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Optimization of large determinant expansions in quantum Monte Carlo
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We present a new method for the optimization of large configuration interaction (CI) expansions in the quan-
tum Monte Carlo (QMC) framework. The central idea here is to replace the non-orthogonal variational opti-
mization of CI coefficients performed in usual QMC calculations by an orthogonal non-Hermitian optimization
thanks to the so-called transcorrelated (TC) framework, the two methods yielding the same results in the limit
of a complete basis set. By rewriting the TC equations as an effective self-consistent Hermitian problem, our
approach requires the sampling of a single quantity per Slater determinant, leading to minimal memory require-
ments in the QMC code. Using analytical quantities obtained from both the TC framework and the usual CI-type
calculations, we also propose improved estimators which reduce the statistical fluctuations of the sampled quan-
tities by more than an order of magnitude. We demonstrate the efficiency of this method on wave functions
containing 105 − 106 Slater determinants, using effective core potentials or all-electron calculations. In all the
cases, a sub-milliHartree convergence is reached within only two or three iterations of optimization.

I. INTRODUCTION

The accurate description of highly correlated systems such
as transition states, magnetic systems and excited states re-
quires a multi-configurational form of the wave function.
For most problems, the complete active space (CAS) pic-
ture already contains enough information to give a qualita-
tively correct description of the physics governing the elec-
tronic structure. There exists nevertheless some systems
in which the dynamical correlation is strongly coupled to
the static correlation,1–5 such that the dominant part of the
wave function (typically its projection onto a valence-like
CAS) is severely impacted by the full treatment of dynam-
ical correlation in the optimization process. Multiple meth-
ods were designed to take into account the feedback of the
dynamical correlation on the reference: one can cite for in-
stance internally decontracted configuration interaction (CI)6,7

or coupled cluster (CC)8,9 methods, f12 methods combined
with multi-reference CI,10 range-separated density functional
theory (DFT) combined with CAS,11–13 or the shifted-Bk
method14,15.

In this paper, we focus on Quantum Monte Carlo (QMC)
approaches, in which the N-electron wave function Ψ is ex-
pressed as

Ψ(r) = Φ(r) eJ(r), (1)

where r is the R3N electronic configuration space. In Eq. (1),
Φ is a multi-determinant expansion and exp(J) is a Jastrow
correlation factor, taking explicitly into account electron-
electron distances. The Jastrow factor allows the wave func-
tion Ψ(r) to fulfill the exact Kato’s cusp conditions16, but also
introduces a large amount of short-range dynamical correla-
tion which are usually very costly to capture within a usual
Slater determinant expansion. Therefore, the functional form
of Eq. (1) is very flexible and can be used to treat complex
correlation effects, provided that one manages to optimize the
different parameters.

As opposed to f12 methods where the correlation factor is
projected into a space orthogonal to the multi-determinant ex-
pansion, the Jastrow factor has a significant overlap with the

determinant expansion. This last statement particularly mo-
tivates the need for an optimization of the parameters of Φ

in the presence of the Jastrow factor, which is not straight-
forward as it involves 3N−dimensional integrals that cannot
be evaluated exactly in the general case. As a consequence,
the necessary matrix elements are sampled in a variational
Monte Carlo (VMC) simulation and they are subject to sta-
tistical noise. In the general context of VMC simulations,
an important aspect is precisely the amplitude of the statisti-
cal fluctuations of the quantities needed to optimize the wave
function, which eventually determines the actual applicability
of a given computational algorithm within a reasonable CPU
time.

One of the most common methods to perform such an
optimization is the standard linear method (LM), where the
Schrödinger equation is projected in the self-plus-tangent
space, i.e., the space spanned by the current wave function and
its first derivatives with respect to the Np parameters.17–20 The
new parameters are obtained by solving a generalized eigen-
value problem (GEP) after building the Hamiltonian and over-
lap matrices, both of size Np×Np, through a VMC calculation.
In practice, the standard LM is limited to few thousands of pa-
rameters21 due to the large memory requirement to sample and
store these matrices.

Another class of optimization methods constrained by the
storage of large matrices is the stochastic reconfiguration (SR)
method.22–24 In this method, the imaginary time evolution op-
erator is expanded to first order and projected iteratively in
the self-plus-tangent space. At each step of this procedure,
one must build a Np × Np overlap-like matrix and solve a sys-
tem of linear equations. The wave function is updated after
each iteration until the energy has converged.

