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Introduction

Problem Statement

We aim to solve convex minimization problems by means of stochastic differential equations whose drift term is driven by the gradient of the objective function. This allows for noisy (inaccurate) gradient input to be taken into account. Consider the minimization problem

min x∈R d f (x), (P) 
where the objective f satisfies the following standing assumptions:

f is continuously differentiable and convex with L-Lipschitz continuous gradient;

S def = argmin(f ) ̸ = ∅. (H 0 )
We will also later deal with the constrained case, and more generally with additively structured "smooth + nonsmooth" convex optimization.

Let us first recall some basic facts about the deterministic case. To solve (P), a fundamental dynamic to consider is the gradient flow of f , i.e. the gradient descent dynamic with initial condition X 0 ∈ R d : ẋ = -∇f (x), t > 0 x(0) = X 0 .

(GF)

It is well known since the founding papers of Brezis, Baillon, Bruck in the 1970s that, if the solution set argmin f of (P) is non-empty, then each solution trajectory of (GF) converges, and its limit belongs to argmin f . In fact, this result is true in a more general setting, simply assuming that the objective function f is convex, lower semicontinuous (lsc) and proper (in which case we must consider the differential inclusion obtained by replacing in (GF) the gradient of f by the sub-differential ∂f ).

In many cases, the gradient input is subject to noise, for example, if the gradient cannot be evaluated directly, or due to some other exogenous factor. In such scenario, one can model these errors using a stochastic integral with respect to the measure defined by a continuous Itô martingale. This entails the following stochastic differential equation as a stochastic counterpart of (GF):

dX(t) = -∇f (X(t))dt + σ(t, X(t))dW (t), t > 0 X(0) = X 0 , (SDE)
defined over a filtered probability space (Ω, F, {F t } t≥0 , P), where the diffusion (volatility) term σ : R + × R d → R d×m is matrix-valued measurable function, and W is the m-dimensional Brownian motion.

Our goal is to study the dynamic of (SDE) and its long time behavior in order to solve (P). To identify the assumptions necessary to hope for such a behavior to occur, remember that when the diffusion term σ is a positive real constant, it is well-known that X(t) in this case is a continuous-time diffusion process known as Langevin diffusion, and has a unique invariant probability measure π σ with density ∝ e -2f (x)/σ 2 [START_REF] Bhattacharya | Criteria for recurrence and existence of invariant measures for multidimensional diffusions[END_REF]. It is easy to see that the measure π σ gets concentrated around argmin f as σ tends to 0 + with lim σ→0 + π σ (argmin f ) = 1; see e.g. [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF].

Motivated by this observation, our paper will then mostly focus on the case where σ(•, x) vanishes sufficiently fast as t → +∞ uniformly in x, and some guarantees will also be provided for uniformly bounded σ. Therefore, throughout, the entries σ ik are assumed to satisfy:

sup t≥0,x∈R d |σ ik (t, x)| < ∞, |σ ik (t, x ′ ) -σ ik (t, x)| ≤ l 0 ∥x ′ -x∥, (H) 
for some l 0 > 0 and for all t ≥ 0, x, x ′ ∈ R d . The Lipschitz continuity assumption is mild and required to ensure well-posedness of (SDE).

Contributions

We study the properties of the process X(t) and f (X(t)) for the stochastic differential equation (SDE) from an optimization perspective, under the assumptions (H 0 ) and (H). When the diffusion term is uniformly bounded, we show convergence of E[f (X(t)) -min f ] to a noise-dominated region both for the convex and strongly convex case. When the diffusion term is square-integrable, we show in Theorem 3.1 that X(t) converges almost surely to a solution of (P), which is a new result to the best of our knowledge. Moreover, in Theorem 3.2 and Proposition 3.3, we provide new ergodic and pointwise convergence rates of the objective in expectation, again for both the convex and strongly convex case.

Then we turn to a local analysis relying on the Łojasiewicz inequality and its strong ties with error bounds. Since this property is most often satisfied only locally, we deepen the discussion on the long time localization of the process. This is fundamental, because in the recent literature on local convergence properties of stochastic gradient descent, strong assumptions are imposed, such as X(t) or f (X(t)) is locally bounded almost surely. Such assumptions are unfortunately unrealistic due to the presence of the Brownian Motion. We manage to circumvent this problem by using arguments from measure theory, in particular Egorov's theorem. In turn, under the Łojasiewicz inequality assumption with exponent q ≥ 1/2, this allows us to show local convergence rates of the objective and the trajectory itself in expectation over a set of events whose probability is arbitrarily close to 1 (see Theorem 4.5).

Table 1 summarizes the local and global convergence rates obtained for E[f (X(t)) -min f ]. In this table, δ > 0 is a parameter which is intended to be taken arbitrarily close to 0 but different from it, σ * > 0 and σ ∞ (•) are defined as

∥σ(t, x)∥ 2 F ≤ σ 2 * , ∀t ≥ 0, ∀x ∈ R d , and σ ∞ (t) def = sup x∈R d ∥σ(t, x)∥ F , (1.1) 
and σ ∞ (•) is a decreasing function. Ł q (S) is the class of functions satisfying the Łojasiewicz inequality with exponent q ∈ [0, 1] at each point of S (see Definition 4.1) 1 . Although it is natural to think that we can take the limit when δ goes to 0 + , the time from which these convergence rates are valid depends on δ and increases (potentially to +∞) as δ approaches 0 + . Assuming only the boundedness of the diffusion and the Łojasiewicz inequality, we could not find better results (cells marked with ✘) than those presented in the convex case. Since the Łojasiewicz inequality is local, a natural approach would be to localize the process in the long term with high probability. However, it is not clear how to achieve this.

Property of f Gradient Flow SDE (sup t≥0 σ ∞ (t) ≤ σ * ) SDE (σ ∞ ∈ L 2 (R + )) Convex t -1 t -1 + σ 2 * t -1 µ-Strongly Convex e -2µt e -2µt + σ 2 * max{e -2µt , σ 2 ∞ (t)} Convex ∩ Ł 1/2 (S) (coef. µ) e -µ 2 t ✘ max{e -µ 2 t , σ 2 ∞ (t)} + √ δ Convex ∩ Ł q (S), q ∈ ( 1 2 , 1) t -1 2q-1 ✘ t -1 2q-1 2 + √ δ
In Section 5, we turn to extending some of the preceding results to the structured convex minimization problem min

x∈R d f (x) + g(x), (P c )
where f : R d → R satisfies (H 0 ), g : R d → R ∪ {+∞} is proper, lsc and convex and argmin(f + g) ̸ = ∅. This obviously covers the case of constrained minimization of f over a non-empty closed convex set. We take two different routes leading to different SDEs.

The first approach consists in reformulating (P c ) as finding for zeros of the operator

M µ : R d → R d M µ (x) = 1 µ x -prox µg (x -µ∇f (x)) ,
where µ > 0 and prox µg is the proximal mapping of µg. It is well-known that the operator M µ is cocoercive [START_REF] Attouch | Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions[END_REF], hence monotone and Lipschitz continuous, and M µ = ∇f when g vanishes. The idea is then to replace the operator ∇f in (SDE) by M µ leading to an SDE which will have many of the convergence properties obtained in the smooth convex case. This approach is in accordance with the deterministic theory for monotone cocoercive operators (see [START_REF] Bolte | Continuous gradient projection method in Hilbert spaces[END_REF][START_REF] Antipin | Minimization of convex functions on convex sets by means of differential equations[END_REF][START_REF] Attouch | Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions[END_REF]).

The second approach regularizes the nonsmooth component g of the objective function using its Moreau envelope

g θ (x) = min z∈R d g(z) + 1 2θ ∥x -z∥ 2 .
This leads to studying the dynamic (SDE) with the function f +g θ , which has a continuous Lipschitz gradient. This approximation method leads to a non-autonomous SDE. Note, however, that the noise in this case can be considered on the evaluation of ∇f (x), while it is on M µ (x) in the first approach.

Relation to prior work

The gradient system (GF), which is valid on a general real Hilbert space H, is a dissipative dynamical system, whose study dates back to Cauchy [START_REF] Cauchy | Méthode générale pour la résolution des systèmes d'équations simultanées[END_REF]. It plays a fundamental role in optimization: it transforms the problem of minimizing f into the study of the asymptotic behavior of the trajectories of (GF). This example was the precursor to the rich connection between continuous dissipative dynamical systems and optimization. Its Euler forward discretization (with stepsize γ k > 0) is the celebrated gradient descent scheme

x k+1 = x k -γ k ∇f (x k ). (GD)
Under (H 0 ), and for (γ k ) k∈N ⊂]0, 2/L[, then we have both the convergence of the values f

(x k ) -min f = O(1/k) (in fact even o(1/k))
, and the weak convergence of iterates (x k ) k∈N to a point in argmin f . Moreover, if the Łojasiewicz inequality (4.1) (see [START_REF] Łojasiewicz | Sur les trajectoires du gradient d'une fonction analytique[END_REF]) is satisfied, then we can ensure the strong convergence of (x k ) k∈N to a point in argmin f and faster convergence rates than those ensured by the simple convexity hypothesis (see [START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF][START_REF] Colding | Lojasiewicz inequalities and applications[END_REF]).

Now, let us focus on the finite-dimensional case (H = R d ). Although the Gradient Descent is a classical algorithm to solve the convex minimization problem, with the need to handle large-scale problems (such as in various areas of data science and machine learning), there has become necessary to find ways to get around the high computational cost per iteration that these problems entail. The Robbins-Monro stochastic approximation algorithm [START_REF] Robins | A stochastic approximation method[END_REF] is at the heart of Stochastic Gradient Descent (SGD), which, roughly speaking, consists in cheaply and randomly approximating the gradient at the price of obtaining a random noise in the solutions. Given an initial point x 0 ∈ R d , (SGD) updates the iterates according to

x k+1 = x k -γ∇f (x k ) -γξ k , (SGD)
where ξ k denotes the (random) noise term at the k-th iteration.

Recent work (see [START_REF] Li | Stochastic modified equations and adaptive stochastic gradient algorithms[END_REF][START_REF] Orvieto | Continuous-time models for stochastic optimization algorithms[END_REF][START_REF] Hu | On the diffusion approximation of nonconvex stochastic gradient descent[END_REF][START_REF] Shi | On learning rates and Schrödinger operators[END_REF][START_REF] Li | On the validity of modeling sgd with stochastic differential equations[END_REF][START_REF] Soatto | Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks[END_REF]) has linked algorithm (SGD) with dynamic (SDE), showing the context under which (SDE) can be seen as an approximation (under a specific error) of (SGD) and vice-versa. For example, (SDE) can be interpreted as the pathwise solution to the Fokker-Planck equation (see [START_REF] Gardiner | Handbook of stochastic methods[END_REF]).

The Euler forward discretization (with stepsize γ > 0) of (SDE) when d = m and σ = √ 2I d is the following algorithm:

X k+1 = X k -γ∇f (X k ) + 2γξ k , (LMC)
where ξ k ∼ N (0, I d ) (multivariate standard normal distribution). This algorithm, which is known as Langevin Monte Carlo (see [START_REF] Parisi | Correlation functions and computer simulations[END_REF]), is a standard sampling scheme, whose purpose is to generate samples from an approximation of a target distribution, in our case, proportional to e -f (x) . Under appropriate assumptions on f , when γ is small and k is large such that kγ is large, the distribution of X k converges in different topologies or is close in various metrics to the target distribution with density ∝ e -f (x) . Asymptotic and non-asymptotic (with convergence rates) results of this kind have been studied in a number of papers under various conditions; see [START_REF] Dalalyan | User-friendly guarantees for the Langevin monte carlo with inaccurate gradient[END_REF][START_REF] Arnak | Theoretical guarantees for approximate sampling from smooth and log-concave densities[END_REF][START_REF] Durmus | High-dimensional bayesian inference via the unadjusted Langevin algorithm[END_REF][START_REF] Durmus | Nonasymptotic convergence analysis for the unadjusted Langevin algorithm[END_REF][START_REF] Cheng | Underdamped Langevin mcmc: A non-asymptotic analysis[END_REF][START_REF] Huggins | Quantifying the accuracy of approximate diffusions and markov chains[END_REF] and references therein. By rescaling the problem, relation between sampling (i.e. (LMC)) and optimization (i.e. (SGD)) has been also investigated for the strongly convex case in e.g. [START_REF] Dalalyan | User-friendly guarantees for the Langevin monte carlo with inaccurate gradient[END_REF].

