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The determinantal variety Σpq is defined to be the set of all p × q real matrices with p ≥ q whose ranks are strictly smaller than q. It is proved that Σpq is a minimal cone in R pq and all its strata are regular minimal submanifolds.

introduction

Determinantal varieties are spaces of matrices with a given upper bound on their ranks. Given p and q and r < min(p, q), the determinantal variety Y r is the set of all p × q matrices with rank ≤ r. Y r is naturally an algebraic variety as the rank condition on a matrix is equivalent to the vanishing of all of its (r + 1) × (r + 1) minors which are polynomials of degree r + 1. Let Z r = Y r \ Y r-1 denote the set of all p × q-matrices whose rank is equal to r. By projecting each p × q matrix of rank r on the r-dimensional subspace V of R p generated by its columns and on the rdimensional subspace W of R q generated by its rows it can be seen that Z r is a fibre bundle over the cartesian product of two real Grassmannians G r (R p )×G r (R q ) where the fibre over (V, W ) is the set of all linear bijections V → W (canonical bundles), see e.g. [7, p.8]. Hence it is a regular submanifold of dimension r(pr) + qr. It is well-known that Y r is decomposed into the disjoint union of regular subvarieties Z s , s being an integer 0 ≤ s ≤ r (where of course Y -1 = ∅), see e.g. [7, p.4-6] for more details.

More concretely: let M pq the set of all real p × q matrices with p ≥ q and identify M pq with R pq . Let us define Σ pq = {(x 11 , x 12 , . . . , x pq ) ∈ R pq : det(X T X) = 0, X = (x ij ) ∈ M pq } and call Σ pq the determinantal variety in R pq . It can be identified with Y q-1 . The vector space M pq carries a natural positive definite inner product (1.1) X, Y = tr(X T Y ).

Many studies have been done about determinantal varieties, mostly on their algebraic properties. In this paper we are interested in an analytic property, the minimality of Σ pq in R pq , which we prove in 3 different ways (two of which generalize existing results for p = q, cp. [START_REF] Tkachev | Minimal cubic cones via Clifford algebras[END_REF], [START_REF] Hoppe | New minimal hypersurfaces in R (k+1)(2k+1) and S 2k 2 +3k[END_REF], [START_REF] Choe | Some minimal submanifolds generalizing the Clifford torus[END_REF], while concerning the first, parametric proof, see [START_REF] Hoppe | Lectures on Minimal Surfaces[END_REF] for some low-dimensional p > q examples): Theorem 1.1. Every stratum Z r for 0 ≤ r ≤ q -1 of the determinantal variety Σ pq is a regular minimal submanifold of the inner product space M pq .

Parametric Proof

Consider the real vector space R pr+r(q-r) whose elements are written as pairs a λ where a = ( a 1 a 2 . . . a r ) = (a Js ) J=1...p s=1...r is a real p×r-matrix and λ = (λ ss ′ ) s=1...r s ′ =1...r ′ :=q-r is a real r × (qr)-matrix. Let U pqr denote the open subset of R pr+r(q-r) consisting of those pairs a λ where the matrix a is of maximal rank r. We denote the natural euclidean scalar product on U pqr by γ, i.e.

(2.1)

γ a λ , a ′ λ ′ = tr(a T a ′ ) + tr(λ T λ ′ ).
Then the following smooth map X :

U pqr → M pq ∼ = R pq given by (2.2) X : a λ → X a λ = (a, a • λ)
clearly parametrizes an open subset of the stratum Z r (the regular submanifold of all rank r p × q-matrices) of the determinantal variety Σ pq . It can be seen as a natural chart domain of Z r (with the inverse of X being the chart), the other domains being obtained by permutations of the r column vectors a 1 , a 2 , . . . , a r . Due to

(2.3) D ( a λ ) c µ := d dt X a + tc λ + tµ | t=0 = (c, cλ + aµ)
the Riemannian metric Ĝ = X * , on U pqr that is induced from the inner product , (1.1) on R pq ∼ = M pq (the space of real p × q matrices) by X is computed to be (2.4)

G ( a λ ) c 1 µ 1 , c 2 µ 2 = tr(c T 1 (c 2 + c 2 λλ T + aµ 2 λ T )) + tr(µ T 1 (a T aµ 2 + a T c 2 λ)) = γ c 1 µ 1 , φ ( a λ ) c 2 µ 2 , with (2.5) φ ( a λ ) c µ = c(1 + λλ T ) + aµλ T a T cλ + a T aµ .
Written as a (pr + rr ′ ) × (pr + rr ′ ) dimensional symmetric matrix,

(2.6) G = G B B T D = g βγ b βv b γu d uv = R 1+λλ T L a R λ T L a T R λ L a T a
where R Y resp. L Y denote right-, resp. left-, multiplication with Y .

