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Abstract 

Nowadays, several countries have adopted an energy transition policy to achieve carbon targets 

and decarbonize transport while improving their electricity mixes. Electric vehicles are 

ubiquitous, considering its role in the energy transition as a promising technology for large-

scale storage of intermittent power generated from renewable energy sources. However, the 

widespread adoption and commercialization of EV remain linked to policy measures and 

government incentives. Here in this work, we review the current bottlenecks and key barriers for 

large-scale development of electric vehicles. First, the impact of massive integration of electric 

vehicles is analysed, and the energy management tools of electric energy storage in EVs are 

provided. Then, the variety of services that EVs may provide is investigated. We also, highlight 

how the optimal placement and sizing of EV charging infrastructure can plays a crucial role in 

electric vehicle development. The different methods for Li-ion battery states estimation and cells 

characterization are outlined. Furthermore, we present the different incentives to accelerate EVs 

adoption. And finally, we provide insightful suggestions and policy recommendations for future 

studies. The work presented in this paper will be very beneficial for policymakers seeking to 

promote electric mobility, and advance sustainable EV technologies. 
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1. Introduction 

 

Various strategies are under development to accelerate the penetration of EVs into the worldwide 

market [1]. Tesla’s approach that aims to reduce the cost of batteries via advanced 

manufacturing, packaging and expedition techniques [2]. The second approach consists mainly 

in developing and optimizing the energy performance of cells by reducing their costs [3]. The 

third approach aims at introducing new, smarter and smaller battery management systems (BMS) 

to improve the energy performance of EVs and reduce their weight [4]. The fourth approach aims 

to create new sources of revenues for EV owners through the participation of these vehicles in 

the energy markets and the supply of several services such as Vehicle-to-Vehicle (V2V), 

Vehicle-to-Home (V2H), Vehicle-to-Building (V2B), Vehicle-to-Load (V2L) and Vehicle- to-

Grid (V2G) [5,6]. Such services are referred to Vehicle-to-Everything (V2X) services, which are 

designed to obtain additional benefits from battery during non-use periods of EVs [5,7]. Despite 

the positive aspects of V2X services, they may impact and degrade the energy performance of 

the batteries [1]. Batteries will frequently be subject to irreversible capacity loss with cycling and 

calendar aging [8,9]. A driver’s mobility needs cannot be met any more if the battery loses a lot 

of its energy storage capacity [4].  

Several researchers have also highlighted that insufficient charging infrastructure, the 

appropriate location of charging stations, and the scheduling of charging at charging stations are 

the main challenges for the large-scale implementation of EVs [10,11]. An additional crucial 

issue will be to decide which of the numerous technologies and load specifications should prevail 

and dominate the load of future EVs [12]. An appropriate load management of EVs is crucial to 

ensure reliable interconnection with the power grid [13]. An intelligent management of EV 

charging strategy can also lead to a reduction in the costs of electricity to users under dynamic 

pricing schemes [14]. In the absence of proper coordination, the power distribution system 

becomes overloaded due to the simultaneous loading of EVs. Unfortunately, the growth of EV 

markets and the promotion of EV adoption remain linked to policy measures and government 

incentives [15,16]. 

The aims of this paper are to:  



 

 

• Analyse the impact of massive integration of electric vehicles. 

• Present the energy management tools of electric energy storage in EVs. 

• Outline the different methods for Li-ion battery states estimation and cells 

characterization. 

• Highlight how charging infrastructure plays a key role in electric vehicle development. 

• Investigate the diversity of services that can be offered by EVs. 

• Present the different incentives to accelerate EVs adoption. 

• Provide insightful suggestions and policy recommendations for future studies 

 

However, the work presented in this paper will be very beneficial for policymakers seeking to 

promote electric mobility, and advance sustainable EV technologies. This review is arranged as 

follows: Section 2 analyses the impact of massive integration of electric vehicles. Section 3 

discusses the reliability and safety of lithium-ion batteries for vehicular applications. In addition, 

the energy management tools for storing electricity in EVs and the different methods for Li-ion 

battery states estimation and cells characterization are outlined. Section 4 highlights the different 

EV charging infrastructure, latest technologies, evolving standards, and optimal placement and 

sizing. Section 5 investigates the diversity of services that can be offered by EVs. Section 6 

presents the different incentives to accelerate EVs adoption. And finally, insightful suggestions 

and policy recommendations for future studies are given in section 7. 

 

 

2. Large-scale adoption of EVs  

 

Globally, electric vehicles have been widely adopted during the last ten years. In 2020, Plug-in 

EVs sales surpassed 3.24 million vehicles compared to 2.26 million for the previous year with a 

year on year (Y-O-Y) growth of 43%, and 4.2% share of all new car sales [17]. Overall, Plug-in 

EV sales and market share can be observed by region in Fig.1. According to [18], these sales are 

expected to hold 27% of the global EV market by 2030. Today, China, Germany, and the United 

States leading the globe in the number of registered electric vehicles. 



 

 

 

Fig. 1. Global Plug-in EV Sales [17] 

 

According to a study conducted by the think tank E3G entitled "Rules of the Road: The 

Geopolitics of Electric Vehicles in Eurasia", many countries are not prepared for the 

consequences associated to the transition towards decarbonized energies [19]. A rapid and large-

scale transition from the Internal Combustion Engine Vehicles (ICEV) to the EVs can be 

extremely troublesome in many countries [20]. From this study, EVs are projected to reach price 

parity with the ICEV by 2022. The E3G study identifies four major types of risks [19]. 

• Industrial, commercial, social and political risk: Large-scale introduction of EVs may 

devastate existing industries, particularly in Europe, the United States and Japan, where 

the automobile sector represents a significant share of economic activity. 

• Risk of destabilization of oil-producing countries: Decarbonization of the automotive 

sector via the massive introduction of EVs can make oil-producing countries vulnerable 

and unstable. 



 

 

• Risk to access on resources: A crucial challenge for EVs is to develop a suitable energy 

storage system with high autonomy and fast charging. Lithium-ion batteries are recently 

recognized as the most promising energy storage device for EVs due to their higher 

energy density, long cycle lifetime and higher specific power. Therefore, the large-scale 

development of electric vehicles will result in a significant increase in demand for cobalt, 

nickel, lithium and other strategic metals and rare earths. It is possible that access to these 

materials will be, as oil has been, an instrument for political lobbying and pressure [19].  

• Financial Risk: Replacing internal combustion vehicles with EVs will gradually 

eliminate the revenues and profits of such a powerful industry, the first in the world, as 

the oil industry. 

 

EVs are expected to play a significant role in the large-scale integration of renewable energy 

sources into the electricity grid [21,22], e.g. by saving electricity during peak generation and 

supplying energy to the grid during peak demand [23]. Conversely, inappropriate and poor 

management of EVs could negatively affect the power supply like voltage instability, peak 

demand, power quality, power losses, transformer heating and overloading.  

• Voltage instability: It concerns voltage fluctuations around nominal values. This problem 

may be occurred under heavy loading conditions when the power system is unable to 

meet the demand [24]. Several authors [25,26] have demonstrated that EVs are highly 

responsible for voltage instability in the power system due to the non-linearity of EVs 

load, especially in case of massive penetration with high-charging level. Coordinated 

smart charging system with an aggregator can make the power grid more reliable and 

stable [27]. 

• Peak demand fluctuation: Electrical power absorbed under load of a significant number 

of EVs can exceed the power available in the power grid. The uncoordinated charging of 

large number of EVs can provoke a very serious problem for electricity system operators 

[28,29]. Bidirectional charging concept with a dynamic load control technique can be 

used to control peak loads on the power system [30]. It is very important to mention that 

the electrical power system can withstand a level of EV penetration without being 



 

 

impacted. For instance, 500,000 EV in Ontario, Canada [31,32], and 73% EVs 

penetration in the US [33]. 

• Power quality: The effects of harmonic currents on the power quality caused by EVs are 

mainly related to several factors like rapid charging, AC single phase charging, the 

diversity of charger architecture, the EVs range, the number of chargers connected at 

same time, and the level of EV penetration [34,35]. Smart charging infrastructure, 

reliable communication systems, coordinated charging system, are the concepts required 

to reduce harmonics injected by uncontrolled EVs penetration in [36]. 

• Power losses: EVs are the main responsible of the power losses in the power grid [37,38]. 

Uniformly distributed charging, smart metering method, selecting optimal location and 

capacity of charging stations can substantially reduce power supply losses [39,40]. 

• Transformer Overheating: High integration of EVs into the power grid can overheat 

transformers [11,41]. The application of the K-factor derating method and the 

introduction of an intelligent load management strategy are among measures employed to 

prevent transformer overheating [42,43]. 

As mentioned above, to manage overloading due to EV load demand and to secure the grid from 

potential risks, the charging and discharging of EVs must be programmed with an appropriate 

planning and optimal management strategy. It is interesting to outline that the management 

approaches to support the charging of a large number of electric vehicles can differ considerably, 

according to the types of renewable energy and conventional power generation in each country, 

even for countries with a comparable share of renewable energy. In countries where the 

provision of renewable energy is highly variable, the coordination of energy demand for electric 

vehicles can be a serious problem. In certain regions where network infrastructure is weak, 

additional grid reinforcement or specific "smart charging" strategies may be required to 

guarantee an efficient and flexible electricity production and supply infrastructure. As illustrated 

in Fig.2, a number of tools are currently available to investigate the impact of EVs on the 

reliability of the power system [44,45]. By using these tools, EVs’ efficiency and economic 

benefits can be improved. 



 

 

 

Fig. 2. Summary of commercial and non-commercial tools that can simulate different aspects of 

an electric vehicle and its integration to the grid 

 

3. Safety and reliability of lithium-ion batteries for EVs  

 

In EVs, the battery is the unique energy source to power the vehicle. Therefore, the safety, 

reliability and lifetime of the battery are crucial factors for the acceptance of the EV at a large 

scale [46,47]. It is worth pointing out that the safety and reliability of the entire system can be 



 

 

seriously impacted if degradation of battery performance is not detected in time. Fig.3 

summarizes the contributions of aging stress factors to cell efficiency, providing a proxy to 

explain conditions that increase the ageing rate. Therefore, lithium-ion batteries necessitate a 

permanent surveillance and controls to assure continued reliability and prevent catastrophic 

failures (See Fig.4) [48,49]. 

 

 

Fig. 3. Battery ageing impact factors during cycling and their associated degradation modes [50] 

 

 

Fig. 4. EV and battery cells damaged by fire [49] 



 

 

 

Harlow et al. [51] have invented a new method to assess battery failure during charge and 

discharge while looking at the amount of energy lost. Then, plotting the data obtained gives a 

curve that allows to determine the degradation of the battery as a function of the number of 

cycles (see Fig.5). For instance, for a Coulombic coefficient of 90%, there is 90% of the energy 

that can be used to run the battery and the 10% lost to a chemical process that degrades the 

battery. Until now, to determine the degradation of a battery, it took up to 8 years, taking a pack 

which is charged and discharged in real time. Elsewhere, Jeff Dahn and his laboratory, who are 

doing battery test for Tesla, have published research results for an impressive new battery cell 

[51]. And demonstrated that the tested new battery – a Li-Ion battery cell with a new generation 

NMC ‘single crystal’ cathode and a new highly advanced electric electrolyte – will be able to 

drive a vehicle for more than 1.6 million kilometres, and last more than two decades in grid 

energy storage even at an intense temperature of 40 C. 

 

Fig. 5. Degradation of the battery as a function of equivalent full cycles for NMC/graphite cells [51] 



 

 

3.1. Battery management system  

 

The battery management system (BMS) is the most widely used method to track and manage key 

functionality and performance aspects like voltage, current, state of charge (SOC), state of health 

(SOH) and temperature [52,53]. As the lithium-ion battery is powerful and able to achieve 

greater efficiency over its long lifetime, careful precautions should be taken to minimize physical 

damage, ageing and runways [54]. Therefore, an effective BMS is desperately required to 

precisely calculate, estimate and control the SOC battery [55]. In electric vehicles, battery 

management systems (BMS) includes several components which are categorized into hardware 

and software structure [56], as illustrated in Fig.6. Numerous sensor systems are placed inside 

the BMS to track battery parameters, e.g. battery voltage, current and temperature [57]. Safety 

circuits are being used to precisely monitor the alarms to avoid, overcharge, over-discharge and 

overheating. Charge control is mandatory to manage the process of charge discharge. Although 

temperature variations between cells influence battery efficiency, durability, cell imbalance, a 

thermal management element are used in the BMS as presented in [58]. However, data within the 

BMS is communicated by using controlled transceiver. In order to monitor the operation of the 

hardware, a software structure remains essential. Upon request the users receives information 

and details about the state of charge (SOC) and state of health (SOH) the battery through the user 

interface. These battery states are generally estimated based on various models and algorithms 

[59,60]. Furthermore, abnormalities in battery and fault analysis are identified by intelligent 

control system.  

Knowledge of all factors and causes that can lead to the system’s degradation can help make 

BMS sophisticated and safe [61,62]. Battery temperature is one of the most important factors to 

ensure the cell health and reliability when the EV is underway [63]. To maximize the potential of 

lithium-ion cells, they need to be maintained at about 23–25 °C [64]. Li-ion batteries usually 

produce three forms of heat during charging and discharging cycles: irreversible activation heat 

due to the polarization of the electrochemical reaction, Joule heating resulting in ohmic losses, 

and reversible reaction heat due to the change in entropy during charging and discharging [65]. 

Consequently, if the heat released during battery operation is not correctly removed, the 

temperature of the system can increase due to the heat accumulation, which may influence the 

performance, lifetime and safety of the battery [54,66].  



 

 

 

Fig. 6. Framework of battery management system for EV 

 

Battery overheating can be caused by a short circuit and/or at excessively high ambient 

temperature which can result in energy loss, power degradation and thermal runaway [67]. 

Otherwise, low temperatures can increase the internal resistance and reduce the service life, and 

state of charge (SOC), an increase in lithium plating, and a reduction in disposable capacity [68]. 

A non-uniform temperature inside the battery can also affect its performance [69]. Various 

techniques have recently been developed to preheat or cool the battery before charging and 

discharging cycles [70,71]. According to Pesaran et al. [69], the battery thermal management 

system (BTMS) is a combination of four systems: 

• cooling system to remove heat from the battery; 

• heating system to ameliorate the battery temperature when the temperature is too low; 

• isolation to control sudden fluctuations of the battery temperature; 

• ventilation system to eliminate dangerous gases from the battery. 

 

3.2. Battery thermal management system  

 

Kim et al. [63] classifies the available cooling systems according to thermal cycle mode as 

summarized in Fig.7. The BTMS with a vapour compression cycle (VCC) involves cabin air-



 

 

cooling, second-loop liquid cooling and direct refrigerant two phases cooling. The BTMS 

without VCC contains phase change material (PCM) cooling, heat pipe cooling and 

thermoelectric element cooling. Several EVs include a VCC due to its ability to use available AC 

systems to cool or heat the battery. However, this system consumes a considerable quantity of 

energy to drive VCC system and has a negative impact on the performance of the EV’s air-

conditioning system. PCM cooling systems can be designed to remove heat from the battery 

during the phase transition without energy consumption. However, several problems (low 

conductivity, volume change, leaks, etc.) have to be addressed in order to integrate PCM system 

into EVs [72]. The heat pipe cooling system can efficiently control the battery temperature, but it 

is necessary to connect it to a cooling plate due to the reduced contact area with the battery. 

Currently, thermoelectric element cooling system cannot be installed in EVs due to its low 

efficiency. Preheating methods can be split into two groups–external and internal heating – 

depending on the sources of heat [61].   

 

3.2.1. External heating strategies 

 

External heating methods can be categorized into two groups, namely the methods combined 

with cooling system and electrothermal elements methods. The first group include air-based, 

liquid based, and PCM-based systems. Air preheating method is widely used in EVs owing to 

simple configuration and low costs. For instance, Honda Insight and Toyota Prius [73]. 

However, air ventilation requires additional materials such as a fan and a fluid circuit, which 

may increase the size and cost of the BTMS [74]. Liquid-based method is commonly used in 

EVs, for instance Volt [75] and Tesla Motor [76] adopt this method to heat battery. Thus, this 

method has the benefit of high thermal conductivity and heat capacity which can generate 

uniform temperature distribution [77], but involve a more complicated device [78]. 

PCM is known to be an efficient and innovative solution for heating the battery during phase 

change while optimizing energy, maintaining temperature uniformity, and enhancing the battery 

life [71]. Currently, PCM methods have not been used in EVs, and only studied in laboratories 

due to several factors such as thermal properties degradation, low thermal conductivity, risk of 

leakage, and change in volume. In the meantime, many experiments have been carried out to 



 

 

show the efficiency of this technology [79,80]. However, additional studies are required to 

thoroughly investigate the advantages and disadvantages of PCMs. 

Elsewhere, electrothermal methods include Peltier effect methods, electrothermal plates, 

electrothermal jackets, and electrothermal films [61,68]. The approach based on Peltier effect 

mechanism can be used as an active BTMS to heat the battery pack while effectively regulating 

the temperature. [68]. Meanwhile, this method has been widely investigated and adopted in EVs 

for battery preheating [81]. The electrothermal plate implements positive temperature coefficient 

(PTC) materials by using a temperature-sensitive semiconductor system to self-regulate 

temperature, which can maintain a steady temperature during heating, prevent overheating and 

ensure the safety of battery operations [61]. Electrothermal plates are generally placed on or 

under the battery pack.  However, earlier EVs like Mitsubishi MiEV [82] , and Nissan LEAF 

[83] have adopted this approach.  The electrothermal jacket is usually built around each battery 

cell using resistive heater. This heating system is effective to recover the battery to the normal 

working temperature range with uniform temperature distribution and acoustic stability in about 

ten minutes [84].  Nevertheless, at high temperatures, the jacket makes the battery very 

extremely difficult to dissipate heat [61]. Electrothermal film system requires small metal foil 

shielded and positioned on each cell’s largest surface. This method is simple, easy to install, and 

can be faster to heat the battery in comparison with electrothermal plates [85]. One of the strict 

drawbacks of this method is that it is only suitable for square battery cells and cannot be self-

controlled. Furthermore, the safety and reliability of this method should be further investigated. 

3.2.2. Internal heating strategies 

 

In contrast to external heating strategies, internal heating will produce high a rate of temperature 

rise (RTR) and don’t be affected by the battery design [61]. Thus, the internal preheating process 

is therefore complex, and can trigger battery pack protection issues. However, internal heating 

strategies include self-heating [86] and current excitation preheating. For self-heating methods, it 

can be assumed that high temperature rates can be expected but with low safety and temperature 

accuracy. Meanwhile, this method was only studied in a lab environment and not explored in 

EVs due to safety and consistency problems at the battery pack level. Current excitation 

strategies may be categorized as direct current preheating (DC), alternate current preheating 



 

 

(AC) and pulse preheating strategy. DC preheating means that the battery is heated by a 

permanent DC from the battery power. Since no additional equipment is required, this method is 

easy to implement, and its cost is relatively low. However, to reduce the preheating period, this 

process requires a high discharge rate and thus raises the risk of battery degradation [87], the 

battery capacity losses and lithium plating [88]. As such, this method is rarely used and still 

under development [89]. AC preheating can also heat the battery faster and more efficiently 

compared to DC heating with a limited duration [90], while applying an AC to the positive and 

negative electrodes of the battery with a particular frequency and amplitude [91]. Nevertheless, it 

remains uncertain how alternative power impacts on battery safety, which could be a restricting 

element for use in EVs. In pulse preheating strategy, the battery is generally heated by applying a 

discontinuous constant current for creating heat across the battery’s internal impedance. Pulse 

preheating can provide uniform preheating and less battery capacity loss compared to air 

preheating [92], and electrothermal plate preheating [93]. Since a circuit control system is 

required and can result in high costs. The pulse preheating technique is not applied for EVs and 

only in the lab environment. 

 

Fig. 7. Classification of battery thermal management systems 

 

Today, range anxiety is one of the major barriers to widespread EV adoption. The ability of a 

BMS to accurately predict the current and future battery status, and therefore the estimated 

driving range, will alleviate this problem and open up vast opportunities in battery 



manufacturing, usage and optimization [94,95]. State of Charge (SOC), State of Health (SOH) 

and remaining useful life (RUL) are the most critical battery cell states [96,97]. Otherwise, 

modelling the dynamic and internal behaviour of battery cell is crucial to track these states. 

Whether research on the internal battery cell structure is thorough, the battery cell model can be 

divided into three main approaches: White box model which developed from battery mechanism 

and law [98,99]; Gray box model that has an unclear perception of the relevant system laws, 

most typical gray box model are equivalent circuit model (ECM) [100,101] and electrochemical 

model (EchM) [102]; Black box model is data-driven method as they rely on data sets and 

artificial neural networks [103]. The following section presents an exhaustive review of recent 

battery states estimation methods. 

3.3. Battery states estimation methods 

SOC, SOH and RUL are particularly the key battery management parameters and are generally 

defined as: 

��� =  ���� +
� 	
���

�

�

����

(1) 

��� =
�����

����
× 100 % (2) 

Where ��C� is the initial battery state of charge, C���� Is the battery’s fully charged capacity, 

C��  is the brand-new battery nominal capacity [50]. In essence, SOH reports battery aging and 

degradation and alerts when the battery should be replaced. When capacity is degraded to 80% of 

the current capacity, the battery is considered unusable for vehicle applications and should be 

replaced [104]. While SoC reflects the available battery capacity that can be removed from the 

battery and is used to avoid over-discharge or overcharge and to run the battery in a way that 

eliminates aging effects. Meanwhile, RUL predicts the remaining time or number of battery 

cycles until the battery’s SOH reaches 0%. Reliable estimation of remaining useful life (RUL) 

would enable the use of batteries to their full capacity and optimum life expectancy until 

replacement or disposal. The accurate and real-time prediction of these three states have attracted 

the attention of several scientists, and several different approaches were proposed to forecast 



 

 

them [104,105]. In summary, battery states estimation methods can be categorized into five main 

categories as displayed in Fig.8, including direct method [106,107], model-based methods 

[108,109], adaptive-filter algorithm [110,111], machine learning (ML)-based methods [59,112], 

and other methods [113,114]. 

 

 

Fig. 8. Classification of SOC, SOH and RUL predictions methods 

 

3.3.1. Direct methods (Conventional method) 

Direct methods calculate physical battery properties such as current and temperature, and then 

forecast the battery states using an equation or relationship. Direct methods include open-circuit 

voltage estimation (OCV), electrochemical impedance spectroscopy (ELS) and coulomb 

counting estimation (CC) (also known as the ampere-hour balancing strategy) [115].  

3.3.1.1. Open circuit voltage-based estimation (OCV) 

The voltage of the cell is continuously determined, and the corresponding states are derived from 

a table or curve. For instance, a linear relationship existed between OCV and SOC. This 

relationship generally depends on capacity and material of the battery [116], and differs from 



 

 

each type of batteries [117]. Similar relationship exists between SOH and OCV [118]. Fig.9 

presents OCV-SoC relationship for LiNiCoMnO2 battery at different C-rates charging values. 

Example of OCV method applications in predicting SOC and SOH states is presented in 

[119,120]. Meanwhile, this method is not practical for online testing during charging/discharging 

since the battery requires to have a long time resting to reach equilibrium condition [120]. Also, 

OCV method is not accurate due to the hysteresis characteristics of the battery [121]. 

 

Fig. 9. OCV-SoC relationship for LiNiCoMnO2 battery during the charge process at different current 

values [122] 

 

3.3.1.2. Coulomb counting estimation (CC) 

Coulombic counting approach is widely used to estimate dynamic states of battery. It is based on 

time-dependent integration of battery current during the charge and discharge of the battery. This 

method is simple, easy and widely used for estimating the battery states particularly the SOC and 

SOH [106] since it is the most accurate technique for short-term calculations. Nevertheless, the 

main drawback of coulomb counting method is that it cannot estimate the initial value, and has 

an accumulative error [123]. Also, its precision is highly impacted by uncertain variables and 

disturbances such as noise, temperature, current, etc [124]. Moreover, this method is usually 

combined with other techniques. 



 

 

3.3.1.3. Electrochemical impedance spectroscopy (EIS) 

Electrochemical Impedance spectroscopy is a commonly used measurement method in 

laboratories for characterizing battery cells. It estimates cell impedance using a sinusoidal AC 

excitation signal over a wide range of frequencies [125]. And then, the SoC and SOH of battery 

can be predicted owing the strong dependency between dynamic states of battery and the 

variation of the low frequency impedance of EIS [126]. Implementations of onboard impedance 

measurements in vehicular applications were proposed by several authors [107,127,128]. In 

[107], authors propose an onboard EIS measurement system while using a power amplifier to 

generate a separate excitation signal. Similar work found in [127], where author show how the 

state of charge can be estimated with impedance spectra and a simplified equivalent circuit. 