Concerning (SDE), one can easily infer from [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]Proposition 7.4] that assuming sup x∈R d ∥σ(t, x)∥ F = o(1/ log(t)), and conditioning on the event that X(t) is bounded, we have almost surely that the set of limits of convergent sequences X(t k ), t k → +∞ is contained in argmin f . Using results on asymptotic pseudo-trajectories from [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF], the work of [START_REF] Mertikopoulos | On the convergence of gradient-like flows with noisy gradient input[END_REF][START_REF] Raginsky | Continuous-time stochastic mirror descent on a network: Variance reduction, consensus, convergence[END_REF][START_REF] Bartlett | Acceleration and averaging in stochastic mirror descent dynamics[END_REF] analyzed the behavior of the Stochastic Mirror Descent dynamics:

dY (t) = -∇f (X(t))dt + σ(t, X)dW (t), X(t) = Q(ηY (t)), (SMD) 
where X ⊂ R d is a closed convex feasible region, f is convex with Lipschitz continuous gradient on X , Q : R d → X is the mirror map induced by some strongly convex entropy, and η > 0 is a sensitivity parameter. In [START_REF] Mertikopoulos | On the convergence of gradient-like flows with noisy gradient input[END_REF]Theorem 4.1], it is shown that if X is also assumed bounded, that sup x∈R d ∥σ(t, x)∥ F = o(1/ log(t)), and Q satisfies some continuity assumptions 3 , then the solution X(t) (SMD) converges to a point in argmin f almost surely. Similar assumptions can be found in [START_REF] Bartlett | Acceleration and averaging in stochastic mirror descent dynamics[END_REF] to obtain almost sure convergence on the objective. Let us observe that all these results do not apply to our setting. Indeed, if X = R d (unconstrained problem), Q(x) = x and η = 1, we recover (SDE). Our work does not assume any boundedness whatsoever to establish our results. This comes however at somewhat stronger assumptions on σ(•, •).

While finalizing this work, we became aware of the recent work of [START_REF] Dereich | Cooling down stochastic differential equations: Almost sure convergence[END_REF], which analyzes the behavior of (SDE) for f ∈ C 2 (R d ) not necessarily convex and which satisfies sup x∈R d ∥σ(•, x)∥ F ∈ L 2 (R + ). Conditioning on the event that lim sup t→∞ ∥X(t)∥ < ∞, they showed that ∇f (X(t)) → 0 almost surely, almost sure convergence of f (X(t)), and if the objective f is semialgebraic (and more generally tame), they also showed almost sure convergence of X(t) towards a critical point of f . They also made attempt to get local convergence rates under the Łojasiewicz inequality that are less transparent than ours. Our analysis on the other hand leverages convexity of f to establish stronger results.

Organization of the paper

Section 2 introduces notations and reviews some necessary material from convex and stochastic analysis. Section 3 states our main convergence results in the case of a convex differentiable objective function whose gradient is Lipschitz continuous. We first show the almost sure convergence of the process towards the set of minimizers, then we establish convergence rates for the values. Section 4 introduces further geometric properties of the objective functions, namely Łojasiewicz property and related error bound, which allows to obtain improved (local) convergence rates. This covers in particular the (locally) strongly convex case. In section 5, we extend some results to the nonsmooth case by considering the additively structured "smooth + nonsmooth" convex minimization. We develop new stochastic differential equations that naturally lend themselves to splitting techniques. Technical lemmas and theorems that are needed throughout the paper are collected in the appendix.

Notation and Preliminaries

We will use the following shorthand notations: given d, n ∈ N, [n] def = {1, . . . , n}, R d×n is the set of real matrices of size d × n, and I d is the identity matrix of dimension d. For M ∈ R d×n , M ⊤ ∈ R n×d is its transpose matrix and ∥M ∥ F is its Frobenius norm. For M, M ′ ∈ R d×d , M ≼ M ′ if and only if u ⊤ (M ′ -M )u ≥ 0 for every u ∈ R d . For a set D, we denote its power set as P(D)

def = {C : C ⊆ D}. The sublevel of f at height r ∈ R is denoted [f ≤ r] def = {x ∈ R d : f (x) ≤ r}.

On convex analysis

Let us recall some important definitions and results from convex analysis in the finite-dimensional case; for a comprehensive coverage, we refer the reader to [START_REF] Rockafellar | Convex analysis[END_REF].

We denote by Γ 0 (R d ) the class of proper lsc and convex functions on

R d taking values in R ∪ {+∞}. For µ > 0, Γ µ (R d ) ⊂ Γ 0 (R d ) is the class of µ-strongly convex functions. We denote by C s (R d ) the class of s-times continuously differentiable functions on R d . For L ≥ 0, C 1,1 L (R d ) ⊂ C 1 (R d ) is the set of functions on R d whose gradient is L-Lipschitz continuous.
The following Descent Lemma which is satisfied by this class of functions plays a central role in optimization.

Lemma 2.1. Let f ∈ C 1,1 L (R d ), then f (y) ≤ f (x) + ⟨∇f (x), y -x⟩ + L 2 ∥y -x∥ 2 , ∀x, y ∈ R d . Corollary 2.2. Let f ∈ C 1,1 L (R d ) such that argmin f ̸ = ∅, then ∥∇f (x)∥ 2 ≤ 2L(f (x) -min f ), ∀x ∈ R d .
Proof. Use Lemma 2.1 for an arbitrary x ∈ R d and y = x -1 L ∇f (x). Then bound

f x - 1 L ∇f (x) ≥ min f. The subdifferential of a function f ∈ Γ 0 (R d ) is the set-valued operator ∂f : R d → P(R d ) such that, for every x in R d , ∂f (x) = {u ∈ R d : f (y) ≥ f (x) + ⟨u, y -x⟩ ∀y ∈ R d }.
When f is continuous, ∂f (x) is non-empty convex and compact set for every

x ∈ R d . If f is differentiable, then ∂f (x) = {∇f (x)}. For every x ∈ R d such that ∂f (x) ̸ = ∅, the minimum norm selection of ∂f (x) is the unique element ∂ 0 f (x) def = argmin u∈∂f (x) ∥u∥.

On stochastic processes

Let us recall some elements of stochastic analysis; for a more complete account, we refer to [START_REF] Øksendal | Stochastic differential equations[END_REF][START_REF] Pardoux | Stochastic differential equations, backward SDEs, partial differential equations[END_REF][START_REF] Mao | Stochastic differential equations and applications[END_REF]. Throughout the paper, (Ω, F, P) is a probability space and {F t |t ≥ 0} is a filtration of the σ-algebra F. Given C ∈ P(Ω), we will denote σ(C) the σ-algebra generated by C. We denote

F ∞ def = σ t≥0 F t ∈ F. The expectation of a random variable ξ : Ω → R d is denoted by E(ξ) def = Ω ξ(ω)dP(ω).
An event E ∈ F happens almost surely if P(E) = 1, and it will be denoted as "E, P-a.s." or simply "E, a.s.". The characteristic function of an event E ∈ F is denoted by

1 E (ω) def = 1 if ω ∈ E, 0 otherwise. An R d -valued stochastic process is a function X : Ω × R + → R d . It is said to be continuous if X(ω, •) ∈ C(R + ; R d ) for almost all ω ∈ Ω. We will denote X(t) def = X(•, t).
We are going to study (SDE), and in order to ensure the uniqueness of a solution, we introduce a relation over stochastic processes. Two stochastic processes X, Y :

Ω × [0, T ] → R d are said to be equivalent if X(t) = Y (t), ∀t ∈ [0, T ], P-a.
s. This leads us to define the equivalence relation R, which associates the equivalent stochastic processes in the same class.

Furthermore, we will need some properties about the measurability of these processes. A stochastic process

X : Ω × R + → R d is progressively measurable if for every t ≥ 0, the map Ω × [0, t] → R d defined by (ω, s) → X(ω, s) is F t ⊗ B([0, t])-measurable, where ⊗ is the product σ-algebra and B is the Borel σ-algebra. On the other hand, X is F t -adapted if X(t) is F t -measurable for every t ≥ 0. It is a direct consequence of the definition that if X is progressively measurable, then X is F t -adapted.
Let us define the quotient space:

S 0 d [0, T ] def = X : Ω × [0, T ] → R d : X is a prog. measurable cont. stochastic process R.
We set S 0 [START_REF] Antipin | Minimization of convex functions on convex sets by means of differential equations[END_REF] in the appendix provides us with sufficient conditions to ensure the existence and uniqueness of the solution to (SDE). These conditions are met in our case under assumptions (H 0 ) and (H).

d def = T ≥0 S 0 d [0, T ]. Furthermore, for ν > 0, we define S ν d [0, T ] as the subset of processes X(t) in S 0 d [0, T ] such that S ν d [0, T ] def = X ∈ S 0 d [0, T ] : E sup t∈[0,T ] ∥X t ∥ ν < +∞ . We define S ν d def = T ≥0 S ν d [0, T ]. Theorem A.
Let us now present Itô's formula which plays a central role in the theory of stochastic differential equations.

Proposition 2.3. [START_REF] Øksendal | Stochastic differential equations[END_REF]Chapter 4] Consider X the solution of (SDE), ϕ :

R + × R d → R such that ϕ(•, x) ∈ C 1 (R + ) for every x ∈ R d and ϕ(t, •) ∈ C 2 (R d ) for every t ≥ 0.
Then the process

Y (t) = ϕ(t, X(t)),
is an Itô Process such that for all t ≥ 0

Y (t) = Y (0) + t 0 ∂ϕ ∂t (s, X(s))ds - t 0 ⟨∇ϕ(s, X(s)), ∇f (X(s))⟩ ds + t 0 σ ⊤ (s, X(s))∇ϕ(s, X(s)), dW (s) + 1 2 t 0 tr σ(s, X(s))σ ⊤ (s, X(s))∇ 2 ϕ(s, X(s)) ds. (2.1)
Moreover, if for all T > 0

E T 0 ∥σ ⊤ (s, X(s))∇ϕ(s, X(s))∥ 2 ds < +∞, then t 0 σ ⊤ (s, X(s))∇ϕ(s, X(s)), dW (s) is a square-integrable continuous martingale and E[Y (t)] = Y (0) + E t 0 ∂ϕ ∂t (s, X(s))ds -E t 0 ⟨∇ϕ(s, X(s)), ∇f (X(s))⟩ ds + 1 2 E t 0 tr σ(s, X(s))σ ⊤ (s, X(s))∇ 2 ϕ(s, X(s)) ds . (2.2)
The C 2 assumption on ϕ(t, •) in Itô's formula is crucial. This can be weakened in certain cases leading to the following inequality that will be useful in our context.

