore Mt is a square-integrable continuous martingale. It is also a continuous local martingale
(see [35, Theorem 1.3.3]), which implies that E(Mt) = 0.
Let us now take the expectation of (3.1). Using that

0 ≤ tr (Σ(s,X(s))) ≤ σ2∞(s) and ⟨∇f(X(s)), X(s)− x⋆⟩ ≥ 0,

and taking the supremum over t ≥ 0, we obtain that

sup
t≥0

E
(
∥X(t)− x⋆∥2

2

)
≤ ∥X0 − x⋆∥2

2
+

1

2

∫ ∞

0
σ2∞(s)ds < +∞.

This shows the first claim.
(ii) At and Ut are two continuous adapted increasing processes with A0 = U0 = 0 a.s. Since ϕ(X(t)) is

nonnegative and supx∈Rd ∥σ(·, x)∥F ∈ L2(R+), we deduce that limt→∞At < +∞. Then, we can
use Theorem A.9 to conclude that∫ ∞

0
⟨∇f(X(s)), X(s)− x⋆⟩ds < +∞ a.s. (3.2)

and

∀x⋆ ∈ S,∃Ωx⋆ ∈ F , such that P(Ωx⋆) = 1 and lim
t→∞

∥X(ω, t)− x⋆∥ exists ∀ω ∈ Ωx⋆ . (3.3)

Since Rd is separable, there exists a countable set Z ⊆ S, such that cl(Z) = S. Let Ω̃ =
⋂

z∈Z Ωz .
Since Z is countable

P(Ω̃) = 1− P

(⋃
z∈Z

Ωc
z

)
≥ 1−

∑
z∈Z

P(Ωc
z) = 1.

For arbitrary x⋆ ∈ S, there exists a sequence (zk)k∈N ⊆ Z such that zk → x⋆. In view of (3.3), for
every k ∈ N there exists τk : Ωzk → R+ such that

lim
t→∞

∥X(ω, t)− zk∥ = τk(ω), ∀ω ∈ Ωzk .

Moreover, limk→∞ τk(ω) exists since (zk)k∈N is convergent. Now, let ω ∈ Ω̃. Using the triangle
inequality, we obtain that

|∥X(ω, t)− zk∥ − ∥X(ω, t)− x⋆∥| ≤ ∥zk − x⋆∥.

Taking lim supt→∞ over the previous inequality, we conclude that∣∣∣∣τk(ω)− lim sup
t→∞

∥X(ω, t)− x⋆∥
∣∣∣∣ ≤ ∥zk − x⋆∥.

A similar conclusion holds for the lim inft→∞. Then, taking the limit over k, we deduce

lim
t→∞

∥X(ω, t)− x⋆∥ = lim
k→∞

τk(ω), ∀ω ∈ Ω̃,

whence we obtain that the previous limit exists on a set of probability 1 independently of x⋆.
Let us recall that there exists Ωc ∈ F such that P(Ωc) = 1 andX(ω, ·) is continuous for every ω ∈ Ωc.
Now let x⋆ ∈ S arbitrary, since the limit exists, for every ω ∈ Ω̃ ∩ Ωc there exists T (ω) such that
∥X(ω, t)− x⋆∥ ≤ 1 for every t ≥ T (ω). Besides, since X(ω, ·) is continuous, by Bolzano’s theorem
supt∈[0,T (ω)] ∥X(ω, t)∥ = maxt∈[0,T (ω)] ∥X(ω, t)∥ def

= h(ω) < +∞. Therefore, supt≥0 ∥X(t)∥ <
max{h(ω), 1 + ∥x⋆∥} <∞.
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(iii) By convexity of f and (3.2), we have that there exists Ωf ∈ F such that P(Ωf ) = 1 and f(X(ω, ·))−
min f ∈ L1(R+) for everyω ∈ Ωf . By Corollary 2.2, we obtain that ∥∇f(X(ω, ·))∥ ∈ L2(R+) for ev-
eryω ∈ Ωf . Letω ∈ Ωf arbitrary, then lim inft→∞ ∥∇f(X(ω, t))∥ = 0. If lim supt→∞ ∥∇f(X(ω, t))∥ =
0 then we conclude. Suppose by contradiction that lim supt→∞ ∥f(X(ω, t))∥ > 0. Then, by Lemma A.4,
there exists δ > 0 satisfying

0 = lim inf
t→∞

∥∇f(X(ω, t))∥ < δ < lim sup
t→∞

∥∇f(X(ω, t))∥,

and there exists (tk)k∈N ⊂ R+ such that limk→∞ tk = ∞,

∥∇f(X(ω, tk))∥ > δ and tk+1 − tk > 1, ∀k ∈ N.

Let Mt =

∫ t

0
σ(s,X(s))dW (s). This is a continuous martingale (w.r.t. the filtration Ft), which

verifies

E(|Mt|2) = E
(∫ t

0
∥σ(s,X(s))∥2Fds

)
≤ E

(∫ ∞

0
σ2∞(s)ds

)
<∞,∀t ≥ 0.

According to Theorem A.8, we deduce that there exists a random variable M∞ w.r.t. F∞, and which
verifies: E(|M∞|2) < +∞, and there exists ΩM ∈ F such that P(ΩM ) = 1 and

lim
t→∞

Mt(ω) =M∞(ω) for every ω ∈ ΩM .

Let Ωconv
def
= Ω̃∩Ωc ∩Ωf ∩ΩM , hence P(Ωconv) = 1. Take any ω0 ∈ Ωconv. We allow ourselves the

abuse of notation X(t)
def
= X(ω0, t) during the rest of the proof from this point.

Let ε ∈
]
0,min

(
δ2

4L2 , L
)[

. Note that ([tk, tk+ ε
2L ] : k ∈ N) are disjoint intervals. On the other hand,

according to the convergence property of Mt and the fact that ∥∇f(X(·))∥ ∈ L2(R+), there exists
k′ > 0 such that for every k ≥ k′

sup
t≥tk

|Mt −Mtk |
2 <

ε

4
and

∫ ∞

tk

∥∇f(X(s))∥2ds ≤ L

2
.

Besides, for every k ≥ k′, t ∈ [tk, tk +
ε
2L ]

∥X(t)−X(tk)∥2 ≤ 2(t− tk)

∫ t

tk

∥∇f(X(s))∥2ds+ 2|Mt −Mtk |
2 ≤ 2(t− tk)

L

2
+
ε

2
≤ ε.

Since f ∈ C1,1
L (Rd), we have that for every k ≥ k′ and t ∈ [tk, tk +

ε
2L ]

∥∇f(X(t))−∇f(X(tk))∥2 ≤ L2∥X(t)−X(tk)∥2 ≤
(
δ

2

)2

.

Therefore, for every k ≥ k′, t ∈ [tk, tk +
ε
2L ]

∥∇f(X(t))∥ ≥ ∥∇f(X(tk))∥ − ∥∇f(X(t))−∇f(X(tk))∥︸ ︷︷ ︸
≤ δ

2

≥ δ

2
.
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Finally, ∫ ∞

0
∥∇f(X(s))∥2ds ≥

∑
k≥k′

∫ tk+
ε
2L

tk

∥∇f(X(s))∥2ds ≥
∑
k≥k′

δ2ε

8L
= ∞,

which contradicts ∥∇f(X(·))∥ ∈ L2(R+). So,

lim sup
t→∞

∥∇f(X(ω, t))∥ = lim inf
t→∞

∥∇f(X(ω, t))∥ = lim
t→∞

∥∇f(X(ω, t))∥ = 0, ∀ω ∈ Ωconv.

Let x⋆ ∈ S and ω ∈ Ωconv taken arbitrary. By convexity and Cauchy-Schwarz inequality:

0 ≤ f(X(ω, t))−min f ≤ ∥∇f(X(ω, t))∥∥X(ω, t)− x⋆∥.

The claim then follows as we have already obtained that limt→0 ∥X(ω, t)− x⋆∥ exists, and

lim
t→∞

∥∇f(X(ω, t))∥ = 0.

(iv) Let ω ∈ Ωconv and x̄(ω) be a sequential limit point ofX(ω, t). Equivalently, there exists an increasing
sequence (tk)k∈N ⊂ R+ such that limk→∞ tk = ∞ and

lim
k→∞

X(ω, tk) = x̄(ω).

Since limt→∞ f(X(ω, t)) = min f and by continuity of f , we obtain directly that x̄(ω) ∈ S. Finally
by Opial’s Lemma (see [37]) we conclude that there exists x⋆(ω) ∈ S such that limt→∞X(ω, t) =
x⋆(ω). In other words, since ω ∈ Ωconv was arbitrary, there exists an S-valued random variable x⋆
such that limt→∞X(t) = x⋆ a.s.

3.2 Convergence rates of the objective

Our first result, stated below, summarizes the global convergence rates in expectation satisfied by the trajec-
tories of (SDE).