Several solutions have been proposed to address the mem-
ory bottleneck of the LM and SR methods. Neuscamman
and co-workers25,26 have suggested to employ Krylov sub-
space solvers to avoid building the matrices explicitly. Al-
though this approach allows to enlarge significantly the num-
ber of variational parameters in the optimization, it requires
additional matrix-vector multiplications as the Hamiltonian
and overlap matrices are sampled, which increases the sam-
pling effort. Moreover, ill-conditioned matrices constitute
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a challenge in the LM.27 A similar strategy relies on the
Jacobi-Davidson method,28–30 which generalizes Davidson’s
method.31 Recently, a variant of the LM, termed the blocked
linear method (BLM), has been introduced to alleviate the dif-
ficulties of storing large matrices.27

At the other end of the scale, the gradient descent (GD) ap-
proaches32 have a smaller memory footprint as the required
storage scales linearly with the number of parameters. These
approaches exploit the recent developments in the field of
deep-learning algorithms of neural networks and make use of
some adaptive GD flavours to perform the optimization di-
rectly.33–37 In their recent work38, Otis and Neuscamman have
presented a comparison between LM and GD techniques, and
they have developed a hybrid scheme which combines BLM
and GD methods.

In this work we focus on the optimization of the CI coeffi-
cients, in view of optimizing very large CI expansions for an
arbitrary choice of Jastrow factor. For this purpose, we present
an iterative scheme to optimize the wave function by combin-
ing VMC and the transcorrelated (TC) approach, motivated by
i) the fact that the TC formalism doesn’t require the sampling
of the overlap matrix and ii) that the VMC and TC approaches
lead to the same wave function in the limit of a complete basis
set.

In the TC framework the correlation effects brought by the
Jastrow factor are incorporated directly in the original Hamil-
tonian through a similarity transformation ĤTC ≡ e−Ĵ ĤeĴ .
This approach, originally proposed by Hirschfelder to remove
electron-electron poles from the original Hamiltonian,39 was
then further developed by Boys and Handy who referred to it
as a TC method where the authors optimize both the Jastrow
factor and the orbitals of a single Slater determinant.40–45 The
TC method was then further developed in the beginning of
the 2000’s by Ten-No46–48 and co-workers through the use
of a universal correlation factor (i.e. the same correlation
factor for all systems) with a relatively flexible form for the
wave function expansion (such as perturbation theory or lin-
earized coupled cluster). Developments using VMC to com-
pute the variance of the TC Hamiltonian in order to remain
within a variational framework were carried by Umezawa
and co-workers49–54. A recent renewal of the TC methods
were brought by Alavi and coworkers where they used a
flexible form for both the correlation factor and the wave
function55–57 thanks to the use of a version of the full con-
figuration interaction quantum Monte Carlo (FCIQMC)58,59

method adapted for a non-Hermitian Hamiltonian containing
up to three-electron interactions.

The algorithm exposed here proposes to bypass the usual
VMC optimization, and use instead the TC method to opti-
mize the CI coefficients of Jastrow-Slater wave functions for
an arbitrary Jastrow factor. To do so, we reformulate the
non-Hermitian TC approach in terms of an Hermitian self-
consistent dressing of the standard Hamiltonian Ĥ which ac-
counts for the effect of the Jastrow factor. These equations
are then projected in a basis of Slater determinants, and as the
scheme is Hermitian, the standard Davidson algorithm can be
employed to optimize the wave function. The advantage of the
present scheme is that one samples the action of the dressed

Hamiltonian on the CI vector, which requires the sampling
of a single quantity per CI coefficient, leading to a minimal
memory footprint. The convergence to the chemical accuracy
of the self-consistent procedure is reached with typically two
or three iterations. Another interesting aspect of the present
scheme is that the sampled dressing matrix has a zero-variance
property which leads to relatively small fluctuations as com-
pared to the estimators used in the LM, and the fluctuations
can be further reduced by introducing the deterministic com-
putation of an auxiliary TC Hamiltonian.

The paper is organized as follows. In section II, we discuss
the most common schemes used to optimize CI coefficients
in the presence of a Jastrow factor. We then give in Sec. III
the description of our new algorithm: in Sec. III A we pro-
vide a brief description of the TC formalism and its connec-
tion with VMC, we present the general ideas of our optimiza-
tion scheme for large CI expansions in Sec. III B and present
in Sec. III C the different numerical strategies employed to
compute the dressing elements with minimal statistical fluc-
tuations. In Sec. IV, we present numerical tests validating the
present approach. In Sec. IV A we test the feasibility of the
present approach on the Beryllium atom together with the ac-
tual impact of the incompleteness of the N-electron basis set.
Finally, in Sec. IV B we optimize several CI expansions for
small molecules made of a few hundred thousand Slater de-
terminants.