Proposition 2.4. Consider X the solution of (SDE), ϕ 1 ∈ C 1 (R + ), ϕ 2 ∈ C 1,1 L (R d ) and ϕ(t, x) = ϕ 1 (t)ϕ 2 (x). Then the process Y (t) = ϕ(t, X(t)) = ϕ 1 (t)ϕ 2 (X(t)),
is an Itô Process such that 

Y (t) ≤ Y (0) + t 0 ϕ ′ 1 (s)ϕ 2 (X(s))ds - t 0 ϕ 1 (s) ⟨∇ϕ 2 (X(s)), ∇f (X(s))⟩ ds + t 0 σ ⊤ (s, X(s))ϕ 1 (s)∇ϕ 2 (X(s)), dW (s) + L 2 t 0 ϕ 1 (s)tr σ(s, X(s))σ ⊤ (s, X(s)) ds. (2.3) Moreover, if for all T > 0 E T 0 ∥σ ⊤ (s, X(s))ϕ 1 (s)∇ϕ 2 (X(s))∥ 2 ds < +∞, then E[Y (t)] ≤ Y (0) + E t 0 ϕ ′ 1 (s)ϕ 2 (X(s))ds -E t 0 ϕ 1 (s) ⟨∇ϕ 2 (X(s)), ∇f (X(s))⟩ ds + L 2 E t 0 ϕ 1 (s)tr σ(s, X(s))σ ⊤ (s, X ( 

Convergence properties for convex differentiable functions

We consider f (called the potential) and study the dynamic (SDE) under hypotheses (H 0

) (i.e. f ∈ C 1,1 L (R d )∩ Γ 0 (R d ))
and (H). Recall the definitions of σ * and σ ∞ (t) from (1.1). Observe that from (H) one can take

σ 2 * = md sup t≥0,x∈R d |σ ik (t, x)| 2 .
Throughout the rest of the paper, we will use the shorthand notation

Σ(t, x) def = σ(t, x)σ(t, x) ⊤ .

Almost sure convergence of trajectory

Our first main result establish almost convergence of X(t) to an S-valued random variable as t → +∞.

Theorem 3.1. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H 0 ) and (H). Then, there exists a unique solution

X ∈ S ν d of (SDE), for every ν ≥ 2. Additionally, if σ ∞ ∈ L 2 (R + ), then: (i) sup t≥0 E[∥X(t)∥ 2 ] < +∞. (ii) ∀x ⋆ ∈ S, lim t→∞ ∥X(t) -x ⋆ ∥ exists a.s. and sup t≥0 ∥X(t)∥ < +∞ a.s. (iii) lim t→∞ ∥∇f (X(t))∥ = 0 a.s. As a result, lim t→∞ f (X(t)) = min f a.s.
(iv) In addition to (iii), there exists an S-valued random variable x ⋆ such that lim t→∞ X(t) = x ⋆ a.s.

Proof. The existence and uniqueness of a solution follows directly from the fact that the conditions of Theorem A.7 are satisfied under (H 0 ) and (H). The architecture of the proof of Theorem 3.1 consists of three steps that we briefly describe:

• The first step is based on Itô's formula (Proposition 2.3). Theorem A.9 then allows us to conclude that for all x ⋆ ∈ S, lim t→∞ ∥X(t) -x ⋆ ∥ exists a.s. Then, a separability argument is used to conclude that almost surely, for every x ⋆ ∈ S, lim t→∞ ∥X(t) -x ⋆ ∥ exists.

• The second step consists in using another conclusion of Theorem A.9 to conclude that ∥∇f (X(•))∥ 2 ∈ L 1 (R + ) a.s. After proving that this function is eventually uniformly continuous, we proceed according to Barbalat's Lemma (see [START_REF] Farkas | Variations on Barbalat's lemma[END_REF]) to conclude that lim t→∞ ∥∇f (X(t))∥ = 0 a.s. As a consequence of the convexity of f we deduce that lim t→∞ f (X(t)) = min f a.s.

• Finally, the third step consists in using Opial's Lemma to conclude that there exists an S-valued random variable x ⋆ such that lim t→∞ X(t) = x ⋆ a.s. (i) Let x ⋆ be taken arbitrarily in S. Let us define the corresponding anchor function ϕ

(x) = ∥x-x ⋆ ∥ 2 2 . Using Itô's formula we obtain ϕ(X(t)) = ∥X 0 -x ⋆ ∥ 2 2 ξ + 1 2 t 0 tr (Σ(s, X(s))) ds At - t 0 ⟨∇f (X(s)), X(s) -x ⋆ ⟩ ds Ut + t 0 σ ⊤ (s, X(s)) (X(s) -x ⋆ ) , dW (s) Mt . (3.1)
Since X ∈ S 2 d by Proposition 2.3, we have for every T > 0, that

E T 0 ∥σ ⊤ (s, X(s)) (X(s) -x ⋆ ) ∥ 2 ds ≤ E sup t∈[0,T ] ∥X(t) -x ⋆ ∥ 2 T 0 σ 2 ∞ (s)ds < +∞.
Therefore M t is a square-integrable continuous martingale. It is also a continuous local martingale (see [START_REF] Mao | Stochastic differential equations and applications[END_REF]Theorem 1.3.3]), which implies that E(M t ) = 0.

Let us now take the expectation of (3.1). Using that 0 ≤ tr (Σ(s, X(s))) ≤ σ 2 ∞ (s) and ⟨∇f (X(s)), X(s) -x ⋆ ⟩ ≥ 0, and taking the supremum over t ≥ 0, we obtain that

sup t≥0 E ∥X(t) -x ⋆ ∥ 2 2 ≤ ∥X 0 -x ⋆ ∥ 2 2 + 1 2 ∞ 0 σ 2 ∞ (s)ds < +∞.
This shows the first claim. (ii) A t and U t are two continuous adapted increasing processes with A 0 = U 0 = 0 a.s. Since ϕ(X(t)) is nonnegative and

sup x∈R d ∥σ(•, x)∥ F ∈ L 2 (R + )
, we deduce that lim t→∞ A t < +∞. Then, we can use Theorem A.9 to conclude that

∞ 0 ⟨∇f (X(s)), X(s) -x ⋆ ⟩ds < +∞ a.s. (3.2)
and

∀x ⋆ ∈ S, ∃Ω x ⋆ ∈ F, such that P(Ω x ⋆ ) = 1 and lim t→∞ ∥X(ω, t) -x ⋆ ∥ exists ∀ω ∈ Ω x ⋆ . (3.3) Since R d is separable, there exists a countable set Z ⊆ S, such that cl(Z) = S. Let Ω = z∈Z Ω z .
Since Z is countable

P( Ω) = 1 -P z∈Z Ω c z ≥ 1 - z∈Z P(Ω c z ) = 1.
For arbitrary x ⋆ ∈ S, there exists a sequence (z k ) k∈N ⊆ Z such that z k → x ⋆ . In view of (3.3), for every k ∈ N there exists

τ k : Ω z k → R + such that lim t→∞ ∥X(ω, t) -z k ∥ = τ k (ω), ∀ω ∈ Ω z k .
Moreover, lim k→∞ τ k (ω) exists since (z k ) k∈N is convergent. Now, let ω ∈ Ω. Using the triangle inequality, we obtain that

|∥X(ω, t) -z k ∥ -∥X(ω, t) -x ⋆ ∥| ≤ ∥z k -x ⋆ ∥.
Taking lim sup t→∞ over the previous inequality, we conclude that

τ k (ω) -lim sup t→∞ ∥X(ω, t) -x ⋆ ∥ ≤ ∥z k -x ⋆ ∥.
A similar conclusion holds for the lim inf t→∞ . Then, taking the limit over k, we deduce

lim t→∞ ∥X(ω, t) -x ⋆ ∥ = lim k→∞ τ k (ω), ∀ω ∈ Ω,
whence we obtain that the previous limit exists on a set of probability 1 independently of x ⋆ . Let us recall that there exists Ω c ∈ F such that P(Ω c ) = 1 and X(ω, •) is continuous for every ω ∈ Ω c . Now let x ⋆ ∈ S arbitrary, since the limit exists, for every ω ∈ Ω ∩ Ω c there exists

T (ω) such that ∥X(ω, t) -x ⋆ ∥ ≤ 1 for every t ≥ T (ω). Besides, since X(ω, •) is continuous, by Bolzano's theorem sup t∈[0,T (ω)] ∥X(ω, t)∥ = max t∈[0,T (ω)] ∥X(ω, t)∥ def = h(ω) < +∞. Therefore, sup t≥0 ∥X(t)∥ < max{h(ω), 1 + ∥x ⋆ ∥} < ∞.
(iii) By convexity of f and (3.2), we have that there exists Ω f ∈ F such that P(Ω f ) = 1 and f (X(ω, •))min f ∈ L 1 (R + ) for every ω ∈ Ω f . By Corollary 2.2, we obtain that ∥∇f (X(ω, •))∥ ∈ L 2 (R + ) for every ω ∈ Ω f . Let ω ∈ Ω f arbitrary, then lim inf t→∞ ∥∇f (X(ω, t))∥ = 0. If lim sup t→∞ ∥∇f (X(ω, t))∥ = 0 then we conclude. Suppose by contradiction that lim sup t→∞ ∥f (X(ω, t))∥ > 0. Then, by Lemma A.4, there exists δ > 0 satisfying

0 = lim inf t→∞ ∥∇f (X(ω, t))∥ < δ < lim sup t→∞ ∥∇f (X(ω, t))∥,
and there exists

(t k ) k∈N ⊂ R + such that lim k→∞ t k = ∞, ∥∇f (X(ω, t k ))∥ > δ and t k+1 -t k > 1, ∀k ∈ N. Let M t = t 0 σ(s, X(s))dW (s)
. This is a continuous martingale (w.r.t. the filtration F t ), which verifies

E(|M t | 2 ) = E t 0 ∥σ(s, X(s))∥ 2 F ds ≤ E ∞ 0 σ 2 ∞ (s)ds < ∞, ∀t ≥ 0.
According to Theorem A.8, we deduce that there exists a random variable M ∞ w.r.t. F ∞ , and which verifies: E(|M ∞ | 2 ) < +∞, and there exists Ω M ∈ F such that P(Ω M ) = 1 and

lim t→∞ M t (ω) = M ∞ (ω) for every ω ∈ Ω M .
Let

Ω conv def = Ω ∩ Ω c ∩ Ω f ∩ Ω M , hence P(Ω conv ) = 1.
Take any ω 0 ∈ Ω conv . We allow ourselves the abuse of notation X(t) def = X(ω 0 , t) during the rest of the proof from this point.

Let ε ∈ 0, min δ 2 4L 2 , L . Note that ([t k , t k + ε 2L ] : k ∈ N) are disjoint intervals.
On the other hand, according to the convergence property of M t and the fact that ∥∇f (X(•))∥ ∈ L 2 (R + ), there exists

k ′ > 0 such that for every k ≥ k ′ sup t≥t k |M t -M t k | 2 < ε 4 and ∞ t k ∥∇f (X(s))∥ 2 ds ≤ L 2 .
Besides, for every

k ≥ k ′ , t ∈ [t k , t k + ε 2L ] ∥X(t) -X(t k )∥ 2 ≤ 2(t -t k ) t t k ∥∇f (X(s))∥ 2 ds + 2|M t -M t k | 2 ≤ 2(t -t k ) L 2 + ε 2 ≤ ε. Since f ∈ C 1,1 L (R d ), we have that for every k ≥ k ′ and t ∈ [t k , t k + ε 2L ] ∥∇f (X(t)) -∇f (X(t k ))∥ 2 ≤ L 2 ∥X(t) -X(t k )∥ 2 ≤ δ 2 2 .
Therefore, for every

k ≥ k ′ , t ∈ [t k , t k + ε 2L ] ∥∇f (X(t))∥ ≥ ∥∇f (X(t k ))∥ -∥∇f (X(t)) -∇f (X(t k ))∥ ≤ δ 2 ≥ δ 2 .
Finally,

∞ 0 ∥∇f (X(s))∥ 2 ds ≥ k≥k ′ t k + ε 2L t k ∥∇f (X(s))∥ 2 ds ≥ k≥k ′ δ 2 ε 8L = ∞, which contradicts ∥∇f (X(•))∥ ∈ L 2 (R + ). So, lim sup t→∞ ∥∇f (X(ω, t))∥ = lim inf t→∞ ∥∇f (X(ω, t))∥ = lim t→∞ ∥∇f (X(ω, t))∥ = 0, ∀ω ∈ Ω conv .
Let x ⋆ ∈ S and ω ∈ Ω conv taken arbitrary. By convexity and Cauchy-Schwarz inequality:

0 ≤ f (X(ω, t)) -min f ≤ ∥∇f (X(ω, t))∥∥X(ω, t) -x ⋆ ∥.
The claim then follows as we have already obtained that lim t→0 ∥X(ω, t) -x ⋆ ∥ exists, and

lim t→∞ ∥∇f (X(ω, t))∥ = 0.
(iv) Let ω ∈ Ω conv and x(ω) be a sequential limit point of X(ω, t). Equivalently, there exists an increasing sequence

(t k ) k∈N ⊂ R + such that lim k→∞ t k = ∞ and lim k→∞ X(ω, t k ) = x(ω).
Since lim t→∞ f (X(ω, t)) = min f and by continuity of f , we obtain directly that x(ω) ∈ S. Finally by Opial's Lemma (see [START_REF]Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF]) we conclude that there exists x ⋆ (ω) ∈ S such that lim t→∞ X(ω, t) = x ⋆ (ω). In other words, since ω ∈ Ω conv was arbitrary, there exists an S-valued random variable x ⋆ such that lim t→∞ X(t) = x ⋆ a.s.