Theorem 3.2. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H0) and (H). The
following statements are satisfied by the solution trajectory X ∈ S2

d of (SDE):

(i) Let f ◦X(t)
def
= t−1

∫ t

0
f(X(s))ds and X(t) = t−1

∫ t

0
X(s)ds. Then

E
(
f(X(t))−min f

)
≤ E

(
f ◦X(t)−min f

)
≤ dist(X0,S)2

2t
+
σ2∗
2
, ∀t > 0. (3.4)

Besides, if σ∞ is L2(R+), then

E
(
f(X(t))−min f

)
≤ E

(
f ◦X(t)−min f

)
= O

(
1

t

)
. (3.5)

(ii) If moreover f ∈ Γµ(Rd) with µ > 0, then S = {x⋆} and

E
(
∥X(t)− x⋆∥2

)
≤ ∥X0 − x⋆∥2e−2µt +

σ2∗
2µ
, ∀t ≥ 0. (3.6)

Besides, if σ∞ is decreasing and vanishes at infinity, then for every λ ∈]0, 1[:

E
(
∥X(t)− x⋆∥2

)
≤ ∥X0 − x⋆∥2e−2µt +

σ2∗
2µ
e−2µ(1−λ)t + σ2∞(λt), ∀t ≥ 0. (3.7)
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Proof. (i) Let x⋆ ∈ S . Let g(t) = ϕ(X(t)) = ∥X(t)−x⋆∥2
2 and G(t) = E(g(t)). By applying Proposi-

tion 2.3 with ϕ, and using the convexity of f , we obtain

G(t)−G(0) = E
(∫ t

0
⟨∇f(X(s)), x⋆ −X(s)⟩ds

)
+

1

2
E
(∫ t

0
tr[Σ(s,X(s))]ds

)
≤ −E

(∫ t

0
(f(X(s))−min f)ds

)
+

1

2
E
(∫ t

0
tr[Σ(s,X(s))]ds

)
(3.8)

≤ −E
(∫ t

0
(f(X(s))−min f)ds

)
+
σ2∗
2
t.

Then rearranging the terms in (3.8), using G(t) ≥ 0, and dividing by t > 0, we obtain

1

t
E
(∫ t

0
(f(X(s))−min f)ds

)
≤ ∥X0 − x⋆∥2

2t
+
σ2∗
2
, ∀t > 0. (3.9)

Since x⋆ is arbitrary, by taking the infimum with respect to x⋆ ∈ S in (3.9), we obtain

1

t
E
(∫ t

0
(f(X(s))−min f)ds

)
≤ dist(X0,S)2

2t
+
σ2∗
2
, ∀t > 0. (3.10)

Moreover, if σ∞ ∈ L2(R+), then using inequality (3.8), we have

G(t)−G(0) ≤ −E
(∫ t

0
(f(X(s))−min f)ds

)
+

1

2

(∫ +∞

0
σ2∞(s)ds

)
.

Rearranging as before, we conclude that

1

t
E
(∫ t

0
(f(X(s))−min f)ds

)
≤ dist(X0,S)2

2t
+

1

2t

∫ +∞

0
σ2∞(s)ds, ∀t > 0. (3.11)

Then complete the result with the inequality

E
(
f(X(t))−min f

)
≤ E

(
f ◦X(t)−min f

)
which follows from convexity of f and Jensen’s inequality.

(ii) Let g(t) = ϕ(X(t)) = ∥X(t)−x⋆∥2
2 , G(t) = E(g(t)). By Proposition 2.3 with ϕ, we obtain

G(t)−G(0) = E
(∫ t

0
⟨−∇f(X(s)), X(s)− x⋆⟩ds

)
+

1

2
E
(∫ t

0
tr[Σ(s,X(s))]ds

)
. (3.12)

Using that f ∈ Γµ(Rd), we deduce that

G(t) ≤ G(0)− 2µ

∫ t

0
G(t) +

∫ t

0

σ2∗
2
, ∀t ≥ 0.

In order to invoke Lemma A.2, we solve the ODE{
y′(t) = −2µy(t) + σ2

∗
2 , t > 0

y(0) = ∥X0−x⋆∥2
2 .
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Solving it by the integrating factor method, we conclude that

G(t) ≤ ∥X0 − x⋆∥2

2
e−2µt +

σ2∗
4µ
, ∀t ≥ 0.

Combining this inequality with the gradient descent Lemma 2.1, we obtain

E[f(X(t))−min f ] ≤ L

(
∥X0 − x⋆∥2

2
e−2µt +

σ2∗
4µ

)
, ∀t ≥ 0. (3.13)

Suppose now that σ∞ is decreasing and vanishes at infinity. We can bound the trace term by σ2∞ in
(3.12). To use Lemma A.2, we need to solve{

y′(t) = −2µy(t) + σ2
∞(t)
2 , t > 0

y(0) = ∥X0−x⋆∥2
2 .

Let λ ∈]0, 1[, using the integrating factor method, we get

y(t) ≤ y(0)e−2µt + e−2µt

∫ t

0

σ2∞(s)

2
e2µsds

≤ y(0)e−2µt + e−2µt

(∫ λt

0

σ2∞(s)

2
e2µsds+

∫ t

λt

σ2∞(s)

2
e2µsds

)
≤ y(0)e−2µt + e−2µt

(
σ2∗
2

∫ λt

0
e2µsds+

σ2∞(λt)

2

∫ t

λt
e2µsds

)
≤ y(0)e−2µt + e−2µt

(
σ2∗
4µ
e2µλt +

σ2∞(λt)

2
e2µt

)
, ∀t ≥ 0.

According to Lemma A.2, we deduce that

G(t) ≤ ∥X0 − x⋆∥2

2
e−2µt +

σ2∗
4µ
e−2µ(1−λ)t +

σ2∞(λt)

2
, ∀t ≥ 0,

which is our claim (3.7).

Under a stronger assumption on σ∞, we also have the following pointwise sublinear convergence rate in
expectation.

Proposition 3.3. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H0) and (H). Assume
that there exists K ≥ 0, β ∈ [0, 1[ such that∫ t

0
(s+ 1)σ2∞(s)ds ≤ Ktβ, ∀t ≥ 0. (3.14)

Then the solution trajectory X ∈ S2
d of (SDE) satisfies

E (f(X(t))−min f) = O(tβ−1).
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Proof. Given x⋆ ∈ S, let us apply Proposition 2.4 successively with V1(t, x) = t(f(x)−min f), then with
V2(x) =

1
2∥x− x⋆∥2. Taking the expectation and adding the two results, we get

E (V1(t,X(t)) + V2(X(t))) ≤ 1

2
∥X0 − x⋆∥2 + L

2

∫ t

0
sσ2∞(s)ds+

1

2

∫ t

0
σ2∞(s)ds

≤ 1

2
∥X0 − x⋆∥2 + max{1, L}

2

(∫ t

0
(s+ 1)σ2∞(s)ds

)
,

where we have used the convexity of f in the first inequality. Then we conclude that

E(f(X(t))−min f) ≤ ∥X0 − x⋆∥2

2t
+
Kmax{1, L}

2
tβ−1 = O(tβ−1).

When f is also C2, we get an improved o(t−1) global convergence rate on the objective in almost sure
sense.

Theorem 3.4. Consider the dynamic (SDE). Assume that f ∈ C2(Rd)) such that ∇2 f ≼ LId and satisfies
assumption (H0), and that σ satisfies assumption (H) and that t 7→ tσ2∞(t) ∈ L1(R+). Then, the solution
trajectory X ∈ S2

d of (SDE) obeys:
(i) t 7→ t∥∇f(X(t))∥2 ∈ L1(R+) a.s.
(ii) f(X(t))−min f = o(t−1) a.s.

Proof. By applying Itô’s formula in Proposition 2.3 with ϕ(t, x) = t(f(x)−min f) we get

t(f(X(t))−min f) =

∫ t

0
f(X(s))−min fds+

1

2

∫ t

0
str[Σ(s,X(s))∇2 f(X(s))]ds

−
∫ t

0
s∥∇f(X(s))∥2ds+

∫ t

0
⟨sσ⊤(s,X(s))∇f(X(s)), dW (s)⟩.

By (3.2) and convexity of f , we deduce that f(X(·))−min f ∈ L1(R+) a.s. Moreover,∫ ∞

0
str[Σ(s,X(s))∇2 f(X(s))]ds ≤ L

∫ ∞

0
sσ2∞(s)ds < +∞.

Then by Theorem A.9, we have that limt→∞ t(f(X(t))−min f) exists a.s. and
∫∞
0 t∥∇f(X(t))∥2dt < +∞

a.s. Finally, by Lemma A.1, we conclude that limt→∞ t(f(X(t))−min f) = 0 a.s.

4 Convergence rates under Łojasiewicz inequality

The local convergence rate of the first-order descent methods can be understood using the Łojasiewicz prop-
erty and the associated Łojasiewicz exponent, see [38, 39]. The Łojasiewicz property has its roots in alge-
braic geometry, and it essentially describes a relationship between the objective value and its gradient (or
subgradient).
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Definition 4.1 (Łojasiewicz inequality). Let f : Rd → R be a differentiable with S = argmin(f) ̸= ∅ and
q ∈ [0, 1[. f satisfies the Łojasiewicz inequality with exponent q at x̄ ∈ S if there exists a neighborhood Vx̄

of x̄, r > min f and µ > 0 such that

µ(f(x)−min f)q ≤ ∥∇f(x)∥, ∀x ∈ Vx̄ ∩ [min f < f < r]. (4.1)

The function f has the Łojasiewicz property on S if it obeys (4.1) at each point of S with the same constant
µ and exponent q, and we will write f ∈ Łq(S).

Error bounds have also been successfully applied to various branches of optimization, and in particular to
complexity analysis, see [40]. Of particular interest in our setting is the Hölderian error bound.