II. WAVE FUNCTION OPTIMIZATION IN THE
PRESENCE OF A JASTROW FACTOR

A. General context

Consider a ground-state N-electron wave function Φ ex-
pressed in a basis of Slater determinants B = {DI , 1 ≤ I ≤
Ndet} obtained with orthonormal spin-orbitals

Φ(r) =

Ndet∑
I=1

cI DI(r), (2)

where Ndet is the number of determinants. In the QMC frame-
work, a relatively cheap and efficient way of increasing the
amount of correlation energy described by the wave function
is to introduce a Jastrow factor J(r), which captures short-
range effects that cannot be easily described by the finite de-
terminant basis set

Ψ(r) = Φ(r) eJ(r) =

Ndet∑
I=1

cI DI(r) eJ(r), (3)

where, generally, J(r) is a function of electron-nuclear,
electron-electron, and electron-electron-nuclear distances.
Because of the large overlap between the Jastrow factor and
the determinant basis B, the optimal CI coefficients are not
those obtained by simply minimizing the variational energy
of the wave function of Eq. (2). Our goal in this work is to
implement an efficient scheme to optimize the CI coefficients
for large Ndet in the presence of a general Jastrow factor J(r).
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Two methods widely used to perform such an optimization,
the LM and SR, are briefly discussed in this section.

B. Linear method

The most natural way to optimize the CI coefficients is
to express the CI problem in the basis of determinants aug-
mented by a Jastrow factor BJ =

{
DI eJ , 1 ≤ I ≤ Ndet

}
. This

basis is not orthonormal, so in addition to the Hamiltonian
matrix elements

HIK =
〈
DI eJ

∣∣∣Ĥ∣∣∣DK eJ
〉
, (4)

one needs also to compute the overlap matrix elements

S IK =
〈
DI eJ

∣∣∣DK eJ
〉
. (5)

As the forms commonly used for the Jastrow factor are too
complicated to integrate analytically, these 3N-dimensional
integrals need to be sampled using a VMC sampling:

HIK =

〈
DI eJ

Ψ

Ĥ
(
DK eJ

)
Ψ

〉
Ψ2

, (6)

S IK =

〈
DI eJ

Ψ

DK eJ

Ψ

〉
Ψ2

, (7)

where 〈. . . 〉Ψ2 denotes the stochastic average over the Monte
Carlo samples drawn with the 3N-dimensional density Ψ2.

The CI problem can now be solved as a GEP

H C = ES C. (8)

Provided that the Jastrow factor is kept constant, solving this
GEP provides directly the best variational coefficients in the
basis BJ . However, several difficulties are encountered in this
approach. The statistical errors obtained from the VMC cal-
culation on HIK and S IK can be important, and frequently
larger than the matrix element itself, leading to an effective
optimization of only a reduced set of the parameters of the
wave function. Therefore, this approach is in practice limited
by the expensive memory requirements for the storage of the
sampled matrices H and S.

The memory cost scales as O
(
N2

det

)
, so when the number

of parameters becomes as large as a few thousands this simple
approach becomes prohibitive. A first solution to this memory
bottleneck is to employ a Krylov subspace solver to eschew
building H and S explicitly.25 This improvement has lead to
the optimization of up to 5 × 105 variational parameters. The
BLM is an alternative approach27 in which the space of deter-
minantsBJ is divided into Nb blocks. A GEP is solved in each
block to generate a set of Nk eigenvectors. Those eigenvectors
are then fixed and employed as directions to find a new direc-
tion for the full space BJ . The memory cost of this approach
scales approximately as O

(
N2

det/Nb

)
. The BLM was recently

applied in combination with GD methods.38

C. Stochastic reconfiguration

The SR is an alternative method where the wave func-
tion is iteratively improved by applying the first order expan-
sion of the imaginary time evolution operator exp

(
−τĤ

)
≈(

1 − τĤ
)
.22–24 Instead of solving a GEP one has to solve a set

of Ndet linear equations

S δc = −
τ

2
g, (9)

where

S IK = S IK −

〈
DI eJ

Ψ

〉
Ψ2

〈
DK eJ

Ψ

〉
Ψ2

(10)

gI = 2
[〈

DI eJ

Ψ

Ĥ Ψ

Ψ

〉
Ψ2

−

〈
Ĥ Ψ

Ψ

〉
Ψ2

〈
DI eJ

Ψ

〉
Ψ2

]
. (11)