Convergence rates of the objective

Our first result, stated below, summarizes the global convergence rates in expectation satisfied by the trajectories of (SDE).

Theorem 3.2. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H 0 ) and (H). The following statements are satisfied by the solution trajectory X ∈ S 2 d of (SDE):

(i) Let f • X(t) def = t -1 t 0 f (X(s))ds and X(t) = t -1 t 0 X(s)ds. Then E f (X(t)) -min f ≤ E f • X(t) -min f ≤ dist(X 0 , S) 2 2t + σ 2 * 2 , ∀t > 0. (3.4) Besides, if σ ∞ is L 2 (R + ), then E f (X(t)) -min f ≤ E f • X(t) -min f = O 1 t . (3.5) (ii) If moreover f ∈ Γ µ (R d ) with µ > 0, then S = {x ⋆ } and E ∥X(t) -x ⋆ ∥ 2 ≤ ∥X 0 -x ⋆ ∥ 2 e -2µt + σ 2 * 2µ , ∀t ≥ 0. (3.6)
Besides, if σ ∞ is decreasing and vanishes at infinity, then for every λ ∈]0, 1[:

E ∥X(t) -x ⋆ ∥ 2 ≤ ∥X 0 -x ⋆ ∥ 2 e -2µt + σ 2 * 2µ e -2µ(1-λ)t + σ 2 ∞ (λt), ∀t ≥ 0. (3.7) 
Proof.

(i) Let x ⋆ ∈ S. Let g(t) = ϕ(X(t)) = ∥X(t)-x ⋆ ∥ 2 2
and G(t) = E(g(t)). By applying Proposition 2.3 with ϕ, and using the convexity of f , we obtain

G(t) -G(0) = E t 0 ⟨∇f (X(s)), x ⋆ -X(s)⟩ds + 1 2 E t 0 tr[Σ(s, X(s))]ds ≤ -E t 0 (f (X(s)) -min f )ds + 1 2 E t 0 tr[Σ(s, X(s))]ds (3.8) ≤ -E t 0 (f (X(s)) -min f )ds + σ 2 * 2 t.
Then rearranging the terms in (3.8), using G(t) ≥ 0, and dividing by t > 0, we obtain

1 t E t 0 (f (X(s)) -min f )ds ≤ ∥X 0 -x ⋆ ∥ 2 2t + σ 2 * 2 , ∀t > 0. (3.9)
Since x ⋆ is arbitrary, by taking the infimum with respect to x ⋆ ∈ S in (3.9), we obtain

1 t E t 0 (f (X(s)) -min f )ds ≤ dist(X 0 , S) 2 2t + σ 2 * 2 , ∀t > 0. (3.10) Moreover, if σ ∞ ∈ L 2 (R + )
, then using inequality (3.8), we have

G(t) -G(0) ≤ -E t 0 (f (X(s)) -min f )ds + 1 2 +∞ 0 σ 2 ∞ (s)ds .
Rearranging as before, we conclude that

1 t E t 0 (f (X(s)) -min f )ds ≤ dist(X 0 , S) 2 2t + 1 2t +∞ 0 σ 2 ∞ (s)ds, ∀t > 0. (3.11)
Then complete the result with the inequality

E f (X(t)) -min f ≤ E f • X(t) -min f
which follows from convexity of f and Jensen's inequality.

(ii) Let g(t) = ϕ(X(t)) = ∥X(t)-x ⋆ ∥ 2 2
, G(t) = E(g(t)). By Proposition 2.3 with ϕ, we obtain

G(t) -G(0) = E t 0 ⟨-∇f (X(s)), X(s) -x ⋆ ⟩ds + 1 2 E t 0 tr[Σ(s, X(s))]ds . (3.12) Using that f ∈ Γ µ (R d ), we deduce that G(t) ≤ G(0) -2µ t 0 G(t) + t 0 σ 2 * 2 , ∀t ≥ 0.
In order to invoke Lemma A.2, we solve the ODE

y ′ (t) = -2µy(t) + σ 2 * 2 , t > 0 y(0) = ∥X 0 -x ⋆ ∥ 2 2 .
Solving it by the integrating factor method, we conclude that

G(t) ≤ ∥X 0 -x ⋆ ∥ 2 2 e -2µt + σ 2 * 4µ , ∀t ≥ 0.
Combining this inequality with the gradient descent Lemma 2.1, we obtain

E[f (X(t)) -min f ] ≤ L ∥X 0 -x ⋆ ∥ 2 2 e -2µt + σ 2 * 4µ , ∀t ≥ 0. (3.13) 
Suppose now that σ ∞ is decreasing and vanishes at infinity. We can bound the trace term by σ 2 ∞ in (3.12). To use Lemma A.2, we need to solve

y ′ (t) = -2µy(t) + σ 2 ∞ (t) 2 , t > 0 y(0) = ∥X 0 -x ⋆ ∥ 2 2 .
Let λ ∈]0, 1[, using the integrating factor method, we get

y(t) ≤ y(0)e -2µt + e -2µt t 0 σ 2 ∞ (s) 2 e 2µs ds ≤ y(0)e -2µt + e -2µt λt 0 σ 2 ∞ (s) 2 e 2µs ds + t λt σ 2 ∞ (s) 2 e 2µs ds ≤ y(0)e -2µt + e -2µt σ 2 * 2 λt 0 e 2µs ds + σ 2 ∞ (λt) 2 t λt e 2µs ds ≤ y(0)e -2µt + e -2µt σ 2 * 4µ e 2µλt + σ 2 ∞ (λt) 2 e 2µt , ∀t ≥ 0.
According to Lemma A.2, we deduce that

G(t) ≤ ∥X 0 -x ⋆ ∥ 2 2 e -2µt + σ 2 * 4µ e -2µ(1-λ)t + σ 2 ∞ (λt) 2 , ∀t ≥ 0,
which is our claim (3.7).

Under a stronger assumption on σ ∞ , we also have the following pointwise sublinear convergence rate in expectation. Proposition 3.3. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H 0 ) and (H). Assume that there exists

K ≥ 0, β ∈ [0, 1[ such that t 0 (s + 1)σ 2 ∞ (s)ds ≤ Kt β , ∀t ≥ 0. (3.14)
Then the solution trajectory X ∈ S 2 d of (SDE) satisfies

E (f (X(t)) -min f ) = O(t β-1 ).
Proof. Given x ⋆ ∈ S, let us apply Proposition 2.4 successively with

V 1 (t, x) = t(f (x) -min f ), then with V 2 (x) = 1 2 ∥x -x ⋆ ∥ 2 .
Taking the expectation and adding the two results, we get

E (V 1 (t, X(t)) + V 2 (X(t))) ≤ 1 2 ∥X 0 -x ⋆ ∥ 2 + L 2 t 0 sσ 2 ∞ (s)ds + 1 2 t 0 σ 2 ∞ (s)ds ≤ 1 2 ∥X 0 -x ⋆ ∥ 2 + max{1, L} 2 t 0 (s + 1)σ 2 ∞ (s)ds ,
where we have used the convexity of f in the first inequality. Then we conclude that

E(f (X(t)) -min f ) ≤ ∥X 0 -x ⋆ ∥ 2 2t + K max{1, L} 2 t β-1 = O(t β-1 ).
When f is also C 2 , we get an improved o(t -1 ) global convergence rate on the objective in almost sure sense.

Theorem 3.4. Consider the dynamic (SDE). Assume that f ∈ C 2 (R d )) such that ∇ 2 f ≼ LI d and satisfies assumption (H 0 ), and that σ satisfies assumption (H) and that t → tσ 2 ∞ (t) ∈ L 1 (R + ). Then, the solution trajectory X ∈ S 2 d of (SDE) obeys:

(i) t → t∥∇f (X(t))∥ 2 ∈ L 1 (R + ) a.s. (ii) f (X(t)) -min f = o(t -1 ) a.s. Proof. By applying Itô's formula in Proposition 2.3 with ϕ(t, x) = t(f (x) -min f ) we get t(f (X(t)) -min f ) = t 0 f (X(s)) -min f ds + 1 2 t 0 str[Σ(s, X(s)) ∇ 2 f (X(s))]ds - t 0 s∥∇f (X(s))∥ 2 ds + t 0 ⟨sσ ⊤ (s, X(s))∇f (X(s)), dW (s)⟩.
By (3.2) and convexity of f , we deduce that f (X(•))

-min f ∈ L 1 (R + ) a.s. Moreover, ∞ 0 str[Σ(s, X(s)) ∇ 2 f (X(s))]ds ≤ L ∞ 0 sσ 2 ∞ (s)ds < +∞.
Then by Theorem A.9, we have that lim t→∞ t(f (X(t))-min f ) exists a.s. and ∞ 0 t∥∇f (X(t))∥ 2 dt < +∞ a.s. Finally, by Lemma A.1, we conclude that lim t→∞ t(f (X(t)) -min f ) = 0 a.s.

Convergence rates under Łojasiewicz inequality

The local convergence rate of the first-order descent methods can be understood using the Łojasiewicz property and the associated Łojasiewicz exponent, see [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, Forward-Backward splitting, and regularized Gauss-Seidel methods[END_REF][START_REF] Frankel | Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates[END_REF]. The Łojasiewicz property has its roots in algebraic geometry, and it essentially describes a relationship between the objective value and its gradient (or subgradient).

Definition 4.1 (Łojasiewicz inequality).

Let f : R d → R be a differentiable with S = argmin(f ) ̸ = ∅ and q ∈ [0, 1[. f satisfies the Łojasiewicz inequality with exponent q at x ∈ S if there exists a neighborhood V x of x, r > min f and µ > 0 such that

µ(f (x) -min f ) q ≤ ∥∇f (x)∥, ∀x ∈ V x ∩ [min f < f < r]. (4.1)
The function f has the Łojasiewicz property on S if it obeys (4.1) at each point of S with the same constant µ and exponent q, and we will write f ∈ Ł q (S).

Error bounds have also been successfully applied to various branches of optimization, and in particular to complexity analysis, see [START_REF] Pang | Error bounds in mathematical programming[END_REF]. Of particular interest in our setting is the Hölderian error bound.

Definition 4.2 (Hölderian error bound).

Let f : R d → R be a proper function such that S = argmin(f ) ̸ = ∅. f satisfies a Hölderian (or power-type) error bound inequality with exponent p ≥ 1, and we write f ∈ EB p , if there exists γ > 0 and r > min f such that

f (x) -min f ≥ γdist(x, S) p , ∀x ∈ [min f ≤ f ≤ r]. (4.2) 
For a given r > min f such that (4.2) holds, we will use the shorhand notation f ∈ EB p ([f ≤ r]).

A deep result due Łojasiewicz states that for arbitrary continuous semi-algebraic functions, the Hölderian error bound inequality holds on any compact set, and the Łojasiewicz inequality holds at each point; see [START_REF] Łojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF][START_REF] Łojasiewicz | Ensembles semi-analytiques[END_REF]. In fact, for convex functions, the Łojasiewicz property and Hölderian error bound are actually equivalent.

Proposition 4.3. Assume that f ∈ Γ 0 (R d ) ∩ C 1 (R d ) with S = argmin(f ) ̸ = ∅. Let q ∈ [0, 1[, p def = 1
1-q ≥ 1 and r > min f . Then f verifies the Łojasiewicz inequality (4.1) at x ∈ S if and only if the Hölderian error bound (4.2) holds on

V x ∩ [min f < f < r].