However, this technique requires additional hardware, and the implementation costs are extra. 

Meanwhile, a new framework for onboard impedance spectroscopy on cell level which 

incorporates a passive method without the need of an additional active signal generation is 

developed in [128]. Thus, this framework can be simply integrated in a single-cell BMS 

architecture for electric and hybrid vehicles. 

3.3.2. Model-based estimation methods 

The development of battery model is highly required in order to have online states prediction. 

Model-based approaches incorporate a model of battery with various advanced algorithms for 

predicting the state of the battery from calculated variables including current, voltage and 

temperature. The most common use of battery models involves electrochemical model and 

equivalent circuit model. 

3.3.2.1. Electrical circuit model-based estimation (ECM) 

Electrical circuit model (ECM) has the advantages of low computational complexity and high 

precision [129]. It can also slightly describe the battery cell’s internal reaction process. There are 

three different ECMs such as first-order RC model, first-order ECM, and second-order ECM. 

These models are widely adopted due to their excellent dynamic performance [130]. Fig.10 

presents the schematic diagram of second-order ECM, where U"#$ represents the open-circuit 

voltage, which has some correspondence with the battery cell SOC. I# the current of the battery 

cell. U&', U&( are the polarization voltage corresponding to the RC link. R� is internal resistance. 



 

 

R&' and R&( are the polarization resistances while C&', C&( are the polarization capacitances. 

However, the two RC links can characterize the battery polarization and diffusion effect. And 

finally, U* represents the terminal voltage of the battery cell. 

 

Fig. 10. Schematic diagram of second-order ECM [129] 

 

According to the second-order ECM described above, a variety of adaptive filter algorithms 

[131] can be used to online obtain the battery cell SOC accurately. However, the parameters of 

the second order ECM can be calculated with different datasets depending on the scenario where 

the model will be used, as in [132]. Meanwhile, improvement of the accuracy of dynamic 

response prediction of this model can be obtained by increasing the number of parallel R-C pairs. 

ECMs were extensively investigated in literature. A comparative study of the three mentioned 

ECM models is presented in [130] using a combination of ECM with extended Kalman filter 

(EKF) and CC estimation strategy. This paper reveals that the second order ECM is the most 

reliable and dynamically efficient, but it is also the most complex of these three models. In [133], 

another ECM model is proposed for the SOC and SOH estimates which reflect both aging and 

temperature effects. This strategy does not require the battery model or any awareness or 

estimate of the battery parameters. In [134], twelve widely used lithium-ion battery ECMs are 

tested, using a multi-swarm particle swarm optimization algorithm to determine optimal 

configuration parameters for all Li-ion battery cell types. From this study it can be inferred that 

the first-order RC configuration with one-state hysteresis is suitable for LiFePO4 battery due to 

its high accuracy.  



 

 

All of the above works have only focused on estimating the battery states at cell levels. Despite 

this interest, investigating all the battery pack states still poorly discussed. However, given cell 

inconsistency, an online SOC estimate strategy is presented for aged lithium-ion battery pack in 

[129]. Results show that the SOC estimation error of each cell in the battery pack is 5% for the 

entire test cycle and 3% for the later capacity estimation process. However, the structure of the 

ECM model is mainly empiric dependent and does not accurately describe battery 

electrochemical processes. Thus, under battery discharging/charging experiments, all above-

mentioned parameters are defined and restricted for new batteries in the laboratory, which is 

costly, time-consuming, and often not practical to obtain all parameters [122]. Otherwise, 

according to literature, the ECM seemed to be able to provide relatively satisfactory voltage and 

SOC results in the high and middle SOC area, but in the low SOC area the model accuracy was 

seldom indicated. The lowest SOC value in experimental validation was generally determined 

not less than 10% [135], which evidently affects the accuracy of the ECM under 10% SOC 

[102]. 

3.3.2.2. Electrochemical model-based estimation (EChM) 

Electrochemical models (EChMs) generally use the equations describing physicochemical 

processes such as battery diffusion, intercalation, and electrochemical kinetics inside the battery 

as illustrated in Fig.11. The EchM can be represented as (eq3): 

 U =  U"# − U, − U& (3) 

   

where: U is the battery terminal voltage, U"# is the OCV of the battery, U, is the potential 

resistance difference, and U& is the electric potential of polarization process. By determining the 

battery model parameters, the battery status can be easily monitored through the lookup table 

[136]. Since the model is a set of multi-parameter partial differential equations, the resolution 

process is computer-prohibitional and cumbersome. So, they are hard to implement in BMS. 

Despite of that, EchMs are practically used to evaluate battery efficiency, and are ideally suited 

to optimize the physical and material properties of internal electrodes and electrolytes [137], and 

its application is limited for online estimation.  



 

 

 

Fig. 11. Schematic of the electrochemical model for LIBs [138] 

 

Several EChMs that can be used for battery states forecasting namely SOC has been recently 

proposed in literature [139,140], all these papers do not present the SoC estimation process. 

However, different approaches presented in [141,142] precisely establish EChMs for SoC 

estimation. For instance, [141] developed a model that consists of four submodels representing 

electrical, electrochemical, thermal, and aging dynamics in partial differential equations. A work 

in [142] introduces a reduced-order electrochemical model adopted in dual-nonlinear observers 

to predict SoC and cyclable lithium loss over time. Another technique for SoC estimation 

presented in [143], where a non-invasive optimization strategy is introduced to estimate the 

EChM parameters for any battery lifespan. Extensive investigation is required to accurately 

identify model parameters, since these parameters vary considerably in electrode chemistry, 

electrolytes, packaging and time, and the cells are usually heterogeneous in battery package 

parameters and temperature. Which results in low accuracy and computational complexity [122]. 

In contrast, a recent paper has been published [138] where the sensitivity of 26 lithium-ion 

EChM physical parameters was analysed for lithium-NMC-graphite battery cells in real-world 

EV driving cycles. From this paper it can be inferred that the inaccurate identification of these 

parameters has no effect on the functionality of BMS, especially SoC identification, and the 

parameter identification method should focus only on 14 sensitive parameters. The benefit of 

EChMs is that they implicitly provide battery behaviour dependency on battery states and 



 

 

temperature, resulting in high precision, although electrical models must store their parameters 

for various SoC and temperature combinations [122]. Meanwhile, both model-based approaches 

are usually computationally expensive, and additional parameters or multiple models are 

normally needed for specific operating conditions. Thus, adaptive methods listed below will 

attempt to reach this condition. 

3.3.3. Adaptative filter algorithms 

For improved safety and more effective estimation, model parameter values should be 

continuously updated. Adaptive filters typically use feedback to alter their current output from 

various inputs and attempt to adjust accordingly [110]. Adaptive algorithm such as Kalman filter 

have been proven to accomplish this [144], combining direct and model-based approaches.  

3.3.3.1. KALMAN filters-based estimation (KF) 

Recently, Kalman filters (KFs) have been the most commonly used adaptative approaches, and 

their self-correction and online computing capabilities have proven effective in all battery states 

estimation including SOC, SOH, and RUL. Kalman Filter is series of mathematical equations, 

which repeatedly forecasts and corrects a new condition as the system operates [145]. The 

method contrasts input and output data to determine the correct mean square variance of the real 

state. So, the KF model mainly comprises a process equation (4) which estimates the current 

state x. from the earlier state x./' and a measurement equation (5) which updates the current 

state to converge it to the real value [145]. 

 x./' = A.x. + B.u. + w. (4) 

   y. = C.x. + D.u. + v. (5) 

 

Where x is the system state, u is the control input, w is process noise, y is the reference for 

measurement, v is measurement noise, A, B, C and D represent time variable covariance 

matrices and define system dynamics [145]. Some publications in literature propose KF Based 

methods for battery states estimation [146,147]. For instance, [146] applied KF on a simple ECM 

of the lithium-ion battery on Matlab-Simulink software, and the SOC is determined with an error 

being less than 5%. The work developed in [147] fully describe a combination of KF with open-

circuit voltage and coulomb counting methods. The results indicate that KF implementation 



 

 

improves the accuracy of coulomb counting strategy in forecasting the SOC of lithium-ion 

batteries with an error of ± 1.76%. Elsewhere, several extensions have been suggested, including 

extended Kalman filter (EKF) [148], unscented Kalman filter (UKF), cubature Kalman filter 

(CKF), and the adaptive extended Kalman filter (AEKF) [149]. Zheng et al. [150] implement the 

EKF to determine the SOC based on a second-order resistance-capacitance model. In an 

electrochemical model, Lee et al. [151] applied dual EKF to predict the SOC and capacity. The 

outcome reveals that the model is better accurate than the real value, with a smaller initial error 

of ± 5%. In [152], a fractional-order UKF has been developed to estimate the SOC. Similar 

approach with support vector regression (SVR) is applied in [153] to estimate SOC and SOH. 

Results indicate an estimation error under 1%. Peng et al. [154] apply a CKF to forecast the 

lithium-ion battery SOC based on a first-order RC model and corresponding fractional-order 

model. The findings revealed that the CKF is more effective and stable than the UKF and EKF. 

EKF algorithm with multi-time scales has been used in [155] to predict the SOC and battery 

capacity in different time dimensions. Similar work is presented in [156], where the multi-time 

scale extended Kalman filter approach is applied based on "S&D" model to estimate each cell’s 

SOC, model parameter, and capacity in the battery pack. Findings indicate that each cell’s SOC 

prediction error in the battery pack is below 5% over the entire test cycle and below 3% while 

the latter capacity estimation process stays constant. From this study it can be concluded that the 

multi-time scale adaptive filter algorithm can achieve high accuracy while reducing the 

computational complexity. Another KF algorithm improvement is presented in [157], where an 

adaptive unscented Kalman filter (AUKF) introduced to determine the battery internal 

parameters and estimate SOC. Zeng et al. [158] developed an adaptive cubature Kalman filter 

(ACKF) to predict the SOC. Results indicate the high estimation accuracy and fast convergence 

of ACKF compared with CKF. Xu et al. [159] apply a dual Kalman filter (DKF) and dual 

extended Kalman filter (DEKF) to predict the SOC. Then, combining the strengths of DKF and 

DEKF methods, an SOC estimation algorithm based on adaptive Kalman double filter is 

suggested. Comparative analysis tests show that the proposed algorithm error is inside the range 

of ±0.01 under most test conditions and will instantly restore SOC to true value if system errors 

occur. This, verify the validity, accuracy, robustness and adaptability of the proposed algorithm 

under different operation conditions. 



 

 

3.3.3.2. Recursive least square based estimation (RLS) 

Recursive Least Square (RLS) is an effective technique that is used to determine the filter 

coefficients for a minimal square of the error signal in dynamic adaptive models [122]. In 

particular, RLS algorithm is used to obtain model parameters [160,161]. For instance, in [162] a 

forgetting Factor Recursive Least Squares (FFRLS) is applied to realize online identification of 

ECM model parameters. The results show that the maximum estimation error of SOC and SOH 

is 1.08% and 1.52% respectively, which prove the accuracy of the proposed method. Zhang et al. 

[111] proposed different decoupled weighted recursive least squares (DWRLS) method to 

separately predict the battery parameters and SOC. Results indicate that DWRLS method 

achieves good accuracy with about 1%. All the aforementioned works show that the RLS can 

help reducing the estimated SOC error and noise, while reducing the computational cost. 

3.3.3.3. Particle filter (PF) 

Particle filter (PF) method is a set of Monte Carlo algorithms widely used to approximate the 

probability density function (PDF) of a non-linear system. In [163] PF is used to estimate high-

power lithium-ion battery SOC while considering the impact of drift noise temperature, 

charging/discharge rate and running mileage. The numerical calculations demonstrate that the 

proposed method is efficient to reduce the maximum absolute error (MaxAE) and Root Mean 

Squared Error (RMSE) by 30.2% and 12.6% respectively. Ye et al.[164] proposed a novel 

double adaptive particle filter method to adapt to environmental variety. In this model a double-

scale dual adaptive particle filter is used to improve the efficiency and convergence ability 

according to the initial environmental offset. The results demonstrate the effectiveness and 

applicability of the proposed approach are verified by aged batteries. Chen et al. [165] proposes a 

particle filter based OCV online estimation method to achieve the voltage-based state of charge. 

A framework for state-of-charge prediction is proposed in [166]. Where the unscented particle 

filter (UPF) is employed to improve the observation accuracy. The results indicate high precision 

and fast convergence of the proposed method under dynamic driving cycles. Another study 

presented in [167] where a hybrid cubature particle filter is applied by aggregating the cubature 

filter and particle filter to achieve a more stable SOC prediction under harsh charging & 

discharging schedules. The findings indicate that the proposed hybrid method is more robust than 

the existing models. 



 

 

3.3.3.4. H infinity-based estimation (H∞) 

H infinity (H∞) based method is a powerful theory to restrict the effect of exogenous 

disturbances on output. It is a simply designed model, which has the strong robustness to ensure 

SoC estimation accuracy under certain conditions [168], especially in the worst cases [169]. 

Zhang et al. [170] introduced the H∞ based method to predict the SOC of lithium-ion batteries, 

considering the temperature, current, state of health as a time-varying parameters. The proposed 

system provides better accuracy with an acceptable 2,49% error. Similarly, a universal linear 

model based on adaptative H∞ filter (AHF) is implemented in [171] to determine the SOC, 

considering the model parameters as a function SOC. Results confirm that the AHF performs 

accurately better than other adaptative methods. In addition, other recent researches demonstrate 

that H-infinity algorithm can be efficiently used to develop online SoC estimators, at both cell 

and pack levels [172,173]. Elsewhere, effects such as aging, hysteresis and temperature could 

deviate the model accuracy. Wang et al. [174] set up dual-estimator-based joint estimation 

framework to investigate the SOC estimation under the influence of temperature deviation. On 

this basis, recursive least square (RLS) and the adaptive H infinity filter (AHIF) are joined and 

used. The result indicates that RLS-AHIF algorithm has better accuracy for SOC estimation even 

at low temperatures, such as −10 °C, and the SOC error is within 3.5%, while the maximum error 

of SOC is less than 2% at 0°C and 25°C. Likewise, Shu et al. [175] proposed an adaptative 

fusion algorithm to calculate the SOC of lithium-ion batteries applying both RLS and H-infinity 

filter to identify parameters of the built equivalent circuit model and to predict the battery state of 

charge and to cope with uncertainty of model errors respectively. Experimental results reveal that 

the fusion estimation algorithm has maximum absolute error of less than 1.2%. Demonstrating its 

efficiency and reliability when exposed to internal battery loss and operating temperature 

variability. 

3.3.4. Machine learning based methods (ML) 

In the past few years, machine learning methods have drastically attracted extensive attention 

because of the increasing availability of large quantities of battery data [176,177]. Machine 

learning is a promising approach for forecasting the battery states such as SOC, SOH and RUL 

with no underlying physical knowledge. Thus, machine learning based methods consider the 

battery as a black box and learn its internal dynamics through charge-discharge data to determine 



 

 

the nonlinear relationship between the battery states and measured variables. Machine learning 

approaches include neural network, support-vector machine, random forest and regression 

techniques. A summary of the most useful machine learning algorithms to predict SOH, SOC, 

and RUL is provided in [59]. The following Fig.12 displays the machine learning approach for 

SOC, SOH and other battery states prediction.  

 

 

Fig. 12. A machine learning approach for SOC, SOH and RUL predictions of li-ion batteries [59] 

 

Guo et al. [103] has implemented a stronger neural back propagation network (BP), in which the 

measured voltage, current and temperature are used as the input to approximate the battery SOC. 

The robustness of this BP neural network was improved by [176] while injecting the Gaussian 

noise into the training data. In [178], recurrent neural networks (RNNs) are introduced to predict 

the battery SOC from past charge-discharge data. An extension of this RNNs model known as 

stacked long short-term memory (LSTM) network was implemented by Yang et al. [177] and 

Chemali et al. [179] for SOC estimation. Similar approach was developed in [180]. Unlike BP 

network, both the RNN and LSTM networks connect the current SOC to the previous state, thus 

achieving better prediction accuracy. In [181], a new method for accurate SOC estimation using 

Recurrent nonlinear autoregressive with exogenous inputs (RNARX) neural network algorithm is 

presented, and the computational accuracy of RNARX is enhanced by employing lightning 

search algorithm (LSA). The experimental results prove that the proposed approach is accurate 

and robust as it can accurately predict SOC under different operating conditions. In [182], 

Gaussian process regression is applied to forecast the SOC of Li-ion batteries. Results show that 

Gaussian processes method outperform support-vector machine with a SOC prediction error of 

0.8%. Another ML-based method widely used in industry is the neural network. This method 



 

 

provides the highest quality adaptation function, particularly where a large amount of data is 

available. In [183], a generalized neural network model to predict SOC is presented. High 

accuracy level is attained by this model with SOC estimation error of 0.1%. Machine learning 

approaches provide high deep-learning capabilities compared to other conventional methods, and 

learning accuracy progressively increases as historically learned information accumulates. Thus, 

the accumulated operational data on EVs and the development of new connectivity techniques 

such as vehicle-to-cloud (V2C), vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) 

[184] will undoubtedly offer wider a wider range of future implementations of these methods. 

The principal limitations to ML-based models are time-consuming in collecting training data 

which is more than six months’ worth [185], poor model accuracy as setting and testing 

conditions vary from training data. Elsewhere, estimated results probably suffer evident 

fluctuations due to overfitting or underfitting [186]. Fusing model-based filtering methods and 

ML-based methods are therefore required to obtain more accurate and robust battery states 

estimation [187]. 

3.3.5. Others approaches 

Whilst some strategies do not fall into the previously proposed categories, it is highly important 

to mention them in this review. So, other battery states prediction methods may include, 

Multivariate Adaptative Regression Splines (MARS) [113], Sequential Monte Carlo (SMC) 

[188], Smooth Variable Structure Filter (SVSF) [114], Sliding Mode Observer (SMO) [189], and 

Multi-Gain Lunenverger Based Observer (MGLO) [190]. The table.1 below gives a summary of 

all methods for forecasting the li-ion battery states, their advantages, disadvantages, and the 

average error for each method. 

 



 

 

Table 1. Summary of li-ion battery states estimation methods, their advantages, disadvantages, and average error 

a Error is estimated from the approach described in the ‘Battery States estimation methods’ section 

 

Battery States Estimation 

Methods 
Strengths Weakness 

Output estimated 

errora for each state (%) Ref. 

SOC SOH RUL 

Direct 

Methods 

OCV Easy to implement Long rest time needed to reach equilibrium  1  [191] 

EMF Simple, low cost 
Take a long time to interrupt the OCV 

relaxation model 
2   [192] 

CC 
Easy to implement, low computational 

complexity 
Difficulty assessing SOC's initial value 4 1-9  [123,124] 

EIS 
Online, low cost, high accuracy achieved if 

impedance value is normalized. 
Results influence aging and temperature  2.1  [193] 

Model-

based 

methods 

ECM Online, High precision Highly depends on model accuracy 5   [129] 

EChM Online, High accuracy Complicated, Heavy calculations 5   [194] 

Adaptative 

Filter 

algorithm 

KF, Accurate, high degree of noise can be filtered High computational complexity 1.76 5  [147,195] 

EKF 
Good precision in predicting non-linear 

dynamic state 
Limited robustness. 1   [196] 

UKF Simple to implement Poor robustness 4   [197] 

SPKF Good accuracy and robustness. Complicated, Heavy calculations 2   [198] 

(RLS) High accuracy Heavy computation, instability 1.08 1.52  [162] 

(H inf) High accuracy, low computational cost 
Accuracy deviates due to aging, hysteresis 

and temperature effects 
2.49   [170] 

PF High precision, less processing time High calculation 1-2 2 4.08 [167,199,200] 

Machine 

learning 

Methods 

PSO Good accuracy  Low convergence rate 3  3-9 [201,202] 

GA 
High precision, Robustness against noisy 

function, 
Heavy computation 2   [203] 

FL Adaptability to non-linear battery behaviour Heavy computations 5 1.4-9.4  [204] 

SVM High accuracy, lest prediction time High complex calculation 0.2 1.6 3.3 [153,205,206] 

NN High accurate estimation Require processing unit 0.1 0.5 0.6 [183,207] 

Others 

MARS High accuracy 
Accuracy disperses at the beginning and end 

of SOC period. 
1   [113,208] 

SMO Stability and robustness 
Difficult to adjust switching gain to control 

sliding regime 
3   [209] 

PDF Easy to implement, quick response Require high accuracy measurement.  2  [210] 

Bayesian High accuracy  0.8  3.2 [182,185] 



 

 

3.4. Methodologies for battery cells characterisation  

 

Over the past decade, lithium-ion batteries have gained considerable interest within the battery 

community due to their high energy density, high efficiency, long life cycle, and low 

maintenance. Currently, Li-ion batteries dominate the energy storage industry with 55% market 

share [211], with dramatic downturn in Li-ion battery pack costs, falling about 87% from 2010 to 

2019, reaching a volume-weighted average of 156 $/kWh [212]. However, its development still 

faces several issues depending on an in-depth understanding and insight into the complex 

mechanism and elusive chemical/physical processes of a cell during discharge and charge via 

advanced characterization techniques. Therefore, improving battery performance and lifetime, 

studying structure and chemistry impacts on LIB performance is critical [213]. With the recent 

development of a third-generation synchrotron source, various advanced characterization 

techniques have been explored, such as: Synchrotron X-ray techniques, neutron scattering 

techniques, solid-state NMR techniques [214,215]. These tools represent an important step 

forward as researchers can now obtain a more detailed understanding of how electrochemical 

processes affect individual battery components under real working conditions. Meanwhile, such 

approaches are very expensive and require a high level of expertise. Elsewhere, non-invasive 

characterization tests have been widely used by both industrial engineers and academic 

researchers to compare the cell capability and track its performance evolution during different 

operations. The purpose of these tests is to make full use of the measurable electrical and thermal 

signals from a lithium-ion cell to provide a comprehensive overview of its internal aging without 

disassembly. Typically, these methods include capacity tests, open-circuit voltage tests, 

electrochemical voltage spectroscopy tests, internal impedance/resistance tests (see Fig.13). The 

measurement of cell capacity generally used to determine maximum capacity in applications 

with a defined load, while OCV measurements provide crucial information on a thermodynamic 

cell’s property. Resistance tests, therefore, describe cell dynamics. Numerous international 

standards for characterization and electrical test of lithium-ion cells are well examined and 

explored in [216]. Therefore, the various testing methods are compared through four criteria: test 

equipment needs, generated data, knowledge usage and description of the key advantages and 

disadvantages of each method (see Table.2). However, there is no ‘one-size-fits-all’ testing 



 

 

process. Practitioners should describe their aims and required data, and then recognize which 

characterization test can best achieve them. Moreover, as Li-ion cells rise in demand and usage, 

it is expected that application-specific characterization tests will increasingly become more 

relevant for future development. 

 

Fig. 13. Methodologies for battery cells characterization 

 

 



 

 

 

Table 2. Summary of test methods for lithium-ions battery characterization [216] 

 



 

 

3.5. Life cycle analysis of a battery electric vehicle 

 

A vehicle's environmental footprint needs to be assessed over its entire life span, to include the 

environmental costs of manufacturing and lifetime, as well as the environmental impacts of 

driving. It is therefore necessary to assess the carbon footprint of this type of vehicle by 

comparing it to others, over its entire useful life [217,218]. Numerous researchers have used the 

life cycle assessment (LCA) approach to compare carbon emissions between battery-powered 

electric vehicles with conventional vehicles [219,220]. The term "life cycle assessment" refers to 

all of the environmentally significant processes that occur during the life cycle of a vehicle, 

including raw material extraction, component manufacture, assembly, transportation, vehicle 

usage, and end-of-life treatment. According to the European Federation for Transport and 

Environment's study on battery electric vehicle life cycle analysis [219], a medium-sized vehicle 

with a battery produced in Europe and driven in France generates four times less greenhouse 

gases than an equivalent gasoline vehicle over its lifetime (i.e. after 225,000 km). Due to the 

numerous hypotheses taken in the realization of a life cycle analysis, a comparison of different 

sources is required. Similar conclusions are drawn in [218,220–222]. For instance, Teixeira et al. 