In its original formulation, the SR required storing an
overlap-like matrix of Ndet × Ndet dimension which restricts
the optimization to a few thousand coefficients. However, this
memory bottleneck can be bypassed by using a conjugate gra-
dient iterative solver to solve Eq. (9).25 In this scheme, the
explicit matrix S is not required, but one needs to store in-
stead Monte Carlo samples over M steps making the storage
become O

(
M × Np

)
. This improvement allowed to optimize

CI expansions of few hundred thousand parameters.60,61

III. USING THE TRANSCORRELATED FORMALISM TO
APPROXIMATE VMC

In this section, we present a new iterative scheme for the
optimization of large CI expansions in the presence of an ar-
bitrary Jastrow factor. This approach lies in the framework
of Krylov subspace solvers. The memory requirement of
the algorithm is minimal and scales as O(Ndet), the conver-
gence within chemical accuracy is reached typically in two
or three iterations, and the method takes advantage of im-
proved estimators which drastically reduce statistical fluctu-
ations. In Sec. III A we present the main idea of our approach,
in Sec. III B we expose the general iterative scheme used to
optimize the wave functions, and in Sec. III C we detail the
different strategies to reduce the statistical fluctuations.

A. General idea

In the TC formalism, the effect of the Jastrow fac-
tor is incorporated in the Hamiltonian through a similarity
transformation39–45

ĤJ ≡ e−Ĵ Ĥ eĴ . (12)

Therefore, solving exactly the Schrödinger equation

Ĥ Ψ = E Ψ, (13)
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with a wave function Ψ(r) = Φ(r) eJ(r) as defined in Eq. (3) is
equivalent to solve the TC eigenvalue equation

ĤJ Φ = E Φ, (14)

in the limiting case where Φ is expanded in a complete N-
electron basis set. The effective TC Hamiltonian can be writ-
ten as

ĤJ = Ĥ + ∆̂J , (15)

with

∆̂J = −
1
2

N∑
i=1

[
∇2

i J + ∇iJ · ∇iJ + 2∇iJ · ∇i

]
. (16)

Note that the ∆̂J operator is non-Hermitian due to the gradient
operator in the last term of Eq. (16). As a consequence each
eigenvalue is associated with a couple of left and right eigen-
vectors, and the variational principle does not apply anymore
in the sense that there is no functional F[Φ] of a N-electron
|Φ〉 satisfying F[Φ] ≥ E0 where E0 is the exact ground state
energy.

The central idea of this paper is to use the TC framework
to optimize a CI wave function rather than the usual VMC
framework. The main technical differences between the TC
and the VMC approaches are first that in the TC framework
the CI problem is expressed in an orthonormal basis, and sec-
ondly that the TC Hamiltonian involves at most three-electron
interactions. Indeed, in the usual VMC approach the CI prob-
lem is solved in the non-orthonormal basis of determinants
multiplied by the Jastrow factor, and the matrix elements of
the Hamiltonian involve up to N-electron interactions.

These two approaches are nevertheless not equivalent when
working with an incomplete basis set. Provided a given Jas-
trow factor J, if one uses an incomplete set of Slater deter-
minants B and the associated projector P̂B to project the TC
equation and the VMC equation, one obtains the following
projected operators

ĤBTC = P̂B e−Ĵ ĤeĴ P̂B, (17)

ĤBVMC = P̂B e+Ĵ ĤeĴ P̂B, (18)

which differ only by the sign in the first exponential. In the
limit of a complete N-electron basis, the TC equation and the
Hermitian non-orthogonal GEP of Eq. (8) lead to the same
eigenvectors and eigenvalues. However, as shown in the ap-
pendix (see Sec. VI) the right-eigenvectors of ĤBTC do not co-
incide with the eigenvectors of ĤBVMC, although being usually
very close. This means that the former is not optimal in the
sense of the variational energy. Nonetheless, the statistical
fluctuations induced by the finite sampling of the matrix el-
ements of ĤBVMC are such that in practice it is very hard to
obtain either the exact optimum in VMC, and as we shall see
in the Sec. IV A, the numerical solutions of the TC and VMC
problems are close enough to be indistinguishable within rea-
sonable statistical fluctuations.