Definition 4.2 (Hölderian error bound). Let f : Rd → R be a proper function such that S = argmin(f) ̸=
∅. f satisfies a Hölderian (or power-type) error bound inequality with exponent p ≥ 1, and we write f ∈ EBp,
if there exists γ > 0 and r > min f such that

f(x)−min f ≥ γdist(x,S)p, ∀x ∈ [min f ≤ f ≤ r]. (4.2)

For a given r > min f such that (4.2) holds, we will use the shorhand notation f ∈ EBp([f ≤ r]).

A deep result due Łojasiewicz states that for arbitrary continuous semi-algebraic functions, the Hölderian
error bound inequality holds on any compact set, and the Łojasiewicz inequality holds at each point; see [3, 4].
In fact, for convex functions, the Łojasiewicz property and Hölderian error bound are actually equivalent.

Proposition 4.3. Assume that f ∈ Γ0(Rd)∩C1(Rd) with S = argmin(f) ̸= ∅. Let q ∈ [0, 1[, p def
= 1

1−q ≥ 1
and r > min f . Then f verifies the Łojasiewicz inequality (4.1) at x̄ ∈ S if and only if the Hölderian error
bound (4.2) holds on Vx̄ ∩ [min f < f < r].

Proof. Combine [10, Lemma 4 and Theorem 5].

We are now ready to state the following ergodic local convergence rate.

Proposition 4.4. Consider the hypotheses of Theorem 3.2 and let ε > 0. If f ∈ EBp([f ≤ rε]) for rε >
min f + σ2

∗
2 + ε, then ∃tε > 0 such that

dist
(
E(X(t)), S

)
= O(t

− 1
p ) +O

(
σ

2
p
∗

)
, ∀t ≥ tε.

Proof. There exists tε > 0 such that for all t ≥ tε, dist(X0,S)∈
2t < ε. Thus, from (3.4) and Jensen’s Inequality,

we have
f
(
E[X(t)]

)
≤ E[f(X(t))] ≤ min f +

σ2∗
2

+ ε ≤ rε, ∀t ≥ tε.

Clearly, E[X(t)] ∈ [f ≤ rε] for t ≥ tε. Using Theorem 3.2 and that f ∈ EBp([f ≤ rε]), letting γ > 0 the
coefficient of the error bound, we have

γdist(E(X(t)),S)p ≤ f(E[X(t)])−min f ≤ dist(X0,S)2

2t
+
σ2∗
2
, ∀t ≥ tε.

Since p ≥ 1, Jensen’s inequality yields

dist(E(X(t)),S) ≤
(
dist(X0,S)2

2γr

) 1
p

t
− 1

p +

(
σ2∗
2γr

) 1
p

, ∀t ≥ tε.
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4.1 Discussion on the localization of the process

Let us take a moment to elaborate on the localization of the process X(t) generated by (SDE) when f ∈
C1,1
L (Rd)∩Γ0(Rd) and σ∞ ∈ L2(R+). This discussion is essential to understand the challenges underlying

the analysis of the local convergence properties and rates in a stochastic setting under (local) error bounds.
First, observe that the hypothesis of Lipschitz continuity of the gradient is incompatible with a global hypoth-
esis of error bound or Łojasiewicz inequality unless the exponent is p = 2 or q = 1

2 , respectively. Therefore,
we can only ask for these inequalities to be locally satisfied. Even though, thanks to convexity, we could
introduce a global desingularizing function (see [10, Theorem 3]), this function would not be concave nor
convex, a fundamental property usually at the heart of the local analysis. In recent literature on stochastic
processes and local properties, it is usual to find hypotheses about the almost sure localization of the process
or that it is essentially bounded. Nevertheless, these assumptions are unrealistic or outright false due to the
behavior of the Brownian Motion. Hence, we will avoid making these kinds of assumptions.

What we will do is to consider that by Theorem 3.1 we have that limt→∞ f(X(t)) = min f a.s., which
means that there exists Ωconv ∈ F such that P(Ωconv) = 1, and (∀r > min f, ∀ω ∈ Ωconv), (∃tr(ω) > 0)
such that (∀t > tr(ω)),X(ω, t) ∈ [f ≤ r]. However, one should not infer from this thatX(t) ∈ [f ≤ r] a.s.
for t large enough. Indeed, tr is a random variable which cannot be in general bounded uniformly on Ωconv.
Unfortunately, this flawed argument appears quite regularly in the literature. Rather, in this paper, we will
invoke measure theoretic arguments to pass from a.s. convergence to almost uniform convergence thanks to
Egorov’s theorem (see Theorem A.3). More precisely, we will show that

(∀δ > 0,∀r > min f), (∃Ωδ ∈ F s.t. P(Ωδ) ≥ 1− δ and ∃t̂r,δ > 0), (∀ω ∈ Ωδ,∀t > t̂r,δ),
X(ω, t) ∈ [f ≤ r].

Hence, this property will allow us to localize X(t) in the sublevel set of f at r for t large enough with
probability at least 1− δ. In turn, we will be able to invoke the error bound (or Łojasiewicz) inequality.

4.2 Convergence rates under Łojasiewicz Inequality

Let σ∞ ∈ L2(R+), L > 0, δ > 0, β ∈ [0, 1[ and some positive constants C∗, C∗∗, CK . Consider the
functions hδ, lδ, kδ : R+ → R defined by:

hδ(t) = σ2∞(t) + C∗
√
δ

σ2∞(t)

2
√∫ t

t̂δ
σ2∞(u)du

, (4.3)

lδ(t) =
L

2
σ2∞(t) + C∗∗

√
δ

σ2∞(t)

2
√∫ t

t̂δ
σ2∞(u)du

, (4.4)

kδ(t) =
L

2
σ2∞(t) + CK

√
δ

σ2∞(t)tβ−1

2
√∫ t

t̂δ
σ2∞(u)uβ−1du

. (4.5)

We are now ready to state our main local convergence result.

Theorem 4.5. Consider X ∈ S2
d the solution trajectory of (SDE) where f and σ satisfy the assumptions

(H0) and (H), and suppose that σ∞ ∈ L2(R+) (C∞
def
= ∥σ∞∥L2(R+)). Let p ≥ 2 and q def

= 1− 1
p ∈ [12 , 1[, and

assume that f ∈ Łq(S). Consider also the positive constants C∗, C∗∗, CK , Cd, Cf (detailed in the proof).
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Then, for all δ > 0, there exists a measurable set Ωδ such that P(Ωδ) ≥ 1 − δ and t̂δ > 0 such that the
following statements hold.

(i) If p = 2 and σ∞ is decreasing, then σ∞ vanishes at infinity and
(a) there exists γ > 0 such that for every λ ∈]0, 1[,

E
(
dist(X(t),S)2

2

)
≤ e−2γ(t−t̂δ)E

(
dist(X(t̂δ),S)2

2

)
+ e−2γ(1−λ)(t−t̂δ)(C2

∞ + C∗C∞
√
δ)

+
hδ(t̂δ + λ(t− t̂δ))

2γ
+ Cd

√
δ, ∀t > t̂δ;

(4.6)

(b) there exists µ > 0 such that for every λ ∈]0, 1[,

E (f(X(t))−min f) ≤ e−µ2(t−t̂δ)E(f(X(t̂δ))−min f)

+ e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2

+ C∗∗C∞
√
δ

)
+
lδ(t̂δ + λ(t− t̂δ))

µ2
+ Cf

√
δ, ∀t > t̂δ.

(4.7)

Moreover, if (3.14) holds, then

E (f(X(t))−min f) ≤ e−µ2(t−t̂δ)E(f(X(t̂δ))−min f)

+ e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2

+ CKC∞

√
t̂β−1
δ

√
δ

)
+
kδ(t̂δ + λ(t− t̂δ))

µ2
+ Cf

√
δ, ∀t > t̂δ.

(4.8)

(ii) If p > 2:
(a) There exists γ > 0 such that

E
(
dist(X(t),S)2

2

)
≤ y⋆δ (t) + Cd

√
δ, ∀t > t̂δ, (4.9)

where y⋆δ is the solution of the Cauchy problem

(C.1)

{
y′(t) = −2

p
2 γy

p
2 + hδ(t), t > t̂δ

y(t̂δ) = E
(
dist(X(t̂δ,S))2

2 1Ωδ

)
.

(b) There exists µ > 0 such that

E [f(X(t))−min f ] ≤ w⋆
δ (t) + Cf

√
δ, ∀t > t̂δ, (4.10)

where w⋆
δ is the solution of the Cauchy problem

(C.2)

{
y′(t) = −µ2y(t)2q + lδ(t), t > t̂δ

y(t̂δ) = E([f(X(t̂δ)−min f ]1Ωδ
).

Moreover, if (3.14) holds, then

E [f(X(t))−min f ] ≤ z⋆δ (t) + Cf

√
δ, ∀t > t̂δ, (4.11)

where z⋆δ is the solution of the Cauchy problem
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(C.3)

{
y′(t) = −µ2y(t)2q + kδ(t), t > t̂δ

y(t̂δ) = E([f(X(t̂δ)−min f ]1Ωδ
).

Before proceeding with the proof, a few remarks are in order.

Remark 4.6. The hypothesis that f has a Lipschitz continuous gradient restricts the Łojasiewicz exponent
q to be in [12 , 1[.