Proof. Combine [10, Lemma 4 and Theorem 5].

We are now ready to state the following ergodic local convergence rate.

Proposition 4.4. Consider the hypotheses of Theorem 3.2 and let

ε > 0. If f ∈ EB p ([f ≤ r ε ]) for r ε > min f + σ 2 * 2 + ε, then ∃t ε > 0 such that dist E(X(t)), S = O(t -1 p ) + O σ 2 p * , ∀t ≥ t ε .
Proof. There exists t ε > 0 such that for all t ≥ t ε , dist(X 0 ,S) ∈ 2t < ε. Thus, from (3.4) and Jensen's Inequality, we have

f E[X(t)] ≤ E[f (X(t))] ≤ min f + σ 2 * 2 + ε ≤ r ε , ∀t ≥ t ε . Clearly, E[X(t)] ∈ [f ≤ r ε ] for t ≥ t ε . Using Theorem 3.2 and that f ∈ EB p ([f ≤ r ε ]), letting γ > 0 the coefficient of the error bound, we have γdist(E(X(t)), S) p ≤ f (E[X(t)]) -min f ≤ dist(X 0 , S) 2 2t + σ 2 * 2 , ∀t ≥ t ε . Since p ≥ 1, Jensen's inequality yields dist(E(X(t)), S) ≤ dist(X 0 , S) 2 2γ r 1 p t -1 p + σ 2 * 2γ r 1 p
, ∀t ≥ t ε .

Discussion on the localization of the process

Let us take a moment to elaborate on the localization of the process X(t) generated by (SDE) when f ∈

C 1,1 L (R d ) ∩ Γ 0 (R d ) and σ ∞ ∈ L 2 (R + )
. This discussion is essential to understand the challenges underlying the analysis of the local convergence properties and rates in a stochastic setting under (local) error bounds. First, observe that the hypothesis of Lipschitz continuity of the gradient is incompatible with a global hypothesis of error bound or Łojasiewicz inequality unless the exponent is p = 2 or q = 1 2 , respectively. Therefore, we can only ask for these inequalities to be locally satisfied. Even though, thanks to convexity, we could introduce a global desingularizing function (see [START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF]Theorem 3]), this function would not be concave nor convex, a fundamental property usually at the heart of the local analysis. In recent literature on stochastic processes and local properties, it is usual to find hypotheses about the almost sure localization of the process or that it is essentially bounded. Nevertheless, these assumptions are unrealistic or outright false due to the behavior of the Brownian Motion. Hence, we will avoid making these kinds of assumptions.

What we will do is to consider that by Theorem 3.1 we have that lim t→∞ f (X(t)) = min f a.s., which means that there exists Ω conv ∈ F such that P(Ω conv ) = 1, and (∀r > min f, ∀ω ∈ Ω conv ), (∃t r (ω) > 0) such that (∀t > t r (ω)), X(ω, t) ∈ [f ≤ r]. However, one should not infer from this that X(t) ∈ [f ≤ r] a.s. for t large enough. Indeed, t r is a random variable which cannot be in general bounded uniformly on Ω conv . Unfortunately, this flawed argument appears quite regularly in the literature. Rather, in this paper, we will invoke measure theoretic arguments to pass from a.s. convergence to almost uniform convergence thanks to Egorov's theorem (see Theorem A.3). More precisely, we will show that

(∀δ > 0, ∀r > min f ), (∃Ω δ ∈ F s.t. P(Ω δ ) ≥ 1 -δ and ∃ tr,δ > 0), (∀ω ∈ Ω δ , ∀t > tr,δ ), X(ω, t) ∈ [f ≤ r].
Hence, this property will allow us to localize X(t) in the sublevel set of f at r for t large enough with probability at least 1 -δ. In turn, we will be able to invoke the error bound (or Łojasiewicz) inequality.

Convergence rates under Łojasiewicz Inequality

Let σ ∞ ∈ L 2 (R + ), L > 0, δ > 0, β ∈ [0, 1[ and some positive constants C * , C * * , C K . Consider the functions h δ , l δ , k δ : R + → R defined by:

h δ (t) = σ 2 ∞ (t) + C * √ δ σ 2 ∞ (t) 2 t tδ σ 2 ∞ (u)du , (4.3) l δ (t) = L 2 σ 2 ∞ (t) + C * * √ δ σ 2 ∞ (t) 2 t tδ σ 2 ∞ (u)du , (4.4) k δ (t) = L 2 σ 2 ∞ (t) + C K √ δ σ 2 ∞ (t)t β-1 2 t tδ σ 2 ∞ (u)u β-1 du . ( 4 

.5)

We are now ready to state our main local convergence result.

Theorem 4.5. Consider X ∈ S 2 d the solution trajectory of (SDE) where f and σ satisfy the assumptions (H 0 ) and (H), and suppose that

σ ∞ ∈ L 2 (R + ) (C ∞ def = ∥σ ∞ ∥ L 2 (R + ) ). Let p ≥ 2 and q def = 1 -1 p ∈ [ 1 2
, 1[, and assume that f ∈ Ł q (S). Consider also the positive constants C * , C * * , C K , C d , C f (detailed in the proof).

Then, for all δ > 0, there exists a measurable set Ω δ such that P(Ω δ ) ≥ 1 -δ and tδ > 0 such that the following statements hold.

(i) If p = 2 and σ ∞ is decreasing, then σ ∞ vanishes at infinity and (a) there exists γ > 0 such that for every λ ∈]0, 1[,

E dist(X(t), S) 2 2 ≤ e -2γ(t-tδ ) E dist(X( tδ ), S) 2 2 + e -2γ(1-λ)(t-tδ ) (C 2 ∞ + C * C ∞ √ δ) + h δ ( tδ + λ(t -tδ )) 2γ + C d √ δ, ∀t > tδ ;
(4.6) (b) there exists µ > 0 such that for every λ ∈]0, 1[,

E (f (X(t)) -min f ) ≤ e -µ 2 (t-tδ ) E(f (X( tδ )) -min f ) + e -µ 2 (1-λ)(t-tδ ) LC 2 ∞ 2 + C * * C ∞ √ δ + l δ ( tδ + λ(t -tδ )) µ 2 + C f √ δ, ∀t > tδ . (4.7)
Moreover, if (3.14) holds, then

E (f (X(t)) -min f ) ≤ e -µ 2 (t-tδ ) E(f (X( tδ )) -min f ) + e -µ 2 (1-λ)(t-tδ ) LC 2 ∞ 2 + C K C ∞ tβ-1 δ √ δ + k δ ( tδ + λ(t -tδ )) µ 2 + C f √ δ, ∀t > tδ .
(4.8)

(ii) If p > 2:

(a) There exists γ > 0 such that

E dist(X(t), S) 2 2 ≤ y ⋆ δ (t) + C d √ δ, ∀t > tδ , (4.9)
where y ⋆ δ is the solution of the Cauchy problem

(C.1) y ′ (t) = -2 p 2 γy p 2 + h δ (t), t > tδ y( tδ ) = E dist(X( tδ ,S)) 2 2 1 Ω δ . (b) There exists µ > 0 such that E [f (X(t)) -min f ] ≤ w ⋆ δ (t) + C f √ δ, ∀t > tδ , (4.10)
where w ⋆ δ is the solution of the Cauchy problem

(C.2) y ′ (t) = -µ 2 y(t) 2q + l δ (t), t > tδ y( tδ ) = E([f (X( tδ ) -min f ]1 Ω δ ).
Moreover, if (3.14) holds, then

E [f (X(t)) -min f ] ≤ z ⋆ δ (t) + C f √ δ, ∀t > tδ , (4.11)
where z ⋆ δ is the solution of the Cauchy problem

(C.3) y ′ (t) = -µ 2 y(t) 2q + k δ (t), t > tδ y( tδ ) = E([f (X( tδ ) -min f ]1 Ω δ ).
Before proceeding with the proof, a few remarks are in order.

Remark 4.6. The hypothesis that f has a Lipschitz continuous gradient restricts the Łojasiewicz exponent q to be in [ 1 2 , 1[. Remark 4.7. If we have a global error bound (or Łojasiewicz inequality), then as noted in the discussion of Section 4.1, one necessarily has p = 2 (or q = 1 2 ). In this case, the statements (i) of Theorem 4.5 will hold if we replace σ ∞ ∈ L 2 (R + ) by σ ∞ decreasing and vanishing at infinity, δ by 0 and tδ by 0. Clearly, one recovers (3.7).

Remark 4.8. It is important to highlight the trade-off in the selection of δ. Although δ can be arbitrarily small, the time from which the inequalities are satisfied, tδ , surely increases when δ approaches 0 + . Besides, let q δ, tδ : R + → R be a decreasing function. Our convergence rates in Theorem 4.5 are of the form

E[m(X(t))] ≤ q δ, tδ (t) + C √ δ, ∀t > t δ , where m(x) = f (x) -min f or m(x) = dist(x, S) 2 /2. Let ε ∈]0, 2C[ and δ ⋆ = ε 2 4C 2 .
Then one gets an ε-optimal solution for t > max{q ⋆ (ε), tδ ⋆ }. Remark 4.9. Referring again to the discussion of Section 4.1, we have that there exists δ > 0 and Ω δ ∈ F with P(Ω δ ) ≥ 1 -δ over which we have uniform convergence of the objective. If δ could be 0 (a.s. uniform convergence), there would be a t > 0 such that X(t) ∈ [f ≤ r], ∀t > t a.s. Thus, the statements in Theorem 4.5 would hold if we replace δ by 0 and tδ by t. The proof is far easier in this case. It is however not easy to ensure the existence of such t in general. y ′ (t) = -ay b (t) + p δ (t), t > tδ y( tδ ) = y 0 ( tδ , δ). Although one could give an explicit ad-hoc p δ in order to find a particular solution of (C.0), the dependence of this function on tδ is unavoidable, which is a problem, since p δ is explicitly related to σ ∞ , and this in turn is the one that defines tδ in the first place.

To the best of our knowledge, there is no way to arithmetically solve this non linear ODE, not even a sharp bound of the solution.

Nevertheless, if

y(t) = O (t + 1) -1 b-1 , then p δ (t) = O (t + 1) -b b-1 .
Which leads us to make the following conjecture:

Conjecture 4.11. If p δ = O(σ 2 ∞ ) and σ 2 ∞ (t) = O (t + 1) -b b-1
(for constants independent of δ and tδ ), then

y(t) = O (t + 1) -1 b-1 .
Proof. Proof of Theorem 4.5. Given that σ ∞ ∈ L 2 (R + ), if it is decreasing, we have immediately that it vanishes at infinity. Let x ⋆ ∈ S. Let us recall that by claim (i) of Theorem 3.1, there exists

C * > 0 such that sup t≥0 E dist(X(t), S) 2 ≤ sup t≥0 E ∥X(t) -x ⋆ ∥ 2 ≤ C * .
On the other hand, by Theorem 3.1(iii), there exists a set Ω conv ∈ F such that P(Ω conv ) = 1 where, for all ω ∈ Ω conv : lim t→∞ f (X(ω, t)) = min f , t → f (X(ω, t)) is continuous, and lim t→∞ dist(X(ω, t), S) = 0. Then, by Theorem A.3 for every δ > 0 there exists Ω δ ∈ F such that Ω δ ⊂ Ω conv , P(Ω δ ) > 1 -δ and f (X(•, t)) (resp. dist(X(•, t), S)) converges uniformly to min f (resp. to 0) on Ω δ . This means that given r ≥ min f , and for every δ > 0, there exist tδ > 0 and Ω δ ∈ F with P(Ω δ ) > 1 -δ such that X(ω, t) ∈ [f ≤ r] ∩ V S for all t ≥ tδ and ω ∈ Ω δ , where V S is a neighbourhood of S. On the other hand, since f ∈ Ł q (S), by Proposition 4.3, there exists r > min f and a neighbourhood V S of S such that f verifies the p-Hölderian error bound inequality (4.2) on [min f < f < r] ∩ V S . Consequently, for any δ > 0, there exists t ≥ tδ large enough such that the p-Hölderian error bound inequality holds at X(ω, t) for all t ≥ tδ and ω ∈ Ω δ .