B. Obtaining right-eigenvectors with a Hermitian dressing of
the Hamiltonian

Working in a TC framework implies that one needs to rely
on non-Hermitian variants of the Davidson algorithm62 to ob-
tain the ground state eigenvector. In the present section we
describe an alternative procedure to obtain a given eigenstate
of the TC Hamiltonian involving an effective non-linear Her-
mitian Hamiltonian, which can then be easily used with a stan-
dard Hermitian eigensolver. This idea was initially proposed
in the context of single-reference coupled cluster,63 and fur-
ther extended to multi-reference coupled cluster64 and to the
application of the shifted-Bk method to selected CI.15

We denote here the projection of the TC Hamiltonian in the
basis of Slater determinants B by the matrix H̄, and we use an
iterative scheme to obtain a specific right-eigenstate of H̄. The
main idea is to iteratively build a state-specific Hermitian ef-
fective Hamiltonian H̃(Φ) which has, at convergence, the same
eigenvalue and eigenvector as H̄ for the desired state. Remark
that as the present scheme is state-specific, all the other eigen-
vectors and eigenvalues of H̃(Φ) are not considered, and hence
they are allowed to be different from those of H̄.

We search for a symmetric dressing matrix ∆(Φ) parameter-
ized by Φ such that

H̃(Φ) Φ =
(
H + ∆(Φ)

)
Φ = H̄ Φ. (19)

The simplest solution is a diagonal dressing matrix:

∆
(Φ)
II =

VI

cI
; ∆(Φ)

I,J,I = 0 (20)

obtained from the dressing vector V (Φ) defined as

V (Φ)
I =

Ndet∑
K=1

(
H̄IK −HIK

)
cK . (21)

Iteratively dressing the Hamiltonian using the previously ob-
tained eigenvector converges to the desired solution.

Nevertheless, using Eq. (20) is numerically unstable since
the coefficients cI can be zero, or extremely small. Instead, we
propose to use a column dressing in column L, chosen because
|cL| has the largest magnitude among all coefficients:

Γ
(Φ)
IL =

V (Φ)
I

cL
; ∆(Φ)

I,J,L = 0 (22)

Then, we build the symmetric matrix ∆(Φ) such that ∆
(Φ)
LI =

∆
(Φ)
IL = Γ

(Φ)
IL . Doing this, the effect of the Jastrow factor is

counted twice, and the double-counting can be removed by
introducing an extra term in the diagonal element cancelling
out the double counting:

∆
(Φ)
LL = 2 Γ

(Φ)
LL −

∑Ndet
K=1 ΓKLcK/cL

∆
(Φ)
LI = ∆

(Φ)
IL = Γ

(Φ)
IL I , L

∆
(Φ)
IK = ∆

(Φ)
KI = 0 I , L,K , L

(23)

As a result, the dressing matrix ∆(Φ) and thus, the matrix H̃(Φ)

to be diagonalized is symmetric.
To summarize, given a Jastrow factor and a CI wave func-

tion Φ,
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1. within a VMC calculation, we sample the dressing vec-
tor VΦ and the variational energy,

2. we build the matrix elements of H̃(Φ) by combining the
matrix elements of H with the sampled quantities

3. we employ Davidson’s algorithm to extract the ground
state right eigenvector of the matrix H̃(Φ), and we update
the wave function Φ.

These steps are iterated until convergence. Note that only the
Ndet elements ΓIL need to be sampled in QMC. All the other
required quantities (HIK) can be obtained with standard deter-
ministic computational chemistry codes.

C. Calculation of the dressing elements

1. Naive estimators

The integrals required to build the dressing elements ∆(Φ)

are

γ(Ψ)
I =

〈
DI

∣∣∣ĤJ

∣∣∣Φ〉
−

〈
DI

∣∣∣Ĥ∣∣∣Φ〉
, (24)

and the second term of the right-hand side of Eq. (24) can
be evaluated analytically for Gaussian-type one-electron or-
bitals. The calculation of the first term of the right-hand side
of Eq. (24) is however not trivial since it cannot be calculated
in closed form for a general functional form of the Jastrow
factor. It involves three-electron integrals which can be rather
expensive and it requires the storage of six-index quantities.
We will show in this section how these integrals can be effec-
tively evaluated in a VMC framework.

The most basic estimator to evaluate the integrals

α(Ψ)
I =

〈
DI

∣∣∣ĤJ

∣∣∣Φ〉
(25)

in a VMC sampling is

a(Ψ)
I (r) =

DI(r)
Φ(r)

E(J)
loc(r), (26)

where the local energy is defined as

E(J)
loc(r) =

ĤJ Φ(r)
Φ(r)

=
Ĥ

(
Φ(r) eJ(r)

)
Φ(r) eJ(r) , (27)

and Φ2 is the density used to draw the samples of M configu-
rations:

〈
a(Ψ)

I

〉
Φ2
≡

1
M

M∑
i=1

a(Ψ)
I (ri) −→

M→∞
α(Ψ)

I . (28)

In order to reduce the fluctuations on the dressing elements,
we will present two improved estimators based on the so-
called control variates technique65,66. The general idea is to
combine the estimator of Eq (26) with a correlated function in
the 3N-dimensional space of which the integral can be evalu-
ated in a deterministic way.