Remark 4.7. If we have a global error bound (or Łojasiewicz inequality), then as noted in the discussion of
Section 4.1, one necessarily has p = 2 (or q = 1

2 ). In this case, the statements (i) of Theorem 4.5 will hold
if we replace σ∞ ∈ L2(R+) by σ∞ decreasing and vanishing at infinity, δ by 0 and t̂δ by 0. Clearly, one
recovers (3.7).

Remark 4.8. It is important to highlight the trade-off in the selection of δ. Although δ can be arbitrarily
small, the time from which the inequalities are satisfied, t̂δ, surely increases when δ approaches 0+. Be-
sides, let qδ,t̂δ : R+ → R be a decreasing function. Our convergence rates in Theorem 4.5 are of the form
E[m(X(t))] ≤ qδ,t̂δ(t) + C

√
δ, ∀t > tδ, where m(x) = f(x) − min f or m(x) = dist(x,S)2/2. Let

ε ∈]0, 2C[ and δ⋆ = ε2

4C2 . Then one gets an ε-optimal solution for t > max{q⋆(ε), t̂δ⋆}.

Remark 4.9. Referring again to the discussion of Section 4.1, we have that there exists δ > 0 and Ωδ ∈ F
with P(Ωδ) ≥ 1− δ over which we have uniform convergence of the objective. If δ could be 0 (a.s. uniform
convergence), there would be a t̂ > 0 such thatX(t) ∈ [f ≤ r], ∀t > t̂ a.s. Thus, the statements in Theorem
4.5 would hold if we replace δ by 0 and t̂δ by t̂. The proof is far easier in this case. It is however not easy to
ensure the existence of such t̂ in general.

Remark 4.10. In order to find explicit convergence rates in Theorem 4.5 we have to solve or bound the
solution of the Cauchy problems (C.1), (C.2) and (C.3). We can generalize these problems as follows: Let
a > 0, b > 1, t̂δ > 0, δ > 0, y0(t̂δ, δ) > 0 and pδ a nonnegative integrable function. Consider

(C.0)

{
y′(t) = −ayb(t) + pδ(t), t > t̂δ

y(t̂δ) = y0(t̂δ, δ).
Although one could give an explicit ad-hoc pδ in order to find a particular solution of (C.0), the dependence

of this function on t̂δ is unavoidable, which is a problem, since pδ is explicitly related to σ∞, and this in turn
is the one that defines t̂δ in the first place.

To the best of our knowledge, there is no way to arithmetically solve this non linear ODE, not even a sharp
bound of the solution.

Nevertheless, if y(t) = O
(
(t+ 1)−

1
b−1

)
, then pδ(t) = O

(
(t+ 1)−

b
b−1

)
. Which leads us to make the

following conjecture:

Conjecture 4.11. If pδ = O(σ2∞) and σ2∞(t) = O
(
(t+ 1)−

b
b−1

)
(for constants independent of δ

and t̂δ), then y(t) = O
(
(t+ 1)−

1
b−1

)
.

Proof. Proof of Theorem 4.5. Given that σ∞ ∈ L2(R+), if it is decreasing, we have immediately that it
vanishes at infinity. Let x⋆ ∈ S. Let us recall that by claim (i) of Theorem 3.1, there exists C∗ > 0 such that

sup
t≥0

E
(
dist(X(t),S)2

)
≤ sup

t≥0
E
(
∥X(t)− x⋆∥2

)
≤ C∗.
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On the other hand, by Theorem 3.1(iii), there exists a set Ωconv ∈ F such that P(Ωconv) = 1 where, for all
ω ∈ Ωconv: limt→∞ f(X(ω, t)) = min f , t 7→ f(X(ω, t)) is continuous, and limt→∞ dist(X(ω, t),S) =
0. Then, by Theorem A.3 for every δ > 0 there exists Ωδ ∈ F such that Ωδ ⊂ Ωconv, P(Ωδ) > 1 − δ
and f(X(·, t)) (resp. dist(X(·, t),S)) converges uniformly to min f (resp. to 0) on Ωδ. This means that
given r ≥ min f , and for every δ > 0, there exist t̂δ > 0 and Ωδ ∈ F with P(Ωδ) > 1 − δ such that
X(ω, t) ∈ [f ≤ r] ∩ VS for all t ≥ t̂δ and ω ∈ Ωδ, where VS is a neighbourhood of S. On the other
hand, since f ∈ Łq(S), by Proposition 4.3, there exists r > min f and a neighbourhood VS of S such that
f verifies the p-Hölderian error bound inequality (4.2) on [min f < f < r] ∩ VS . Consequently, for any
δ > 0, there exists t ≥ t̂δ large enough such that the p-Hölderian error bound inequality holds atX(ω, t) for
all t ≥ t̂δ and ω ∈ Ωδ.

We are now ready to start. Let x⋆ ∈ S, δ > 0, and t ≥ t̂δ.
(i) p = 2:

(a) Let ĝ(t) = ϕ̂(X(t)) = dist(X(t),S)2
2 , Ĝ(t) = E(ĝ(t)1Ωδ

), and µ > 0 be the coefficient of the
error bound inequality. We have

∇ϕ̂(X(t)) = X(t)− PS(X(t)),

where PS(x) is the projection of x on S, so ϕ̂ ∈ C1,1
1 (Rd). We use Proposition 2.4 to obtain

ĝ(t)− ĝ(t̂δ) ≤ −
∫ t

t̂δ

⟨∇f(X(s), X(s)− PS(X(s))⟩ ds

+

∫ t

t̂δ

tr[Σ(s,X(s))]ds+

∫ t

t̂δ

〈
σ⊤(s,X(s))(X(s)− PS(X(s))), dW (s)

〉
. (4.12)

We have that tr[Σ(s,X(s))] ≤ σ2∞(s) and by convexity

−⟨∇f(X(s), X(s)− PS(X(s))⟩ ≤ − (f(X(s))−min f) .

Therefore,

ĝ(t)− ĝ(t̂δ) ≤ −
∫ t

t̂δ

(f(X(s))−min f)ds

+

∫ t

t̂δ

σ2∞(s)ds+

∫ t

t̂δ

⟨σ⊤(s,X(s))(X(s)− PS(X(s))), dW (s)⟩.

Then, multiplying this inequality by 1Ωδ
, and taking expectation we obtain

Ĝ(t)− Ĝ(t̂δ) ≤ −E
[∫ t

t̂δ

(f(X(s))−min f)1Ωδ
ds

]
+

∫ t

t̂δ

σ2∞(s)ds

+ E
[
1Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(X(s)− PS(X(s))), dW (s)

〉]
.
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On the other hand, since σ∞ ∈ L2(R+), we have for all T > 0

E
(∫ T

0
∥σ⊤(s,X(s))(X(s)− PS(X(s)))∥2ds

)
≤ E

(∫ T

0
σ2∞(s)∥X(s)− PS(X(s))∥2ds

)
=

∫ T

0
σ2∞(s)E(dist(X(t),S)2)

≤ C∗
∫ +∞

0
σ2∞(s) <∞.

Letting Y (s) = σ⊤(s,X(s))(X(s)− PS(X(s))), then

E
[∫ t

t̂δ

⟨Y (s), dW (s)⟩
]
= 0.

This immediately implies

E
[
1Ωδ

∫ t

t̂δ

⟨Y (s), dW (s)⟩
]
= −E

[
1Ωconv\Ωδ

∫ t

t̂δ

⟨Y (s), dW (s)⟩
]
.

The right hand side can be bounded using Cauchy-Schwarz inequality as follows∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

⟨Y (s), dW (s)⟩
]∣∣∣∣

=

∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(X(s)− PS(X(s))), dW (s)

〉]∣∣∣∣
≤
√
E(1Ωconv\Ωδ

)

√√√√E

[(∫ t

t̂δ

⟨σ⊤(s,X(s))(X(s)− PS(X(s))), dW (s)⟩
)2
]

≤
√
δ

√
E
[∫ t

t̂δ

∥σ⊤(s,X(s))(X(s)− PS(X(s)))∥2ds
]

≤
√
C∗δ

√∫ t

t̂δ

σ2∞(s)ds =
√
C∗δ

∫ t

t̂δ

σ2∞(s)

2
√∫ s

t̂δ
σ2∞(u)du

ds.

Set C∗ =
√
C∗, and recall that C∞ =

√∫∞
0 σ2∞(s)ds. Thus, for every t > t̂δ

Ĝ(t) ≤ Ĝ(t̂δ)−
∫ t

t̂δ

E [(f(X(s))−min f)1Ωδ
] ds+

∫ t

t̂δ

σ2∞(s)ds+ C∗
√
δ

∫ t

t̂δ

σ2∞(s)

2
√∫ s

t̂δ
σ2∞(u)du

ds.

(4.13)

Recall hδ(t) from (4.3). Then, we can rewrite (4.13) as

Ĝ(t) ≤ Ĝ(t̂δ)−
∫ t

t̂δ

E [(f(X(s))−min f)1Ωδ
] ds+

∫ t

t̂δ

hδ(s)ds, ∀t > t̂δ. (4.14)
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Using that f ∈ EB2([f ≤ r]), we obtain

Ĝ(t) ≤ Ĝ(t̂δ)− 2γ

∫ t

t̂δ

Ĝ(s)ds+

∫ t

t̂δ

hδ(s)ds, ∀t > t̂δ.

Observe that hδ ∈ L1([t̂δ,∞[) since∫ ∞

t̂δ

hδ(s)ds ≤ C2
∞ + C∗C∞

√
δ.