[218] assessed the impact of combining conventional vehicles with electric vehicles on carbon 

emissions in Brazil under various scenarios. They indicate that, even in the most unfavourable 

power generation scenario, electric vehicles release 10 times less carbon dioxide than 

conventional vehicles. Glitman et al. [221] conducted a carbon emission study on electric 

vehicles in Saudi Arabia. And reveal that for every 1% of electric vehicles implemented, carbon 

emissions are decreased by 5%. In the best-case scenario, introducing 1% electric vehicles 

reduces carbon emissions by 0.9%. Using the Hybrid LCA methodology, Xiong et al. [223] 

examined the CO2 emission reduction potential of China's large-scale vehicle electrification. The 

findings of review indicate that individual PEVs had lower life cycle CO2 emissions (g/km) than 

equivalent conventional vehicles in all scenarios. In summary, the LCA of electric vehicles could 

also be improved by the second life of batteries: use for other forms of mobility, for local 

stabilization of the electrical grid, or for other uses.  

Current research directions for Li-ion batteries are to: (i) selecting elements that are naturally 

abundant, (ii) favouring less energy-consuming methods of synthesis by soft chemistry, (iii) or 



 

 

developing electrodes based on organic materials. Furthermore, the progressive decarbonization 

of the electricity used in the battery manufacturing process should contribute to an improvement 

in their carbon balance. Other researchers have proposed the Well-to-Wheels life cycle analysis 

model to calculate the energy consumption and GHG emissions of several EVs [224,225]. Based 

on these studies it can be interfered that battery recycling and the transition to renewable power 

contributes to the environmental benefits of EVs. 

 

3.6. Mining resources 

 

Li-ion technologies appear to be one of the best alternatives for electric vehicle batteries for 

many manufacturers in terms of on-board power, lightweight, reliability, life span, and 

manufacturing cost [226]. The large-scale manufacture of batteries for electric vehicles requires 

the construction of very large factories (called Gigafactories), capable of producing daily 

thousands of batteries, equivalent to GWh of electrical energy consumption per year [227]. All 

Li-ion batteries are composed of a lithium-based liquid electrolyte, which interfaces between an 

anode, mainly composed of graphite, and a cathode [54,228]. However, there are several variants 

of chemical compositions for the anode and cathode materials. The main impact on performance, 

cost and the quantity of materials used has so far been on the choice of metals for the cathode. 

These are mainly lithium, cobalt, nickel and manganese [229]. 

In 2007, 82% of Li-ion battery cathodes were made of lithium Cobaltate (LiCoO2) or its 

abbreviation LCO [230]. The evolution of cathode chemistry has subsequently favoured the 

development of so-called NMC (Nickel-Manganese-Cobalt) formulations, offering greater 

energy capacities while progressively limiting the use of cobalt in the cathode. The "333" NMC 

formulation, in which the atomic contents of nickel, cobalt and manganese are identical (1/3 Ni, 

1/3 Mn, 1/3 Co), has really been dethroned in favour of the "622" formulation (60% Ni, 20% Mn 

and 20% Co), which is currently on the market [231]. Work is currently underway to improve the 

behaviour of the next generation – called NMC "811" (80%Ni, 10%Mn and 10%Co) – which to 

date has the disadvantage of a lower cycling life, but the advantage of containing even less cobalt 

and more nickel, again due to the tensions on cobalt and its high prices [232]. 



 

 

The availability of these materials in sufficient quantities and qualities therefore directly 

conditions the development of the battery electric vehicle market. To reduce the predicted 

demand on battery resources, it is also essential to recycle batteries [233–235]. Although the 

technologies already exist, they still need to be industrialized. One of the difficulties for battery 

recycling industries is to be competitive with mineral extraction [236]. However, if the price of 

these resources increases, recycling could become profitable.  

 

4. EV charging infrastructures 

Electric vehicle supply equipment (EVSE) or electric vehicle charging station (EVCS), is an 

electrical component assembly designed specifically to deliver electrical energy from the 

electricity source to an EV and PHEV. It involves cords, connectors, and interfaces. As shown in 

Fig.14, EVCS can be divided into three major categories, based on the mode of energy transfer 

which involves conductive charging, inductive charging, and the battery swapping [237,238]. 

 

 

Fig. 14. EVCS classification 

 



4.1. Conductive charging systems 

Conductive charging method transfers power from the utility grid to EV through direct metal-to-

metal contact. This method involves conductor to connect the electronic devices to the extent of 

energy transfer. This method is simple, robust, and highly efficient [239]. Specific power 

configurations differ from each country depending on voltage, electrical grid connection, 

frequency, and transmission standard. According to the Society of Automotive Engineers (SAE), 

the charging level can be categorized as alternating current (AC) level 1, AC Level 2, direct 

current (DC) Level 1 and DC Level 2. While the International Electrotechnical Commission 

(IEC) defines four modes of EV charging, namely, AC Mode 1 (Slow), AC mode 2 (slow), AC 

mode 3 (slow/fast), DC mode 4 (fast) based on IEC 61851. Similarly, in the Chinese standard 

GB/T 20234.1-2015. However, a recent detailed review of all EVSE standards have been 

presented by Das et al. [12]. Thus, a summary of standards characteristics for each type of 

charging systems in North America, Europe, and China [240–246] is given in Table.3. For 

levels 1 and 2, the conversion of the utility AC power to the DC power required for battery 

charging occurs in the vehicle’s on-board charger. In DC Fast Charging, the conversion from AC 

to DC power typically occurs off board, so that DC power is delivered directly to the vehicle as 

presented in Fig.15.  



 

 

 

Fig. 15. EV charging infrastructures 

 

Another difference between these charging standards remains in the connector design, for AC 

charging the SAE J1772 and the IEC 62196-2 type 1 and type 2 connectors are used for both 

level 1 and level 2, while for DC charging the popular standard SAE J1772 Combo and 

CHAdeMO Japanese standard are the only standards that can be used (see Fig.16), while Tesla 

has designed its own connector for both AC and DC charging.  

 



 

 

 

Fig. 16. Chargers and connector types 

 

The cost of conductive charging infrastructure is depending on each level. For example, the cost 

of the AC level-1 takes less than $880 [247]. Level-1 charging equipment is portable, suitable for 

residential applications and does not require the installation of specialized infrastructure [248]. It 

uses a 120 V AC connection and takes approximately 8–12 hours to fully charge a depleted 

battery, depending on battery size and type and the input power. For level-2, the charging 

infrastructure for home or public applications costs approximately around $1000 to $3000 [247], 

and the charging time take around 2–6 hours to fully charge an EV battery depending upon the 

input power. This charging level requires an AC power range of 208–240 V, and it is suitable for 

all EVs and PHEVs. The infrastructure installation costs for Level-3, also known as DC fast 

charging, vary from $30,000 and $160,000 [247], and it’s widely used in public or commercial. 

This charging level requires an off-board charger and uses 208–600 V AC or DC commercial 

three phase out, taking around 15–20 min to provide 80% of charge for EV battery, depending on 

battery size and type, the input power, and temperature.  



 

 

4.2. Wireless charging system 

Wireless or inductive charging system is based on the principle of mutual induction for 

transferring power between the grid system and electric vehicle without any physical contact. 

This wireless link can efficiently prevent sparking over plugging and unplugging [249,250]. 

Thus, wireless charging system gives the possibility for dynamic charging while driving the 

vehicle. Numerous companies worldwide, particularly in the UK, Germany and Korea, are 

working to develop this flexible and convenient method for charging EVs that does not require 

bulky cables [250]. Wireless charging infrastructure for EV can be classified into three main 

categories: Static wireless charging (SWC), dynamic wireless charging (DWC) and quasi 

dynamic wireless charging (QWC) [251–254]. SWC is similar to current plug-in chargers, it has 

two coils; one is installed in the charger outside the EV while other coil is the integral part of the 

EV (see Fig.15), both coils must be properly aligned to achieve the high efficiency of power 

transfer [255]. Dynamic inductive charging system has the possibility to charge the vehicle while 

it is moving. Thus, in this charging technology special charging tracks are placed on the roads 

and provides energy to the battery, which increase the driving range of EV and reduce the 

batteries size [256,257]. Quasi-Dynamic inductive charging systems are generally installed in 

traffic light signals, taxi stops, or bus stops and provide energy to battery even for small interval 

[11]. 

Since the appearance of wireless power system for vehicular charging purposes, there was a need 

for standardization. Promotional activities towards creating a standard for WPT systems for 

charging electric vehicles have been ongoing for several years. For instance, in October 2020, 

the Society of Automotive Engineers (SAE) established the SAE J2954-2020 "Wireless Power 

Transfer & Alignment for Light Duty Vehicles” [258,259], as an attempt to supply electric 

vehicles (EVs) with a safe and efficient way of transferring electricity from a charging station to 

the vehicle. Furthermore, in the near future, vehicles that can be charged wirelessly by 

SAE J2954 can also be conductively charged by SAE J1772 plug-in charging. The SAE J2954-

2020 standard specifies different charging levels for wireless charging, based on the previous 

SAE J1772 standard for conductive charging (AC levels 1, 2, and 3), with certain differences. It 

describes WPT system requirements such as input power classes of 3.7 kW (WPT1), 7.7 kW 

(WPT2), and 11 kW (WPT3), while including some criteria that concern ground clearance 



 

 

ranges, frequency of operation, efficiency targets, EMC limits, and safety requirements as well 

as testing of charging systems for light duty EVs. Thus, there are three types of ground 

clearances Z1 (100–150 mm), Z2 (140–210 mm), and Z3 (170–250 mm) established for each 

power class. This ground clearance signifies the air gap between the bottom of the receiver coil 

and the ground floor. It is important to mention that this version SAE J2954 focuses only on 

unidirectional charging and stationary applications, bidirectional and dynamic charging may be 

evaluated and considered for a future standard. Elsewhere, the guidelines for wireless power 

transfer communication between an electric vehicle and an inductive battery charging system are 

released by the SAE J2847/6 [259]. Table.4 presents the WPT classes for passenger cars. The 

WPT1 power class is generally used for vehicles with small battery packs, such as plug-in hybrid 

vehicles, while the WPT2 and WPT3 power classes will be the dominant charging level for most 

light-duty battery electric vehicles. The charging time depends on the battery pack size but 

receiving a full charge in around 4–6 hours is considered sufficient as most charging will occur 

at home or work where vehicles are typically parked for hours. 

The economic feasibility of wireless charging technology has received little attention due to its 

novelty. Generally, this economic viability depends on several factors including the road 

coverage, the power supply, the EV penetration level, and battery capacity [260]. Elsewhere, the 

magnetically coupled transmitter and receiver differentiate a stationary wireless charging system 

from a conventional wired charging system [261]. This implies that the cost of purchasing and 

installing an 8-kW stationary wireless charging system to be about $400 [262]. When 

considering the long-term cost benefits and convenience that the stationary wireless charging 

system can provide, this cost can be acceptable to consumers [263]. Jae Jang et al. [27] assess 

and compare the initial investment of implementing three forms of wireless charging (SWC, 

QWC, and DWC) in a proposed public transportation system. It is mentioned that the cost of 

batteries and charging infrastructure will differ significantly depending on the type of wireless 

charging solution selected. DWC drastically reduces the high investment costs of typical plug-in 

EVs by allowing the batteries to be downsized [249]. Likewise, battery costs can be reduced by 

installing chargers at various bus stops. Furthermore, DWC would be cost competitive because it 

would make efficient use of the existing charging facilities, since many cars would use the same 

road segments equipped with a charging system. 



 

 

The OLEV is one of KAIST’s newly commercialized wireless-charging for EVs. This system is 

designated as a DWC type and extensive technical details can be found in [264,265]. Related 

pilot programs have recently started in several countries [24]. Based on the WPT systems built 

and tested in recent few years, the WPT technology cost can be estimated. Thus, the third 

generation OLEV cost was 1,069 M$/km [266], while the cost for the fourth generation was 

reduced to 0.85 M$/km. The cost of power supply system is estimated to be 0.235 M$/km [267]. 

Depending on these costs, several authors have investigated the economic impact of DWPT 

system. Shekhar et al. [268] presented a mathematical model that estimates the cost and road 

coverage for various DWPT power levels (between 0.7-1.2 M$/km) for a driving range of 

400 km. Jeong et al. [269] have used this model to investigate the economic impact of DWPT 

system compared to stationary charging from a battery capacity reduction point of view. They 

projected the average expense of the DWPT system over a ten-year term and found that the total 

cost of the DWPT system is approximately 20% lower than the system cost of a stationary 

charging system. Bi et al. [270] confirmed that the wireless charging system has the lowest 

cumulative cost over its lifetime, in comparison with ICE, plug-in hybrid system. Fuller et al. 

[271] estimated the cost of installing 626 miles of roadways in California with 40 kW DWPT 

system to be $2.5 billion. With a target of a payback time of 20 years, and a total number of EVs 

of 300,000, the costs per vehicle and year would be $512. This cost can be reduced to $168 a 

year per vehicle if the EVs penetration is increased to 1 million. In summary, although the high 

initial investment cost of WPT technology that depends on to the high construction, installation 

and maintenance costs, this technology would still costly effective and competitive for long-term 

consideration, especially with a fast development and a higher penetration of EVs. 

 

4.3. Battery swapping stations 

 

Battery swapping station (BSS) also known as battery switching station is a place where electric 

vehicle owners can rapidly exchange their empty battery with a fully charged one (see Fig.17). 

This concept has been proposed as a new method to handle the obstacles regarding to the 

aforementioned traditional charging methods [272,273]. There are currently three battery swap 

types on the industry: chassis power swap, sub-box power swap, and side power swap [274]. The 



 

 

general outline of battery swap systems is given by the IEC 62840-1,-2 [275,276], and NB/T 

33006-2013, NB/T 33020-2015 with a maximal voltage up to 1 000 V AC and up to 1 500 V 

DC. It is claimed that the use of battery swapping station is advantageous, given the ability of 

this technology to refuel the EVs in a rapid way [277]; for example, Tesla swaps an EV battery 

in 90s [278], preventing waiting anxiety [279], and giving EVs the possibility to travel nonstop 

on long road trips. As the EV’s owner does not own the battery in the car, a reduction EV’s total 

cost is advantageous [238]. Thus, the cost over the battery, battery maintenance, quality, and 

warranty are transferred to the battery swapping station company. Furthermore, discharged 

batteries that are exchanged can be charged when electricity price is cheap and in an off-pick 

period [280]. Moreover, the overloading, the network stress and the uncertainty in time of 

charging caused by mass EV charging, can be disappeared by controlled charging in BSS 

[238,281]. Other advantages include that the battery life expectancy can be prolonged because 

the battery swap station has the possibility to charge batteries with lower voltage compared to 

rapid charging stations.  

With the rise of e-mobility services, this new technology as a new refuelling option has been 

considered in several countries worldwide including China, Denmark, Germany, and India. For 

instance, China has developed the world’s most BSS and charging spots [282] and aims to 

achieve 12,000 battery swapping stations by the end of 2020 in order to meet the charging 

demand of the growing EVs penetration [283,284]. While India has launched its first battery 

swapping station for EVs, in order to facilitate the EV adoption [285]. The BSS adoption has 

been seen elsewhere; in Germany the idea of battery swapping station is associated with the use 

of photovoltaic plants in urban areas [286]. Other companies that have recently started to provide 

battery swapping facilities include NIO, Gogoro, and BattSwap. 

 



 

 

 

 

Fig. 17. Battery Swapping Station 

 

In recent few years, several papers in literature discuss the BSS adoption. In [287], it’s shown 

that an optimal BSS placement can handle the issue of travel distance, and can avoid the battery 

range anxiety. However, the BSS technology can be implemented in a Micro-grid or a network 

of Micro-grids instead of distribution networks. Thus, this concept is considered in [288], in 

terms of energy management and battery charging optimization. In addition, a study in [289] 

presents the benefits of BSS integration in networked nano-grids regarding the renewable energy 

resource, the reduction of fuel cost, and resilience enhancement. The influence of the BSSs on 

the distribution network reliability is discussed in [290,291]. In these papers authors indicate that 

the optimal BSSs scheduling and the behaviour of EVs users can enhance the reliability of the 

system. Indeed, authors in [292] and [293], propose the application of BSS in order to schedule 

the electric buses charging. While in [294], various battery swap pricing schemes and charging 

policies for the BSSs are proposed. However, authors in [295,296] expect that the use of battery-

swap services can reduce the fleet size and the number of chargers. Elsewhere, the participation 

of BSSs in the global electricity market has been discussed in [297], and it has been 

demonstrated that BSSs can acquire a higher revenue while responding actively to the electricity 

price fluctuation. Moreover, a comparative study between BSS and the fast-charging station in 

terms of performance is presented in this paper [238]. Findings indicate that BSS is more suitable 

for public transportation system and more competitive for BSS owner. 



 

 

 

Table 3. Standards characteristics for conductive charging systems in North America, Europe and China 

Standards Characteristics 
Nominal 
Supply 

voltage (V) 

Grid 
phases 

EVSE 
Output 

Max. 
Current 

(A) 

Operating 
Frequency 

(Hz) 

Max. 
Power 
(kW) 

Charging 
time (h) 

Charger 
type 

Charger 
location 

Typical use EVSE cost 
($) 

C
o

n
d

u
ct

iv
e 

ch
a
rg

in
g
 

North 

America 

SAE 

J1772 

L
ev

el
s 

A
C

 1 120 1 AC 12-16 50/60 
1.44 -
1.92 

8-9 
Type 1 
Type 2 

On-board 
Home or 

office 
< 880 

2 208-240 1 AC 40-80 50/60 
Up to 
19.2 1-3 Type 2 On-board 

Private or 
public 

$1000 to 
$3000 

D
C

 

1 50-1000 - DC 80 50/60 80 0.5 -1.5 CHAdeMO 
CCS 

Off-board Public, 
commercial 

30,000 
160,000 

2 50-1000 - DC 400 50/60 100 0.2- 0.58 
CHAdeMO 

CCS 
Off-board 

Public, 
commercial 

30,000 
160,000 

Europe 

 

IEC 

61851-1, 

61851-23 

62196-2, 

 

M
o

d
es

 

1 250-480 1-3 AC 16 50/60 3.7 5.5 Type 1 On-board 
Home or 

office < 880 

2 250-480 1-3 AC 32 50/60 22 1.0 Type 2 
Mennekes 

On-board Private of 
public 

$1000 to 
$3000 

3 250-480 3 AC 63 50/60 44 0.5 
Type 2 

Mennekes 
On-board 

Public, 
commercial 

30,000 
160,000 

4 1000-1500 - DC 300 50/60 200 0.1 
CHAdeMO 

CCS Off-board 
Public, 

commercial 
30,000 

160,000 

China 

GB/T 

20234.1, 

20234.2, 

20234.3, 

18487.1 

M
o

d
es

 

1 Prohibited 

2 250 1 AC 
10/16/3

2 50/60 3.7-22 3-5 GB/T On-board 
Private of 

public $300 to $500 

3 440 1-3 AC 16/32/6
3 

50/60 22-44 1-3 GB/T 
 

On-board Public, 
commercial 

$7000-10000 

4 750/1000 - DC 
80/125/ 
200/250 

50/60 250 0.2- 0.58 
GB/T 

CHAdeMO 
Off-board 

Public, 
commercial 

$7000-10000 

 

 

 

 



 

 

  

Table 4. Standards characteristics for wireless charging systems in North America, Europe and China 

Standards Characteristics 

 
Rated 
Power 
(kW) 

Air Gap 
(mm) 

Target 
efficiency 

Nominal 
Supply 

voltage (V) 

Resonant 
Frequency 

(kHz) 
Typical use EVSE cost ($) 

W
ir

el
es

s 
c
h

a
r
g
in

g
 

North 

America 

 

SAE 

J2954 

J1773 W
P

T
 C

la
ss

es
 1 3.7 

S
u

p
p

ly
 d

e
v
ic

e 

Z
cl

a
ss

Z1: 100–150 
 

Z2: 140–210 
 

Z3: 170-250 

85% 
Up to 1000 

AC 
1500 DC 

81.38-90 

Home or office 
 

 

SWC: 

 

Charger at the base 
station 

$40,000-$60,000 
 
 
 

QWC: 

 

Charging unit and 
inverter 

$50,000-$60,000/unit 
 
 

DWC: 

 

Power transmitter 
$400-$600/m 
Inverter unit 

$50,000-$60,000/unit 

2 7.7 Private/Public Parking 

3 11.1 Private/Public Parking 

4 22 Private/Public Parking 

Europe 

 

IEC 

61980-1 

61980-2 

61980-3 

 M
F

-W
P

T
 C

la
ss

es
 1 3.7 

S
u

p
p

ly
 d

e
v
ic

e 
Z

-

cl
a
ss

Z1: 100-150 
 

Z2: 100-210 
 

Z3: 100-250 

80- 85% 
Up to 1000 

AC 
1500 DC 

81.38-90 

Home or office 

2 3.7-7.7 Private/Public Parking 

3 
77.7-
11.1 Private/Public Parking 

4 11.1-22 Private/Public Parking 

5 >22 Private/Public Parking 

China 

 

GB/T 

38775-1 

38775-2 

38775-3 

38775-4 

M
F

-W
P

T
 

1 3.7 

TBD TBD 
Up to 1000 

AC 
1500 DC 

81.38-90 

Home or office 

2 3.7-7.7 Home or office 

3 7.7-11.1 Private/Public Parking 

4 11.1-22 Private/Public Parking 

5 22-33 Private/Public Parking 

6 33-66 Private/Public Parking 

7 > 66 Private/Public Parking 



 

 

4.4. Optimal placement and sizing of EVCS 

 

The EVCSs placement and sizing is recognized as being one of the most complex problems 

related to EVCS, due to the increased use of vehicles powered by alternative fuels, and the 

limited range and limited access to charging stations [298,299]. However, an appropriate 

implementation of EVCSs is mainly important to reduce the energy loss in electric grid and 

EVs [300], and to meet the increased charging demand, while improving the sustainable 

planning of urban infrastructures. A literature reviews showing the state-of-the-art of 

technologies and latest trends concerning the EVCS placement and their impacts can be found 

in [239,299]. In literature, several studies deal with these issues while providing different 

approaches to size and define the optimal placement for charging infrastructures. The studies 

specifically consider two aspects: one is economic, while the other focus on topics related to 

the power grid. The ultimate goal is to determine EVCS’s strategic location and size through 

optimization techniques that minimize total costs while maintaining the safety of the power 

system. Different heuristic optimization algorithms have been used to solve with this problem. 

For instance, researcher in  [301,302] have used modified genetic algorithm (GA) to solve the 

optimal EVCS placement and sizing problems. Particle swarm optimization (PSO) has been 

used in [303,304] with the target to find optimal solution with higher possibility and 

efficiency. In [305,306] Integer programming (IP) is used to identify the optimal location for 

EVCS placement. Furthermore, Ant colony optimization (ACO) method has been also used in 

this paper [307] to evaluate optimal EVCS placement. In relative studies, greedy algorithm 

has been proposed in [308] to prove the heuristic optimization at each stage. It is claimed that 

the use of heuristic algorithms is advantageous, given the ability of these methods to find the 

global or near-global optimal solution even though the problem is very complex. Thus, 

particle swarm optimization provides the advantages to obtain a global optimal solution with 

higher possibility and accuracy compared to other methods. However, the main shortcomings 

of PSO are low precision and easy divergence. Otherwise, genetic algorithms are easy to 

implement, suitable for placement problems, but also requires long computational time to find 

the optimal solution. Similarly, Ant colony optimization presents a rapid way for discovering 

good solution. Nonetheless, ACO's time to convergence is uncertain. Furthermore, integer 

programming methods are simple to apply but they only work with linear variables and 

cannot potentially solve stochastic problems. Elsewhere, other practical and effective methods 

in terms of computational costs, have been presented in literature to investigate and improve 



 

 

the EVCS placement strategies such as clustering methods [309], Network Equilibrium 

models [310], Flow Capturing models [311], dynamic spatial and temporal models [312,313], 

simulation-based models [314,315], set covering models [316,317], Continuous facility 

location models [318], Route Node Coverage problem [314,319], Mathematical programming 

models [320,321], Graph theory [322], data-based methods [323–325], artificial intelligence 

[326], and stochastic modelling [327].  

All these approaches have provided important contributions from different viewpoints on the 

optimal EVCS placement and sizing problem. Thus, most researchers apply single 

optimization methods, whereas other researchers apply hybrid techniques by using a 

combination of these methods while considering different criteria and constraints. For 

instance, Sadeghi-Barzani et al. [328] used the Mixed-Integer Non-Linear optimization 

approach to select the optimum location and size of the fast-charging stations considering EV 

energy loss and electric grid loss and urban roads. The outcomes showed the robustness and 

effectiveness of the proposed approach for picking the optimal location and capacity of 

charging stations. Injeti et al. [329] used a combination between PSO and Butterfly 

Optimization (BO) algorithms to optimize the integration of distributed generators (DGs) into 

radial distribution systems in the presence of plug-in EVs in order to reduce daily active 

power losses and improve the system voltage profile. The simulation results show that the 

suggested solution enhanced system performance in every aspect. Fathy et al. [81] proposed a 

metaheuristic-based strategy for locating and sizing parking areas in the distribution network. 