As both G = (g αβ ) α,β=1...p•r and D = (d uv ) u,v=1...r•r ′ are invertible one may invert G in the form (2.7)

G -1 =   G -1 + G -1 BρB T G -1 -G -1 Bρ -ρB T G -1 ρ   =   g γα + b γ u ρ uv b α v -b γ u ρ uv -ρ uv b α v ρ uv  
with ρ, defined as the inverse of D -B T G -1 B, existing due to the factorization

(2.8) G B B T D = 1 0 B T G -1 1 G B 0 D -B T G -1 B ;
or, following from the factorization

(2.9) G B B T D = G ′ B ′ 0 D ′ 1 0 K 1 in the form (2.10) G -1 =   (G ′ ) -1 -(G ′ ) -1 BD -1 -D -1 B T (G ′ ) -1 D -1 + D -1 B T (G ′ ) -1 BD -1   .
Due to the blocks in G being given in terms of left-and right-multiplication one also has, more explicitly, (2.11)

G -1 =   1 -L Pa R λλ T (1+λλ T ) -1 -L a(a T a) -1 R λ T R λ L (a T a) -1 a T ρ = L (a T a) -1 R 1+λ T λ  
with P a := 1-a(a T a)a T projecting onto the r ′′ = p-r dimensional space orthogonal to the column-space C(a), i.e. the span of the a s . Using

L Y L Y ′ = L Y Y ′ , R Y R Y ′ = R Y ′ Y one trivially verifies G -1 • G = 1 also in the R -L form.
To shown the minimality of Y r in the chart defined by X we have to compute the second order derivatives of X summed over the components of G -1 and prove that the component normal to the tangent space of that vector (the mean curvature vector H) vanishes. A straight-forward, but rather lengthy computation gives (µ = (α, u), ν = (β, v))

(2.12) Ĝµν ∂ 2 X ∂x µ ∂x ν a λ = -2D ( a λ ) X 0 (a T a) -1 λ ,
which obviously is tangential to the surface whence H vanishes. The computation can be shortened by the following simple arguments: note that the only non-vanishing second derivatives of X are (independent of s)

(2.13) ∂ 2 X ∂a Js ∂λ ss ′ = E Js ′
(the matrix that is everywhere zero except =1 in the J th row and s ′ column), and that the r ′ r ′′ = r where s ′ = 1 . . . r ′ = qr, s ′′ = 1 . . . r ′′ = pr, and the { e s ′′ } s ′′ =1...r ′′ being an orthonormal basis of the kernel of a T . The only non-vanishing elements of the second fundamental form are therefore

(2.15) h (t ′ t ′′ ) Js,ss ′ = γ t ′ δ t ′ s ′ ( e t ′′ ) J = h (t ′ t ′′ ) ss ′ ,Js , hence (2.16) H (t ′ t ′′ ) ∼ γ t ′ J,s G Js,st ′ ( e t ′′ ) J
for the components of the mean-curvature vector, -all of which vanish, due to the sum over J(= 1 . . . p), involving (only) scalar products of the e t ′′ with the a s (all of which are = 0 as the e 's are by definition in the kernel of a T ). While (cp. (2.11))

G Js,st ′ = (-L a(a T a) -1 R λ T )
Js,st ′ can easily be calculated explicitely, in analogy with

(2.17) B Jt,ss ′ = λ ts ′ ( a s ) J ,
as -( a t ) J ( a T a) -1 ts λ st ′ , note that this is not really necessary, due to the following (cp. [START_REF] Hoppe | Lectures on Minimal Surfaces[END_REF], p.38): as g αβ = g Js,Kt ∼ δ JK is diagonal in the indices transforming as vectors under O(p), its inverse g αβ (as well as, trivially, ρ uv as the inverse of a matrix of O(p)-invariants) will not touch any O(p) vector-index; implying that the (due to (2.13), (2.15) only relevant) components (2.18) G Js,ss ′ = -g Js,Kt B Kt,u ρ uv must be linear combinations of the B Jt,u , hence carry the O(p) vector index entirely through the columns of a (which is sufficient to conclude the vanishing of the mean curvature vector).