The goal now is to apply the comparison lemma to Ĝ(t) (see Lemma A.2) which necessitates to
solve the following ODE {

y′(t) = −2γy(t) + hδ(t) t > t̂δ

y(t̂δ) = Ĝ(t̂δ).

Let λ ∈]0, 1[. Using the integrating factor method, we obtain

y(t) = e−2γ(t−t̂δ)y(t̂δ) + e−2γt

∫ t̂δ+λ(t−t̂δ)

t̂δ

hδ(s)e
2γsds+ e−2γt

∫ t

t̂δ+λ(t−t̂δ)
hδ(s)e

2γsds

≤ e−2γ(t−t̂δ)E(ĝ(t̂δ)) + e−2γ(1−λ)(t−t̂δ)

∫ t̂δ+λ(t−t̂δ)

t̂δ

hδ(s)ds

+ hδ(t̂δ + λ(t− t̂δ))e
−2γt

∫ t

t̂δ+λ(t−t̂δ)
e2γsds

≤ e−2γ(t−t̂δ)E(ĝ(t̂δ)) + e−2γ(1−λ)(t−t̂δ)(C2
∞ + C∗C∞

√
δ) +

hδ(t̂δ + λ(t− t̂δ))

2γ
.

where in the first inequality, we used that σ2 is decreasing and so is hδ. Lemma A.2 then gives

E
(
dist(X(t),S)2

2
1Ωδ

)
≤ e−2γ(t−t̂δ)E

(
dist(X(t̂δ),S)2

2

)
+e−2γ(1−λ)(t−t̂δ)(C2

∞+C∗C∞
√
δ)

+
hδ(t̂δ + λ(t− t̂δ))

2γ
.

According to Corollary A.6 we obtain that for all t > t̂δ

E
(
dist(X(t),S)2

2

)
≤ e−2γ(t−t̂δ)E

(
dist(X(t̂δ),S)2

2

)
+e−2γ(1−λ)(t−t̂δ)(C2

∞+C∗C∞
√
δ)

+
hδ(t̂δ + λ(t− t̂δ))

2γ
+ Cd

√
δ.

(b) Denote g̃(t) = ϕ̃(X(t)) = f(X(t))−min f and G̃(t) = E(1Ωδ
g̃(t)). By Proposition 2.4

g̃(t) ≤ g̃(t̂δ)−
∫ t

t̂δ

〈
∇f(X(s)),∇ϕ̃(X(s))

〉
ds+

L

2

∫ t

t̂δ

tr[Σ(s,X(s))]ds

+ 1Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))∇f(X(s)), dW (s)

〉
. (4.15)
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Multiplying both sides by 1Ωδ
and taking expectation we obtain

G̃(t)− G̃(t̂δ) ≤ −E
[∫ t

t̂δ

∥∇f(X(s))∥21Ωδ
ds

]
+
L

2
E
[∫ t

t̂δ

tr[Σ(s,X(s))]ds

]
+ E

[
1Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))∇f(X(s)), dW (s)

〉]
. (4.16)

On the other hand, we have

E
(∫ T

0
∥σ⊤(s,X(s))∇f(X(s))∥2ds

)
≤ L2E

(∫ T

0
σ2∞(s)∥X(s))− x⋆∥2ds

)
≤ L2C∗

∫ +∞

0
σ2∞(s) <∞, ∀T > 0.

Since E
[∫ t

t̂δ

〈
σ⊤(s,X(s))∇f(X(s)), dW (s)

〉]
= 0, we have

E
[
1Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(∇f(X(s))), dW (s)

〉]
= −E

[
1Ωconv\Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(∇f(X(s)), dW (s)

〉]
.

The last term can be bounded as∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(∇f(X(s))), dW (s)

〉]∣∣∣∣
≤
√
E(1Ωconv\Ωδ

)

√√√√E

[(∫ t

t̂δ

⟨σ⊤(s,X(s))(∇f(X(s))), dW (s)⟩
)2
]

≤ L
√
δ

√
E
[∫ t

t̂δ

σ2∞(s)∥X(s)− x⋆∥2ds
]

≤ L
√
C∗

√
δ

√∫ t

t̂δ

σ2∞(s)ds = L
√
C∗

√
δ

∫ t

t̂δ

σ2∞(s)

2
√∫ s

t̂δ
σ2∞(u)du

ds.

Let us notice that if (3.14) holds, then Proposition 3.3 tells us thatE(f(X(t))−min f) ≤ K ′tβ−1

with β ∈ [0, 1[, and for some K ′ > 0. In this case∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(∇f(X(s))), dW (s)

〉]∣∣∣∣ ≤ √
2LK ′

√
δ

∫ t

t̂δ

σ2∞(s)sβ−1

2
√∫ s

t̂δ
σ2∞(u)uβ−1du

ds.

Injecting this into (4.16), we have for all t > t̂δ

G̃(t) ≤ G̃(t̂δ)− E
[∫ t

t̂δ

∥∇f(X(s))∥21Ωδ
ds

]
+
L

2

∫ t

t̂δ

σ2∞(s)ds

+


CK

√
δ
∫ t
t̂δ

σ2
∞(s)sβ−1

2
√∫ s

t̂δ
σ2
∞(u)uβ−1du

ds, ∀t > t̂δ if (3.14) holds,

C∗∗
√
δ
∫ t
t̂δ

σ2
∞(s)

2
√∫ s

t̂δ
σ2
∞(u)du

ds otherwise,
(4.17)
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where C∗∗ = L
√
C∗, CK =

√
2LK ′ and recall that C∞ =

√∫∞
0 σ2∞(s)ds. Recalling lδ(t) and

kδ(t) from (4.4)-(4.5), and by Fubini’s theorem, (4.17) becomes

G̃(t) ≤ G̃(t̂δ)−
∫ t

t̂δ

E
[
∥∇f(X(s))∥21Ωδ

]
ds+

{∫ t
t̂δ
kδ(s)ds if (3.14) holds,∫ t

t̂δ
lδ(s)ds otherwise.

(4.18)

Since f ∈ Ł1/2(S), there exists µ > 0 such that

G̃(t) ≤ G̃(t̂δ)− µ2
∫ t

t̂δ

G̃(s)ds+

{∫ t
t̂δ
kδ(s)ds if (3.14) holds,∫ t

t̂δ
lδ(s)ds otherwise.

(4.19)

To get an explicit bound in (4.19), we use Lemma A.2, which involves solving

(E.2)

{
y′(t) = −µ2y(t) + lδ(t), t > t̂δ

y(t̂δ) = G̃(t̂δ)

(E.3)

{
y′(t) = −µ2y(t) + kδ(t), t > t̂δ

y(t̂δ) = G̃(t̂δ)

Let λ ∈]0, 1[. Using the integrating factor method as in (i), we get for (E.2)

y(t) ≤ e−µ2(t−t̂δ)E(g̃(t̂δ)) +


e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + C∗∗C∞

√
δ
)
+ lδ(t̂δ+λ(t−t̂δ))

µ2 for (E.2)

e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + CKC∞

√
t̂β−1
δ

√
δ

)
+ kδ(t̂δ+λ(t−t̂δ))

µ2 for (E.3).

Using Lemma A.2 and Corollary A.6

E [f(X(t))−min f ] ≤ y(t) + Cf

√
δ

≤ e−µ2(t−t̂δ)E
[
f(X(t̂δ))−min f

]
+ Cf

√
δ

+


e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + C∗∗C∞

√
δ
)
+ lδ(t̂δ+λ(t−t̂δ))

µ2 for (E.2)

e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + CKC∞

√
t̂β−1
δ

√
δ

)
+ kδ(t̂δ+λ(t−t̂δ))

µ2 for (E.3).

(ii) p > 2:
(a) We embark from inequality (4.14) and we now use that f ∈ EBp([f ≤ r]) with p > 2, to get

Ĝ(t) ≤ Ĝ(t̂δ)−
∫ t

t̂δ

E [(f(X(s))−min f)1Ωδ
] ds+

∫ t

t̂δ

hδ(s)ds (4.20)

≤ Ĝ(t̂δ)− 2p/2γ

∫ t

t̂δ

Ĝ(s)p/2 +

∫ t

t̂δ

hδ(s)ds.

In the last inequality, we used that p > 2 and Jensen’s inequality.
The idea is again to use the comparison lemma (Lemma A.2), which will now involve solving
the Cauchy problem (C.1), and finally invoke Corollary A.6.

(b) The reasoning is similar to the previous point using now that f ∈ Łq(S) and the computations
of (i)(b). We omit the details for the sake of brevity.
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5 SDE for nonsmooth structured convex optimization

In this section, we turn to the composite convex minimization problem with additive structure

min
x∈Rd

f(x) + g(x), (5.1)

where {
f ∈ C1,1

L (Rd) ∩ Γ0(Rd) and g ∈ Γ0(Rd);

S = argmin(f + g) ̸= ∅.
(H′

0)

The importance of this class of problems comes from its wide spectrum of applications ranging from data
processing, to machine learning and statistics to name a few.
We consider two different approaches leading to different SDE’s. The first is based on a fixed point argument
and the use of the notion of cocoercive monotone operator. The second approach is based on a regulariza-
tion/smoothing argument, for instance the Moreau envelope.

5.1 Fixed point approach via cocoercive monotone operators

Let us start with some classical definitions concerning monotone operators.