We are now ready to start. Let x ⋆ ∈ S, δ > 0, and t ≥ tδ .

(i) p = 2: (a) Let ĝ(t) = φ(X(t)) = dist(X(t),S) 2 2 , Ĝ(t) = E(ĝ(t)1 Ω δ )
, and µ > 0 be the coefficient of the error bound inequality. We have ∇ φ(X(t)) = X(t) -P S (X(t)), where P S (x) is the projection of x on S, so φ ∈ C 1,1 1 (R d ). We use Proposition 2.4 to obtain

ĝ(t) -ĝ( tδ ) ≤ - t tδ ⟨∇f (X(s), X(s) -P S (X(s))⟩ ds + t tδ
tr[Σ(s, X(s))]ds + t tδ σ ⊤ (s, X(s))(X(s) -P S (X(s))), dW (s) . (4.12)

We have that tr[Σ(s, X(s))] ≤ σ 2 ∞ (s) and by convexity

-⟨∇f (X(s), X(s) -P S (X(s))⟩ ≤ -(f (X(s)) -min f ) .
Therefore,

ĝ(t) -ĝ( tδ ) ≤ - t tδ (f (X(s)) -min f )ds + t tδ σ 2 ∞ (s)ds + t tδ ⟨σ ⊤ (s, X(s))(X(s) -P S (X(s))), dW (s)⟩.
Then, multiplying this inequality by 1 Ω δ , and taking expectation we obtain

Ĝ(t) -Ĝ( tδ ) ≤ -E t tδ (f (X(s)) -min f ) 1 Ω δ ds + t tδ σ 2 ∞ (s)ds + E 1 Ω δ t tδ σ ⊤ (s, X(s))(X(s) -P S (X(s))), dW (s) .
On the other hand, since σ ∞ ∈ L 2 (R + ), we have for all T > 0

E T 0 ∥σ ⊤ (s, X(s))(X(s) -P S (X(s)))∥ 2 ds ≤ E T 0 σ 2 ∞ (s)∥X(s) -P S (X(s))∥ 2 ds = T 0 σ 2 ∞ (s)E(dist(X(t), S) 2 ) ≤ C * +∞ 0 σ 2 ∞ (s) < ∞. Letting Y (s) = σ ⊤ (s, X(s))(X(s) -P S (X(s))), then E t tδ ⟨Y (s), dW (s)⟩ = 0.
This immediately implies

E 1 Ω δ t tδ ⟨Y (s), dW (s)⟩ = -E 1 Ωconv\Ω δ t tδ ⟨Y (s), dW (s)⟩ .
The right hand side can be bounded using Cauchy-Schwarz inequality as follows

E 1 Ωconv\Ω δ t tδ ⟨Y (s), dW (s)⟩ = E 1 Ωconv\Ω δ t tδ σ ⊤ (s, X(s))(X(s) -P S (X(s))), dW (s) 
≤ E(1 Ωconv\Ω δ ) E t tδ ⟨σ ⊤ (s, X(s))(X(s) -P S (X(s))), dW (s)⟩ 2 ≤ √ δ E t tδ ∥σ ⊤ (s, X(s))(X(s) -P S (X(s)))∥ 2 ds ≤ √ C * δ t tδ σ 2 ∞ (s)ds = √ C * δ t tδ σ 2 ∞ (s) 2 s tδ σ 2 ∞ (u)du ds. Set C * = √ C * , and recall that C ∞ = ∞ 0 σ 2 ∞ (s)ds. Thus, for every t > tδ Ĝ(t) ≤ Ĝ( tδ ) - t tδ E [(f (X(s)) -min f )1 Ω δ ] ds + t tδ σ 2 ∞ (s)ds + C * √ δ t tδ σ 2 ∞ (s) 2 s tδ σ 2 ∞ (u)du ds. (4.13) 
Recall h δ (t) from (4.3). Then, we can rewrite (4.13) as

Ĝ(t) ≤ Ĝ( tδ ) - t tδ E [(f (X(s)) -min f )1 Ω δ ] ds + t tδ h δ (s)ds, ∀t > tδ . (4.14) Using that f ∈ EB 2 ([f ≤ r]), we obtain Ĝ(t) ≤ Ĝ( tδ ) -2γ t tδ Ĝ(s)ds + t tδ h δ (s)ds, ∀t > tδ . Observe that h δ ∈ L 1 ([ tδ , ∞[) since ∞ tδ h δ (s)ds ≤ C 2 ∞ + C * C ∞ √ δ.
The goal now is to apply the comparison lemma to Ĝ(t) (see Lemma A.2) which necessitates to solve the following ODE

y ′ (t) = -2γy(t) + h δ (t) t > tδ y( tδ ) = Ĝ( tδ ).
Let λ ∈]0, 1[. Using the integrating factor method, we obtain

y(t) = e -2γ(t-tδ ) y( tδ ) + e -2γt
tδ +λ(t-tδ ) tδ h δ (s)e 2γs ds + e -2γt t tδ +λ(t-tδ )

h δ (s)e 2γs ds ≤ e -2γ(t-tδ ) E(ĝ( tδ )) + e -2γ(1-λ)(t-tδ ) tδ +λ(t-tδ ) tδ h δ (s)ds + h δ ( tδ + λ(t -tδ ))e -2γt t tδ +λ(t-tδ ) e 2γs ds ≤ e -2γ(t-tδ ) E(ĝ( tδ )) + e -2γ(1-λ)(t-tδ ) (C 2 ∞ + C * C ∞ √ δ) + h δ ( tδ + λ(t -tδ )) 2γ .
where in the first inequality, we used that σ 2 is decreasing and so is h δ . Lemma A.2 then gives

E dist(X(t), S) 2 2 1 Ω δ ≤ e -2γ(t-tδ ) E dist(X( tδ ), S) 2 2 +e -2γ(1-λ)(t-tδ ) (C 2 ∞ +C * C ∞ √ δ) + h δ ( tδ + λ(t -tδ )) 2γ .
According to Corollary A.6 we obtain that for all t > tδ

E dist(X(t), S) 2 2 ≤ e -2γ(t-tδ ) E dist(X( tδ ), S) 2 2 +e -2γ(1-λ)(t-tδ ) (C 2 ∞ +C * C ∞ √ δ) + h δ ( tδ + λ(t -tδ )) 2γ + C d √ δ. (b) Denote g(t) = φ(X(t)) = f (X(t)) -min f and G(t) = E(1 Ω δ g(t)). By Proposition 2.4 g(t) ≤ g( tδ ) - t tδ ∇f (X(s)), ∇ φ(X(s)) ds + L 2 t tδ tr[Σ(s, X(s))]ds + 1 Ω δ t tδ σ ⊤ (s, X(s))∇f (X(s)), dW (s) . (4.15) 
Multiplying both sides by 1 Ω δ and taking expectation we obtain

G(t) -G( tδ ) ≤ -E t tδ ∥∇f (X(s))∥ 2 1 Ω δ ds + L 2 E t tδ tr[Σ(s, X(s))]ds + E 1 Ω δ t tδ σ ⊤ (s, X(s))∇f (X(s)), dW (s) . (4.16)
On the other hand, we have

E T 0 ∥σ ⊤ (s, X(s))∇f (X(s))∥ 2 ds ≤ L 2 E T 0 σ 2 ∞ (s)∥X(s)) -x ⋆ ∥ 2 ds ≤ L 2 C * +∞ 0 σ 2 ∞ (s) < ∞, ∀T > 0.
Since E t tδ σ ⊤ (s, X(s))∇f (X(s)), dW (s) = 0, we have

E 1 Ω δ t tδ σ ⊤ (s, X(s))(∇f (X(s))), dW (s) = -E 1 Ωconv\Ω δ t tδ σ ⊤ (s, X(s))(∇f (X(s)), dW (s) .
The last term can be bounded as

E 1 Ωconv\Ω δ t tδ σ ⊤ (s, X(s))(∇f (X(s))), dW (s) ≤ E(1 Ωconv\Ω δ ) E t tδ ⟨σ ⊤ (s, X(s))(∇f (X(s))), dW (s)⟩ 2 ≤ L √ δ E t tδ σ 2 ∞ (s)∥X(s) -x ⋆ ∥ 2 ds ≤ L √ C * √ δ t tδ σ 2 ∞ (s)ds = L √ C * √ δ t tδ σ 2 ∞ (s) 2 s tδ σ 2 ∞ (u)du ds.
Let us notice that if (3.14) holds, then Proposition 3.3 tells us that E(f (X(t))-min f ) ≤ K ′ t β-1 with β ∈ [0, 1[, and for some K ′ > 0. In this case

E 1 Ωconv\Ω δ t tδ σ ⊤ (s, X(s))(∇f (X(s))), dW (s) ≤ √ 2LK ′ √ δ t tδ σ 2 ∞ (s)s β-1 2 s tδ σ 2 ∞ (u)u β-1 du ds.
Injecting this into (4.16), we have for all t > tδ

G(t) ≤ G( tδ ) -E t tδ ∥∇f (X(s))∥ 2 1 Ω δ ds + L 2 t tδ σ 2 ∞ (s)ds +      C K √ δ t tδ σ 2 ∞ (s)s β-1 2 s tδ σ 2 ∞ (u)u β-1 du ds, ∀t > tδ if (3.14) holds, C * * √ δ t tδ σ 2 ∞ (s) 2 s tδ σ 2 ∞ (u)du ds otherwise, (4.17) 
where 

C * * = L √ C * , C K = √ 2LK ′ and recall that C ∞ = ∞ 0 σ 2 ∞ (
y(t) ≤ e -µ 2 (t-tδ ) E(g( tδ )) +      e -µ 2 (1-λ)(t-tδ ) LC 2 ∞ 2 + C * * C ∞ √ δ + l δ ( tδ +λ(t-tδ )) µ 2
for (E.2)

e -µ 2 (1-λ)(t-tδ ) LC 2 ∞ 2 + C K C ∞ tβ-1 δ √ δ + k δ ( tδ +λ(t-tδ )) µ 2
for (E.3).

Using Lemma A.2 and Corollary A.6

E [f (X(t)) -min f ] ≤ y(t) + C f √ δ ≤ e -µ 2 (t-tδ ) E f (X( tδ )) -min f + C f √ δ +      e -µ 2 (1-λ)(t-tδ ) LC 2 ∞ 2 + C * * C ∞ √ δ + l δ ( tδ +λ(t-tδ )) µ 2
for (E.2)

e -µ 2 (1-λ)(t-tδ ) LC 2 ∞ 2 + C K C ∞ tβ-1 δ √ δ + k δ ( tδ +λ(t-tδ )) µ 2
for (E.3).

(ii) p > 2:

(a) We embark from inequality (4.14) and we now use that f

∈ EB p ([f ≤ r]) with p > 2, to get Ĝ(t) ≤ Ĝ( tδ ) - t tδ E [(f (X(s)) -min f )1 Ω δ ] ds + t tδ h δ (s)ds (4.20) ≤ Ĝ( tδ ) -2 p/2 γ t tδ Ĝ(s) p/2 + t tδ h δ (s)ds.
In the last inequality, we used that p > 2 and Jensen's inequality.

The idea is again to use the comparison lemma (Lemma A.2), which will now involve solving the Cauchy problem (C.1), and finally invoke Corollary A.6. (b) The reasoning is similar to the previous point using now that f ∈ Ł q (S) and the computations of (i)(b). We omit the details for the sake of brevity.

SDE for nonsmooth structured convex optimization

In this section, we turn to the composite convex minimization problem with additive structure

min x∈R d f (x) + g(x), (5.1) 
where

f ∈ C 1,1 L (R d ) ∩ Γ 0 (R d ) and g ∈ Γ 0 (R d ); S = argmin(f + g) ̸ = ∅. (H ′ 0 )
The importance of this class of problems comes from its wide spectrum of applications ranging from data processing, to machine learning and statistics to name a few.