The study’s primary goal was to increase network robustness at the lowest possible expense. 

The problem was optimized using various algorithms, and the final results revealed that the 

Gray Wolf optimizer (GWO) provides the best performance. Cilio et al. [325] suggested a 

novel data-driven framework using real-time GPS information for installing suitable rapid 

EVCS in large urban areas, to assess the smallest possible facilities for a level of charging 

availability that guarantees continuous electric taxi service in Istanbul, Turkey. This research 

has also shown the realistic trade-off between initial economic expenditures in infrastructure 

implementation and the level of charging accessibility in the domain. According to their 

findings, an appropriate charging infrastructure to support a fully electric taxi fleet of 17,395 

vehicles in a major city like Istanbul should include approximately 1,363–1,834 charging 

stations, depending on the roll-out strategy. They also demonstrate that small changes in the 

number of charging stations (less than 1,300 charging stations in this case study) will result in 

significant changes in taxi charging availability, and reliability of taxi services. Chen et al. 



 

 

[330] proposed a Balanced Mayfly Algorithm (BMA) to find the optimal placement of EVCS 

to 30-bus distribution system in Allahabad, India. The simulation results reveal that the 

proposed approach, with an active power loss of 18.358 MW and a reactive power loss of 

73.826 MVar, and 415 charging ports, provides better performance with lower power losses. 

A recent approach to the issue of charging station placement is found in [331], where two 

effective evolutionary algorithms, Chicken Swarm Optimization (CSO) and Teaching 

Learning Based Optimization (TLBO), are combined to extract the best features of both 

algorithms. The proposed hybrid algorithm clearly outperformed others in addressing the 

charging station location issue. Jordehi et al. [332], formulated a mixed-integer non-linear 

optimization problem to find the optimal placement of battery swapping stations in microgrid 

including geothermal, pumped hydro storage, photovoltaic, and wind power plants. The 

results indicate that choosing the optimal location for BSSs is crucial, as the difference in 

daily microgrid operating costs between the best and worst locations is as high as 4.9%. For 

dynamic ridesharing, Ma et al. [333] established an online vehicle-charging station 

assignment model, and improved the location of fast-charging stations by incorporating 

charging management to reduce the fleet’s regular charging service time. In this study, a 

surrogate-assisted optimization approach is adopted, and the proposed methodology has been 

evaluated in Luxembourg on a realistic scalable bus service. The findings reveal that the 

proposed online charging strategy could significantly minimize fleet charging times while 

compared to other approaches. Thus, with the installation of 10 extra DC fast chargers, 

charging time can be decreased by up to 27.8%. Today, there are several web sites available 

that summarize charging stations and map them to reduce the fleet’s congestion and charging 

time. For instance, ChargePoint and PlugShare operate the world's largest network of  EVCS 

in North America and Europe [334,335]. 

Nevertheless, inappropriate placement and sizing of electric vehicle charging stations had a 

negative effect on the traffic network infrastructure in the region, as well as the suitability of 

EV drivers [336]. An adequate choice these methods can be based on different criteria such as 

the computational time, the cost, and the convergence.  

5. Services that an EV can provide 

 

Electric vehicles appear to be the future solution to ensure mobility independent of fossil 

energy resources and non-emitting CO2 during use [337,338]. The use of electric vehicles is 



 

 

not restricted to transportation, but it also covers the electricity sector. They could enable 

many ancillary services to the grid, such as voltage regulation [339], load levelling [23], 

spinning reserve [340], and storage [22] and so on. At residential level, according to 

Marinescu et al. [341,342],  enhancing the currently existing millions of household RES 

Microgrids with an EV charging capability would improve the utility grid by providing to 

leverage distributing RES to prevent overcharging [341]. However, increasing the penetration 

of EVs brings new challenges to the distribution system operator (DSO) and require new 

approaches and strategies to integrate these active distributed resources in sizeable quantities 

as well as the aggregator [343–345]. The aggregator is a necessary entity to implement the 

V2G concept [346]. It is an upstream link to various network entities. Through this concept, 

using EV battery as a storage medium for the network when it is connected can be a possible 

solution for load balancing and for reducing the ownership cost of an EV [344,347]. Also, 

with the development of intelligent and bidirectional charging stations, electric vehicles have 

the ability to transfer energy to the power grid (V2G), to EVs (V2V), and to the residential 

(V2H) or tertiary (V2B) buildings to which they are connected [5,348] (see Fig.18). These 

concepts allow buildings to be deleted from the power grid during critical peak periods and 

thus contributes to its reliability.  

The worldwide V2G projects and corresponding key insights are mapped out in [349]. Since 

2009, there have been 86 projects involving V2G systems in 22 countries, with approximately 

59% proof of concept trial, 20.5% small-scale commercial trial, and 2.6% are services 

produced commercially. Great Britain with 43, the United States with 27, and Netherland with 

19 offered services are top three countries in terms of offered V2G services. Among top 14 

vehicle manufacturers that have participated in the V2G projects, Nissan, Mitsubishi, Honda, 

Fiat-Chrysler, and Renault have the biggest share of these projects, about more than 68% of 

the total projects. In recent few years, several V2G feasibility analyses have been undertaken 

to better understand the potential applications of EVs [23,350–352], the economic and 

environmental impact of V2G system [352–357], and to present strategies for its positive 

emergence in power systems [358–360]. For instance, authors in [350,353] have proposed the 

adoption of V2G technology and demonstrated that V2G can improve the quality and 

reliability of the power system. Bibak et al. [360] show that integrating EVs and V2G systems 

in power supply with high RESs improves power grid reliability in terms of reducing total 

cost and emission levels. Muhammad Aziz et al. [23], performed a peak load shifting by using 

5 EV, used EV batteries, and 20 kW PV panels as RES. They demonstrated that the 



application of this system in supporting certain small-scale energy management systems is 

feasible. Sarabi et al. [351] assessed the real potential use of EV to provide a fast response. 

They modelled the available V2G power of the EV fleets in Niort, a city in west of France. 

According to their findings, EVs may participate in the grid ancillary services sector to reduce 

their daily operating costs in the deregulated energy market. 

Fig. 18. V2X topology 

From an economic standpoint, the use of EVs in V2G is possible since the estimated profit is 

higher than the actual selling price of EV batteries, even though battery wear is considered 

[357]. In another study, Huda et al. [352] focused on the potential use of EVs in the 

Indonesian power grid, especially for load levelling and frequency regulation. Results reveal 

that both the power company and EV owner can benefit from the V2G implementation; For 

the EV owners, the charging cost of EVs can be reduced by up to 60.15%. From power 

company point of view, the V2G can improve annual revenue by approximately 3.65%, whilst 

the peak supply from fossil fuels is effectively reduced by up to 2.8%, and 8.8% for coal and 

gas, respectively. Xinzhou Li et al. [356] conducted a cost-benefit analysis of V2G EVs 

supporting peak shaving in Shanghai, taking into consideration four brands of electric 

vehicles. The results exhibit that power plants have the most benefits of the three participants, 



 

 

significantly surpassing those earned by EV owners, and recommend the establishment of a 

fair market distribution mechanism of V2G profits among three participants to guarantee a 

rational distribution of benefits. In similar analysis, Gough et al. [355], investigate the 

economic potential of 50 EVs with V2G in the United Kingdom. They demonstrated the 

economic attractiveness of EVs with smart charging could provide a significant source of 

income, resulting in an individual vehicle net present value of around £8400 over 10-year 

period. In this another study, Brinkel et al. [353] investigated whether grid reinforcements are 

appealing from a cost or emissions standpoint in the light of massive EV penetration. The 

study’s findings reveal that using V2G will result in significant reductions in EV charging 

costs and emissions even with the current transformer capacity. They indicate a cost savings 

of up to 32.4% compared to uncontrolled EV charging. Also, emissions can be reduced by 

23.6% while EV charging costs can be reduced by 13.2%. 

From the previously mentioned works, several barriers are identified, and here are some 

requirements that must be fully fulfilled, to benefit from EVs thought the V2G concept in a 

positive way: 

• Optimal management methods for mitigating grid challenges with electric vehicles 

[359]. 

• Smart metering system that ensures accurate measurement and improve the fairness 

and transparency during charging and discharging process is essential and can be 

implemented in the aggregator level. 

• A reliable market forecast that takes into account the weather conditions and human 

behaviour is critical for determining the peak-cut threshold [23]. 

• One of the most common concerns that EVs owners have about participating in the 

V2G scheme is exchanging data and information about their location, driving 

activities, charging places, and so on with aggregators and central power units. So, an 

efficient and secure communication system is required [361], and new protocol can be 

developed especially with the successful implementation of 5G which is expected to 

be the future technology for V2X communications due to its speeds and other 

technical advances [362]. 

• Further market models of encouraging policies, competitive tariffs, tax reduction, and 

subsidies are needed to encourage the EV owner to participate in V2G system.  

 



6. Incentives to accelerate EVs adoption

Numerous policy incentives have been adopted in recent years to support and promote the 

adoption of electric vehicles [363,364]. This meant to increase the attractiveness of EVs is an 

important way to boost EV sales [365]. As shown in Fig.19, these incentives can be classified 

into two main categories: financial incentives, non-financial incentives, or taking other forms 

as well as supporting charging infrastructures, raising consumers awareness and so one. 

Financial incentives refer to different forms of financial costs associated with EV purchase 

and use, and they may take many forms [16]: Point-of-sale Grant incentives; This incentive 

takes the form of government purchase reductions or grants and helps to reduce the cost of 

EVs at the time of purchase, for instance Consumers in Germany will save US$5500 from the 

cost of BEVs. Post purchase rebates; usually given as a cheque to consumers after purchasing 

the vehicle, for example in the United States BEV buyers can benefit from a rebate of 

US$2,500 after purchase. VAT and Purchase Tax Exemptions; Generally applied at the time 

of purchase, BEV customers can pay reduced to zero VAT to pay no sales tax on certain cars. 

For e.g. in China this opportunity is worth US$9,800. Income Tax Credits; This incentive 

entitles BEV users to a reduced income tax bill at the end of the fiscal year, for instance in the 

United States customers can pay US$7,500 less tax. Otherwise, financial incentives can take 

other forms such as free or preferred parking, free charging. 

Non-financial incentives refer to various types of non-monetary benefits that consumers can 

benefit with while owning an EV, such as the access to high occupancy vehicle (HOV) lanes, 

and toll road access [15,366]. Otherwise, incentives can take other forms like supporting 

charging infrastructure, raising information and awareness while providing consumers with 

the right information or educating them on the differences between EVs and ICEVs, and 

correcting misperceptions around energy savings, EV’s maintenance and reparation [365]. 

Understanding which incentive stimulate and promote EVs adoption is important to optimize 

the use of public funds and resources. In this way, several research in the literature analysed 

the effectiveness of financial and non-financial incentives for EV adoption, either through a 

questionnaire survey or an analysis of EV markets, or through other methodologies, such as 

qualitative surveys, literature or policy assessments [15,16,367]. Hardman et al. [16] 



 

 

investigate the effectiveness of financial incentives in the top market for EVs which are: 

Canada, China, France, Germany, Japan, Netherlands, Norway, United Kingdom, United 

States, with the aim to find whether financial purchase is effective in promoting EV sales. 

They indicate that buying benefits should be applied as a reward or VAT buy-tax exemption, 

and they recommend that the size of incentives should differentiate between EVs ranges that 

have different environmental and energy benefits. In line with these findings, Santos et al. 

[368] questioned whether electric vehicles need government subsidies in the United Kingdom. 

Results indicate that BEV needs large subsidies to be competitive. With a £4,500 rebate or 

exemption from 20% VAT, BEV mass market could be increased significantly in the UK. 

Similar conclusions are drawn from several studies in [369,370]. In another study, Langbroek 

et al. [365] demonstrate that free parking and access to bus lanes are efficient to potential EV 

users and increase the probability of EV adoption. According to Jenn et al. [371], every $1000 

provided as a rebate or tax credit boost annual sales of EVs by 2.6% in the United States, 

while HOV access generates 4.7% rise per 100 vehicles using lane per hour.  

Kester et al. [372] presented a qualitative study that addresses the reasoning underlying EV 

incentives and policy processes in the five Nordic countries. They demonstrate how the 

advantages and disadvantages of these policy structures differ by region, transport segment, 

market share, and even region. They provide expert advice in terms of costs, charging 

infrastructures, consumers’ knowledge and awareness, and more general policy directions. 

From this study it can be concluded that taxation policies are preferred over subsidies, even 

where no taxation exemptions are available. Also, strong, and stable national targets preceded 

by purchase price incentives and flexible local variable secondary benefits; as free parking, 

HOV/bus access, free charging, and toll exemptions are necessary to promote EVs, as well as 

more attention to consumer information and awareness campaigns. The effect of various 

government subsidies on the market share of BEVs in Australia was investigated by Cong et 

al. [373]. Since EVs are supposed to be costly expensive, the findings suggest that a refund on 

the initial expense of an EV is the most preferred monetary incentive. Thus, rebates on energy 

costs and parking fees are well received by Australians as a way of promoting EVs, while 

non-financial incentives are ineffective to promote EVs adoption.  

Lack of availability of recharging points also limits the deployment of EVs. According to 

[374], most light-duty electric vehicle chargers in 2019 are private chargers in homes, 

workplaces, and multi-dwelling buildings, while publicly accessible chargers accounted only 

for 12% of total chargers, most of which are slow chargers. Sierzchula et al. [375] 



 

 

investigated the effect of financial incentives and other socioeconomic variables on EV 

adoption in different countries. They found that supporting charging infrastructure has the 

most dominant policy effect on a country’s rate of new EV sales. Similarly, Mersky et al. 

[367] also revealed that charging infrastructures accessibility is highly related to EV adoption 

in Norway.  

Research on incentive policies has shown contradictory outcomes, including both 

effectiveness and ineffectiveness [376,377]. The consumers’ purchase intentions could 

depend on several factors such as the mechanism of government policies, consumer 

psychological factors, consumers’ perceptions of incentive policies and consumer social 

attributes, environmental concerns and so on [376,378]. In a recent study, Wu et al. [363] 

reviewed the China’s EV subsidy policy in a macro scope. They demonstrated that achieving 

the EV emission target solely through government subsidies would be difficult and concluded 

that the development of a future EV industry must shift from a policy-driven to a market-

driven model. 

Elsewhere, future studies may emphasize on the relationship between a country’s charging 

infrastructure accessibility and its EV penetration level as in [379]. Also, investment into 

R&D is required to improve the technological advancement of EV and production quality, 

this can increase the competitiveness and widespread adoption of EV [380]. Controlling 

production costs, providing convenient transport infrastructure, and distinguishing customers’ 

experiences of driving EVs from conventional vehicles are viewed as necessary strategies for 

current EV manufacturers to tap consumers’ deep desire and stand out in the highly 

competitive environment. 



 

 

 

Fig. 19. Types of policy mechanisms affecting PEVs adoption 

 

To reduce the emissions of transport, it is necessary to activate multiple levers. These levers 

must be implemented over the long term and require strong, coherent and constant 

involvement of the public authorities to give visibility and confidence to the players in their 

investment choices.   

 

7. Recommendations 

 

As mentioned earlier, there are several factors that influence the adoption of battery electric 

vehicles. Some of these have already been studied, but there is still work to be done to 

encourage the adoption of these vehicles.  



 

 

• To successfully decarbonize road transport while taking into account economic, 

ecological and social constraints, we believe that the electric motor will have to 

become widespread, and be powered by on-board batteries, coupled with the gradual 

deployment of recharging infrastructures to increase the autonomy of cars. 

• To improve the performance of the battery electric car, it is necessary to improve the 

energy density of the batteries, optimize the design, management system and 

integration of the battery system in the electric car. 

• Other actions are necessary to optimize electrical consumption such as reducing the 

mass of the car, improving its aerodynamics and installing a regenerative braking 

system. 

• Greater coordination and cooperation of policies are needed across different sectors 

specially the transport, energy sector, to foster the world transition toward clean 

energy, and to achieve the environmental objectives. 

 

8. Conclusion 

 

Electric vehicles are expected to become a sustainable part of the mobility scene and will 

continue to expand in the coming years, taking an increasingly large share of the market. 

Their economic viability without subsidies, still penalized by the current cost of batteries, 

should improve in the coming years and become competitive with internal combustion 

vehicles. Future batteries must also demonstrate that they represent a sustainable development 

breakthrough in order to be worthwhile. In addition to the issue of access to raw materials, the 

question of recycling is posed to ensure that, for example, the plastics scandal that nobody 

would have anticipated a century ago will not occur in this sector today. 

 

 

 

 

 

 

 



 

 

References 

 

[1] A.W. Thompson, Economic implications of lithium ion battery degradation for Vehicle-to-Grid (V2X) 

services, J. Power Sources. 396 (2018) 691–709. https://doi.org/10.1016/j.jpowsour.2018.06.053. 

[2] Tesla - Statistics & Facts | Statista, (n.d.). https://www.statista.com/topics/2086/tesla/ (accessed April 3, 

2020). 

[3] G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future 

perspectives, Renew. Sustain. Energy Rev. 89 (2018) 292–308. 

https://doi.org/10.1016/j.rser.2018.03.002. 

[4] L. Zhou, L. He, Y. Zheng, X. Lai, M. Ouyang, L. Lu, Massive battery pack data compression and 

reconstruction using a frequency division model in battery management systems, J. Energy Storage. 28 

(2020) 101252. https://doi.org/10.1016/j.est.2020.101252. 

[5] N.S. Pearre, H. Ribberink, Review of research on V2X technologies, strategies, and operations, Renew. 

Sustain. Energy Rev. 105 (2019) 61–70. https://doi.org/10.1016/j.rser.2019.01.047. 

[6] L. Noel, G. Zarazua de Rubens, J. Kester, B.K. Sovacool, Beyond emissions and economics: Rethinking 

the co-benefits of electric vehicles (EVs) and vehicle-to-grid (V2G), Transp. Policy. 71 (2018) 130–137. 

https://doi.org/10.1016/j.tranpol.2018.08.004. 

[7] M. Li, X. Wu, X. He, G. Yu, Y. Wang, An eco-driving system for electric vehicles with signal control 

under V2X environment, Transp. Res. Part C Emerg. Technol. 93 (2018) 335–350. 

https://doi.org/10.1016/j.trc.2018.06.002. 

[8] E. Apostolaki-Iosifidou, P. Codani, W. Kempton, Measurement of power loss during electric vehicle 

charging and discharging, Energy. 127 (2017) 730–742. https://doi.org/10.1016/j.energy.2017.03.015. 

[9] K. Uddin, T. Jackson, W.D. Widanage, G. Chouchelamane, P.A. Jennings, J. Marco, On the possibility 

of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated 

vehicle and smart-grid system, Energy. 133 (2017) 710–722. 

https://doi.org/10.1016/j.energy.2017.04.116. 

[10] Ö. Gönül, A.C. Duman, Ö. Güler, Electric vehicles and charging infrastructure in Turkey: An overview, 

Renew. Sustain. Energy Rev. 143 (2021). https://doi.org/10.1016/j.rser.2021.110913. 

[11] M.R. Khalid, M.S. Alam, A. Sarwar, M.S. Jamil Asghar, A Comprehensive review on electric vehicles 

charging infrastructures and their impacts on power-quality of the utility grid, ETransportation. 1 (2019) 

100006. https://doi.org/10.1016/j.etran.2019.100006. 

[12] H.S. Das, M.M. Rahman, S. Li, C.W. Tan, Electric vehicles standards, charging infrastructure, and 

impact on grid integration: A technological review, Renew. Sustain. Energy Rev. 120 (2020). 

https://doi.org/10.1016/j.rser.2019.109618. 

[13] T.U. Solanke, V.K. Ramachandaramurthy, J.Y. Yong, J. Pasupuleti, P. Kasinathan, A. Rajagopalan, A 

review of strategic charging–discharging control of grid-connected electric vehicles, J. Energy Storage. 

28 (2020) 101193. https://doi.org/10.1016/j.est.2020.101193. 

[14] H. Khayyam, J. Abawajy, B. Javadi, A. Goscinski, A. Stojcevski, A. Bab-Hadiashar, Intelligent battery 

energy management and control for vehicle-to-grid via cloud computing network, Appl. Energy. 111 

(2013) 971–981. https://doi.org/10.1016/j.apenergy.2013.06.021. 



 

 

[15] J. Kester, L. Noel, G. Zarazua de Rubens, B.K. Sovacool, Policy mechanisms to accelerate electric 

vehicle adoption: A qualitative review from the Nordic region, Renew. Sustain. Energy Rev. 94 (2018) 

719–731. https://doi.org/10.1016/j.rser.2018.05.067. 

[16] S. Hardman, A. Chandan, G. Tal, T. Turrentine, The effectiveness of financial purchase incentives for 

battery electric vehicles – A review of the evidence, Renew. Sustain. Energy Rev. 80 (2017) 1100–1111. 

https://doi.org/10.1016/j.rser.2017.05.255. 

[17] EV-Volumes - The Electric Vehicle World Sales Database, (n.d.). https://www.ev-volumes.com/ 

(accessed May 27, 2021). 

[18] Deloitte Insights, Electric vehicles setting a course for 2030., (2020). 

https://www2.deloitte.com/content/dam/insights/us/articles/22869-electric-vehicles/DI_Electric-

Vehicles.pdf. 

[19] T. Dimsdale, Rules of the Road: The Geopolitics of Electric Vehicles in Eurasia, 2019. 

https://www.e3g.org/docs/12_6_19_E3G_Geopolitics_of_EVs_PDF.pdf. 

[20] R.R. Kumar, K. Alok, Adoption of electric vehicle: A literature review and prospects for sustainability, 

J. Clean. Prod. 253 (2020) 119911. https://doi.org/10.1016/j.jclepro.2019.119911. 

[21] M. Boulakhbar, B. Lebrouhi, T. Kousksou, S. Smouh, A. Jamil, M. Maaroufi, M. Zazi, Towards a large-

scale integration of renewable energies in Morocco, J. Energy Storage. 32 (2020) 101806. 

https://doi.org/10.1016/j.est.2020.101806. 

[22] A. Colmenar-Santos, A.M. Muñoz-Gómez, E. Rosales-Asensio, Á. López-Rey, Electric vehicle charging 

strategy to support renewable energy sources in Europe 2050 low-carbon scenario, Energy. 183 (2019) 

61–74. https://doi.org/10.1016/j.energy.2019.06.118. 

[23] M. Aziz, T. Oda, T. Mitani, Y. Watanabe, T. Kashiwagi, Utilization of electric vehicles and their used 

batteries for peak-load shifting, Energies. 8 (2015) 3720–3738. https://doi.org/10.3390/en8053720. 

[24] C. Concordia, Voltage instability, Int. J. Electr. Power Energy Syst. 13 (1991) 14–20. 

https://doi.org/10.1016/0142-0615(91)90012-k. 

[25] C.H. Dharmakeerthi, N. Mithulananthan, T.K. Saha, Impact of electric vehicle fast charging on power 

system voltage stability, Int. J. Electr. Power Energy Syst. 57 (2014) 241–249. 

https://doi.org/10.1016/j.ijepes.2013.12.005. 

[26] J. Xiong, K. Zhang, X. Liu, W. Su, Investigating the impact of plug-in electric vehicle charging on 

power distribution systems with the integrated modeling and simulation of transportation network, IEEE 

Transp. Electrif. Conf. Expo, ITEC Asia-Pacific 2014 - Conf. Proc. (2014) 1–5. 

https://doi.org/10.1109/ITEC-AP.2014.6940855. 

[27] T.U. Solanke, V.K. Ramachandaramurthy, J.Y. Yong, J. Pasupuleti, P. Kasinathan, A. Rajagopalan, A 

review of strategic charging–discharging control of grid-connected electric vehicles, J. Energy Storage. 

28 (2020) 101193. https://doi.org/10.1016/j.est.2020.101193. 

[28] E. Akhavan-Rezai, M.F. Shaaban, E.F. El-Saadany, A. Zidan, Uncoordinated charging impacts of 

electric vehicles on electric distribution grids: Normal and fast charging comparison, IEEE Power 

Energy Soc. Gen. Meet. (2012) 1–7. https://doi.org/10.1109/PESGM.2012.6345583. 