Definition 5.1. An operator A : Rd → P(Rd) is monotone if

⟨u− v, x− y⟩ ≥ 0, ∀(x, u) ∈ graph(A), (y, v) ∈ graph(A).

It is maximally monotone if there exists no monotone operator whose graph properly contains graph(A).
Moreover, A is γ−strongly monotone with modulus γ > 0 if

⟨u− v, x− y⟩ ≥ γ∥x− y∥2, ∀(x, u) ∈ graph(A), (y, v) ∈ graph(A).

Remark 5.2. If A is maximally monotone and strongly monotone, then A−1(0)
def
= {x ∈ Rd : A(x) = 0} is

non-empty and reduced to a singleton.

Remark 5.3. The subdifferential operator ∂g of g ∈ Γ0(Rd) is maximally monotone.

Definition 5.4. A single-valued operator M : Rd → Rd is cocoercive with constant ρ > 0 if

⟨M(x)−M(y), x− y⟩ ≥ ρ∥M(x)−M(y)∥2, ∀x, y ∈ Rd.

Remark 5.5. It is clear that a cocoercive operator is ρ−1−Lipschitz continuous. In turn, a cocoercive oper-
ator is maximally monotone.

Remark 5.6. If f ∈ C1,1
L (Rd) ∩ Γ0(Rd), then the operator ∇f is L−1−cocoercive.

Our interest now is to solve the structured monotone inclusion problem

0 ∈ A(x) +B(x),

where A is maximally monotone, and B is cocoercive with (A+B)−1(0) ̸= ∅. This is of course a general-
ization of (5.1) by taking A = ∂g and B = ∇f .
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A favorable situation occurs when one can compute the resolvent operator of A

JµA = (I + µA)−1, µ > 0.

In this case, we can develop a strategy parallel to the one which consists in replacing a maximally monotone
operator by its Yosida approximation. Indeed, given µ > 0, we have

(A+B)(x) ∋ 0 ⇐⇒ x− JµA(x− µB(x)) = 0 ⇐⇒ MA,B,µ(x) = 0, (5.2)

where MA,B,µ : Rd → Rd is the single-valued operator defined by

MA,B,µ(x) =
1

µ
(x− JµA(x− µB(x))) . (5.3)

MA,B,µ is closely tied to the well-known forward-backward fixed point operator. Moreover, whenB = 0,
MA,B,µ = 1

µ (I − JµA) which is nothing but the Yosida regularization of A with index µ. As a remarkable
property, for the µ parameter properly set, the operator MA,B,µ is cocoercive. This is made precise in the
following result.

Proposition 5.7. [5, Lemma B.1] Let A : Rd → P(Rd) be a general maximally monotone operator, and let
B : Rd → Rd be a monotone operator which is λ-cocoercive. Assume that µ ∈]0, 2λ[. Then, MA,B,µ is
ρ-cocoercive with

ρ = µ
(
1− µ

4λ

)
.

We first focus on finding the zeros of M , where

M : Rd → Rd is cocoercive and M−1(0) ̸= ∅. (HM
0 )

We will then specialize our results to the case of a structured operator of the form MA,B,µ.

Our goal is to handle the situation whereM can be evaluated up to a stochastic error. We therefore consider
the following SDE, defined for (deterministic) initial data X0 ∈ Rd,{

dX(t) = −M(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0

X(0) = X0.
(SDEM )

As in Section 1.1, we will assume thatW is aFt-adaptedm−dimensional Brownian motion, and the volatility
matrix σ : R+ × Rd → Rd×m satisfies (H).

Let us now state the natural extensions of our main results to this situation.

Theorem 5.8. Let M : Rd → Rd be a cocoercive operator. Consider the stochastic differential equation
(SDEM ) under the hypotheses (HM

0 ) and (H). Then, there exists a unique solutionX ∈ Sν
d , for every ν ≥ 2.

Moreover, if σ∞ ∈ L2(R+), then:
(i) supt≥0 E[∥X(t)∥2] <∞.
(ii) ∀x⋆ ∈M−1(0), limt→∞ ∥X(t)− x⋆∥ exists a.s. and supt≥0 ∥X(t)∥ <∞ a.s.
(iii) limt→∞ ∥M(X(t))∥ = 0 a.s.
(iv) There exists an M−1(0)−valued random variable x⋆ such that limt→∞X(t) = x⋆ a.s.
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Proof. Existence and uniqueness follow from Theorem A.7 since M is Lipschitz continuous and σ verifies
(H). The proof of the first two items remains the same as for Theorem 3.1. For the third item, we use the
cocoercivity of M instead of the convexity of f and Corollary 2.2 to prove that limt→∞ ∥M(X(t))∥ = 0
a.s. For the last item, it suffices to use that the operator M is continuous (since it is Lipschitz continuous) to
conclude with Opial’s Lemma.

Theorem 5.9. Let M : Rd → Rd be a ρ−cocoercive operator. Let us make the assumptions (HM
0 ) and (H).

LetX ∈ S2
d be the solution of (SDEM ) with initial conditionX0. Then the following properties are satisfied:

(i) Let M ◦X(t)
def
= t−1

∫ t
0 M(X(s))ds and ∥M(X(t))∥2 def

= t−1
∫ t
0 ∥M(X(s))∥2ds. We have

E
[
∥M ◦X(t)∥2

]
≤ E

[
∥M(X(t))∥2

]
≤ dist(X0,M

−1(0))2

2ρt
+
σ2∗
2ρ
, ∀t > 0. (5.4)

Besides, if σ∞ is L2(R+), then

E
[
∥M ◦X(t)∥2

]
≤ E

[
∥M(X(t))∥2

]
= O

(
1

t

)
, ∀t > 0. (5.5)

(ii) If M is γ−strongly monotone, then M−1(0) = {x⋆} and

E
(
∥X(t)− x⋆∥2

2

)
≤ ∥X0 − x⋆∥2

2
e−2γt +

σ2∗
4γ
, ∀t ≥ 0. (5.6)

If, moreover, σ∞ is decreasing and vanishes at infinity, then for every λ ∈]0, 1[

E
(
∥X(t)− x⋆∥2

2

)
≤ ∥X0 − x⋆∥2

2
e−2γt +

σ2∗
4
e−2γt(1−λ) +

σ2∞(λt)

2
, ∀t > 0. (5.7)

Proof. Analogous to Theorem 3.2.

We now turn to the local convergence properties. To this end, we need an extension of the Hölderian error
bound inequality (or Łojasiewicz inequality) to the operator setting. For convex functions, it is known that
error bound inequalities are closely related to metric subregularity of the subdifferential [41, 42, 43]. This
leads to the following definition.

Definition 5.10. Let M : Rd → Rd be a single-valued operator. We say that M satisfies the Hölder metric
subregularity property with exponent p ≥ 2 at x⋆ ∈M−1(0) if there exists γ > 0 and a neighbourhood Vx⋆

such that
∥M(x)∥2 ≥ γdist(x,M−1(0))p, ∀x ∈ Vx⋆ . (5.8)

If this inequality holds for any x⋆ ∈M−1(0) with the same γ, we will write M ∈ HMSp(Rd).

Theorem 5.11. Let M be a ρ−cocoercive operator such that M ∈ HMS2(Rd). Let X ∈ S2
d be the solution

of (SDEM ) under the hypotheses (HM
0 ), (H). Suppose that σ∞ ∈ L2(R+) (C∞

def
= ∥σ∞∥L2(R+)) and σ∞ is

decreasing. Consider also the positive constants C,Cd, γ. Then, for all δ > 0, there exists t̂δ > 0 such that
for every λ ∈ (0, 1):

E
(
dist(X(t),M−1(0))2

2

)
≤ e−2γρ(t−t̂δ)E

(
dist(X(t̂δ),M

−1(0))2

2

)
+ e−2γρ(1−λ)(t−t̂δ)(C2

∞ + C∞C
√
δ) (5.9)

+
hδ(t̂δ + λ(t− t̂δ))

2γρ
+ Cd

√
δ, ∀t > t̂δ,
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where hδ(t) = σ2∞(t) + C
√
δ σ2

∞(t)

2
√∫ t

t̂δ
σ2
∞(u)du

.

Proof. The proof is essentially the same as that of Theorem 4.5(i)(a), where instead of convexity in (4.12),
we use cocoercivity of M , and in (4.14) we invoke Theorem 5.8 and Hölder metric subregularity.

Remark 5.12. We can naturally extend the previous result for p > 2 as in Theorem 4.5(ii). Nevertheless,
since that bound is not explicit, we will skip this extension.

As an immediate consequence of the above result, by considering the cocoercive operatorMA,B,µ defined
in (5.3), we obtain the following result.

Corollary 5.13. Let A : Rd → P(Rd) be a maximally monotone operator and B : Rd → Rd be a λ-
cocoercive operator, λ > 0. Let MA,B,µ be the operator defined in (5.3). Assume that µ ∈]0, 2λ[ and
(A+B)−1(0) ̸= ∅. Then, the operator MA,B,µ is ρ-cocoercive with ρ = µ

(
1− µ

4λ

)
, and the SDE:{

dX(t) = −MA,B,µ(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0

X(0) = X0,

has a unique solution X ∈ Sν
d , for every ν ≥ 2, that verifies the conclusions of Theorem 5.8 and Theo-

rem 5.9. In particular, if σ∞ ∈ L2(R+), there exists an (A+B)−1(0)−valued random variable x⋆ such that
limt→∞X(t) = x⋆ a.s.