We consider two different approaches leading to different SDE's. The first is based on a fixed point argument and the use of the notion of cocoercive monotone operator. The second approach is based on a regularization/smoothing argument, for instance the Moreau envelope.

Fixed point approach via cocoercive monotone operators

Let us start with some classical definitions concerning monotone operators.

Definition 5.1. An operator

A : R d → P(R d ) is monotone if ⟨u -v, x -y⟩ ≥ 0, ∀(x, u) ∈ graph(A), (y, v) ∈ graph(A).
It is maximally monotone if there exists no monotone operator whose graph properly contains graph(A). Moreover, A is γ-strongly monotone with modulus γ > 0 if ⟨u -v, x -y⟩ ≥ γ∥x -y∥ 2 , ∀(x, u) ∈ graph(A), (y, v) ∈ graph(A). 

→ R d is cocoercive with constant ρ > 0 if ⟨M (x) -M (y), x -y⟩ ≥ ρ∥M (x) -M (y)∥ 2 , ∀x, y ∈ R d .
Remark 5.5. It is clear that a cocoercive operator is ρ -1 -Lipschitz continuous. In turn, a cocoercive operator is maximally monotone.

Remark 5.6. If f ∈ C 1,1 L (R d ) ∩ Γ 0 (R d ), then the operator ∇f is L -1 -cocoercive.
Our interest now is to solve the structured monotone inclusion problem

0 ∈ A(x) + B(x),
where A is maximally monotone, and B is cocoercive with (A + B) -1 (0) ̸ = ∅. This is of course a generalization of (5.1) by taking A = ∂g and B = ∇f .

Proof. Existence and uniqueness follow from Theorem A.7 since M is Lipschitz continuous and σ verifies (H). The proof of the first two items remains the same as for Theorem 3.1. For the third item, we use the cocoercivity of M instead of the convexity of f and Corollary 2.2 to prove that lim t→∞ ∥M (X(t))∥ = 0 a.s. For the last item, it suffices to use that the operator M is continuous (since it is Lipschitz continuous) to conclude with Opial's Lemma.

Theorem 5.9. Let M : R d → R d be a ρ-cocoercive operator. Let us make the assumptions (H M 0 ) and (H). Let X ∈ S 2 d be the solution of (SDE M ) with initial condition X 0 . Then the following properties are satisfied:

(i) Let M • X(t) def = t -1 t 0 M (X(s))ds and ∥M (X(t))∥ 2 def = t -1 t 0 ∥M (X(s))∥ 2 ds. We have E ∥M • X(t)∥ 2 ≤ E ∥M (X(t))∥ 2 ≤ dist(X 0 , M -1 (0)) 2 2ρt + σ 2 * 2ρ , ∀t > 0. (5.4) Besides, if σ ∞ is L 2 (R + ), then E ∥M • X(t)∥ 2 ≤ E ∥M (X(t))∥ 2 = O 1 t , ∀t > 0. (5.5) (ii) If M is γ-strongly monotone, then M -1 (0) = {x ⋆ } and E ∥X(t) -x ⋆ ∥ 2 2 ≤ ∥X 0 -x ⋆ ∥ 2 2 e -2γt + σ 2 * 4γ , ∀t ≥ 0. (5.6)
If, moreover, σ ∞ is decreasing and vanishes at infinity, then for every

λ ∈]0, 1[ E ∥X(t) -x ⋆ ∥ 2 2 ≤ ∥X 0 -x ⋆ ∥ 2 2 e -2γt + σ 2 * 4 e -2γt(1-λ) + σ 2 ∞ (λt) 2 , ∀t > 0. (5.7) 
Proof. Analogous to Theorem 3.2.

We now turn to the local convergence properties. To this end, we need an extension of the Hölderian error bound inequality (or Łojasiewicz inequality) to the operator setting. For convex functions, it is known that error bound inequalities are closely related to metric subregularity of the subdifferential [START_REF] Javier | Characterization of metric regularity of subdifferentials[END_REF][START_REF] Alexander | Error bounds and hölder metric subregularity[END_REF][START_REF] Alexander | Error bounds and metric subregularity[END_REF]. This leads to the following definition. Definition 5.10. Let M : R d → R d be a single-valued operator. We say that M satisfies the Hölder metric subregularity property with exponent p ≥ 2 at x ⋆ ∈ M -1 (0) if there exists γ > 0 and a neighbourhood

V x ⋆ such that ∥M (x)∥ 2 ≥ γdist(x, M -1 (0)) p , ∀x ∈ V x ⋆ . (5.8) 
If this inequality holds for any x ⋆ ∈ M -1 (0) with the same γ, we will write M ∈ HMS p (R d ).

Theorem 5.11. Let M be a ρ-cocoercive operator such that M ∈ HMS

2 (R d ). Let X ∈ S 2 d be the solution of (SDE M ) under the hypotheses (H M 0 ), (H). Suppose that σ ∞ ∈ L 2 (R + ) (C ∞ def = ∥σ ∞ ∥ L 2 (R + )
) and σ ∞ is decreasing. Consider also the positive constants C, C d , γ. Then, for all δ > 0, there exists tδ > 0 such that for every λ ∈ (0, 1):

E dist(X(t), M -1 (0)) 2 2 ≤ e -2γρ(t-tδ ) E dist(X( tδ ), M -1 (0)) 2 2 + e -2γρ(1-λ)(t-tδ ) (C 2 ∞ + C ∞ C √ δ) (5.9) + h δ ( tδ + λ(t -tδ )) 2γρ + C d √ δ, ∀t > tδ , where h δ (t) = σ 2 ∞ (t) + C √ δ σ 2 ∞ (t) 2 t tδ σ 2 ∞ (u)du .
Proof. The proof is essentially the same as that of Theorem 4.5(i)(a), where instead of convexity in (4.12), we use cocoercivity of M , and in (4.14) we invoke Theorem 5.8 and Hölder metric subregularity. Remark 5.12. We can naturally extend the previous result for p > 2 as in Theorem 4.5(ii). Nevertheless, since that bound is not explicit, we will skip this extension.

As an immediate consequence of the above result, by considering the cocoercive operator M A,B,µ defined in (5.3), we obtain the following result. Corollary 5.13. Let A : R d → P(R d ) be a maximally monotone operator and B : R d → R d be a λcocoercive operator, λ > 0. Let M A,B,µ be the operator defined in (5.3). Assume that µ ∈]0, 2λ[ and (A + B) -1 (0) ̸ = ∅. Then, the operator M A,B,µ is ρ-cocoercive with ρ = µ 1 -µ 4λ , and the SDE:

dX(t) = -M A,B,µ (X(t))dt + σ(t, X(t))dW (t), t ≥ 0 X(0) = X 0 ,
has a unique solution X ∈ S ν d , for every ν ≥ 2, that verifies the conclusions of Theorem 5.8 and Theorem 5.9. In particular, if σ ∞ ∈ L 2 (R + ), there exists an (A + B) -1 (0)-valued random variable x ⋆ such that lim t→∞ X(t) = x ⋆ a.s. This result naturally applies to problem (5.1) when S = argmin(f + g) ̸ = ∅ by taking A = ∂g and B = ∇f . In this case, one has that X(t) converges a.s. to an S-valued random variable. Moreover, using standard inequalities, see e.g. [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], one can show that

E (f + g) t -1 t 0 prox µg (x -µ∇f (x)) ds -min(f + g) = O E ∥M (X(t))∥ 2 ,
where prox µg = (I + µ∇g) -1 is the proximal mapping of g. From this, one can deduce an O(t -1/2 ) rate thanks to (5.4) and (5.5).

Approach via Moreau-Yosida regularization

The previous approach, though it is able to deal with more general setting (that of monotone inclusions), took us out of the framework of convex optimization by considering instead a dynamic governed by a cocoercive operator. In particular, the perturbation/noise is considered on the whole operator evaluation and not on a part of it (i.e. B) as it is standard in many applications. Moreover this approach led to a pessimistic convergence rate estimate when specialized to convex function minimization. By contrast, the following approach will operate directly on problem (5.1) and is based on a standard smoothing approach, replacing the non-smooth part g by its Moreau envelope [START_REF] Beck | Smoothing and first order methods: A unified framework[END_REF].

Moreau envelope

Let us start by recalling some basic facts concerning the Moreau envelope.

where θ(t) ↓ 0 as t → +∞. In the deterministic case, an abundant literature has been devoted to the convergence of this type of systems. Note that unlike the cocoercive approach, we are now faced with a nonautonomous stochastic differential equation, making this a difficult problem, a subject for further research.

Convergence rates

We start with the following uniform bound on S θ which holds under slightly reinforced, but reasonable assumptions on f and g.

Proposition 5.18. Consider f, g where f and g and are proper lsc and convex, and g is also L 0 -Lipschitz continuous.

(i) Assume that F = f + g is coercive. Then for any θ ≥ 0 there exists C > 0 (independent of θ) such that sup z∈S θ ∥z∥ ≤ C.

(5.10)

We are now ready to establish complexity results.

Proposition 5.19. Suppose that in addition to (H ′ 0 ) and (H), F = f + g is coercive and g is L 0 -Lipschitz continuous. Let X θ be the solution of (SDE θ ) governed by F θ with θ > 0. Let C 0 = ∥X 0 ∥ + C, where C is the constant (independent of θ), defined in (5.10). Then the following statements hold for any t > 0.

(i) Let X θ (t) = t -1 t 0 X θ (s)ds, then

E F X θ (t) -min F ≤ C 2 0 2t + σ 2 * 2 + θ L 2 0 2 . Besides, if σ ∞ ∈ L 2 (R + ), then E F X θ (t) -min F = C 2 0 + +∞ 0 σ 2 ∞ (s)ds 2t + θ L 2 0 2 .
(ii) If σ ∞ verifies (3.14) and θ ∈]0, 1], then

E (F (X(t)) -min F ) = C 2 0 2t + K(1 + L) 2θ t β-1 + θ L 2 0 2 .
(iii) If, in addition, f ∈ Γ µ (R d ) for some µ > 0 then S = {x ⋆ }, S θ = {x ⋆ θ }, and

E ∥X θ (t) -x ⋆ ∥ 2 ≤ 2C 2 0 e -2µt + σ 2 * µ + 2 L 0 µ θ.
Besides, if σ ∞ is decreasing and vanishes at infinity, then ∀λ ∈]0, 1[:

E ∥X θ (t) -x ⋆ ∥ 2 ≤ 2C 2 0 e -2µt + σ 2 * µ e -2µ)(1-λ)t + 2σ 2 ∞ (λt) + 2 L 0 µ θ.
Remark 5.20. Observe that when f = 0, then S θ = S. Therefore in Proposition 5.19 we have x ⋆ θ = x ⋆ and the last term in θ can be dropped.

Proof.

(i) Combine Theorem 3.2(i) applied to F θ , Proposition 5.15(iii) and (v), and Proposition 5.18(i) to see that dist(X 0 , S θ ) ≤ C 0 . (ii) Argue as in claim (i) using Proposition 3.3 instead of Theorem 3.2(i), and use the fact that ∇F θ is Lipschitz continuous with constant

L + 1 θ ≤ L + 1 θ for θ ∈]0, 1].
(iii) Combine Theorem 3.2(ii) applied to F θ , Proposition 5.18(ii) and Jensen's inequality.

A Auxiliary results

A.1 Deterministic results

The following lemma is straightforward to prove. We omit the details.

Lemma A.1. Let t 0 > 0 and g : [t 0 , +∞[→ R + . Suppose that lim t→∞ g(t) exists and ∞ t 0 g(s)

s ds < +∞. Then lim t→∞ g(t) = 0.