2. Improved estimator

Consider the modified electronic Hamiltonian

ĤV = T̂ + V̂n-e +
∑
i< j

V(ri j) (29)

where ri j = |ri − r j|, T̂ is the usual kinetic operator, V̂n-e is the
Coulomb interaction between electrons and nuclei, and V(ri j)
is a model potential for electron-electron interaction which al-
lows an efficient and deterministic evaluation of integrals in a
Slater determinant basis 〈DI |V |DJ〉. The local energy associ-
ated with this potential reads

E(V)
loc (r) =

ĤV Φ(r)
Φ(r)

. (30)

The first improved estimator we propose is

a(V)
I (r) =

DI(r)
Φ(r)

(
E(J)

loc(r) − E(V)
loc (r)

)
+ β

(V)
I , (31)

where the control variate integrals

β
(V)
I =

〈
DI

∣∣∣ĤV

∣∣∣Φ〉
(32)

are analytically known, i.e. with zero statistical fluctuations.
We have first used the pure Coulomb potential for the dress-

ing:

V1(ri j) =
1
ri j
. (33)

This boils down to using the usual Coulomb integrals as a
reference. If no Jastrow factor is used, ĤJ = Ĥ and a(V)

I (r) =

β
(V)
I with zero variance. Therefore, we expect the magnitude

of the fluctuations of a(V)
I to increase with the complexity of

the Jastrow factor, even though the fluctuations are expected
to remain small.

Although the estimator of Eq. (31) has lower fluctuations
than the bare estimator (Eq. (26)), one can notice that, as long
as the Jastrow factor J(r) satisfies the cusp conditions, the lo-
cal energy E(J)

loc(r) does not diverge when r12 → 0. Therefore
the introduction of the usual local energy E(V)

loc (r) in a(V)
I (r) in-

troduces a divergence when r12 → 0 due to the bare Coulomb
potential. To eliminate this problem, one can simply replace
the bare Coulomb potential by a repulsive non-divergent po-
tential and we propose here to use the long-range component
of the potential commonly used in range-separated DFT:67

V2(ri j) =
erf

(
µ ri j

)
ri j

. (34)

As such a potential is used here only to reduce the fluctua-
tions of a(V)

I (r), the choice of the parameter µ is arbitrary and
does not introduce any bias, so it can be optimized to mini-
mize the fluctuations of a(V)

I . As opposed to range-separated
DFT where the common choice for µ is 1/2, here we use large
values of µ (typically larger than 10), such that the model po-
tential becomes close to the Coulomb potential, but without
the divergence. As expected, we have observed that V2 fur-
ther reduces the fluctuations of the sampled quantities.
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3. Further improved estimator

In order to propose a further improved estimator we intro-
duce an auxiliary Jastrow factor J which depends on a set of
parameters {p}, such that the corresponding TC Hamiltonian

ĤJ ≡ e−J(p) Ĥ eJ(p), (35)

allows a deterministic calculation for the integrals in the basis
of determinants. With such a Jastrow factor, we can define the
zero-variance (ZV) estimator

aI(r) =
DI(r)
Φ(r)

(
E(J)

loc(r) − E(J)
loc (r)

)
+ βI , (36)

with

E(J)
loc (r) =

ĤJ Φ(r)
Φ(r)

, (37)

and

βI =
〈
DI

∣∣∣e−J(p) Ĥ eJ(p)
∣∣∣Φ〉

. (38)

While the Jastrow factor J is selected to mimic J, by op-
timizing the parameters p, the statistical fluctuations of the
estimators of interest can be significantly reduced.68

The control variate quantities βI can be prohibitively expen-
sive to calculate, even in close form, due to the three-electrons
terms (which generate a six-index tensor) inherent to any TC
Hamiltonian. To avoid this complexity, we introduce the mod-
ified local energy

ε(J)
loc (r) = E(J)

loc (r) − E(J)
3−e(r) (39)

where we have dropped the three-electron contributions in-
volved in the computation of the local energy E(J)

3−e. Therefore,
the improved estimator becomes

ãI(r) =
DI(r)
Φ(r)