Geometric Proof

Our algebraic proof of the minimality of the zero determinant set Σ in [START_REF] Choe | Some minimal submanifolds generalizing the Clifford torus[END_REF] was based on the property that the hypersurface Σ is helicoidal. In this section we prove the minimality of the determinantal variety by using the fact (Theorem 3.1) that a helicoidal subset with higher codimension is still minimal (we should mention that this fact was first proved by Adrian C. Chu [START_REF] Chu | Minimal submanifolds in Lie groups[END_REF]).

Definition. Let M be a complete Riemannian manifold and Σ a subset of M . Suppose that Σ 0 is the subset of Σ which is a twice differentiable submanifold of M and Σ \ Σ 0 has measure zero on Σ. Suppose also that at any point p of Σ there is an isometry ϕ of M such that

ϕ(p) = p, ϕ(Σ) = Σ, ϕ * (v) = -v for any v ⊥ T pΣ 0 .
Then we say that Σ is helicoidal in M .

Theorem 3.1. Every helicoidal subset Σ m of a Riemannian manifold M n is minimal in M wherever Σ is twice differentiable.

Proof. Let H be the mean curvature vector of Σ at a point p ∈ Σ 0 , that is,

H = m i=1 (∇ e i e i ) ⊥ ,
where ∇ is the Riemannian connection on M and e 1 , . . . , e m are orthonormal vectors on a neighborhood of p in Σ 0 . Since ϕ(Σ) = Σ and p is a fixed point of ϕ, one sees that ϕ * (e 1 ), . . . , ϕ * (e m ) are also orthonormal on Σ near p. Hence

(3.1) ϕ * ( H) = m i=1 (∇ ϕ * (e i ) ϕ * (e i )) ⊥ = m i=1 (∇ e i e i ) ⊥ = H.
On the other hand, by the hypothesis, ϕ * ( H) = -H. Hence H = 0 at p. As p is arbitrarily chosen, one concludes that Σ is minimal.

Proof. (of Theorem 1.1): Recall the inner product , on M pq ,

X, Y = tr(X T Y ), X, Y ∈ M pq .
For any

A ∈ O(p) and X ∈ M pq , define ϕ A (X) = AX. Then ϕ A is an isometry on M pq since ϕ A is invertible and for Y ∈ M pq , ϕ A (X), ϕ A (Y ) = AX, AY = tr(X T A T AY ) = tr(X T Y ) = X, Y .
Let Z r ⊂ Σ pq be the set of all p × q matrices of rank r, 0 ≤ r < q. As ϕ A preserves rank, we have

(3.2) ϕ A (Z r ) = Z r .
Given X ∈ Z r , let C(X) be the column space of X and C(X) ⊥ its orthogonal complement in R p . There exists a p × p orthogonal matrix B such that C(X) is its eigenspace with eigenvalue 1 and C(X) ⊥ is its eigenspace with eigenvalue -1. Then we have

(3.3) ϕ B (X) = X.
Let R(X) be the row space of X. Define a subset N of M pq by

N = {Y ∈ M pq : C(Y ) ⊂ C(X) or R(Y ) ⊂ R(X)}.
Choose Y ∈ N and let σ(t) be the curve of p × q matrices from X to Y defined by σ(t) = X + tY, 0 ≤ t ≤ 1. Clearly σ(t) ⊂ Z r for sufficiently small t. The tangent vector σ ′ (0) at X equals

σ ′ (0) = lim t→0 σ(t) -X t = Y ∈ T X Z r .
Therefore N is a subset of T X Z r as well. Suppose W is a p × q matrix which is perpendicular to T X Z r . Then W ⊥ N . Here we claim

C(W ) ⊂ C(X) ⊥ .
Let v i be the orthogonal projection of the i-th column of W onto C(X) and let W X be the p × q matrix with the i-th column vector v i ,

1 ≤ i ≤ q. Then W X is in N and satisfies W X , W X = i |v i | 2 . Since 0 = W X , W = W X , W X = i |v i | 2 ,
we see that v i = 0 for all i and so the claim follows. Hence ϕ

B (W ) = -W . Note that (ϕ B ) * = ϕ B since ϕ B is linear. Thus (3.4) (ϕ B ) * (v) = -v for any v ⊥ T X Z r .
It follows from (3.2), (3.3), (3.4) that Z r is helicoidal and by Theorem 3.1 it is minimal in R pq .