The next result is an adaptation of [START_REF] Matusik | Finite-time stability for differential inclusions with applications to neural networks[END_REF]Proposition 2.3] to our specific context but under slightly less stringent assumptions. Theorem A.3 (Egorov's Theorem). [START_REF] Rudin | Real and complex analysis[END_REF]Chapter 3,Exercise 16] If µ(X) < ∞ and (f t ) t∈R + is a family of real functions such that for all x ∈ X:

1. lim t→∞ f t (x) = f (x) and 2. t → f t (x) is continuous. Then, for every δ > 0, there exists a measurable set E δ ⊂ X, with µ(X \ E δ ) < δ, such that (f t ) t∈R + converges uniformly on E δ . Lemma A.4. Let f : R + → R and lim inf t→∞ f (t) ̸ = lim sup t→∞ f (t). Then there exists a constant α, satisfying lim inf t→∞ f (t) < α < lim sup t→∞ f (t), such that for every β > 0, we can define a sequence (t k ) k∈N ⊂ R such that f (t k ) > α, t k+1 > t k + β, ∀k ∈ N.

Proof. Since lim inf t→∞ f (t) and lim sup t→∞ f (t) are different real numbers, there exists α such that Moreover, by definition of lim sup, there exists a sequence (t k ) k∈N such that lim k→∞ t k = ∞ and f (t k ) > α. Let β > 0 and n 0 = 0, let us define recursively for j ≥ 1, n j = min{n > n j-1 : t n -t n j-1 > β}. Let j ′ ∈ N be the first natural such that n j ′ = ∞. This implies that for every n > n j ′ -1 , t n ≤ β + t n j ′ -1 < ∞, a contradiction since lim n→∞ t n = ∞, then for every j ∈ N, n j < ∞. Thus, we can define (t n j ) j∈N a subsequence of (t k ) k∈N such that lim j→∞ t n j = ∞ and for every j ∈ N, t n j+1 -t n j > β.

A.2 Stochastic results

Lemma A.5. Let δ > 0, Ω δ ∈ F such that P(Ω δ ) ≥ 1 -δ and h : Ω × R + → R a stochastic process such that sup t≥0 E[h(ω, t) 2 ] < ∞. Then

E[h(ω, t)1 Ω\Ω δ ] = O( √ δ).
Proof. Note that P(Ω \ Ω δ ) ≤ δ and

E[h(ω, t)1 Ω\Ω δ ] ≤ √ δ E[h(ω, t) 2 ] ≤ √ δ sup t≥0 E[h(ω, t) 2 ],
where we have used the Cauchy-Schwarz inequality for our first inequality.

Corollary A.6. Let X be the solution of (SDE) under hypotheses (H 0 ), (H) on f and σ, and that σ ∞ ∈ L 2 (R + ). Then h 1 (ω, t) = dist(X(ω,t),S) 2 2 and h 2 (ω, t) = f (X(ω, t)) -min f satisfy the hypothesis of Lemma A.5, this means that there exists C d , C f > 0: E dist(X(t), S) 2 2 -E dist(X(t), S) 2 2

1

Ω δ ≤ C d √ δ, E (f (X(t)) -min f ) -E [(f (X(t)) -min f )1 Ω δ ] ≤ C f √ δ.
Proof. Let x ⋆ ∈ S be arbitrary. Using Proposition2.4 with φ(x) = dist(x,S) In the above estimation we used that σ ∞ ∈ L 2 (R + ) and sup t≥0 E[∥X(t) -x ⋆ ∥ 2 ] < ∞ by Theorem 3.1(i).

On the other hand, using Proposition 2.4 with φ(x) = f (x) -min f , squaring it, and taking expectation,

  s)) ds . (2.4) Proof. Proof. Analogous to the proof of [28, Proposition C.2].

Remark 4 . 10 .

 410 In order to find explicit convergence rates in Theorem 4.5 we have to solve or bound the solution of the Cauchy problems (C.1), (C.2) and (C.3). We can generalize these problems as follows: Let a > 0, b > 1, tδ > 0, δ > 0, y 0 ( tδ , δ) > 0 and p δ a nonnegative integrable function. Consider (C.0)

Remark 5 . 2 .Remark 5 . 3 .

 5253 If A is maximally monotone and strongly monotone, then A -1 (0) def = {x ∈ R d : A(x) = 0} is non-empty and reduced to a singleton. The subdifferential operator ∂g of g ∈ Γ 0 (R d ) is maximally monotone. Definition 5.4. A single-valued operator M : R d

Lemma A. 2 (

 2 Comparison Lemma). Let t 0 ≥ 0 and T > t 0 . Assume that h : [t 0 , +∞[→ R + is measurable with h ∈ L 1 ([t 0 , T ]) , that ψ : R + → R + is continuous and nondecreasing, φ 0 > 0 and the Cauchy problemφ ′ (t) = -ψ(φ(t)) + h(t) for almost all t ∈ [t 0 , T ] φ(t 0 ) = φ 0 has an absolutely continuous solution φ : [t 0 , T ] → R + . If a bounded from below lower semicontinuous function ω : [t 0 , T ] → R + satisfies ω(t) ≤ ω(s) -t s ψ(ω(τ ))dτ + t s h(τ )dτ for t 0 ≤ s < t ≤ T and ω(t 0 ) = φ 0 , then ω(t) ≤ φ(t) for t ∈ [t 0 , T ].

t≥0E[

  ∥X(t) -x ⋆ ∥ 2 ]

Table 1 :

 1 

Summary of local and global convergence rates obtained for E[f (X(t)) -min f ].

  s)ds. Recalling l δ (t) and k δ (t) from (4.4)-(4.5), and by Fubini's theorem, (4.17) becomes G(t) ≤ G( tδ ) -Let λ ∈]0, 1[. Using the integrating factor method as in (i), we get for (E.2)

	t tδ	E ∥∇f (X(s))∥ 2 1 Ω δ ds +	t tδ k δ (s)ds if (3.14) holds, t tδ l δ (s)ds otherwise.	(4.18)
	Since f ∈ Ł 1/2 (S), there exists µ > 0 such that
	G(t) ≤ G( tδ ) -µ 2	t tδ	G(s)ds +	t tδ k δ (s)ds if (3.14) holds, t tδ l δ (s)ds otherwise.	(4.19)
	To get an explicit bound in (4.19), we use Lemma A.2, which involves solving
	(E.2)	y ′ (t) = -µ 2 y(t) + l δ (t), t > tδ y( tδ ) = G( tδ )
	(E.3)	y ′ (t) = -µ 2 y(t) + k δ (t), t > tδ y( tδ ) = G( tδ )

Compactness of X and the condition on σ(•, •) are clearly reminiscent of[START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF] Proposition 7.4], though the latter is not discussed in[START_REF] Mertikopoulos | On the convergence of gradient-like flows with noisy gradient input[END_REF].

A favorable situation occurs when one can compute the resolvent operator of A J µA = (I + µA) -1 , µ > 0.

In this case, we can develop a strategy parallel to the one which consists in replacing a maximally monotone operator by its Yosida approximation. Indeed, given µ > 0, we have

where M A,B,µ : R d → R d is the single-valued operator defined by M A,B,µ (x) = 1 µ (x -J µA (x -µB(x))) .

(5.3)

M A,B,µ is closely tied to the well-known forward-backward fixed point operator. Moreover, when B = 0, M A,B,µ = 1 µ (I -J µA ) which is nothing but the Yosida regularization of A with index µ. As a remarkable property, for the µ parameter properly set, the operator M A,B,µ is cocoercive. This is made precise in the following result. Proposition 5.7. [START_REF] Attouch | Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions[END_REF]Lemma B.1] Let A : R d → P(R d ) be a general maximally monotone operator, and let

We first focus on finding the zeros of M , where

We will then specialize our results to the case of a structured operator of the form M A,B,µ .

Our goal is to handle the situation where M can be evaluated up to a stochastic error. We therefore consider the following SDE, defined for (deterministic) initial data

As in Section 1.1, we will assume that W is a F t -adapted m-dimensional Brownian motion, and the volatility matrix σ : R + × R d → R d×m satisfies (H).

Let us now state the natural extensions of our main results to this situation.

Theorem 5.8. Let M : R d → R d be a cocoercive operator. Consider the stochastic differential equation (SDE M ) under the hypotheses (H M 0 ) and (H). Then, there exists a unique solution

(iii) lim t→∞ ∥M (X(t))∥ = 0 a.s.

(iv) There exists an M -1 (0)-valued random variable x ⋆ such that lim t→∞ X(t) = x ⋆ a.s.

Definition 5.14. Let g ∈ Γ 0 (R d ). Given θ > 0, the Moreau envelope of g of parameter θ is the function

where □ is the infimal convolution operator and q(x) = 1 2 ∥x∥ 2 . The Moreau envelope has remarkable approximation and regularization properties, as summarized in the following statement.

We use the following notation in the rest of the section:

Thus we will use F θ as the potential driving (SDE), that is

Under (H ′ 0 ) and (H), we will show almost sure convergence of the trajectory and corresponding convergence rates.

Remark 5.16. Though we focus here on the Moreau envelope, our convergence results, in particular, Proposition 5.19, still hold with infimal-convolution based smoothing using more general smooth kernels beyond the norm squared; see [START_REF] Beck | Smoothing and first order methods: A unified framework[END_REF]Section 4.4].

Convergence of the trajectory

Applying Theorem 3.1 to F θ , we have the following result. Proposition 5.17. For any θ > 0, let X θ ∈ S 2 d be the solution of the dynamic (SDE θ ) governed by the potential F θ , and make assumptions (H ′ 0 ), S θ ̸ = ∅, (H) and σ ∞ ∈ L 2 (R + ). Then there exists an S θ -valued random variable x ⋆ θ such that lim t→∞ X θ (t) = x ⋆ θ , a.s. If f = 0, then S θ = S (see Proposition 5.15(iv)), and Proposition 5.17 provides almost sure convergence to a solution of (5.1). On the other hand for f ̸ = 0, S ̸ = S θ in general and we only obtain an "approximate" solution of (5.1); see Proposition 5.18(ii) for a quantitative estimate of this approximation when f is strongly convex. To obtain a true solution of the initial problem, a common device consists in using a diagonalization process which combines the dynamic with the approximation. Specifically, one considers

we obtain

Taking the supremum over t ≥ 0, we obtain

Let us consider the Stochastic Differential Equation:

where F : R + × R d → R d , G : R + × R d → R d×m are measurable functions and W is a F t -adapted m-dimensional Brownian Motion.

Theorem A.7. (See [START_REF] Øksendal | Stochastic differential equations[END_REF]Theorem 5.2.1], [START_REF] Mao | Stochastic differential equations and applications[END_REF]Theorem 2.4.1]) Let F : R + × R d → R d and G : R + × R d → R d×m be measurable functions satisfying, for every T > 0:

for some constant C 1 ≥ 0. Then (A.1) has a unique solution X ∈ S l d , for every l ≥ 2.

Proof. Condition (A.2) implies that there exists C 2 ≥ 0 such that

These are the hypotheses of [33, Theorem 5.2.1] to ensure the existence and uniqueness of the solution X ∈ S 2 d of (A.1). Moreover, condition (A.2) implies the existence of

3) is the necessary inequality to use [48, Lemma 3.2] and deduce that X ∈ S l d , for every l ≥ 2.

A.3 On martingales

Theorem A.8. [START_REF] Doob | Stochastic processes[END_REF] Let (M t ) t≥0 : Ω → R be a continuous martingale such that sup t≥0 E (|M t | p ) < ∞ for some p > 1. Then there exists a random variable M ∞ such that E (|M ∞ | p ) < ∞ and lim t→∞ M t = M ∞ a.s.

Theorem A.9. [START_REF] Mao | Stochastic differential equations and applications[END_REF]Theorem 1.3.9] Let {A t } t≥0 and {U t } t≥0 be two continuous adapted increasing processes with A 0 = U 0 = 0 a.s. Let {M t } t≥0 be a real valued continuous local martingale with M 0 = 0 a.s. Let ξ be a nonnegative F 0 -measurable random variable. Define

If X t is nonnegative and lim t→∞ A t < ∞ a.s., then a.s. lim t→∞ X t exists and is finite, and lim t→∞ U t < ∞.