[29] M. Muratori, Impact of uncoordinated plug-in electric vehicle charging on residential power demand, 

Nat. Energy. 3 (2018) 193–201. https://doi.org/10.1038/s41560-017-0074-z. 



 

 

[30] M. Ahmadi, N. Mithulananthan, R. Sharma, Dynamic load control at a bidirectional DC fast charging 

station for PEVs in weak AC grids, Asia-Pacific Power Energy Eng. Conf. APPEEC. 2016-Janua (2016) 

4–8. https://doi.org/10.1109/APPEEC.2015.7380948. 

[31] A. Hajimiragha, C.A. Canizares, M.W. Fowler, A. Elkamel, Optimal transition to plug-in hybrid electric 

vehicles in Ontario, Canada, considering the electricity-grid limitations, in: IEEE Trans. Ind. Electron., 

2010: pp. 690–701. https://doi.org/10.1109/TIE.2009.2025711. 

[32] A.H. Hajimiragha, C.A. Cañizares, M.W. Fowler, S. Moazeni, A. Elkamel, A robust optimization 

approach for planning the transition to plug-in hybrid electric vehicles, IEEE Trans. Power Syst. 26 

(2011) 2264–2274. https://doi.org/10.1109/TPWRS.2011.2108322. 

[33] M. Kintner-Meyer, K. Schneider, R. Pratt, Impacts assessment of plug-in hybrid vehicles on electric 

utilities and regional US power grids., Pacific Northwest Natl. Lab. (2007). 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.663&rep=rep1&type=pdf. 

[34] C. Jiang, R. Torquato, D. Salles, W. Xu, Method to assess the power-quality impact of plug-in electric 

vehicles, IEEE Trans. Power Deliv. 29 (2014) 958–965. https://doi.org/10.1109/TPWRD.2013.2283598. 

[35] M. Wanik, Harmonic Measurement and Analysis during Electric Vehicle Charging, Engineering. 05 

(2013) 215–220. https://doi.org/10.4236/eng.2013.51b039. 

[36] S. Iqbal, A. Xin, M.U. Jan, H. Ur Rehman, A. Masood, S.A.A. Rizvi, S. Salman, Aggregated Electric 

Vehicle-to-Grid for Primary Frequency Control in a Microgrid- A Review, in: Proc. 2018 IEEE 2nd Int. 

Electr. Energy Conf. CIEEC 2018, Institute of Electrical and Electronics Engineers Inc., 2018: pp. 563–

568. https://doi.org/10.1109/CIEEC.2018.8745952. 

[37] L. Pieltain Fernández, T. Gómez San Román, R. Cossent, C. Mateo Domingo, P. Frías, Assessment of 

the impact of plug-in electric vehicles on distribution networks, IEEE Trans. Power Syst. 26 (2011) 206–

213. https://doi.org/10.1109/TPWRS.2010.2049133. 

[38] H.L. Li, X.M. Bai, W. Tan, Impacts of plug-in hybrid electric vehicles charging on distribution grid and 

smart charging, 2012 IEEE Int. Conf. Power Syst. Technol. POWERCON 2012. (2012) 1–5. 

https://doi.org/10.1109/PowerCon.2012.6401265. 

[39] S. Deilami, A.S. Masoum, P.S. Moses, M.A.S. Masoum, Real-time coordination of plug-in electric 

vehicle charging in smart grids to minimize power losses and improve voltage profile, IEEE Trans. 

Smart Grid. 2 (2011) 456–467. https://doi.org/10.1109/TSG.2011.2159816. 

[40] E. Sortomme, M.M. Hindi, S.D.J. MacPherson, S.S. Venkata, Coordinated charging of plug-in hybrid 

electric vehicles to minimize distribution system losses, IEEE Trans. Smart Grid. 2 (2011) 186–193. 

https://doi.org/10.1109/TSG.2010.2090913. 

[41] M.J. Rutherford, V. Yousefzadeh, The impact of electric vehicle battery charging on distribution 

transformers, in: Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, 2011: pp. 396–400. 

https://doi.org/10.1109/APEC.2011.5744627. 

[42] G. Razeghi, L. Zhang, T. Brown, S. Samuelsen, Impacts of plug-in hybrid electric vehicles on a 

residential transformer using stochastic and empirical analysis, J. Power Sources. 252 (2014) 277–285. 

https://doi.org/10.1016/j.jpowsour.2013.11.089. 

[43] M.A.S. Masoum, P.S. Moses, S. Deilami, Load management in smart grids considering harmonic 

distortion and transformer derating, Innov. Smart Grid Technol. Conf. ISGT 2010. (2010) 1–7. 



 

 

https://doi.org/10.1109/ISGT.2010.5434738. 

[44] K. Mahmud, G.E. Town, A review of computer tools for modeling electric vehicle energy requirements 

and their impact on power distribution networks, Appl. Energy. 172 (2016) 337–359. 

https://doi.org/10.1016/j.apenergy.2016.03.100. 

[45] K. Mahmud, G.E. Town, S. Morsalin, M.J. Hossain, Integration of electric vehicles and management in 

the internet of energy, Renew. Sustain. Energy Rev. 82 (2018) 4179–4203. 

https://doi.org/10.1016/j.rser.2017.11.004. 

[46] H. Budde-Meiwes, J. Drillkens, B. Lunz, J. Muennix, S. Rothgang, J. Kowal, D.U. Sauer, A review of 

current automotive battery technology and future prospects, Proc. Inst. Mech. Eng. Part D J. Automob. 

Eng. 227 (2013) 761–776. https://doi.org/10.1177/0954407013485567. 

[47] Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials, Nat. 

Energy. 4 (2019) 540–550. https://doi.org/10.1038/s41560-019-0405-3. 

[48] X. Shu, W. Yang, Y. Guo, K. Wei, B. Qin, G. Zhu, A reliability study of electric vehicle battery from the 

perspective of power supply system, J. Power Sources. 451 (2020) 227805. 

https://doi.org/10.1016/j.jpowsour.2020.227805. 

[49] G.P. Beauregard, A.Z. Phoenix, Report of investigation: Hybrids plus plug in hybrid electric vehicle, 

Natl. Rural Electr. Coop. Assoc. Inc. US Dep. Energy, Idaho Natl. Lab. by Etec, Online Im Internet URL 

Http//Www. Evworld. Com/Library/Prius_fire_forensics. Pdf [Stand 11.04. 2012]. (2008). 

[50] Y. Li, K. Liu, A.M. Foley, A. Zülke, M. Berecibar, E. Nanini-Maury, J. Van Mierlo, H.E. Hoster, Data-

driven health estimation and lifetime prediction of lithium-ion batteries: A review, Renew. Sustain. 

Energy Rev. 113 (2019) 109254. https://doi.org/10.1016/j.rser.2019.109254. 

[51] J.E. Harlow, X. Ma, J. Li, E. Logan, Y. Liu, N. Zhang, L. Ma, S.L. Glazier, M.M.E. Cormier, M. 

Genovese, S. Buteau, A. Cameron, J.E. Stark, J.R. Dahn, A Wide Range of Testing Results on an 

Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies, J. 

Electrochem. Soc. 166 (2019) A3031–A3044. https://doi.org/10.1149/2.0981913jes. 

[52] F.H. Gandoman, A. Ahmadi, P. Van den Bossche, J. Van Mierlo, N. Omar, A.E. Nezhad, H. 

Mavalizadeh, C. Mayet, Status and future perspectives of reliability assessment for electric vehicles, 

Reliab. Eng. Syst. Saf. 183 (2019) 1–16. https://doi.org/10.1016/j.ress.2018.11.013. 

[53] M.S. Hossain Lipu, M.A. Hannan, T.F. Karim, A. Hussain, M.H.M. Saad, A. Ayob, M.S. Miah, T.M. 

Indra Mahlia, Intelligent algorithms and control strategies for battery management system in electric 

vehicles: Progress, challenges and future outlook, J. Clean. Prod. 292 (2021). 

https://doi.org/10.1016/j.jclepro.2021.126044. 

[54] Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, A review of lithium ion battery failure mechanisms and fire 

prevention strategies, Prog. Energy Combust. Sci. 73 (2019) 95–131. 

https://doi.org/10.1016/j.pecs.2019.03.002. 

[55] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management 

in electric vehicles, J. Power Sources. 226 (2013) 272–288. 

https://doi.org/10.1016/j.jpowsour.2012.10.060. 

[56] Y. Xing, E.W.M. Ma, K.L. Tsui, M. Pecht, Battery management systems in electric and hybrid vehicles, 

Energies. 4 (2011) 1840–1857. https://doi.org/10.3390/en4111840. 



 

 

[57] J.D. Kozlowski, Electrochemical cell prognostics using online impedance measurements and model-

based data fusion techniques, IEEE Aerosp. Conf. Proc. 7 (2003) 3257–3270. 

https://doi.org/10.1109/AERO.2003.1234169. 

[58] A.A. Pesaran, Battery thermal models for hybrid vehicle simulations, in: J. Power Sources, Elsevier, 

2002: pp. 377–382. https://doi.org/10.1016/S0378-7753(02)00200-8. 

[59] M. Ng, J. Zhao, Q. Yan, G.J. Conduit, Z.W. Seh, Predicting the state of charge and health of batteries 

using data-driven machine learning, Nat. Mach. Intell. 2 (2020) 161–170. 

https://doi.org/10.1038/s42256-020-0156-7. 

[60] H. Tian, P. Qin, K. Li, Z. Zhao, A review of the state of health for lithium-ion batteries: Research status 

and suggestions, J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.120813. 

[61] S. Wu, R. Xiong, H. Li, V. Nian, S. Ma, The state of the art on preheating lithium-ion batteries in cold 

weather, J. Energy Storage. 27 (2020) 101059. https://doi.org/10.1016/j.est.2019.101059. 

[62] Z. Liu, C. Tan, F. Leng, A reliability-based design concept for lithium-ion battery pack in electric 

vehicles, Reliab. Eng. Syst. Saf. 134 (2015) 169–177. https://doi.org/10.1016/j.ress.2014.10.010. 

[63] J. Kim, J. Oh, H. Lee, Review on battery thermal management system for electric vehicles, Appl. Therm. 

Eng. 149 (2019) 192–212. https://doi.org/10.1016/j.applthermaleng.2018.12.020. 

[64] W. Wu, S. Wang, W. Wu, K. Chen, S. Hong, Y. Lai, A critical review of battery thermal performance 

and liquid based battery thermal management, Energy Convers. Manag. 182 (2019) 262–281. 

https://doi.org/10.1016/j.enconman.2018.12.051. 

[65] J. Chen, S. Kang, J. E, Z. Huang, K. Wei, B. Zhang, H. Zhu, Y. Deng, F. Zhang, G. Liao, Effects of 

different phase change material thermal management strategies on the cooling performance of the power 

lithium ion batteries: A review, J. Power Sources. 442 (2019) 227228. 

https://doi.org/10.1016/j.jpowsour.2019.227228. 

[66] S. Lei, Y. Shi, G. Chen, A lithium-ion battery-thermal-management design based on phase-change-

material thermal storage and spray cooling, Appl. Therm. Eng. 168 (2020) 114792. 

https://doi.org/10.1016/j.applthermaleng.2019.114792. 

[67] C.H. Wang, T. Lin, J.T. Huang, Z.H. Rao, Temperature response of a high power lithium-ion battery 

subjected to high current discharge, Mater. Res. Innov. 19 (2015) S2156–S2160. 

https://doi.org/10.1179/1432891715Z.0000000001318. 

[68] X. Hu, Y. Zheng, D.A. Howey, H. Perez, A. Foley, M. Pecht, Battery warm-up methodologies at subzero 

temperatures for automotive applications: Recent advances and perspectives, Prog. Energy Combust. 

Sci. 77 (2020) 100806. https://doi.org/10.1016/j.pecs.2019.100806. 

[69] A.A. Pesaran, N. Renewable, A.A. Pesaran, Battery Thermal Management in EVs and HEVs : Issues and 

Solutions Battery Thermal Management in EVs and HEVs : Issues and Solutions, (2001). 

[70] K. Benabdelaziz, B. Lebrouhi, A. Maftah, M. Maaroufi, Novel external cooling solution for electric 

vehicle battery pack, Energy Reports. 6 (2019) 262–272. https://doi.org/10.1016/j.egyr.2019.10.043. 

[71] W. Zichen, D. Changqing, A comprehensive review on thermal management systems for power lithium-

ion batteries, Renew. Sustain. Energy Rev. 139 (2021) 110685. 

https://doi.org/10.1016/j.rser.2020.110685. 

[72] B. Lamrani, B.E. Lebrouhi, Y. Khattari, T. Kousksou, A simplified thermal model for a lithium-ion 



 

 

battery pack with phase change material thermal management system, J. Energy Storage. 44 (2021) 

103377. https://doi.org/10.1016/J.EST.2021.103377. 

[73] K.J. Kelly, M. Mihalie, M. Zolot, Battery Usage and Thermal Performance of the Toyota Prius and 

Honda Insight during Chassis Dynamometer Testing XVII . The Seventeenth Annual Battery Conference 

on Applications and Advances, Batter. Conf. Appl. Adv. 2002. Seventeenth Annu. (2002) 247–252. 

[74] T. Wang, K.J. Tseng, J. Zhao, Development of efficient air-cooling strategies for lithium-ion battery 

module based on empirical heat source model, Appl. Therm. Eng. 90 (2015) 521–529. 

https://doi.org/10.1016/j.applthermaleng.2015.07.033. 

[75] R. Matthé, U. Eberle, The Voltec System-Energy Storage and Electric Propulsion, Elsevier, 2014. 

https://doi.org/10.1016/B978-0-444-59513-3.00008-X. 

[76] P. Chen, Z. Lu, L. Ji, Y. Li, Design of the control scheme of power battery low temperature charging 

heating based on the real vehicle applications, 2013 9th IEEE Veh. Power Propuls. Conf. IEEE VPPC 

2013. 4 (2013) 105–110. https://doi.org/10.1109/VPPC.2013.6671673. 

[77] A.A. Pesaran, S. Burch, M. Keyser, An approach for designing thermal management systems for electric 

and hybrid vehicle battery packs, Proc. 4th Veh. Therm. Manag. Syst. (1999) 24–27. 

[78] G. Karimi, X. Li, Thermal management of lithium-ion batteries for electric vehicles, Int. J. Energy Res. 

37 (2013) 13–24. https://doi.org/10.1002/er.1956. 

[79] Z.H. Rao, S.F. Wang, Y.L. Zhang, Thermal management with phase change material for a power battery 

under cold temperatures, Energy Sources, Part A Recover. Util. Environ. Eff. 36 (2014) 2287–2295. 

https://doi.org/10.1080/15567036.2011.576411. 

[80] S. Al-Hallaj, J.R. Selman, Thermal modeling of secondary lithium batteries for electric vehicle/hybrid 

electric vehicle applications, in: J. Power Sources, Elsevier, 2002: pp. 341–348. 

https://doi.org/10.1016/S0378-7753(02)00196-9. 

[81] C. Alaoui, Z.M. Salameh, A novel thermal management for electric and hybrid vehicles, IEEE Trans. 

Veh. Technol. 54 (2005) 468–476. https://doi.org/10.1109/TVT.2004.842444. 

[82] Kohei Umezu;, H. Noyama, Air-Conditioning system For Electric Vehicles, 2010. 

[83] J. Laurikko, R. Granström, A. Haakana, Realistic estimates of EV range based on extensive laboratory 

and field tests in Nordic climate conditions, World Electr. Veh. J. 6 (2013) 192–203. 

https://doi.org/10.3390/wevj6010192. 

[84] J. WANG, CN101710630A - Vehicle lithium battery intelligent charging method and device thereof - 

Google Patents, n.d. 

[85] Q. Peng, H. Zhao, X. Liu, Y. Fang, X. Zeng, Battery thermal management system design and control 

strategy study for hybrid electric vehicles, IEEE Transp. Electrif. Conf. Expo, ITEC Asia-Pacific 2014 - 

Conf. Proc. (2014) 1–4. https://doi.org/10.1109/ITEC-AP.2014.6941245. 

[86] C.Y. Wang, G. Zhang, S. Ge, T. Xu, Y. Ji, X.G. Yang, Y. Leng, Lithium-ion battery structure that self-

heats at low temperatures, Nature. 529 (2016) 515–518. https://doi.org/10.1038/nature16502. 

[87] Z.G. Qu, Z.Y. Jiang, Q. Wang, Experimental study on pulse self–heating of lithium–ion battery at low 

temperature, Int. J. Heat Mass Transf. 135 (2019) 696–705. 

https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.020. 

[88] R. Xiong, Q. Yu, W. Shen, C. Lin, F. Sun, A Sensor Fault Diagnosis Method for a Lithium-Ion Battery 



 

 

Pack in Electric Vehicles, IEEE Trans. Power Electron. 34 (2019) 9709–9718. 

https://doi.org/10.1109/TPEL.2019.2893622. 

[89] Y. Ji, C.Y. Wang, Heating strategies for Li-ion batteries operated from subzero temperatures, 

Electrochim. Acta. 107 (2013) 664–674. https://doi.org/10.1016/j.electacta.2013.03.147. 

[90] J. qiu Li, L. Fang, W. Shi, X. Jin, Layered thermal model with sinusoidal alternate current for cylindrical 

lithium-ion battery at low temperature, Energy. 148 (2018) 247–257. 

https://doi.org/10.1016/j.energy.2018.01.024. 

[91] T.A. Stuart, A. Hande, HEV battery heating using AC currents, J. Power Sources. 129 (2004) 368–378. 

https://doi.org/10.1016/j.jpowsour.2003.10.014. 

[92] J. Jaguemont, L. Boulon, Y. Dubé, A comprehensive review of lithium-ion batteries used in hybrid and 

electric vehicles at cold temperatures, Appl. Energy. 164 (2016) 99–114. 

https://doi.org/10.1016/j.apenergy.2015.11.034. 

[93] M. Zuniga, J. Jaguemont, L. Boulon, Y. Dube, Heating Lithium-Ion Batteries with Bidirectional Current 

Pulses, 2015 IEEE Veh. Power Propuls. Conf. VPPC 2015 - Proc. (2015). 

https://doi.org/10.1109/VPPC.2015.7352959. 

[94] K.A. Severson, P.M. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang, M.H. Chen, M. Aykol, P.K. Herring, 

D. Fraggedakis, M.Z. Bazant, S.J. Harris, W.C. Chueh, R.D. Braatz, Data-driven prediction of battery 

cycle life before capacity degradation, Nat. Energy. 4 (2019) 383–391. https://doi.org/10.1038/s41560-

019-0356-8. 

[95] A. Nuhic, T. Terzimehic, T. Soczka-Guth, M. Buchholz, K. Dietmayer, Health diagnosis and remaining 

useful life prognostics of lithium-ion batteries using data-driven methods, J. Power Sources. 239 (2013) 

680–688. https://doi.org/10.1016/j.jpowsour.2012.11.146. 

[96] H. Meng, Y.F. Li, A review on prognostics and health management (PHM) methods of lithium-ion 

batteries, Renew. Sustain. Energy Rev. 116 (2019) 109405. https://doi.org/10.1016/j.rser.2019.109405. 

[97] Y. Li, D.I. Stroe, Y. Cheng, H. Sheng, X. Sui, R. Teodorescu, On the feature selection for battery state of 

health estimation based on charging–discharging profiles, J. Energy Storage. 33 (2021) 102122. 

https://doi.org/10.1016/j.est.2020.102122. 

[98] M. Doyle, Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell, J. 

Electrochem. Soc. 140 (1993) 1526. https://doi.org/10.1149/1.2221597. 

[99] M. Doyle, Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells, 

J. Electrochem. Soc. 143 (1996) 1890. https://doi.org/10.1149/1.1836921. 

[100] V.H. Johnson, Battery performance models in ADVISOR, in: J. Power Sources, Elsevier, 2002: pp. 321–

329. https://doi.org/10.1016/S0378-7753(02)00194-5. 

[101] M. Yazdanpour, P. Taheri, A. Mansouri, B. Schweitzer, A circuit-based approach for electro-Thermal 

modeling of lithium-ion batteries, in: Annu. IEEE Semicond. Therm. Meas. Manag. Symp., Institute of 

Electrical and Electronics Engineers Inc., 2016: pp. 113–127. https://doi.org/10.1109/SEMI-

THERM.2016.7458455. 

[102] M. Ouyang, G. Liu, L. Lu, J. Li, X. Han, Enhancing the estimation accuracy in low state-of-charge area: 

A novel onboard battery model through surface state of charge determination, J. Power Sources. 270 

(2014) 221–237. https://doi.org/10.1016/j.jpowsour.2014.07.090. 



 

 

[103] Y. Guo, Z. Zhao, L. Huang, SoC Estimation of Lithium Battery Based on Improved BP Neural Network, 

in: Energy Procedia, Elsevier Ltd, 2017: pp. 4153–4158. https://doi.org/10.1016/j.egypro.2017.03.881. 

[104] M.S.H. Lipu, M.A. Hannan, A. Hussain, M.M. Hoque, P.J. Ker, M.H.M. Saad, A. Ayob, A review of 

state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: 

Challenges and recommendations, J. Clean. Prod. 205 (2018) 115–133. 

https://doi.org/10.1016/j.jclepro.2018.09.065. 

[105] M.A. Hannan, M.S.H. Lipu, A. Hussain, A. Mohamed, A review of lithium-ion battery state of charge 

estimation and management system in electric vehicle applications: Challenges and recommendations, 

Renew. Sustain. Energy Rev. 78 (2017) 834–854. https://doi.org/10.1016/j.rser.2017.05.001. 

[106] L. Ungurean, G. Cârstoiu, M. V. Micea, V. Groza, Battery state of health estimation: a structured review 

of models, methods and commercial devices, Int. J. Energy Res. 41 (2017) 151–181. 

https://doi.org/10.1002/er.3598. 

[107] X. Wang, X. Wei, H. Dai, Q. Wu, State Estimation of Lithium Ion Battery Based on Electrochemical 

Impedance Spectroscopy with On-Board Impedance Measurement System, 2015 IEEE Veh. Power 

Propuls. Conf. VPPC 2015 - Proc. (2015). https://doi.org/10.1109/VPPC.2015.7353021. 

[108] M.A. Rahman, S. Anwar, A. Izadian, Electrochemical model parameter identification of a lithium-ion 

battery using particle swarm optimization method, J. Power Sources. 307 (2016) 86–97. 

https://doi.org/10.1016/j.jpowsour.2015.12.083. 

[109] T. Bruen, J. Marco, Modelling and experimental evaluation of parallel connected lithium ion cells for an 

electric vehicle battery system, J. Power Sources. 310 (2016) 91–101. 

https://doi.org/10.1016/j.jpowsour.2016.01.001. 

[110] N. Khayat, N. Karami, Adaptive techniques used for lifetime estimation of lithium-ion batteries, in: 2016 

3rd Int. Conf. Electr. Electron. Comput. Eng. Their Appl. EECEA 2016, Institute of Electrical and 

Electronics Engineers Inc., 2016: pp. 98–103. https://doi.org/10.1109/EECEA.2016.7470773. 

[111] C. Zhang, W. Allafi, Q. Dinh, P. Ascencio, J. Marco, Online estimation of battery equivalent circuit 

model parameters and state of charge using decoupled least squares technique, Energy. 142 (2018) 678–

688. https://doi.org/10.1016/j.energy.2017.10.043. 

[112] I. Babaeiyazdi, A. Rezaei-Zare, S. Shokrzadeh, State of charge prediction of EV Li-ion batteries using 

EIS: A machine learning approach, Energy. 223 (2021) 120116. 

https://doi.org/10.1016/j.energy.2021.120116. 

[113] J.C. Álvarez Antón, P.J. García Nieto, F.J. De Cos Juez, F.S. Lasheras, C.B. Viejo, N. Roqueñí 

Gutiérrez, Battery state-of-charge estimator using the MARS technique, IEEE Trans. Power Electron. 28 

(2013) 3798–3805. https://doi.org/10.1109/TPEL.2012.2230026. 

[114] H.H. Afshari, M. Attari, R. Ahmed, M. Farag, S. Habibi, Modeling, parameterization, and state of charge 

estimation of Li-Ion cells using a circuit model, in: 2016 IEEE Transp. Electrif. Conf. Expo, ITEC 2016, 

Institute of Electrical and Electronics Engineers Inc., 2016. https://doi.org/10.1109/ITEC.2016.7520301. 

[115] C. Fleischer, W. Waag, Z. Bai, D.U. Sauer, Adaptive On-line State-of-available-power Prediction of 

Lithium-ion Batteries, 13 (2013). 