Level-Set Proof

Let us also give a level-set proof, for simplicity restricting to Σ n , the space of all (n + 1) × n matrices of rank (n -1)

(4.1) A =      x 1 x 2 . . . x n x n+1 . . . x 2n . . . x n 2 +1 . . . x n 2 +n     
for which the first and last rows are not identically zero; Σ n can be characterized by the vanishing of the upper and lower n × n determinant (each of which, alone, 'trivially' defining a minimal surface), (4.2)

χ 1 := x 1 . . . x n . . . x n 2 -n+1 . . . x n 2 ! = 0 ! = x n+1 . . . x n+n . . . x n 2 +1 . . . x n 2 +n =: χ 2 • (-1) n-1 ,
and the minimality-condition for the intersection (χ 1 = 0 and χ 2 = 0) taking the form

(4.3) ∀ A ∈ Σ n : tr(P • ∂ 2 χ α )(A) α=1,2 = 0 with (4.4) P = (P JK := δ JK -∂ J χ α (M -1 ) αβ ∂ K χ β )
projecting onto the tangent-space of Σ n if (4.5) M = (M αβ := ( ∇χ α ) T ( ∇χ β )) (cp. [START_REF] Gee | From First to Second Quantized String Theory[END_REF]) tr(∂ 2 χ α ) = 0 (as all terms in χ 1 and χ 2 contain each of the n 2 , resp. n 2 + n variables x 1 , . . . , x n 2 +n at most linearly), and (4.3) follows from the stronger statement (having to do with the 2 constraints already separately defining minimal surfaces)

(4.6) ∀ A ∈ Σ n : ( ∇χ α ) T (∂ 2 χ β ) ∇χ γ = 0 ∀ 1 ≤ α, β, γ ≤ 2.
While for α = γ (4.6) is easy to prove,

(4.7) ( ∇χ α ) T (∂ 2 χ α ) ∇χ α = 1 2 χ α tr(∂ 2 χ α ) 2 (4.8) ( ∇χ 2 1 ) T (∂ 2 χ 1 2 ) ∇χ 2 1 = 1 2 tr(∂ 2 χ 1 ∂ 2 χ 2 ) • χ 2 1
the corresponding identity for α = γ (s.b.) seemed difficult to prove. The following argument however covers all cases : each non-zero entry of (∂ 2 χ α ) is a (n -2)dimensional determinant, which occurs exactly 4 times in ∂ 2 χ α , and those 4 terms cancel in the contraction with the 2 gradients, as (on χ α = 0).

(4.9)

∂ a+kn χ 1 = -λ k+1 ∂ a χ 1 ∂ a+kn χ 2 = -µ k+1 ∂ a ′ χ 1 a = 1 . . . n, k = 0 . . . n, a ′ := a + n 2
with λ n+1 = 0 = µ 1 , λ 1 = -1 = µ n+1 , and constants λ 2 . . . λ n , µ 2 . . . µ n appearing when writing the first row of A as a linear combination of the last n, resp. the last row in terms of the first n. As mentioned above, (4.7) and (4.8) can easily be proven (without the crucial observation (4.9)), by noting (cp. [START_REF] Hoppe | New minimal hypersurfaces in R (k+1)(2k+1) and S 2k 2 +3k[END_REF], [START_REF] Tkachev | Minimal cubic cones via Clifford algebras[END_REF]) (4.10)

∂χ α ∂A Ji = χ α M iJ α ∂ 2 χ α ∂A Li ∂A Kj = χ α (M iL α M jK α -M jL α M ik α ) J, K, L = 1 . . . n + 1, i, j = 1 . . . n
where M •• 1 is the inverse of (M 1 ).., the upper n × n part of A and M •• 2 is the inverse of the lower one, (M 2 ).., with the understanding that M i,J=n+1

1 = 0 = M i,J=1 2 .
For α = γ the trick (cp. [START_REF] Hoppe | New minimal hypersurfaces in R (k+1)(2k+1) and S 2k 2 +3k[END_REF]) that the [ij] antisymmetry of the second derivative, which antisymmetrizes the products of the 2 gradients (hence giving the trace of 2 Hessians when α = γ, with one determinant surviving) does not (simply) applyalthough almost certainly resulting in