(
E(J)

loc(r) − ε(J)
loc (r)

)
+ β̃I , (40)

with

β̃I =
〈
DI

∣∣∣e−J(p) Ĥ eJ(p)
− E(J)

3−e

∣∣∣Φ〉
. (41)

Note that the estimator of Eq. (40) is not biased since the
three-electron terms arising from the Jastrow factor J(r) are
taken into account in ãI(r), and the use of ε(J)

loc (r) in Eq. (40)
is only here to reduce the fluctuations. Therefore, the set of
parameters {p} can still be optimized to minimize the vari-
ance of the dressing elements. One way to do that is, for
instance, through minimizing the sum of the variance of in-
tegrals weighted with the squared CI coefficients:

Ndet∑
I=1

c2
I Var(ãI) = Var

(
E(J)

loc − ε
(J)
loc

)
. (42)

4. Choice of J for further improved estimators

Several correlation factors that allow a deterministic calcu-
lation of integrals have been proposed in the literature of TC
methods.46,47,69,70 We chose here to consider a two-electron
Jastrow factor accounting for the cusp condition and the short-
range part of the Coulomb hole, together with a one-body
Jastrow factor which allows to compensate for the effect of
the two-body Jastrow on the one-body density. Therefore, the
general form of such a Jastrow factor reads

J =

N∑
i< j

u
(
ri j; µ

)
−

N∑
i=1

M∑
A=1

v (riA; βA) , (43)

where, M is the number of nuclei, riA is the distance between
the i−th electron and the A−th nucleus, and {βA} are some
positive parameters.

Regarding the two-electron Jastrow factor, we used the
recently proposed correlation factor tuned by a single-
parameter70

u
(
ri j; µ

)
=

ri j

2

[
1 − erf

(
µri j

)]
−

exp
[(
µri j

)2
]

2
√
π µ

, (44)

which imposes the electron-electron cusp conditions and
whose corresponding TC Hamiltonian reproduces the effec-
tive Hamiltonian of RSDFT at leading-order in 1/ri j. The ex-
plicit form of the TC Hamiltonian obtained with such a Jas-
trow factor was given in Ref. 70.

Turning now to the one-body Jastrow factor chosen in the
present work, its functional form reads

v (riA; βA) = 1 − exp
(
−βA r2

iA

)
. (45)

Within these definitions, the TC Hamiltonian correspond-
ing to J is given by

ĤJ = Ĥ −
∑

i

v̂[{βA}](ri) −
∑
i< j

(
K̂[µ](ri, r j) + V̂[{βA}](ri, r j)

)
−

∑
i< j<k

L̂[µ](ri, r j, rk),

(46)
where the analytical expressions of the additional terms with
respect to Ĥ are

v̂[{βA}](ri) = −
∑

A

βA e−βA r2
iA
[
3 − 2 βA r2

iA + 2 (ri − RA) · ∇i

]
+ 2

∑
A

βA e−βA r2
iA (ri − RA)

2

,

(47)

K̂[µ](ri, r j) =
1 − erf(µ ri j)

ri j
−

µ
√
π

e−
(
µ ri j

)2

+

(
1 − erf(µ ri j)

)2

4
−

(
erf(µ ri j) − 1

)
∂

∂ri j
,

(48)
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V̂[{βA}](ri, r j) = −

(
1 − erf(µ ri j)

ri j

)∑
A

βA

×
(
ri − r j

)
·
[
(ri − RA) e−βA r2

iA −
(
r j − RA

)
e−βA r2

jA
]
,

(49)

and

L̂[µ](ri, r j, rk) =
1 − erf(µ ri j)

2ri j
ri j ·

1 − erf(µ rik)
2rik

rik

+
1 − erf(µ r ji)

2ri j
r ji ·

1 − erf(µ r jk)
2r jk

r jk

+
1 − erf(µ rki)

2rik
rki ·

1 − erf(µ rk j)
2rk j

rk j.

(50)

The computation of analytical or mixed analytical integrals on
a Gaussian basis for K̂[µ](ri, r j) and L̂[µ](ri, r j, rk) have been
given in Ref. 70, and similar schemes have been used for the
integrals involving v̂[{βA}](ri) and V̂[{βA}](ri, r j).

IV. NUMERICAL RESULTS

In the present section we investigate the efficiency of the
TC approach by performing a series of test calculations on
both atomic and molecular systems. The wave function calcu-
lations were performed with the Quantum Package71 program,
and the QMC calculations were made with QMC=Chem.72,73

A plug-in was developed in Quantum Package to read the el-
ements sampled with QMC=Chem and add the deterministic
control variate quantity for the dressing of the Hamiltonian to
be diagonalized. Throughout this work, the initial wave func-
tion used in the iterative dressing is the ground state eigenvec-
tor of the usual Hamiltonian and the basis of Slater determi-
nants is kept fixed.