[116] T. Dong, J. Li, F. Zhao, Y. Yi, Q. Jin, Analysis on the influence of measurement error on state of charge 

estimation of LiFePO4 power Battery, ICMREE2011 - Proc. 2011 Int. Conf. Mater. Renew. Energy 



 

 

Environ. 1 (2011) 644–649. https://doi.org/10.1109/ICMREE.2011.5930893. 

[117] X. Tang, B. Liu, F. Gao, State of Charge Estimation of LiFePO4 Battery Based on a Gain-classifier 

Observer, Energy Procedia. 105 (2017) 2071–2076. https://doi.org/10.1016/j.egypro.2017.03.585. 

[118] Z. Guo, X. Qiu, G. Hou, B.Y. Liaw, C. Zhang, State of health estimation for lithium ion batteries based 

on charging curves, J. Power Sources. 249 (2014) 457–462. 

https://doi.org/10.1016/j.jpowsour.2013.10.114. 

[119] C. Truchot, M. Dubarry, B.Y. Liaw, State-of-charge estimation and uncertainty for lithium-ion battery 

strings, Appl. Energy. 119 (2014) 218–227. https://doi.org/10.1016/j.apenergy.2013.12.046. 

[120] X. Dang, L. Yan, K. Xu, X. Wu, H. Jiang, H. Sun, Open-Circuit Voltage-Based State of Charge 

Estimation of Lithium-ion Battery Using Dual Neural Network Fusion Battery Model, Electrochim. 

Acta. 188 (2016) 356–366. https://doi.org/10.1016/j.electacta.2015.12.001. 

[121] M.A. Roscher, D.U. Sauer, Dynamic electric behavior and open-circuit-voltage modeling of LiFePO 4-

based lithium ion secondary batteries, J. Power Sources. 196 (2011) 331–336. 

https://doi.org/10.1016/j.jpowsour.2010.06.098. 

[122] J.P. Rivera-Barrera, N. Muñoz-Galeano, H.O. Sarmiento-Maldonado, Soc estimation for lithium-ion 

batteries: Review and future challenges, 2017. https://doi.org/10.3390/electronics6040102. 

[123] Y. Zhang, W. Song, S. Lin, Z. Feng, A novel model of the initial state of charge estimation for LiFePO 4 

batteries, J. Power Sources. 248 (2014) 1028–1033. https://doi.org/10.1016/j.jpowsour.2013.09.135. 

[124] K.S. Ng, C.S. Moo, Y.P. Chen, Y.C. Hsieh, Enhanced coulomb counting method for estimating state-of-

charge and state-of-health of lithium-ion batteries, Appl. Energy. 86 (2009) 1506–1511. 

https://doi.org/10.1016/j.apenergy.2008.11.021. 

[125] M. Li, Li-ion dynamics and state of charge estimation, Renew. Energy. 100 (2017) 44–52. 

https://doi.org/10.1016/j.renene.2016.06.009. 

[126] R. Mingant, J. Bernard, V. Sauvant Moynot, A. Delaille, S. Mailley, J.-L. Hognon, F. Huet, EIS 

Measurements for Determining the SoC and SoH of Li-Ion Batteries, 33 (2011) 41–53. 

https://doi.org/10.1149/1.3589920. 

[127] U. Westerhoff, T. Kroker, K. Kurbach, M. Kurrat, Electrochemical impedance spectroscopy based 

estimation of the state of charge of lithium-ion batteries, J. Energy Storage. 8 (2016) 244–256. 

https://doi.org/10.1016/j.est.2016.09.001. 

[128] B. Liebhart, L. Komsiyska, C. Endisch, Passive impedance spectroscopy for monitoring lithium-ion 

battery cells during vehicle operation, J. Power Sources. 449 (2020) 227297. 

https://doi.org/10.1016/j.jpowsour.2019.227297. 

[129] C. Yang, X. Wang, Q. Fang, H. Dai, Y. Cao, X. Wei, An online SOC and capacity estimation method for 

aged lithium-ion battery pack considering cell inconsistency, J. Energy Storage. 29 (2020) 101250. 

https://doi.org/10.1016/j.est.2020.101250. 

[130] Q. Wang, J. Wang, P. Zhao, J. Kang, F. Yan, C. Du, Correlation between the model accuracy and model-

based SOC estimation, Electrochim. Acta. 228 (2017) 146–159. 

https://doi.org/10.1016/j.electacta.2017.01.057. 

[131] H. Dai, P. Guo, X. Wei, Z. Sun, J. Wang, ANFIS (adaptive neuro-fuzzy inference system) based online 

SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction 



 

 

batteries, Energy. 80 (2015) 350–360. https://doi.org/10.1016/j.energy.2014.11.077. 

[132] J. Yang, B. Xia, Y. Shang, W. Huang, C. Mi, Improved battery modeling approach considering operating 

scenarios for HEV/EV applications, Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC. 

(2017) 1216–1222. https://doi.org/10.1109/APEC.2017.7930850. 

[133] H. Chaoui, C.C. Ibe-Ekeocha, H. Gualous, Aging prediction and state of charge estimation of a LiFePO4 

battery using input time-delayed neural networks, Electr. Power Syst. Res. 146 (2017) 189–197. 

https://doi.org/10.1016/j.epsr.2017.01.032. 

[134] G. Liu, L. Lu, H. Fu, J. Hua, J. Li, M. Ouyang, Y. Wang, S. Xue, P. Chen, A comparative study of 

equivalent circuit models and enhanced equivalent circuit models of lithium-ion batteries with different 

model structures, IEEE Transp. Electrif. Conf. Expo, ITEC Asia-Pacific 2014 - Conf. Proc. (2014) 1–6. 

https://doi.org/10.1109/ITEC-AP.2014.6940946. 

[135] R. Xiong, F. Sun, X. Gong, C. Gao, A data-driven based adaptive state of charge estimator of lithium-ion 

polymer battery used in electric vehicles, Appl. Energy. 113 (2014) 1421–1433. 

https://doi.org/10.1016/j.apenergy.2013.09.006. 

[136] Y. Xing, W. He, M. Pecht, K.L. Tsui, State of charge estimation of lithium-ion batteries using the open-

circuit voltage at various ambient temperatures, Appl. Energy. 113 (2014) 106–115. 

https://doi.org/10.1016/j.apenergy.2013.07.008. 

[137] Y. Cao, R.C. Kroeze, P.T. Krein, Multi-timescale parametric electrical battery model for use in dynamic 

electric vehicle simulations, IEEE Trans. Transp. Electrif. 2 (2016) 432–442. 

https://doi.org/10.1109/TTE.2016.2569069. 

[138] W. Li, D. Cao, D. Jöst, F. Ringbeck, M. Kuipers, F. Frie, D.U. Sauer, Parameter sensitivity analysis of 

electrochemical model-based battery management systems for lithium-ion batteries, Appl. Energy. 269 

(2020) 115104. https://doi.org/10.1016/j.apenergy.2020.115104. 

[139] S.S. Madani, M.J. Swierczynski, S.K. Kaer, The discharge behavior of lithium-ion batteries using the 

Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model, 2017 12th Int. Conf. Ecol. Veh. 

Renew. Energies, EVER 2017. (2017). https://doi.org/10.1109/EVER.2017.7935915. 

[140] S.J. Moura, F.B. Argomedo, R. Klein, A. Mirtabatabaei, M. Krstic, Battery State Estimation for a Single 

Particle Model With Electrolyte Dynamics, (2016) 1–16. 

[141] C. Zou, C. Manzie, D. Nesic, A Framework for Simplification of PDE-Based Lithium-Ion Battery 

Models, IEEE Trans. Control Syst. Technol. 24 (2016) 1594–1609. 

https://doi.org/10.1109/TCST.2015.2502899. 

[142] A. Bartlett, J. Marcicki, S. Onori, G. Rizzoni, X.G. Yang, T. Miller, Electrochemical Model-Based State 

of Charge and Capacity Estimation for a Composite Electrode Lithium-Ion Battery, IEEE Trans. Control 

Syst. Technol. 24 (2016) 384–399. https://doi.org/10.1109/TCST.2015.2446947. 

[143] R. Ahmed, M. El Sayed, I. Arasaratnam, J. Tjong, S. Habibi, Reduced-Order Electrochemical Model 

Parameters Identification and State of Charge Estimation for Healthy and Aged Li-Ion Batteries—Part 

II: Aged Battery Model and State of Charge Estimation, IEEE J. Emerg. Sel. Top. Power Electron. 2 

(2014) 678–690. https://doi.org/10.1109/jestpe.2014.2331062. 

[144] Y. Zheng, M. Ouyang, X. Han, L. Lu, J. Li, Investigating the error sources of the online state of charge 

estimation methods for lithium-ion batteries in electric vehicles, J. Power Sources. 377 (2018) 161–188. 



 

 

https://doi.org/10.1016/j.jpowsour.2017.11.094. 

[145] L. Xu, J. Wang, Q. Chen, Kalman filtering state of charge estimation for battery management system 

based on a stochastic fuzzy neural network battery model, Energy Convers. Manag. 53 (2012) 33–39. 

https://doi.org/10.1016/j.enconman.2011.06.003. 

[146] M. Urbain, S. Raël, B. Davat, P. Desprez, State estimation of a lithium-ion battery through Kalman filter, 

in: PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., 2007: pp. 2804–2810. 

https://doi.org/10.1109/PESC.2007.4342463. 

[147] M.W. Yatsui, H. Bai, Kalman filter based state-of-charge estimation for lithium-ion batteries in hybrid 

electric vehicles using pulse charging, in: 2011 IEEE Veh. Power Propuls. Conf. VPPC 2011, 2011. 

https://doi.org/10.1109/VPPC.2011.6042988. 

[148] L. Wang, L. Wang, C. Liao, Research on improved EKF algorithm applied on estimate EV battery SOC, 

in: Asia-Pacific Power Energy Eng. Conf. APPEEC, 2010. 

https://doi.org/10.1109/APPEEC.2010.5448581. 

[149] R. Xiong, H. He, F. Sun, K. Zhao, Evaluation on State of Charge estimation of batteries with adaptive 

extended kalman filter by experiment approach, IEEE Trans. Veh. Technol. 62 (2013) 108–117. 

https://doi.org/10.1109/TVT.2012.2222684. 

[150] Z. Chen, Y. Fu, C.C. Mi, State of charge estimation of lithium-ion batteries in electric drive vehicles 

using extended Kalman filtering, IEEE Trans. Veh. Technol. 62 (2013) 1020–1030. 

https://doi.org/10.1109/TVT.2012.2235474. 

[151] S.J. Lee, J.H. Kim, J.M. Lee, B.H. Cho, The state and parameter estimation of an Li-Ion battery using a 

new OCV-SOC concept, in: PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., 2007: pp. 2799–

2803. https://doi.org/10.1109/PESC.2007.4342462. 

[152] R. Xiong, J. Tian, W. Shen, F. Sun, A Novel Fractional Order Model for State of Charge Estimation in 

Lithium Ion Batteries, IEEE Trans. Veh. Technol. 68 (2019) 4130–4139. 

https://doi.org/10.1109/TVT.2018.2880085. 

[153] D. Andre, C. Appel, T. Soczka-Guth, D.U. Sauer, Advanced mathematical methods of SOC and SOH 

estimation for lithium-ion batteries, J. Power Sources. 224 (2013) 20–27. 

https://doi.org/10.1016/j.jpowsour.2012.10.001. 

[154] J. Peng, J. Luo, H. He, B. Lu, An improved state of charge estimation method based on cubature Kalman 

filter for lithium-ion batteries, Appl. Energy. 253 (2019) 113520. 

https://doi.org/10.1016/j.apenergy.2019.113520. 

[155] Q. Zhu, L. Li, X. Hu, N. Xiong, G. Di Hu, H∞-based nonlinear observer design for state of charge 

estimation of Lithium-ion battery with polynomial parameters, IEEE Trans. Veh. Technol. 66 (2017) 

10853–10865. https://doi.org/10.1109/TVT.2017.2723522. 

[156] C. Yang, X. Wang, Q. Fang, H. Dai, Y. Cao, X. Wei, An online SOC and capacity estimation method for 

aged lithium-ion battery pack considering cell inconsistency, J. Energy Storage. 29 (2020) 101250. 

https://doi.org/10.1016/j.est.2020.101250. 

[157] Y. Li, C. Wang, J. Gong, A wavelet transform-adaptive unscented Kalman filter approach for state of 

charge estimation of LiFePo 4 battery, Int. J. Energy Res. 42 (2018) 587–600. 

https://doi.org/10.1002/er.3842. 



[158] Z. Zeng, J. Tian, D. Li, Y. Tian, An Online State of Charge Estimation Algorithm for Lithium-Ion

Batteries Using an Improved Adaptive Cubature Kalman Filter, Energies. 11 (2018) 59.

https://doi.org/10.3390/en11010059.

[159] Y. Xu, M. Hu, A. Zhou, Y. Li, S. Li, C. Fu, C. Gong, State of charge estimation for lithium-ion batteries

based on adaptive dual Kalman filter, Appl. Math. Model. 77 (2020) 1255–1272.

https://doi.org/10.1016/j.apm.2019.09.011.

[160] D.J. Xuan, Z. Shi, J. Chen, C. Zhang, Y.X. Wang, Real-time estimation of state-of-charge in lithium-ion

batteries using improved central difference transform method, J. Clean. Prod. 252 (2020) 119787.

https://doi.org/10.1016/j.jclepro.2019.119787.

[161] Y. Li, J. Chen, F. Lan, Enhanced online model identification and state of charge estimation for lithium-

ion battery under noise corrupted measurements by bias compensation recursive least squares, J. Power

Sources. 456 (2020) 227984. https://doi.org/10.1016/j.jpowsour.2020.227984.

[162] L. Fang, J. Li, B. Peng, Online estimation and error analysis of both SOC and SOH of lithium-ion

battery based on DEKF method, in: Energy Procedia, Elsevier Ltd, 2019: pp. 3008–3013.

https://doi.org/10.1016/j.egypro.2019.01.974.

[163] Y. He, X.T. Liu, C. Bin Zhang, Z.H. Chen, A new model for State-of-Charge (SOC) estimation for high-

power Li-ion batteries, Appl. Energy. 101 (2013) 808–814.

https://doi.org/10.1016/j.apenergy.2012.08.031.

[164] M. Ye, H. Guo, R. Xiong, Q. Yu, A double-scale and adaptive particle filter-based online parameter and

state of charge estimation method for lithium-ion batteries, Energy. 144 (2018) 789–799.

https://doi.org/10.1016/j.energy.2017.12.061.

[165] Z. Chen, H. Sun, G. Dong, J. Wei, J. Wu, Particle filter-based state-of-charge estimation and remaining-

dischargeable-time prediction method for lithium-ion batteries, J. Power Sources. 414 (2019) 158–166.

https://doi.org/10.1016/j.jpowsour.2019.01.012.

[166] Y. Wang, Z. Chen, A framework for state-of-charge and remaining discharge time prediction using

unscented particle filter, Appl. Energy. 260 (2020) 114324.

https://doi.org/10.1016/j.apenergy.2019.114324.

[167] M. Liu, M. He, S. Qiao, B. Liu, Z. Cao, R. Wang, A high-order state-of-charge estimation model by

cubature particle filter, Meas. J. Int. Meas. Confed. 146 (2019) 35–42.

https://doi.org/10.1016/j.measurement.2019.05.040.

[168] R. Xiong, Q. Yu, L.Y. Wang, C. Lin, A novel method to obtain the open circuit voltage for the state of

charge of lithium ion batteries in electric vehicles by using H infinity filter, Appl. Energy. 207 (2017)

346–353. https://doi.org/10.1016/j.apenergy.2017.05.136.

[169] C.Z. Liu, Q. Zhu, L. Li, W.Q. Liu, L.Y. Wang, N. Xiong, X.Y. Wang, A State of Charge Estimation

Method Based on H∞ Observer for Switched Systems of Lithium-Ion Nickel-Manganese-Cobalt

Batteries, IEEE Trans. Ind. Electron. 64 (2017) 8128–8137. https://doi.org/10.1109/TIE.2017.2701766.

[170] Y. Zhang, C. Zhang, X. Zhang, State-of-charge estimation of the lithium-ion battery system with time-

varying parameter for hybrid electric vehicles, IET Control Theory Appl. 8 (2014) 160–167.

https://doi.org/10.1049/iet-cta.2013.0082.

[171] M. Charkhgard, M.H. Zarif, Design of adaptive H∞ filter for implementing on state-of-charge estimation



 

 

based on battery state-of-charge-varying modelling, IET Power Electron. 8 (2015) 1825–1833. 

https://doi.org/10.1049/iet-pel.2014.0523. 

[172] F. He, W.X. Shen, A. Kapoor, D. Honnery, D. Dayawansa, H infinity observer based state of charge 

estimation for battery packs in electric vehicles, in: Proc. 2016 IEEE 11th Conf. Ind. Electron. Appl. 

ICIEA 2016, Institute of Electrical and Electronics Engineers Inc., 2016: pp. 694–699. 

https://doi.org/10.1109/ICIEA.2016.7603672. 

[173] C. Lin, H. Mu, R. Xiong, W. Shen, A novel multi-model probability battery state of charge estimation 

approach for electric vehicles using H-infinity algorithm, Appl. Energy. 166 (2016) 76–83. 

https://doi.org/10.1016/j.apenergy.2016.01.010. 

[174] J. Wang, R. Xiong, L. Li, Y. Fang, A comparative analysis and validation for double-filters-based state 

of charge estimators using battery-in-the-loop approach, Appl. Energy. 229 (2018) 648–659. 

https://doi.org/10.1016/j.apenergy.2018.08.022. 

[175] X. Shu, G. Li, J. Shen, W. Yan, Z. Chen, Y. Liu, An adaptive fusion estimation algorithm for state of 

charge of lithium-ion batteries considering wide operating temperature and degradation, J. Power 

Sources. 462 (2020) 228132. https://doi.org/10.1016/j.jpowsour.2020.228132. 

[176] E. Chemali, P.J. Kollmeyer, M. Preindl, A. Emadi, State-of-charge estimation of Li-ion batteries using 

deep neural networks: A machine learning approach, J. Power Sources. 400 (2018) 242–255. 

https://doi.org/10.1016/j.jpowsour.2018.06.104. 

[177] F. Yang, X. Song, F. Xu, K.L. Tsui, State-of-Charge Estimation of Lithium-Ion Batteries via Long 

Short-Term Memory Network, IEEE Access. 7 (2019) 53792–53799. 

https://doi.org/10.1109/ACCESS.2019.2912803. 

[178] H. Chaoui, C.C. Ibe-Ekeocha, State of Charge and State of Health Estimation for Lithium Batteries 

Using Recurrent Neural Networks, IEEE Trans. Veh. Technol. 66 (2017) 8773–8783. 

https://doi.org/10.1109/TVT.2017.2715333. 

[179] E. Chemali, P.J. Kollmeyer, M. Preindl, R. Ahmed, A. Emadi, Long Short-Term Memory Networks for 

Accurate State-of-Charge Estimation of Li-ion Batteries, IEEE Trans. Ind. Electron. 65 (2018) 6730–

6739. https://doi.org/10.1109/TIE.2017.2787586. 

[180] J. Hong, Z. Wang, W. Chen, Y. Yao, Synchronous multi-parameter prediction of battery systems on 

electric vehicles using long short-term memory networks, Appl. Energy. 254 (2019) 113648. 

https://doi.org/10.1016/j.apenergy.2019.113648. 

[181] M.A. Hannan, M.S.H. Lipu, A. Hussain, P.J. Ker, T.M.I. Mahlia, M. Mansor, A. Ayob, M.H. Saad, Z.Y. 

Dong, Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine 

Learning Techniques, Sci. Rep. 10 (2020) 1–15. https://doi.org/10.1038/s41598-020-61464-7. 

[182] G.O. Sahinoglu, M. Pajovic, Z. Sahinoglu, Y. Wang, P. V. Orlik, T. Wada, Battery State-of-Charge 

Estimation Based on Regular/Recurrent Gaussian Process Regression, IEEE Trans. Ind. Electron. 65 

(2018) 4311–4321. https://doi.org/10.1109/TIE.2017.2764869. 

[183] T. Zahid, K. Xu, W. Li, C. Li, H. Li, State of charge estimation for electric vehicle power battery using 

advanced machine learning algorithm under diversified drive cycles, Energy. 162 (2018) 871–882. 

https://doi.org/10.1016/j.energy.2018.08.071. 

[184] J. Hou, Z. Song, A hierarchical energy management strategy for hybrid energy storage via vehicle-to-



 

 

cloud connectivity, Appl. Energy. 257 (2020) 113900. https://doi.org/10.1016/j.apenergy.2019.113900. 

[185] R.R. Richardson, M.A. Osborne, D.A. Howey, Gaussian process regression for forecasting battery state 

of health, J. Power Sources. 357 (2017) 209–219. https://doi.org/10.1016/j.jpowsour.2017.05.004. 

[186] S. Albelwi, A. Mahmood, A Framework for Designing the Architectures of Deep Convolutional Neural 

Networks, Entropy. 19 (2017) 242. https://doi.org/10.3390/e19060242. 

[187] W. He, N. Williard, C. Chen, M. Pecht, State of charge estimation for Li-ion batteries using neural 

network modeling and unscented Kalman filter-based error cancellation, Int. J. Electr. Power Energy 

Syst. 62 (2014) 783–791. https://doi.org/10.1016/j.ijepes.2014.04.059. 

[188] T. Zahid, F. Qin, W. Li, K. Xu, Y. Zhou, Sequential Monte Carlo based technique for SOC estimation of 

LiFePO4 battery pack for electric vehicles, in: 2016 IEEE Int. Conf. Inf. Autom. IEEE ICIA 2016, 

Institute of Electrical and Electronics Engineers Inc., 2017: pp. 1308–1312. 

https://doi.org/10.1109/ICInfA.2016.7832021. 

[189] H. Han, H. Xu, Z. Yuan, Y. Zhao, State of Charge estimation of Li-ion battery in EVs based on second-

order sliding mode observer, in: IEEE Transp. Electrif. Conf. Expo, ITEC Asia-Pacific 2014 - Conf. 

Proc., Institute of Electrical and Electronics Engineers Inc., 2014. https://doi.org/10.1109/ITEC-

AP.2014.6941100. 

[190] X. Tang, B. Liu, Z. Lv, F. Gao, Observer based battery SOC estimation: Using multi-gain-switching 

approach, Appl. Energy. 204 (2017) 1275–1283. https://doi.org/10.1016/j.apenergy.2017.03.079. 

[191] C. Weng, J. Sun, H. Peng, A unified open-circuit-voltage model of lithium-ion batteries for state-of-

charge estimation and state-of-health monitoring, J. Power Sources. 258 (2014) 228–237. 

https://doi.org/10.1016/j.jpowsour.2014.02.026. 

[192] W. Waag, D.U. Sauer, Adaptive estimation of the electromotive force of the lithium-ion battery after 

current interruption for an accurate state-of-charge and capacity determination, Appl. Energy. 111 (2013) 

416–427. https://doi.org/10.1016/j.apenergy.2013.05.001. 

[193] A. Eddahech, O. Briat, N. Bertrand, J.Y. Delétage, J.M. Vinassa, Behavior and state-of-health 

monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks, Int. J. 

Electr. Power Energy Syst. 42 (2012) 487–494. https://doi.org/10.1016/j.ijepes.2012.04.050. 

[194] H. He, X. Zhang, R. Xiong, Y. Xu, H. Guo, Online model-based estimation of state-of-charge and open-

circuit voltage of lithium-ion batteries in electric vehicles, Energy. 39 (2012) 310–318. 

https://doi.org/10.1016/j.energy.2012.01.009. 

[195] J. Kim, S. Lee, B.H. Cho, Complementary cooperation algorithm based on DEKF combined with pattern 

recognition for SOC/capacity estimation and SOH prediction, IEEE Trans. Power Electron. 27 (2012) 

436–451. https://doi.org/10.1109/TPEL.2011.2158554. 

[196] C. Jiang, A. Taylor, C. Duan, K. Bai, Extended Kalman Filter based battery state of charge(SOC) 

estimation for electric vehicles, in: 2013 IEEE Transp. Electrif. Conf. Expo Components, Syst. Power 

Electron. - From Technol. to Bus. Public Policy, ITEC 2013, 2013. 

https://doi.org/10.1109/ITEC.2013.6573477. 

[197] Y. Tian, B. Xia, W. Sun, Z. Xu, W. Zheng, A modified model based state of charge estimation of power 

lithium-ion batteries using unscented Kalman filter, J. Power Sources. 270 (2014) 619–626. 

https://doi.org/10.1016/j.jpowsour.2014.07.143. 