(4.11) ( ∇χ 2 ) T ∂ 2 χ 1 ∇χ 1 = χ 2 4 tr∂ 2 χ 1 ∂ 2 χ 2 + χ 1 4 tr(∂ 2 χ 2 ) 2 ,
in analogy with (4.7), (4.8). Eqn (4.9) however, which in matrix-notation, due to x a+(K-1)n = A Ka simply reads (on χ α = 0) (4.12)

∂χ 1 ∂A ka = -λ k ∂χ 1 ∂A 1a (= λ k λ ′ a ∂ 11 χ 1 ), ∂χ 2 ∂A ka = -µ k ∂χ 2 ∂A n+1,a (= µ k µ ′ a ∂ n+1,n+1 χ 2 )
can be used to easily prove (4.6), for any α, β, γ as (4.13)

∂ 2 χ β ∂A Li ∂A Kj = - ∂ 2 χ β ∂A Lj ∂A Ki ,
combined with (4.12), gives (4.14)

∂ 2 χ β ∂A Li ∂A Kj ( ∂χ α ∂A Li ∂χ γ ∂A Kj + ∂χ α ∂A Kj ∂χ γ ∂A Li - ∂χ α ∂A Lj ∂χ γ ∂A Ki - ∂χ α ∂A Ki ∂χ γ ∂A Lj ) ∼ (λ αL λ γK + λ αK λ γL -λ αL λ γK -λ αK λ γL ) = 0, using that ∂χ 1 ∂A 1a = ∂χ 2 ∂A n+1,a .
Concerning (4.12), note that the following (stronger) statement can be easily proven for any n × n determinant χ: the matrix formed out of the derivatives of χ (w.r.t the n 2 variables) on χ = 0 is always of rank 1; choose any element (say M 11 )for which the corresponding row and column are both not identically zero. 

M 1a 1 M 2a 2 . . . M nan ε a 1 ...an gives (4.16) ∂χ ∂M ij = a 1 ...a i-1 a i+1 ...an M 1a 1 . . . M i-1a i-1 M i+1a i+1 .
. . M nan ε a 1 ...j...an ↑at i th position ; using (4.17)

M 1a 1 = k =1 λ k M ka 1
and relabelling a 1 as a i after interchanging a 1 and j in the ε-tensor then gives (4.18)

∂χ ∂M ij = -λ i M 2a 2 . . . M ia i . . . M nan ε j a 2 ...an = -λ i ∂χ ∂M 1j (resp. . . . = -λ i ∂χ 2 ∂M n+1,j
), as all the terms k = j in the sum k = 1 give zero, due to the ε-tensor. Analogously, then writing (on the r.h.s. of (4.18

)) χ = c 1 ...cn M c 1 1 M c 2 2 . . . M cnn ε c 1 .
..cn , and using

M c 1 1 = l =1 ρ l M c 1 l gives (4.19) ∂χ ∂M ij = λ i ρ j ∂χ ∂M 11 onχ = 0.
Similar arguments can be used for the general case, p ≥ q ≥ r.

Generalizations

1. Among the possible generalizations, it is natural to replace real by complex numbers and to consider complex p × q matrices of rank r which also forms a r 2 + r(pr) + r(qr) complex submanifold Z C r of the space of all p × q-matrices, C pq . Putting the sesquilinear inner product Z, Z ′ = tr(Z † Z ′ ) on C pq we can view it as a Kähler manifold (recall that the riemannian metric is given by the real part of the sesquilinear form) and Z C r as a complex submanifold. It is wellknown that arbitrary complex submanifolds of Kähler manifolds are always minimal submanifolds, see e.g. [9, p.380] for a simple argument. Hence Z C r is a minimal submanifold of C pq . Moreover, since Z C r is obviously invariant under multiplication with nonzero complex numbers, C × , the above-mentioned fact also implies that the projectivization Z C r /C × is a complex, hence minimal submanifold of complex projective space CP pq-1 = (C pq \ {0})/C × (in the real case the projectivizations are minimal in spheres).