This result naturally applies to problem (5.1) when S = argmin(f + g) ̸= ∅ by taking A = ∂g and
B = ∇f . In this case, one has that X(t) converges a.s. to an S-valued random variable. Moreover, using
standard inequalities, see e.g. [44], one can show that

E
[
(f + g)

(
t−1

∫ t

0

(
proxµg(x− µ∇f(x))

)
ds

)
−min(f + g)

]
= O

(√
E
[
∥M(X(t))∥2

])
,

where proxµg = (I + µ∇g)−1 is the proximal mapping of g. From this, one can deduce an O(t−1/2) rate
thanks to (5.4) and (5.5).

5.2 Approach via Moreau-Yosida regularization

The previous approach, though it is able to deal with more general setting (that of monotone inclusions), took
us out of the framework of convex optimization by considering instead a dynamic governed by a cocoercive
operator. In particular, the perturbation/noise is considered on the whole operator evaluation and not on a part
of it (i.e.B) as it is standard in many applications. Moreover this approach led to a pessimistic convergence
rate estimate when specialized to convex function minimization. By contrast, the following approach will
operate directly on problem (5.1) and is based on a standard smoothing approach, replacing the non-smooth
part g by its Moreau envelope [45].

5.2.1 Moreau envelope

Let us start by recalling some basic facts concerning the Moreau envelope.
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Definition 5.14. Let g ∈ Γ0(Rd). Given θ > 0, the Moreau envelope of g of parameter θ is the function

gθ(x)
def
= inf

y∈Rd

(
g(y) +

1

2θ
∥x− y∥2

)
=

(
g□

1

θ
q

)
(x)

where □ is the infimal convolution operator and q(x) = 1
2∥x∥

2.

The Moreau envelope has remarkable approximation and regularization properties, as summarized in the
following statement.

Proposition 5.15. Let g ∈ Γ0(Rd).
(i) gθ(x) ↓ inf g(Rd) as θ ↑ +∞.
(ii) gθ(x) ↑ g(x) as θ ↓ 0.
(iii) gθ(x) ≤ g(x) for any θ > 0 and x ∈ Rd,
(iv) argmin(gθ) = argmin(g) for any θ > 0,
(v) g(x)− gθ(x) ≤ θ

2∥∂
0g(x)∥2 for any θ > 0 and x ∈ dom(∂g),

(vi) gθ ∈ C1,1
1
θ

(Rd) ∩ Γ0(Rd) for any θ > 0.

We use the following notation in the rest of the section: F def
= f + g,S def

= argminF , Fθ
def
= f + gθ and

Sθ
def
= argminFθ.
Note that Fθ ∈ C1,1

L+ 1
θ

(Rd) ∩ Γ0(Rd). Thus we will use Fθ as the potential driving (SDE), that is{
dX(t) = −∇Fθ(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0

X(0) = X0.
(SDEθ)

Under (H′
0) and (H), we will show almost sure convergence of the trajectory and corresponding convergence

rates.

Remark 5.16. Though we focus here on the Moreau envelope, our convergence results, in particular, Propo-
sition 5.19, still hold with infimal-convolution based smoothing using more general smooth kernels beyond
the norm squared; see [45, Section 4.4].

5.2.2 Convergence of the trajectory

Applying Theorem 3.1 to Fθ, we have the following result.

Proposition 5.17. For any θ > 0, let Xθ ∈ S2
d be the solution of the dynamic (SDEθ) governed by the

potential Fθ, and make assumptions (H′
0), Sθ ̸= ∅, (H) and σ∞ ∈ L2(R+). Then there exists an Sθ-valued

random variable x⋆θ such that
lim
t→∞

Xθ(t) = x⋆θ, a.s.

If f = 0, then Sθ = S (see Proposition 5.15(iv)), and Proposition 5.17 provides almost sure convergence
to a solution of (5.1). On the other hand for f ̸= 0, S ̸= Sθ in general and we only obtain an "approximate"
solution of (5.1); see Proposition 5.18(ii) for a quantitative estimate of this approximation when f is strongly
convex. To obtain a true solution of the initial problem, a common device consists in using a diagonalization
process which combines the dynamic with the approximation. Specifically, one considers{

dX(t) = −∇Fθ(t)(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0

X(0) = X0,
(SDEθ(t))
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where θ(t) ↓ 0 as t → +∞. In the deterministic case, an abundant literature has been devoted to the
convergence of this type of systems. Note that unlike the cocoercive approach, we are now faced with a non-
autonomous stochastic differential equation, making this a difficult problem, a subject for further research.

5.2.3 Convergence rates

We start with the following uniform bound on Sθ which holds under slightly reinforced, but reasonable
assumptions on f and g.

Proposition 5.18. Consider f, g where f and g and are proper lsc and convex, and g is also L0-Lipschitz
continuous.

(i) Assume that F = f + g is coercive. Then for any θ ≥ 0 there exists C > 0 (independent of θ) such
that

sup
z∈Sθ

∥z∥ ≤ C. (5.10)

(ii) Assume that f ∈ Γµ(Rd) for µ > 0, then (5.10) holds, S = {x⋆}, Sθ = {x⋆θ} and

∥x⋆θ − x⋆∥2 ≤ L0

µ
θ. (5.11)

Proof. (i) Since F is coercive, so is Fθ. Thus both S and Sθ are non-empty compact sets. Let x⋆θ ∈ Sθ

and x⋆ ∈ S. By Proposition 5.15(v) and Lipschitz continuity of g, we obtain

F (x⋆θ) ≤ Fθ(x
⋆
θ) +

L2
0

2
θ.

Moreover,

Fθ(x
⋆
θ) +

L2
0

2
θ ≤ Fθ(x

⋆) +
L2
0

2
θ ≤ F (x⋆) +

L2
0

2
θ ≤ min(F ) +

L2
0

2

def
= C̃,

where the second inequality is given by Proposition 5.15(iv). On the other hand, the coercivity of F
implies that there exists a > 0, b ∈ R such that for any x ∈ Rd

a∥x∥+ b ≤ F (x).

Therefore, collecting the above inequalities yields

a∥x⋆θ∥+ b ≤ F (x⋆θ) ≤ C̃.

Taking the supremum over x⋆θ and defining C def
= C̃−b

a ≥ 0, we obtain (5.10), or equivalently that the
set of approximate minimizers is bounded independently of θ.

(ii) Since f is µ-strongly convex, so are F and Fθ. In turn, F is coercive and thus (5.10) holds by claim
(i). Strong convexity implies uniqueness of minimizers of F and Fθ. Moreover,

µ

2
∥x⋆θ − x⋆∥2 ≤ Fθ(x

⋆)− Fθ(x
⋆
θ). (5.12)

From Proposition 5.15(iii)-(v) and and Lipschitz continuity of g, we infer that

Fθ(x
⋆)− Fθ(x

⋆
θ) ≤ F (x⋆)− Fθ(x

⋆
θ) ≤ F (x⋆θ)− Fθ(x

⋆
θ) = g(x⋆θ)− gθ(x

⋆
θ) ≤

L0

2
θ. (5.13)

Combining (5.12) and (5.12), we get the claimed bound.
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We are now ready to establish complexity results.

Proposition 5.19. Suppose that in addition to (H′
0) and (H), F = f + g is coercive and g is L0-Lipschitz

continuous. Let Xθ be the solution of (SDEθ) governed by Fθ with θ > 0. Let C0 = ∥X0∥+ C, where C is
the constant (independent of θ), defined in (5.10). Then the following statements hold for any t > 0.

(i) Let Xθ(t) = t−1

∫ t

0
Xθ(s)ds, then

E
(
F
(
Xθ(t)

)
−minF

)
≤ C2

0

2t
+
σ2∗
2

+ θ
L2
0

2
.

Besides, if σ∞ ∈ L2(R+), then

E
(
F
(
Xθ(t)

)
−minF

)
=
C2
0 +

∫ +∞
0 σ2∞(s)ds

2t
+ θ

L2
0

2
.

(ii) If σ∞ verifies (3.14) and θ ∈]0, 1], then

E (F (X(t))−minF ) =
C2
0

2t
+
K(1 + L)

2θ
tβ−1 + θ

L2
0

2
.

(iii) If, in addition, f ∈ Γµ(Rd) for some µ > 0 then S = {x⋆}, Sθ = {x⋆θ}, and

E
(
∥Xθ(t)− x⋆∥2

)
≤ 2C2

0e
−2µt +

σ2∗
µ

+ 2
L0

µ
θ.

Besides, if σ∞ is decreasing and vanishes at infinity, then ∀λ ∈]0, 1[:

E
(
∥Xθ(t)− x⋆∥2

)
≤ 2C2

0e
−2µt +

σ2∗
µ
e−2µ)(1−λ)t + 2σ2∞(λt) + 2

L0

µ
θ.

Remark 5.20. Observe that when f = 0, then Sθ = S. Therefore in Proposition 5.19 we have x⋆θ = x⋆ and
the last term in θ can be dropped.

Proof. (i) Combine Theorem 3.2(i) applied to Fθ, Proposition 5.15(iii) and (v), and Proposition 5.18(i)
to see that dist(X0,Sθ) ≤ C0.

(ii) Argue as in claim (i) using Proposition 3.3 instead of Theorem 3.2(i), and use the fact that ∇Fθ is
Lipschitz continuous with constant

L+
1

θ
≤ L+ 1

θ
for θ ∈]0, 1].