 

 

[198] G.L. Plett, Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery 

packs. Part 1: Introduction and state estimation, J. Power Sources. 161 (2006) 1356–1368. 

https://doi.org/10.1016/j.jpowsour.2006.06.003. 

[199] S. Schwunk, N. Armbruster, S. Straub, J. Kehl, M. Vetter, Particle filter for state of charge and state of 

health estimation for lithium-iron phosphate batteries, J. Power Sources. 239 (2013) 705–710. 

https://doi.org/10.1016/j.jpowsour.2012.10.058. 

[200] Q. Miao, L. Xie, H. Cui, W. Liang, M. Pecht, Remaining useful life prediction of lithium-ion battery 

with unscented particle filter technique, Microelectron. Reliab. 53 (2013) 805–810. 

https://doi.org/10.1016/j.microrel.2012.12.004. 

[201] B. Long, W. Xian, L. Jiang, Z. Liu, An improved autoregressive model by particle swarm optimization 

for prognostics of lithium-ion batteries, Microelectron. Reliab. 53 (2013) 821–831. 

https://doi.org/10.1016/j.microrel.2013.01.006. 

[202] W. Wang, H.S.H. Chung, J. Zhang, Near-real-time parameter estimation of an electrical battery model 

with multiple time constants and SoC-dependent capacitance, in: 2014 IEEE Energy Convers. Congr. 

Expo. ECCE 2014, Institute of Electrical and Electronics Engineers Inc., 2014: pp. 3977–3984. 

https://doi.org/10.1109/ECCE.2014.6953942. 

[203] Y. Zheng, L. Lu, X. Han, J. Li, M. Ouyang, LiFePO4 battery pack capacity estimation for electric 

vehicles based on charging cell voltage curve transformation, J. Power Sources. 226 (2013) 33–41. 

https://doi.org/10.1016/j.jpowsour.2012.10.057. 

[204] H.T. Lin, T.J. Liang, S.M. Chen, The state-of-health diagnosis of Li-Co batteries with fuzzy 

identification, in: Conf. Proc. - 2012 IEEE 7th Int. Power Electron. Motion Control Conf. - ECCE Asia, 

IPEMC 2012, 2012: pp. 2678–2682. https://doi.org/10.1109/IPEMC.2012.6259285. 

[205] J.N. Hu, J.J. Hu, H.B. Lin, X.P. Li, C.L. Jiang, X.H. Qiu, W.S. Li, State-of-charge estimation for battery 

management system using optimized support vector machine for regression, J. Power Sources. 269 

(2014) 682–693. https://doi.org/10.1016/j.jpowsour.2014.07.016. 

[206] S.S. Mansouri, P. Karvelis, G. Georgoulas, G. Nikolakopoulos, Remaining Useful Battery Life 

Prediction for UAVs based on Machine Learning, IFAC-PapersOnLine. 50 (2017) 4727–4732. 

https://doi.org/10.1016/j.ifacol.2017.08.863. 

[207] P. Khumprom, N. Yodo, A Data-Driven Predictive Prognostic Model for Lithium-Ion Batteries based on 

a &#13; Deep Learning Algorithm, Energies. 12 (2019) 660. https://doi.org/10.3390/en12040660. 

[208] J.C. Álvarez Antón, P.J. García Nieto, E. García Gonzalo, J.C. Viera Pérez, M. González Vega, C. 

Blanco Viejo, A New Predictive Model for the State-of-Charge of a High-Power Lithium-Ion Cell Based 

on a PSO-Optimized Multivariate Adaptive Regression Spline Approach, IEEE Trans. Veh. Technol. 65 

(2016) 4197–4208. https://doi.org/10.1109/TVT.2015.2504933. 

[209] I.S. Kim, Nonlinear state of charge estimator for hybrid electric vehicle battery, IEEE Trans. Power 

Electron. 23 (2008) 2027–2034. https://doi.org/10.1109/TPEL.2008.924629. 

[210] X. Feng, J. Li, M. Ouyang, L. Lu, J. Li, X. He, Using probability density function to evaluate the state of 

health of lithium-ion batteries, J. Power Sources. 232 (2013) 209–218. 

https://doi.org/10.1016/j.jpowsour.2013.01.018. 

[211] C. Zhang, Y.L. Wei, P.F. Cao, M.C. Lin, Energy storage system: Current studies on batteries and power 



condition system, Renew. Sustain. Energy Rev. 82 (2018) 3091–3106. 

https://doi.org/10.1016/j.rser.2017.10.030. 

[212] B. Pack, P. Fall, A. Market, R. Up, W. Market, Battery Pack Prices Fall As Market Ramps Up With

Market Average At $156/kWh In 2019, BloombergNEF. (2019) Veronika Henze.

https://about.bnef.com/blog/battery-pack-prices-fall-as-market-ramps-up-with-market-average-at-156-

kwh-in-2019/ (accessed June 17, 2020).

[213] M.F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery

separators, Nat. Energy. 4 (2019) 16–25. https://doi.org/10.1038/s41560-018-0295-9.

[214] Y. Xiang, X. Li, Y. Cheng, X. Sun, Y. Yang, Advanced characterization techniques for solid state

lithium battery research, Mater. Today. xxx (2020). https://doi.org/10.1016/j.mattod.2020.01.018.

[215] J. Lu, T. Wu, K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries,

Nat. Energy. 2 (2017). https://doi.org/10.1038/nenergy.2017.11.

[216] A. Barai, K. Uddin, M. Dubarry, L. Somerville, A. McGordon, P. Jennings, I. Bloom, A comparison of

methodologies for the non-invasive characterisation of commercial Li-ion cells, Prog. Energy Combust.

Sci. 72 (2019) 1–31. https://doi.org/10.1016/j.pecs.2019.01.001.

[217] S. Goel, R. Sharma, A.K. Rathore, A review on barrier and challenges of electric vehicle in India and

vehicle to grid optimisation, Transp. Eng. 4 (2021) 100057. https://doi.org/10.1016/j.treng.2021.100057.

[218] A.C.R. Teixeira, J.R. Sodré, Simulation of the impacts on carbon dioxide emissions from replacement of

a conventional Brazilian taxi fleet by electric vehicles, Energy. 115 (2016) 1617–1622.

https://doi.org/10.1016/j.energy.2016.07.095.

[219] Electric vehicle life cycle analysis and raw material availability | Transport & Environment, (n.d.).

[220] A. Alimujiang, P. Jiang, Synergy and co-benefits of reducing CO2 and air pollutant emissions by

promoting electric vehicles—A case of Shanghai, Energy Sustain. Dev. 55 (2020) 181–189.

https://doi.org/10.1016/j.esd.2020.02.005.

[221] K. Glitman, D. Farnsworth, J. Hildermeier, The role of electric vehicles in a decarbonized economy:

Supporting a reliable, affordable and efficient electric system, Electr. J. 32 (2019) 106623.

https://doi.org/10.1016/j.tej.2019.106623.

[222] W. Choi, E. Yoo, E. Seol, M. Kim, H.H. Song, Greenhouse gas emissions of conventional and

alternative vehicles: Predictions based on energy policy analysis in South Korea, Appl. Energy. 265

(2020) 114754. https://doi.org/10.1016/j.apenergy.2020.114754.

[223] S. Xiong, Y. Wang, B. Bai, X. Ma, A hybrid life cycle assessment of the large-scale application of

electric vehicles, Energy. 216 (2021) 119314. https://doi.org/10.1016/j.energy.2020.119314.

[224] Q. Qiao, F. Zhao, Z. Liu, X. He, H. Hao, Life cycle greenhouse gas emissions of Electric Vehicles in

China: Combining the vehicle cycle and fuel cycle, Energy. 177 (2019) 222–233.

https://doi.org/10.1016/j.energy.2019.04.080.

[225] F. Li, R. Ou, X. Xiao, K. Zhou, W. Xie, D. Ma, K. Liu, Z. Song, Regional comparison of electric vehicle

adoption and emission reduction effects in China, Resour. Conserv. Recycl. 149 (2019) 714–726.

https://doi.org/10.1016/j.resconrec.2019.01.038.

[226] P. Greim, A.A. Solomon, C. Breyer, Assessment of lithium criticality in the global energy transition and

addressing policy gaps in transportation, Nat. Commun. 11 (2020) 1–11. https://doi.org/10.1038/s41467-



 

 

020-18402-y. 

[227] F. Duffner, L. Mauler, M. Wentker, J. Leker, M. Winter, Large-scale automotive battery cell 

manufacturing: Analyzing strategic and operational effects on manufacturing costs, Int. J. Prod. Econ. 

232 (2021) 107982. https://doi.org/10.1016/j.ijpe.2020.107982. 

[228] Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li, A review 

of lithium-ion battery safety concerns: The issues, strategies, and testing standards, J. Energy Chem. 59 

(2021) 83–99. https://doi.org/10.1016/j.jechem.2020.10.017. 

[229] L. Bongartz, S. Shammugam, E. Gervais, T. Schlegl, Multidimensional criticality assessment of metal 

requirements for Lithium-ion batteries in electric vehicles and stationary storage applications in 

Germany by 2050, J. Clean. Prod. (2021) 126056. https://doi.org/10.1016/j.jclepro.2021.126056. 

[230] W. Ma, Q. Xu, Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur 

batteries, Rare Met. 37 (2018) 929–935. https://doi.org/10.1007/s12598-018-1129-4. 

[231] S. Chen, X. Zhang, M. Xia, K. Wei, L. Zhang, X. Zhang, Y. Cui, J. Shu, Issues and challenges of layered 

lithium nickel cobalt manganese oxides for lithium-ion batteries, J. Electroanal. Chem. (2021) 115412. 

https://doi.org/10.1016/j.jelechem.2021.115412. 

[232] C. Busà, M. Belekoukia, M.J. Loveridge, The effects of ambient storage conditions on the structural and 

electrochemical properties of NMC-811 cathodes for Li-ion batteries, Electrochim. Acta. 366 (2021) 

137358. https://doi.org/10.1016/j.electacta.2020.137358. 

[233] D. Qiao, G. Wang, T. Gao, B. Wen, T. Dai, Potential impact of the end-of-life batteries recycling of 

electric vehicles on lithium demand in China: 2010–2050, Sci. Total Environ. (2020) 142835. 

https://doi.org/10.1016/j.scitotenv.2020.142835. 

[234] Y. Wang, N. An, L. Wen, L. Wang, X. Jiang, F. Hou, Y. Yin, J. Liang, Recent progress on the recycling 

technology of Li-ion batteries, J. Energy Chem. 55 (2020) 391–419. 

https://doi.org/10.1016/j.jechem.2020.05.008. 

[235] Y. Hua, X. Liu, S. Zhou, Y. Huang, H. Ling, S. Yang, Toward Sustainable Reuse of Retired Lithium-ion 

Batteries from Electric Vehicles, Resour. Conserv. Recycl. 168 (2021) 105249. 

https://doi.org/10.1016/j.resconrec.2020.105249. 

[236] F. Meng, J. McNeice, S.S. Zadeh, A. Ghahreman, Review of Lithium Production and Recovery from 

Minerals, Brines, and Lithium-Ion Batteries, Miner. Process. Extr. Metall. Rev. 42 (2021) 123–141. 

https://doi.org/10.1080/08827508.2019.1668387. 

[237] T.D. Nguyen, S. Li, W. Li, C.C. Mi, Feasibility study on bipolar pads for efficient wireless power 

chargers, Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC. (2014) 1676–1682. 

https://doi.org/10.1109/APEC.2014.6803531. 

[238] Y. Zheng, Z.Y. Dong, Y. Xu, K. Meng, J.H. Zhao, J. Qiu, Electric vehicle battery charging/swap stations 

in distribution systems: Comparison study and optimal planning, IEEE Trans. Power Syst. 29 (2014) 

221–229. https://doi.org/10.1109/TPWRS.2013.2278852. 

[239] H. Shareef, M.M. Islam, A. Mohamed, A review of the stage-of-the-art charging technologies, placement 

methodologies, and impacts of electric vehicles, Renew. Sustain. Energy Rev. 64 (2016) 403–420. 

https://doi.org/10.1016/j.rser.2016.06.033. 

[240] V.S. Devahdhanush, S. Lee, I. Mudawar, Experimental investigation of subcooled flow boiling in annuli 



 

 

with reference to thermal management of ultra-fast electric vehicle charging cables, Int. J. Heat Mass 

Transf. 172 (2021) 121176. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121176. 

[241] J1772A: SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler - SAE 

International, (n.d.). https://www.sae.org/standards/content/j1772_201710/ (accessed November 26, 

2019). 

[242] SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler J1772_201710, 

2017. https://saemobilus.sae.org/content/j1772_201710 (accessed May 16, 2021). 

[243] Electric vehicle conductive charging system - Part 1 General requirements, Standard BS EN IEC 61851-

1:2019, 2019. 

[244] Electric vehicle conductive charging system - Part 23 DC electric vehicle charging station, Standard BS 

EN IEC 61851-23:2014, 2014. https://webstore.iec.ch/publication/6032 (accessed May 16, 2021). 

[245] Connection set for conductive charging of electric vehicles - Part 1 General requirements, GB/T 

20234.1-2015, 2015. 

[246] Connection set for conductive charging of electric vehicles - Part 2 AC charging coupler, GB/T 20234.2-

2015, 2015. 

[247] R. Krishnamoorthy, C. Bharatiraja, K. Krishnan, Review of communication network interfaces and 

battery management for PHEV-ECU materials and components, Mater. Today Proc. (2021). 

https://doi.org/10.1016/j.matpr.2020.12.933. 

[248] C. Marinescu, L. Barote, D. Munteanu, V. Komasilovs, A. Zacepins, A. Kviesis, Enhancing with EV 

charging station functions a residential RES based network, VEHITS 2018 - Proc. 4th Int. Conf. Veh. 

Technol. Intell. Transp. Syst. 2018-March (2018) 610–616. https://doi.org/10.5220/0006812306100616. 

[249] S. Lukic, Z. Pantic, Cutting the Cord: Static and Dynamic Inductive Wireless Charging of Electric 

Vehicles, IEEE Electrif. Mag. 1 (2013) 57–64. https://doi.org/10.1109/mele.2013.2273228. 

[250] P. Machura, Q. Li, A critical review on wireless charging for electric vehicles, Renew. Sustain. Energy 

Rev. 104 (2019) 209–234. https://doi.org/10.1016/j.rser.2019.01.027. 

[251] J.M. Miller, P.T. Jones, J.M. Li, O.C. Onar, ORNL experience and challenges facing dynamic wireless 

power charging of EV’s, IEEE Circuits Syst. Mag. 15 (2015) 40–53. 

https://doi.org/10.1109/MCAS.2015.2419012. 

[252] S. Li, Z. Liu, H. Zhao, L. Zhu, C. Shuai, Z. Chen, Wireless Power Transfer by Electric Field Resonance 

and Its Application in Dynamic Charging, IEEE Trans. Ind. Electron. 63 (2016) 6602–6612. 

https://doi.org/10.1109/TIE.2016.2577625. 

[253] W. Chen, C. Liu, C. Lee, Z. Shan, Cost-Effectiveness Comparison of Coupler Designs of Wireless 

Power Transfer for Electric Vehicle Dynamic Charging, Energies. 9 (2016) 906. 

https://doi.org/10.3390/en9110906. 

[254] V.B. Vu, D.H. Tran, W. Choi, Implementation of the Constant Current and Constant Voltage Charge of 

Inductive Power Transfer Systems with the Double-Sided LCC Compensation Topology for Electric 

Vehicle Battery Charge Applications, IEEE Trans. Power Electron. 33 (2018) 7398–7410. 

https://doi.org/10.1109/TPEL.2017.2766605. 

[255] A. Khaligh, S. Dusmez, Comprehensive topological analysis of conductive and inductive charging 

solutions for plug-in electric vehicles, IEEE Trans. Veh. Technol. 61 (2012) 3475–3489. 



 

 

https://doi.org/10.1109/TVT.2012.2213104. 

[256] M. Budhia, G. Covic, J. Boys, A new IPT magnetic coupler for electric vehicle charging systems, 

IECON Proc. (Industrial Electron. Conf. (2010) 2487–2492. 

https://doi.org/10.1109/IECON.2010.5675350. 

[257] S. Chopra, P. Bauer, Driving range extension of EV with on-road contactless power transfer-A case 

study, IEEE Trans. Ind. Electron. 60 (2013) 329–338. https://doi.org/10.1109/TIE.2011.2182015. 

[258] Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology 

J2954_202010, 2020. https://www.sae.org/standards/content/j2954_202010/ (accessed May 18, 2021). 

[259] J2847/6A: Communication for Wireless Power Transfer Between Light-Duty Plug-in Electric Vehicles 

and Wireless EV Charging Stations , 2020. 

[260] Y.J. Jang, S. Jeong, M.S. Lee, Initial energy logistics cost analysis for stationary, quasi-dynamic, & 

dynamicwireless charging public transportation systems, Energies. 9 (2016) 483. 

https://doi.org/10.3390/en9070483. 

[261] L. Sun, D. Ma, H. Tang, A review of recent trends in wireless power transfer technology and its 

applications in electric vehicle wireless charging, Renew. Sustain. Energy Rev. 91 (2018) 490–503. 

https://doi.org/10.1016/j.rser.2018.04.016. 

[262] S. Li, C.C. Mi, Wireless power transfer for electric vehicle applications, IEEE J. Emerg. Sel. Top. Power 

Electron. 3 (2015) 4–17. https://doi.org/10.1109/JESTPE.2014.2319453. 

[263] Z. Bi, T. Kan, C.C. Mi, Y. Zhang, Z. Zhao, G.A. Keoleian, A review of wireless power transfer for 

electric vehicles: Prospects to enhance sustainable mobility, Appl. Energy. 179 (2016) 413–425. 

https://doi.org/10.1016/j.apenergy.2016.07.003. 

[264] J. Huh, S.W. Lee, W.Y. Lee, G.H. Cho, C.T. Rim, Narrow-width inductive power transfer system for 

online electrical vehicles, IEEE Trans. Power Electron. 26 (2011) 3666–3679. 

https://doi.org/10.1109/TPEL.2011.2160972. 

[265] S.Y. Choi, B.W. Gu, S.W. Lee, W.Y. Lee, J. Huh, C.T. Rim, Generalized active EMF cancel methods 

for wireless electric vehicles, IEEE Trans. Power Electron. 29 (2014) 5770–5783. 

https://doi.org/10.1109/TPEL.2013.2295094. 

[266] C.T. Rim, C. Mi, Wireless Power Transfer for Electric Vehicles and Mobile Devices, John Wiley & 

Sons, Ltd, Chichester, UK, 2017. https://doi.org/10.1002/9781119329084. 

[267] J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S.J. Jeon, D.H. Cho, Design and implementation of 

shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric 

vehicles, IEEE Trans. Ind. Electron. 61 (2014) 1179–1192. https://doi.org/10.1109/TIE.2013.2258294. 

[268] A. Shekhar, V. Prasanth, P. Bauer, M. Bolech, Economic viability study of an on-road wireless charging 

system with a generic driving range estimation method, Energies. 9 (2016) 1–20. 

https://doi.org/10.3390/en9020076. 

[269] S. Jeong, Y.J. Jang, D. Kum, Economic Analysis of the Dynamic Charging Electric Vehicle, IEEE 

Trans. Power Electron. 30 (2015) 6368–6377. https://doi.org/10.1109/TPEL.2015.2424712. 

[270] Z. Bi, R. De Kleine, G.A. Keoleian, Integrated Life Cycle Assessment and Life Cycle Cost Model for 

Comparing Plug-in versus Wireless Charging for an Electric Bus System, J. Ind. Ecol. 21 (2017) 344–

355. https://doi.org/10.1111/jiec.12419. 



[271] M. Fuller, Wireless charging in California: Range, recharge, and vehicle electrification, Transp. Res. Part

C Emerg. Technol. 67 (2016) 343–356. https://doi.org/10.1016/j.trc.2016.02.013.

[272] J.J. Jamian, M.W. Mustafa, H. Mokhlis, M.A. Baharudin, Simulation study on optimal placement and

sizing of Battery Switching Station units using Artificial Bee Colony algorithm, Int. J. Electr. Power

Energy Syst. 55 (2014) 592–601. https://doi.org/10.1016/j.ijepes.2013.10.009.

[273] T.H. Wu, G.K.H. Pang, K.L. Choy, H.Y. Lam, An optimization model for a battery swapping station in

Hong Kong, in: 2015 IEEE Transp. Electrif. Conf. Expo, ITEC 2015, Institute of Electrical and

Electronics Engineers Inc., 2015. https://doi.org/10.1109/ITEC.2015.7165769.

[274] C. Zhang, P. Chen, Economic benefit analysis of battery charging and swapping station for pure electric

bus based on differential power purchase policy: a new power trading model, Sustain. Cities Soc. 64

(2021) 102570. https://doi.org/10.1016/j.scs.2020.102570.

[275] IEC TS 62840-1:2016 | Electric vehicle battery swap system - Part 1: General and guidance, 2016.

https://webstore.iec.ch/publication/25398 (accessed May 20, 2021).

[276] IEC 62840-2:2016 | Electric vehicle battery swap system - Part 2: Safety requirements, 2016.

https://webstore.iec.ch/publication/25983 (accessed May 20, 2021).

[277] Y. Wang, W. Ding, L. Huang, Z. Wei, H. Liu, J.A. Stankovic, Toward Urban Electric Taxi Systems in

Smart Cities: The Battery Swapping Challenge, IEEE Trans. Veh. Technol. 67 (2018) 1946–1960.

https://doi.org/10.1109/TVT.2017.2774447.

[278] Nichola Groom, Electric car maker Tesla unveils 90-second battery pack swap - Reuters, (2013).

https://www.reuters.com/article/us-tesla-swap/electric-car-maker-tesla-unveils-90-second-battery-pack-

swap-idUSBRE95K07H20130621 (accessed January 17, 2020).

[279] B. Sun, X. Tan, D.H.K. Tsang, Optimal Charging Operation of Battery Swapping and Charging Stations

with QoS Guarantee, IEEE Trans. Smart Grid. 9 (2018) 4689–4701.

https://doi.org/10.1109/TSG.2017.2666815.

[280] X. Tan, B. Sun, Y. Wu, D.H.K. Tsang, Asymptotic performance evaluation of battery swapping and

charging station for electric vehicles, Perform. Eval. 119 (2018) 43–57.

https://doi.org/10.1016/j.peva.2017.12.004.

[281] Q. Kang, J. Wang, M. Zhou, A.C. Ammari, Centralized Charging Strategy and Scheduling Algorithm for

Electric Vehicles under a Battery Swapping Scenario, IEEE Trans. Intell. Transp. Syst. 17 (2016) 659–

669. https://doi.org/10.1109/TITS.2015.2487323.

[282] L. Chen, M. Wu, X. Xu, The development and applications of charging/battery swap technologies for

EVS, in: China Int. Conf. Electr. Distrib. CICED, 2012. https://doi.org/10.1109/CICED.2012.6508419.

[283] B. Sun, X. Sun, D.H.K. Tsang, W. Whitt, Optimal battery purchasing and charging strategy at electric

vehicle battery swap stations, Eur. J. Oper. Res. 279 (2019) 524–539.

https://doi.org/10.1016/j.ejor.2019.06.019.

[284] China EV Charging Station and Charging Pile Market Report, 2017-2020, (n.d.).

https://www.marketresearch.com/Research-in-China-v3266/China-EV-Charging-Station-Pile-10718132/

(accessed January 17, 2020).

[285] Smart Cities Council India | India’s 1st battery swapping & charging station for electric vehicles, (n.d.).

[286] Battery Swapping System | ACM (EN) - Adaptive City Mobility, (n.d.).



 

 

[287] J. Yang, H. Sun, Battery swap station location-routing problem with capacitated electric vehicles, 

Comput. Oper. Res. 55 (2015) 217–232. https://doi.org/10.1016/j.cor.2014.07.003. 

[288] M. Zhang, J. Chen, The energy management and optimized operation of electric vehicles based on 

microgrid, IEEE Trans. Power Deliv. 29 (2014) 1427–1435. 

https://doi.org/10.1109/TPWRD.2014.2303492. 

[289] M. Ban, M. Shahidehpour, J. Yu, Z. Li, A Cyber-Physical Energy Management System for Optimal 

Sizing and Operation of Networked Nanogrids With Battery Swapping Stations, IEEE Trans. Sustain. 

Energy. 10 (2019) 491–502. https://doi.org/10.1109/TSTE.2017.2788056. 