As concrete examples let us here consider only 2 special cases, p = q = r + 1 and p = 3, q = 2, r = 1, i.e. the 8 dimensional real manifold of complex 3 × 2 matrices

Z =   z 1 z 4 z 2 z 5 z 3 z 6   = ( x + i y, u + i v) ∧ = → z ∈ R 12 of the form (5.1) Z( x, y, λ, µ) = ( x + i y, (λ + iµ)( x + i y)),
x, y ∈ R 3 which is the complex analog of the map X is the first Section. We shall put the inner product Z, Z ′ = Re tr(Z † Z ′ ) on the complex matrix space. With (5.2)

∂ x i → z =     e i 0 λ e i µ e i     , ∂ y i → z =     0 e i -µ e i λ e i     , ∂ λ → z =     0 0 x y     , ∂ µ → z =     0 0 -y x    
one gets the following real symmetric 8 × 8-matrix (written in four blocks of dimension 6 × 6, 6 × 2, 2 × 6, and 2 × 2) for the induced metric:

(5.3) ( ĜAB ) =      (1 + λ 2 + µ 2 )1 6×6 λ x + µ y -λ y + µ x λ y -µ x λ x + µ y λ x T + µ y T λ y T -µ x T -λ y T + µ x T λ x T + µ y T ( x 2 + y 2 )1 2×2     
(note that the two 6-dimensional vectors in the off-diagonal block(s) are orthogonal to each other, and of equal length). As the only non-vanishing second derivatives

∂ 2 AB → z are (5.4) ∂ 2 x i λ → z =     0 0 e i 0     = -∂ 2 y i µ → z , ∂ 2 x i µ → z =     0 0 0 e i     = ∂ 2 y i µ → z ,
and the 4 normal directions being of the form 

→ n α T = (. . . . . . N T α ) with N α ∈ R 6 , α = 1, 2,
H α ∼ ĜAB → n α • ∂ 2 AB →
z will vanish (cp. the comments around eqn (2.17), p.38 of [START_REF] Hoppe | Lectures on Minimal Surfaces[END_REF]) due to

N α • E 1 = 0 = N α • E 2 ; in the notation of section 2 : G = (1 + λ 2 + µ 2 )1 6×6 , D = (( x 2 + y 2 ))1 2×2 , (5.5) ρ -1 = ( x 2 + y 2 )1 - 1 1 + λ 2 + µ 2 B T B = x 2 + y 2 1 + λ 2 + µ 2 1,
implying that the relevant off-diagonal part of ĜAB is

(5.6) -G -1 Bρ = - 1 x 2 + y 2 (λE 1 -µE 2 , λE 2 + µE 1 ).
Concerning p = q = r + 1, i.e. the space ζ n of rank (n -1) complex n × n matrices (5.7)

Z =    z 1 . . . z n . . . . . . z n 2    , △ := det Z = u + iv = 0,
x ∈ R n 2 , one can use the known fact [START_REF] Hoppe | [END_REF] that the real and imaginary part of the determinant of a complex matrix Z are 'twin-harmonics', i.e. in particular satisfy (5.8) (∇u) 2 = (∇v) 2 , ∇u • ∇v = 0 as well as (5.9)

1 u u i u j u ij = 1 v v i v j v ij (=: ρ(x)),
with ρ being a homogeneous polynomial of degree 2n -4. In the simplest example, n = 2, (5.10) define minimal surfaces (which in this case are simply S 3 × S 3 cones, each). The interesting fact is that the intersection of the 2 generalized Clifford cones also has zero mean curvature. This is most easily seen by differentiating (5.8), yielding

z 1 z 2 z 3 z 4 = (x 1 + iy 1 )(x 4 + iy 4 ) -(x 2 + iy 2 )(x 3 + iy 3 ) one has (5.11) ∇u =             x 4 -x 3 -x 2 x 1 -y 4 y 3 y 2 -y 1             ∇v =             y 4 -y 3 -y 2 y 1 x 4 -x 3 -x 2 x 1             , ρ ( 
(5.14)

u i u ij = v i v ij , u i v ij + u ij v i = 0, hence (5.15) 
v i v ij u j = u i u ij u j = ρu u i u ij v j = v i v ij v j = ρv u i v ij u j = -v i u ij u j = -ρv v i u ij v j = -u i v ij v j = -ρu,
all vanishing on u = 0 = v; using (4.3) it then immediately follows that (5.7), resp.

ζ n (for general n) is minimal.