(iii) Combine Theorem 3.2(ii) applied to Fθ, Proposition 5.18(ii) and Jensen’s inequality.

A Auxiliary results

A.1 Deterministic results

The following lemma is straightforward to prove. We omit the details.
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Lemma A.1. Let t0 > 0 and g : [t0,+∞[→ R+. Suppose that limt→∞ g(t) exists and
∫∞
t0

g(s)
s ds < +∞.

Then limt→∞ g(t) = 0.

The next result is an adaptation of [46, Proposition 2.3] to our specific context but under slightly less
stringent assumptions.

Lemma A.2 (Comparison Lemma). Let t0 ≥ 0 and T > t0. Assume that h : [t0,+∞[→ R+ is measurable
with h ∈ L1([t0, T ]) , that ψ : R+ → R+ is continuous and nondecreasing, φ0 > 0 and the Cauchy problem{

φ′(t) = −ψ(φ(t)) + h(t) for almost all t ∈ [t0, T ]

φ(t0) = φ0

has an absolutely continuous solution φ : [t0, T ] → R+. If a bounded from below lower semicontinuous
function ω : [t0, T ] → R+ satisfies

ω(t) ≤ ω(s)−
∫ t

s
ψ(ω(τ))dτ +

∫ t

s
h(τ)dτ

for t0 ≤ s < t ≤ T and ω(t0) = φ0, then

ω(t) ≤ φ(t) for t ∈ [t0, T ].

Theorem A.3 (Egorov’s Theorem). [47, Chapter 3, Exercise 16] If µ(X) <∞ and (ft)t∈R+ is a family of
real functions such that for all x ∈ X:

1. limt→∞ ft(x) = f(x) and
2. t 7→ ft(x) is continuous.

Then, for every δ > 0, there exists a measurable set Eδ ⊂ X , with µ(X \ Eδ) < δ, such that (ft)t∈R+

converges uniformly on Eδ.

Lemma A.4. Let f : R+ → R and lim inft→∞ f(t) ̸= lim supt→∞ f(t). Then there exists a constant α,
satisfying lim inft→∞ f(t) < α < lim supt→∞ f(t), such that for every β > 0, we can define a sequence
(tk)k∈N ⊂ R such that

f(tk) > α, tk+1 > tk + β, ∀k ∈ N.

Proof. Since lim inft→∞ f(t) and lim supt→∞ f(t) are different real numbers, there exists α such that

lim inf
t→∞

f(t) < α < lim sup
t→∞

f(t).

Moreover, by definition of lim sup, there exists a sequence (tk)k∈N such that limk→∞ tk = ∞ and f(tk) > α.
Let β > 0 and n0 = 0, let us define recursively for j ≥ 1, nj = min{n > nj−1 : tn − tnj−1 > β}. Let
j′ ∈ N be the first natural such that nj′ = ∞. This implies that for every n > nj′−1, tn ≤ β + tnj′−1

<∞,
a contradiction since limn→∞ tn = ∞, then for every j ∈ N, nj < ∞. Thus, we can define (tnj )j∈N a
subsequence of (tk)k∈N such that limj→∞ tnj = ∞ and for every j ∈ N, tnj+1 − tnj > β.
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A.2 Stochastic results

Lemma A.5. Let δ > 0,Ωδ ∈ F such that P(Ωδ) ≥ 1− δ and h : Ω× R+ → R a stochastic process such
that supt≥0 E[h(ω, t)2] <∞. Then

E[h(ω, t)1Ω\Ωδ
] = O(

√
δ).

Proof. Note that P(Ω \ Ωδ) ≤ δ and

E[h(ω, t)1Ω\Ωδ
] ≤

√
δ
√

E[h(ω, t)2] ≤
√
δ
√
sup
t≥0

E[h(ω, t)2],

where we have used the Cauchy-Schwarz inequality for our first inequality.

Corollary A.6. Let X be the solution of (SDE) under hypotheses (H0), (H) on f and σ, and that σ∞ ∈
L2(R+). Then h1(ω, t) = dist(X(ω,t),S)2

2 and h2(ω, t) = f(X(ω, t)) − min f satisfy the hypothesis of
Lemma A.5, this means that there exists Cd, Cf > 0:

E
(
dist(X(t),S)2

2

)
− E

[
dist(X(t),S)2

2
1Ωδ

]
≤ Cd

√
δ,

E (f(X(t))−min f)− E [(f(X(t))−min f)1Ωδ
] ≤ Cf

√
δ.

Proof. Let x⋆ ∈ S be arbitrary. Using Proposition2.4 with ϕ̂(x) = dist(x,S)2
2 , squaring it, and taking

expectation, we obtain

E
[
dist4(X(t),S)

4

]
≤ 3

dist(X0,S)2

4
+ 3

(∫ t

0
σ2∞(s)ds

)2

+ 3E

[(∫ t

0
⟨σ⊤(s,X(s))(X(s)− PS(X(s))), dW (s)⟩

)2
]

≤ 3
dist(X0,S)2

4
+ 3

(∫ t

0
σ2∞(s)ds

)2

+ 3 sup
t≥0

E[∥X(t)− x⋆∥2]
[∫ t

0
σ2∞(s)ds

]
.

Taking the supremum over t ≥ 0, we obtain

sup
t≥0

E

[(
dist(X(t),S)2

2

)2
]
≤ 3

dist(X0,S)2

4
+ 3

(∫ ∞

0
σ2∞(s)ds

)2

+ 3 sup
t≥0

E[∥X(t)− x⋆∥2]
[∫ ∞

0
σ2∞(s)ds

]
def
= Cd <∞.

In the above estimation we used that σ∞ ∈ L2(R+) and supt≥0 E[∥X(t)− x⋆∥2] <∞ by Theorem 3.1(i).

On the other hand, using Proposition 2.4 with ϕ̃(x) = f(x)−min f , squaring it, and taking expectation,

33



we obtain

E
[
[f(X(t)−min f ]2

]
≤ 3[f(X0)−min f ]2 +

3L

2

(∫ t

0
σ2∞(s)ds

)2

+ 3E

[(∫ t

0
⟨σ⊤(s,X(s))(∇f(X(s))), dW (s)⟩

)2
]

≤ 3[f(X0)−min f ]2 +
3L

2

(∫ t

0
σ2∞(s)ds

)2

+ 3L2 sup
t≥0

E[∥X(t)− x⋆∥2]
[∫ t

0
σ2∞(s)ds

]
.

Taking the supremum over t ≥ 0, we obtain

sup
t≥0

E
[
[f(X(t)−min f ]2

]
≤ 3[f(X0)−min f ]2 +

3L

2

(∫ ∞

0
σ2∞(s)ds

)2

+ 3L2 sup
t≥0

E[∥X(t)− x⋆∥2]
[∫ ∞

0
σ2∞(s)ds

]
def
= Cf <∞.

Let us consider the Stochastic Differential Equation:{
dX(t) = F (t,X(t))dt+G(t,X(t))dW (t), t ≥ 0,
X(0) = X0,

(A.1)

where F : R+ × Rd → Rd, G : R+ × Rd → Rd×m are measurable functions and W is a Ft-adapted
m-dimensional Brownian Motion.

Theorem A.7. (See [33, Theorem 5.2.1], [35, Theorem 2.4.1]) Let F : R+×Rd → Rd andG : R+×Rd →
Rd×m be measurable functions satisfying, for every T > 0:

∥F (t, x)− F (t, y)∥+ ∥G(t, x)−G(t, y)∥F ≤ C1∥x− y∥, ∀x, y ∈ Rd, ∀t ∈ [0, T ], (A.2)

for some constant C1 ≥ 0. Then (A.1) has a unique solution X ∈ Sl
d, for every l ≥ 2.

Proof. Condition (A.2) implies that there exists C2 ≥ 0 such that

∥F (t, x)∥+ ∥G(t, x)∥F ≤ C2(1 + ∥x∥), ∀x ∈ Rd,∀t ∈ [0, T ].

These are the hypotheses of [33, Theorem 5.2.1] to ensure the existence and uniqueness of the solution X ∈
S2
d of (A.1). Moreover, condition (A.2) implies the existence of C3 ≥ 0 such that

⟨x, F (t, x)⟩+ ∥G(t, x)∥2F ≤ C3(1 + ∥x∥2) ∀x ∈ Rd, ∀t ∈ [0, T ]. (A.3)

Thus (A.3) is the necessary inequality to use [48, Lemma 3.2] and deduce that X ∈ Sl
d, for every l ≥ 2.
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A.3 On martingales

Theorem A.8. [49] Let (Mt)t≥0 : Ω → R be a continuous martingale such that supt≥0 E (|Mt|p) <∞ for
some p > 1. Then there exists a random variable M∞ such that E (|M∞|p) < ∞ and limt→∞Mt = M∞
a.s.

Theorem A.9. [35, Theorem 1.3.9] Let {At}t≥0 and {Ut}t≥0 be two continuous adapted increasing pro-
cesses with A0 = U0 = 0 a.s. Let {Mt}t≥0 be a real valued continuous local martingale with M0 = 0 a.s.
Let ξ be a nonnegative F0-measurable random variable. Define

Xt = ξ +At − Ut +Mt for t ≥ 0.

IfXt is nonnegative and limt→∞At <∞ a.s., then a.s. limt→∞Xt exists and is finite, and limt→∞ Ut <∞.
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