[290] H. Farzin, M. Moeini-Aghtaie, M. Fotuhi-Firuzabad, Reliability Studies of Distribution Systems 

Integrated with Electric Vehicles under Battery-Exchange Mode, IEEE Trans. Power Deliv. 31 (2016) 

2473–2482. https://doi.org/10.1109/TPWRD.2015.2497219. 

[291] L. Cheng, Y. Chang, J. Lin, C. Singh, Power System Reliability Assessment With Electric Vehicle 

Integration Using Battery Exchange Mode, IEEE Trans. Sustain. Energy. 4 (2013) 1034–1042. 

[292] Q. Dai, T. Cai, S. Duan, F. Zhao, Stochastic modeling and forecasting of load demand for electric bus 

battery-swap station, IEEE Trans. Power Deliv. 29 (2014) 1909–1917. 

https://doi.org/10.1109/TPWRD.2014.2308990. 

[293] P. You, Z. Yang, Y. Zhang, S.H. Low, Y. Sun, Optimal Charging Schedule for a Battery Switching 

Station Serving Electric Buses, IEEE Trans. Power Syst. 31 (2016) 3473–3483. 

https://doi.org/10.1109/TPWRS.2015.2487273. 

[294] Y. Liang, X. Zhang, Battery swap pricing and charging strategy for electric taxis in China, Energy. 147 

(2018) 561–577. https://doi.org/10.1016/j.energy.2018.01.082. 

[295] B. Loeb, K.M. Kockelman, J. Liu, Shared autonomous electric vehicle (SAEV) operations across the 

Austin, Texas network with charging infrastructure decisions, Transp. Res. Part C Emerg. Technol. 89 

(2018) 222–233. https://doi.org/10.1016/j.trc.2018.01.019. 

[296] G.S. Bauer, J.B. Greenblatt, B.F. Gerke, Cost, Energy, and Environmental Impact of Automated Electric 

Taxi Fleets in Manhattan, Environ. Sci. Technol. 52 (2018) 4920–4928. 

https://doi.org/10.1021/acs.est.7b04732. 

[297] S. Yang, J. Yao, T. Kang, X. Zhu, Dynamic operation model of the battery swapping station for EV 

(electric vehicle) in electricity market, Energy. 65 (2014) 544–549. 

https://doi.org/10.1016/j.energy.2013.11.010. 

[298] J. Romm, The car and fuel of the future, Energy Policy. 34 (2006) 2609–2614. 

https://doi.org/10.1016/j.enpol.2005.06.025. 

[299] I. Rahman, P.M. Vasant, B.S.M. Singh, M. Abdullah-Al-Wadud, N. Adnan, Review of recent trends in 

optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures, Renew. Sustain. 

Energy Rev. 58 (2016) 1039–1047. https://doi.org/10.1016/j.rser.2015.12.353. 

[300] T.G. San Román, I. Momber, M.R. Abbad, Á. Sánchez Miralles, Regulatory framework and business 

models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships, 

Energy Policy. 39 (2011) 6360–6375. https://doi.org/10.1016/j.enpol.2011.07.037. 

[301] Y. Li, L. Li, J. Yong, Y. Yao, Z. Li, Layout planning of electrical vehicle charging stations based on 

genetic algorithm, in: Lect. Notes Electr. Eng., 2011: pp. 661–668. https://doi.org/10.1007/978-3-642-



21747-0_84. 

[302] X. Yan, C. Duan, X. Chen, Z. Duan, Planning of Electric Vehicle charging station based on hierarchic

genetic algorithm, in: IEEE Transp. Electrif. Conf. Expo, ITEC Asia-Pacific 2014 - Conf. Proc., Institute

of Electrical and Electronics Engineers Inc., 2014. https://doi.org/10.1109/ITEC-AP.2014.6941087.

[303] Z.F. Liu, W. Zhang, X. Ji, K. Li, Optimal planning of charging station for electric vehicle based on

particle swarm optimization, in: 2012 IEEE Innov. Smart Grid Technol. - Asia, ISGT Asia 2012, 2012.

https://doi.org/10.1109/ISGT-Asia.2012.6303112.

[304] J. Prasomthong, W. Ongsakul, J. Meyer, Optimal placement of vehicle-to-grid charging station in

distribution system using Particle Swarm Optimization with time varying acceleration coefficient, in:

Proc. 2014 Int. Conf. Util. Exhib. Green Energy Sustain. Dev. ICUE 2014, 2014.

[305] O. Worley, D. Klabjan, T.M. Sweda, Simultaneous vehicle routing and charging station siting for

commercial electric vehicles, in: 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012.

https://doi.org/10.1109/IEVC.2012.6183279.

[306] Z. Yi, P.H. Bauer, Optimization models for placement of an energy-aware electric vehicle charging

infrastructure, Transp. Res. Part E Logist. Transp. Rev. 91 (2016) 227–244.

https://doi.org/10.1016/j.tre.2016.04.013.

[307] P. Phonrattanasak, N. Leeprechanon, Optimal placement of EV fast charging stations considering the

impact on electrical distribution and traffic condition, in: Proc. 2014 Int. Conf. Util. Exhib. Green

Energy Sustain. Dev. ICUE 2014, 2014.

[308] J.G. Kim, M. Kuby, A network transformation heuristic approach for the deviation flow refueling

location model, Comput. Oper. Res. 40 (2013) 1122–1131. https://doi.org/10.1016/j.cor.2012.10.021.

[309] M. Momtazpour, P. Butler, M.S. Hossain, M.C. Bozchalui, N. Ramakrishnan, R. Sharma, Coordinated

clustering algorithms to support charging infrastructure design for electric vehicles, in: Proc. ACM

SIGKDD Int. Conf. Knowl. Discov. Data Min., 2012: pp. 126–133.

https://doi.org/10.1145/2346496.2346517.

[310] Y. Yin, S. Lawphongpanich, Network equilibrium models with battery electric vehicles, Transp. Res.

PART B. 67 (2014) 306–319. https://doi.org/10.1016/j.trb.2014.05.010.

[311] M. Cruz-Zambrano, C. Corchero, L. Igualada-Gonzalez, V. Bernardo, Optimal location of fast charging

stations in Barcelona: A flow-capturing approach, in: Int. Conf. Eur. Energy Mark. EEM, 2013.

https://doi.org/10.1109/EEM.2013.6607414.

[312] J. Wirges, S. Linder, A. Kessler, Modelling the development of a regional charging infrastructure for

electric vehicles in time and space, Eur. J. Transp. Infrastruct. Res. 12 (2012) 391–416.

https://doi.org/10.18757/ejtir.2012.12.4.2976.

[313] W. Tu, Q. Li, Z. Fang, S. lung Shaw, B. Zhou, X. Chang, Optimizing the locations of electric taxi

charging stations: A spatial–temporal demand coverage approach, Transp. Res. Part C Emerg. Technol.

65 (2016) 172–189. https://doi.org/10.1016/j.trc.2015.10.004.

[314] H. Fredriksson, M. Dahl, J. Holmgren, Optimal placement of Charging Stations for Electric Vehicles in

large-scale Transportation Networks, Procedia Comput. Sci. 160 (2019) 77–84.

https://doi.org/10.1016/j.procs.2019.09.446.

[315] X. Xi, R. Sioshansi, V. Marano, Simulation-optimization model for location of a public electric vehicle



 

 

charging infrastructure, Transp. Res. Part D Transp. Environ. 22 (2013) 60–69. 

https://doi.org/10.1016/j.trd.2013.02.014. 

[316] I. Frade, A. Ribeiro, G. Gonçalves, A. Antunes, Optimal location of charging stations for electric 

vehicles in a neighborhood in Lisbon, Portugal, Transp. Res. Rec. 2252 (2011) 91–98. 

https://doi.org/10.3141/2252-12. 

[317] J. Asamer, M. Reinthaler, M. Ruthmair, M. Straub, J. Puchinger, Optimizing charging station locations 

for urban taxi providers, Transp. Res. Part A Policy Pract. 85 (2016) 233–246. 

https://doi.org/10.1016/j.tra.2016.01.014. 

[318] N. Sathaye, S. Kelley, An approach for the optimal planning of electric vehicle infrastructure for 

highway corridors, Transp. Res. Part E Logist. Transp. Rev. 59 (2013) 15–33. 

https://doi.org/10.1016/j.tre.2013.08.003. 

[319] H. Fredriksson, M. Dahl, J. Holmgren, Optimal placement of Charging Stations for Electric Vehicles in 

large-scale Transportation Networks, Procedia Comput. Sci. 160 (2019) 1–10. 

https://doi.org/10.1016/j.procs.2019.09.446. 

[320] H. Xu, S. Miao, C. Zhang, D. Shi, Optimal placement of charging infrastructures for large-scale 

integration of pure electric vehicles into grid, Int. J. Electr. Power Energy Syst. 53 (2013) 159–165. 

https://doi.org/10.1016/j.ijepes.2013.04.022. 

[321] A.Y.S. Lam, Y.W. Leung, X. Chu, Electric vehicle charging station placement: Formulation, 

complexity, and solutions, IEEE Trans. Smart Grid. 5 (2014) 2846–2856. 

https://doi.org/10.1109/TSG.2014.2344684. 

[322] L. Jia, Z. Hu, Y. Song, Z. Luo, Optimal siting and sizing of electric vehicle charging stations, in: 2012 

IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012. https://doi.org/10.1109/IEVC.2012.6183283. 

[323] S. Wagner, M. Götzinger, D. Neumann, Optimal location of charging stations in smart cities: A points of 

interest based approach, ICIS 2013 Proc. (2013). 

https://aisel.aisnet.org/icis2013/proceedings/BreakthroughIdeas/12 (accessed January 21, 2020). 

[324] Y. Tao, M. Huang, L. Yang, Data-driven optimized layout of battery electric vehicle charging 

infrastructure, Energy. 150 (2018) 735–744. https://doi.org/10.1016/j.energy.2018.03.018. 

[325] L. Cilio, O. Babacan, Allocation optimisation of rapid charging stations in large urban areas to support 

fully electric taxi fleets, Appl. Energy. 295 (2021) 117072. 

https://doi.org/10.1016/j.apenergy.2021.117072. 

[326] T. Yi, X. Cheng, H. Zheng, J. Liu, Research on Location and Capacity Optimization Method for Electric 

Vehicle Charging Stations Considering User’s Comprehensive Satisfaction, (2019). 

[327] E. Pashajavid, M.A. Golkar, Optimal placement and sizing of plug in electric vehicles charging stations 

within distribution networks with high penetration of photovoltaic panels, J. Renew. Sustain. Energy. 5 

(2013). https://doi.org/10.1063/1.4822257. 

[328] P. Sadeghi-Barzani, A. Rajabi-Ghahnavieh, H. Kazemi-Karegar, Optimal fast charging station placing 

and sizing, Appl. Energy. 125 (2014) 289–299. https://doi.org/10.1016/j.apenergy.2014.03.077. 

[329] S.K. Injeti, V.K. Thunuguntla, Optimal integration of DGs into radial distribution network in the 

presence of plug-in electric vehicles to minimize daily active power losses and to improve the voltage 

profile of the system using bio-inspired optimization algorithms, Prot. Control Mod. Power Syst. 5 



 

 

(2020) 1–15. https://doi.org/10.1186/s41601-019-0149-x. 

[330] L. Chen, C. Xu, H. Song, K. Jermsittiparsert, Optimal sizing and sitting of EVCS in the distribution 

system using metaheuristics: A case study, Energy Reports. 7 (2021) 208–217. 

https://doi.org/10.1016/j.egyr.2020.12.032. 

[331] S. Deb, X.Z. Gao, K. Tammi, K. Kalita, P. Mahanta, A novel chicken swarm and teaching learning based 

algorithm for electric vehicle charging station placement problem, Energy. 220 (2021) 119645. 

https://doi.org/10.1016/j.energy.2020.119645. 

[332] A. Rezaee Jordehi, M.S. Javadi, J. P. S. Catalão, Optimal placement of battery swap stations in 

microgrids with micro pumped hydro storage systems, photovoltaic, wind and geothermal distributed 

generators, Int. J. Electr. Power Energy Syst. 125 (2021) 106483. 

https://doi.org/10.1016/j.ijepes.2020.106483. 

[333] T.Y. Ma, S. Xie, Optimal fast charging station locations for electric ridesharing with vehicle-charging 

station assignment, Transp. Res. Part D Transp. Environ. 90 (2021) 102682. 

https://doi.org/10.1016/j.trd.2020.102682. 

[334] EVSE | Bornes de recharge de véhicules électriques (VE) | ChargePoint, (n.d.). 

[335] PlugShare - EV Charging Station Map - Find a place to charge your car!, (n.d.). 

[336] Q. Meng, T. Liu, C. Su, H. Niu, Z. Hou, N. Ghadimi, A Single-Phase Transformer-Less Grid-Tied 

Inverter Based on Switched Capacitor for PV Application, J. Control. Autom. Electr. Syst. 31 (2020) 

257–270. https://doi.org/10.1007/s40313-019-00531-5. 

[337] A. Ghosh, Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the 

Carbon Footprint in the Transport Sector: A Review, Energies. 13 (2020) 2602. 

https://doi.org/10.3390/en13102602. 

[338] M.K. Nematchoua, A. Marie-Reine Nishimwe, S. Reiter, Towards nearly zero-energy residential 

neighbourhoods in the European Union: A case study, Renew. Sustain. Energy Rev. 135 (2021) 110198. 

https://doi.org/10.1016/j.rser.2020.110198. 

[339] H. Fan, L. Jiang, C.K. Zhang, C. Mao, Frequency regulation of multi-area power systems with plug-in 

electric vehicles considering communication delays, IET Gener. Transm. Distrib. 10 (2016) 3481–3491. 

https://doi.org/10.1049/iet-gtd.2016.0108. 

[340] I. Pavić, T. Capuder, I. Kuzle, Value of flexible electric vehicles in providing spinning reserve services, 

Appl. Energy. 157 (2015) 60–74. https://doi.org/10.1016/j.apenergy.2015.07.070. 

[341] C. Marinescu, L. Barote, D. Munteanu, V. Komasilovs, A. Zacepins, A. Kviesis, Enhancing with EV 

charging station functions a residential RES based network, in: VEHITS 2018 - Proc. 4th Int. Conf. Veh. 

Technol. Intell. Transp. Syst., SciTePress, 2018: pp. 610–616. 

https://doi.org/10.5220/0006812306100616. 

[342] C. Marinescu, L. Barote, Toward a practical solution for residential RES based EV charging system, 

Proc. - 2017 Int. Conf. Optim. Electr. Electron. Equipment, OPTIM 2017 2017 Intl Aegean Conf. Electr. 

Mach. Power Electron. ACEMP 2017. (2017) 771–776. https://doi.org/10.1109/OPTIM.2017.7975062. 

[343] S. Burger, J.P. Chaves-Ávila, C. Batlle, I.J. Pérez-Arriaga, A review of the value of aggregators in 

electricity systems, Renew. Sustain. Energy Rev. 77 (2017) 395–405. 

https://doi.org/10.1016/j.rser.2017.04.014. 



 

 

[344] H. Tang, S. Wang, H. Li, Flexibility categorization, sources, capabilities and technologies for energy-

flexible and grid-responsive buildings: State-of-the-art and future perspective, Energy. 219 (2021) 

119598. https://doi.org/10.1016/j.energy.2020.119598. 

[345] A.F. Cortés Borray, J. Merino, E. Torres, J. Mazón, A review of the population-based and individual-

based approaches for electric vehicles in network energy studies, Electr. Power Syst. Res. 189 (2020) 

106785. https://doi.org/10.1016/j.epsr.2020.106785. 

[346] C. Guille, G. Gross, A conceptual framework for the vehicle-to-grid (V2G) implementation, Energy 

Policy. 37 (2009) 4379–4390. https://doi.org/10.1016/j.enpol.2009.05.053. 

[347] C. Peng, J. Zou, L. Lian, L. Li, An optimal dispatching strategy for V2G aggregator participating in 

supplementary frequency regulation considering EV driving demand and aggregator’s benefits, Appl. 

Energy. 190 (2017) 591–599. https://doi.org/10.1016/j.apenergy.2016.12.065. 

[348] B.K. Sovacool, J. Kester, L. Noel, G. Zarazua de Rubens, Actors, business models, and innovation 

activity systems for vehicle-to-grid (V2G) technology: A comprehensive review, Renew. Sustain. 

Energy Rev. 131 (2020) 109963. https://doi.org/10.1016/j.rser.2020.109963. 

[349] V2G Hub | V2G Around the world, (2021). 

[350] M. Ehsani, M. Falahi, S. Lotfifard, Vehicle to grid services: Potential and applications, Energies. 5 

(2012) 4076–4090. https://doi.org/10.3390/en5104076. 

[351] S. Sarabi, A. Davigny, V. Courtecuisse, Y. Riffonneau, B. Robyns, Potential of vehicle-to-grid ancillary 

services considering the uncertainties in plug-in electric vehicle availability and service/localization 

limitations in distribution grids, Appl. Energy. 171 (2016) 523–540. 

https://doi.org/10.1016/j.apenergy.2016.03.064. 

[352] M. Huda, K. Tokimatsu, M. Aziz, Techno economic analysis of vehicle to grid (V2G) integration as 

distributed energy resources in Indonesia power system, Energies. 13 (2020). 

https://doi.org/10.3390/en13051162. 

[353] N.B.G. Brinkel, W.L. Schram, T.A. AlSkaif, I. Lampropoulos, W.G.J.H.M. van Sark, Should we 

reinforce the grid? Cost and emission optimization of electric vehicle charging under different 

transformer limits, Appl. Energy. 276 (2020) 115285. https://doi.org/10.1016/j.apenergy.2020.115285. 

[354] C. Heilmann, G. Friedl, Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid 

applications—A review and meta-analysis, Renew. Sustain. Energy Rev. 145 (2021) 111115. 

https://doi.org/10.1016/j.rser.2021.111115. 

[355] R. Gough, C. Dickerson, P. Rowley, C. Walsh, Vehicle-to-grid feasibility: A techno-economic analysis 

of EV-based energy storage, Appl. Energy. 192 (2017) 12–23. 

https://doi.org/10.1016/j.apenergy.2017.01.102. 

[356] X. Li, Y. Tan, X. Liu, Q. Liao, B. Sun, G. Cao, C. Li, X. Yang, Z. Wang, A cost-benefit analysis of V2G 

electric vehicles supporting peak shaving in Shanghai, Electr. Power Syst. Res. 179 (2020) 106058. 

https://doi.org/10.1016/j.epsr.2019.106058. 

[357] S. Han, S. Han, Economic feasibility of V2G frequency regulation in consideration of battery wear, 

Energies. 6 (2013) 748–765. https://doi.org/10.3390/en6020748. 

[358] A. Kumar, N.K. Meena, A.R. Singh, Y. Deng, X. He, R.C. Bansal, P. Kumar, Strategic integration of 

battery energy storage systems with the provision of distributed ancillary services in active distribution 



 

 

systems, Appl. Energy. 253 (2019) 113503. https://doi.org/10.1016/j.apenergy.2019.113503. 

[359] M.T. Hussain, D.N. Bin Sulaiman, M.S. Hussain, M. Jabir, Optimal Management strategies to solve 

issues of grid having Electric Vehicles (EV): A review, J. Energy Storage. 33 (2021) 102114. 

https://doi.org/10.1016/j.est.2020.102114. 

[360] B. Bibak, H. Tekiner-Mogulkoc, Influences of vehicle to grid (V2G) on power grid: An analysis by 

considering associated stochastic parameters explicitly, Sustain. Energy, Grids Networks. 26 (2021) 

100429. https://doi.org/10.1016/j.segan.2020.100429. 

[361] B. Bibak, H. Tekiner-Moğulkoç, A comprehensive analysis of Vehicle to Grid (V2G) systems and 

scholarly literature on the application of such systems, Renew. Energy Focus. 36 (2021) 1–20. 

https://doi.org/10.1016/j.ref.2020.10.001. 

[362] Annu, D. Kaushik, A. Gupta, Ultra-secure transmissions for 5G-V2X communications, Mater. Today 

Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.130. 

[363] Y.A. Wu, A.W. Ng, Z. Yu, J. Huang, K. Meng, Z.Y. Dong, A review of evolutionary policy incentives 

for sustainable development of electric vehicles in China: Strategic implications, Energy Policy. 148 

(2021) 111983. https://doi.org/10.1016/j.enpol.2020.111983. 

[364] X.W. Wang, Y.M. Cao, N. Zhang, The influences of incentive policy perceptions and consumer social 

attributes on battery electric vehicle purchase intentions, Energy Policy. 151 (2021) 112163. 

https://doi.org/10.1016/j.enpol.2021.112163. 

[365] J.H.M. Langbroek, J.P. Franklin, Y.O. Susilo, The effect of policy incentives on electric vehicle 

adoption, Energy Policy. 94 (2016) 94–103. https://doi.org/10.1016/j.enpol.2016.03.050. 

[366] S. Hardman, G. Tal, Exploring the decision to adopt a high-end battery electric vehicle: Role of financial 

and nonfinancial motivations, Transp. Res. Rec. 2572 (2016) 20–27. https://doi.org/10.3141/2572-03. 

[367] A.C. Mersky, F. Sprei, C. Samaras, Z.S. Qian, Effectiveness of incentives on electric vehicle adoption in 

Norway, Transp. Res. Part D Transp. Environ. 46 (2016) 56–68. 

https://doi.org/10.1016/j.trd.2016.03.011. 

[368] G. Santos, S. Rembalski, Do electric vehicles need subsidies in the UK?, Energy Policy. 149 (2021) 

111890. https://doi.org/10.1016/j.enpol.2020.111890. 

[369] M. Scorrano, R. Danielis, M. Giansoldati, Dissecting the total cost of ownership of fully electric cars in 

Italy: The impact of annual distance travelled, home charging and urban driving, Res. Transp. Econ. 80 

(2020) 100799. https://doi.org/10.1016/j.retrec.2019.100799. 

[370] R. Azarafshar, W.N. Vermeulen, Electric vehicle incentive policies in Canadian provinces, Energy Econ. 

91 (2020) 104902. https://doi.org/10.1016/j.eneco.2020.104902. 

[371] A. Jenn, K. Springel, A.R. Gopal, Effectiveness of electric vehicle incentives in the United States, 

Energy Policy. 119 (2018) 349–356. https://doi.org/10.1016/j.enpol.2018.04.065. 

[372] J. Kester, L. Noel, G. Zarazua de Rubens, B.K. Sovacool, Policy mechanisms to accelerate electric 

vehicle adoption: A qualitative review from the Nordic region, Renew. Sustain. Energy Rev. 94 (2018) 

719–731. https://doi.org/10.1016/j.rser.2018.05.067. 

[373] S. Gong, A. Ardeshiri, T. Hossein Rashidi, Impact of government incentives on the market penetration 

of electric vehicles in Australia, Transp. Res. Part D Transp. Environ. 83 (2020) 102353. 

https://doi.org/10.1016/j.trd.2020.102353. 



[374] International Energy Agency (IEA), Global EV Outlook 2020, 2020. https://doi.org/10.1787/d394399e-

en.

[375] W. Sierzchula, S. Bakker, K. Maat, B. Van Wee, The influence of financial incentives and other socio-

economic factors on electric vehicle adoption, Energy Policy. 68 (2014) 183–194.

https://doi.org/10.1016/j.enpol.2014.01.043.

[376] K. Chen, C. Ren, R. Gu, P. Zhang, Exploring purchase intentions of new energy vehicles: From the

perspective of frugality and the concept of “mianzi,” J. Clean. Prod. 230 (2019) 700–708.

https://doi.org/10.1016/j.jclepro.2019.05.135.

[377] S. Habich-Sobiegalla, G. Kostka, N. Anzinger, Citizens’ electric vehicle purchase intentions in China:

An analysis of micro-level and macro-level factors, Transp. Policy. 79 (2019) 223–233.

https://doi.org/10.1016/j.tranpol.2019.05.008.

[378] X.W. Wang, Y.M. Cao, N. Zhang, The influences of incentive policy perceptions and consumer social

attributes on battery electric vehicle purchase intentions, Energy Policy. 151 (2021) 112163.

https://doi.org/10.1016/j.enpol.2021.112163.

[379] C.W. Hsu, K. Fingerman, Public electric vehicle charger access disparities across race and income in

California, Transp. Policy. 100 (2021) 59–67. https://doi.org/10.1016/j.tranpol.2020.10.003.

[380] P.K. Tarei, P. Chand, H. Gupta, Barriers to the adoption of electric vehicles: Evidence from India, J.

Clean. Prod. 291 (2021) 125847. https://doi.org/10.1016/j.jclepro.2021.125847.