For these Kählerian examples it may be interesting to consider its quantization or noncommutative or fuzzy analog: most of all Kähler manifolds admit a quantization by Toeplitz operators or geometric quantization (see e.g. [START_REF] Bordemann | Toeplitz Quantization of Kähler Manifolds and gl(N ), N → ∞-Limits[END_REF]) which leads to approximations of the function algebras by a sequence of finite-dimensional matrix algebras. Since the complex Z C r has a relatively simple structure as a complex holomorphic fibre bundle over a cartesian product of two complex Grassmannians it does not seem to be so hard to compute the Toeplitz quantization by representation theory of the homogeneous space. It may be simpler to do it for the projectivization since one is then working inside complex projective space which is compact. In the particular example of complex rank 1 2×2-matrices, the determinant condition gives Z C r and its projectivization the structure of a complex quadric for which quantization exist, see e.g. [START_REF] Dolan | Fuzzy Complex Quadrics and Spheres[END_REF] (concerning recent work on quantum minimal surfaces, see e.g. [12]). 2. Another possible generalization is the case of pseudo-euclidean spaces: consider again the space R pq of all real p × q-matrices where the positive inner product (1.1) is generalized by the following indefinite scalar product where η (resp. ζ) is a diagonal p × p (resp. q × q) matrix with p 1 ≤ p (resp. q 1 ≤ q) entries +1 and p 2 = pp 1 (resp. q 2 = qq 1 ) entries -1. The signature of (5.16) is easily seen to be (p 1 p 2 + q 1 q 2 , p 1 q 2 + p 2 q 1 ). The submanifold Z r ⊂ R pq of rank r matrices is in general no longer nondegenerate w.r.t. (5.16) which is exemplified by the simplest non-trivial case, p = q = 2, r = 1, ζ = 1 0 0 -1 , η = 1 0 0 1 , (A, B) = (( a 1 a 2 ), ( b 1 b 2 )) = a T 1 b 1a 2 b 2 ;

(5.17) X a λ := ( a, λ a); a = a 1 a 2 ∈ R 2 , λ ∈ R gives det( Ĝ.. ) = a T a(λ 2 -1), meaning that the 3 dimensional Z 1 (in R 2,2 ) defined by (5.17) contains a co-dimension 1 (λ 2 = 1) singular part. In order to get geometrically defined nondegenerate submanifolds consider the following open submanifold Z ′ r of Z r : fix two integers p1 , q1 with 0 ≤ p1 ≤ min{p, r}, 0 ≤ q1 ≤ min{q, r}, and set p2 = r -p1 , q2 = r -q1 . We shall use the short notation V M ⊂ R p (resp. W M ) to be the column space (resp. row space) of the p × q-matrix M ∈ Z r . Moreover for a finite-dimensional vector space equipped with an indefinite nondegenerate symmetric bilinear form g we call a vector subspace P of signature (a, b) if the restriction of g to P × P is nondegenerate and has signature (a, b). With these notations we set (5.18) Z ′ r = {M ∈ Z r | V M of signature (p 1 , p2 ), W M of signature (q 1 , q2 )}. where we have suppressed the obvious dependence of Z ′ r on the choice of integers p1 , q1 . A lengthy computation shows that for each such choice Z ′ r is a nondegenerate submanifold of R pq equipped with (5.16) whose induced metric has signature (5.19) (-p 1 q1 -p 2 q2 +p 1 q1 +p 2 q2 +p 1 q 1 +p 1 q 1 , -p 1 q2 -p 2 q1 +p 1 q2 +p 2 q1 +p 1 q 2 +p 2 q 1 ).

As a drawback of the above indefinite scalar product (5.16) we can deduce -using the preceding equation-that a Minkowski signature (1, s) can only be obtained for rather trivial cases. A generalization of the techniques described in the previous Sections, in particular Section 3, shows that each submanifold Z ′ r is helicoidal and hence minimal.

  3, 4, orthogonal to the plane spanned by x y =: E 1 and E 2 := -

  x) = 2; As, trivially, △u = 0 = △v, (5.9) implies that -separately -(5.12) u(x) := (x 1 x 4x 2 x 3 ) -(y 1 y 4y 2 y 3 ) v(x) := (x 1 y 4 + x 4 y 1 ) -(x 2 y 3 + x 3 y 2 ) ! = 0

( 5 .

 5 16) (A, B) := tr(ζA T ηB)

  N s ′ s ′′ := γ s ′ (λ 1s ′ e s ′′ , λ 2s ′ e s ′′ , . . . , λ rs ′ e s ′′ , 0, . . . ,e s ′′ , 0 . . . 0) ↑ at the s ′ -position

′ (pr) normal directions are

(2.14)