In Sec. IV A we report a detailed study on the Be atom in
order to compare the present optimization scheme with the
usual linear method and stochastic reconfiguration. Then, in
Sec. IV B we perform more realistic calculations with wave
functions containing several hundreds of thousands of Slater
determinants on atomic and molecular systems.

A. The Beryllium atom

In the present section we use a small system, the Be atom,
in order to investigate several numerical aspects of the present
work: i) the convergence of the iterative scheme described in
Sec. III B used to obtain the right-eigenvector of a given non-
Hermitian matrix, and ii) the effect of the incompleteness of
the basis set on the discrepancy between the true variational
minimum of ĤBVMC and ĤBTC as discussed in Sec. III. The nu-
merical study of the reduction of the statistical fluctuations of
the present scheme through improved estimators will be pre-
sented in Sec. IV B. Throughout Sec. IV A, we project both
the TC and VMC Hamiltonians on the N-electron basis set
B made of the Hartree-Fock determinant in the cc-pCVDZ
atomic basis set and all singly and doubly excited determi-
nants, which results in a set of about 350 determinants. Also,

we use the following Jastrow factor J(r) to define both the TC
and VMC Hamiltonians

J(r) =
∑
i< j

u
(
ri j; µ

)
, (51)

with µ = 1.0. In the case of the TC Hamiltonian, thanks to
the simple analytical form of J(r), the two- and three-body
integrals involved in the TC Hamiltonian can be computed
exactly, and we therefore avoid any problems related to the
stochastic sampling inherent to VMC.

1. Iterative scheme to obtain right-eigenvector of the TC
Hamiltonian

To analyze the iterative scheme leading to the lowest right-
eigenvector of the TC Hamiltonian, we built explicitly the ma-
trix of the TC Hamiltonian within B and obtained as a refer-
ence the exact TC ground state eigenvalue and eigenvectors
within B by using a non-Hermitian eigensolver present in the
LAPACK74 library.

We report in Fig. 1 the convergence of the absolute error
between the exact ground state eigenvalue and that obtained
with the iterative scheme at a given iteration. From Fig. 1 one
can notice that the iterative scheme converges, although not
in a monotonic way for the first five iterations, towards the
exact energy. A detailed analysis of the data shows that an er-
ror of about ∼ 0.6 mH is reached in only two iterations. This
experiment validates that without statistical fluctuations, this
method returns the right eigenvector of the TC Hamiltonian
within chemical accuracy in about 2 − 3 iterations. This ob-
servation appears to be true for more complex systems as it
will be shown in the next sections.

One can now focus on the efficiency of the TC iterative
eigensolver with respect to the optimization in the sense of
the VMC energy (i.e. in the presence of the Jastrow factor of
Eq. (51)). We reported in Fig. 1 the convergence of the VMC
energy of the wave function at a given iteration of the itera-
tive scheme. From Fig. 1 it appears that the first two iterations
lower the VMC energy by about ∼ 40 mH, the successive it-
erations having only a minor impact on the VMC energy are
within two statistical deviations.

2. Effect of an incomplete basis set and comparison with other
optimization methods

Having validated the approach of the iterative dressing tech-
nique to obtain the eigenvector of the TC Hamiltonian in a
given Slater determinant basis set B, we propose here to in-
vestigate the effect of the incompleteness of such a basis set.
Indeed, as shown in the appendix (see Sec. VI), the ground
state eigenvector of ĤBVMC (i.e. the VMC Hamiltonian pro-
jected in B) does not necessarily coincide with the ground
state right-eigenvector of ĤBTC (i.e. the TC Hamiltonian pro-
jected in B) as long as B is incomplete. Therefore the varia-
tional energy obtained with the latter is necessarily an upper
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FIG. 1: Convergence of the TC and VMC energies along the iterative dressing. (a) Difference between the TC energy obtained
by a direct diagonalization and that obtained by the iterative dressing technique. (b) VMC energy of the CI-J wavefunction

before optimizing (i = 0) and during the iterative dressing.

bound to the ground state eigenvalue of ĤBVMC, and we pro-
pose here to quantify this on a simple system such as the Be
atom.

We sampled the matrix elements of ĤBVMC together with the
corresponding overlap matrix and solved the GEP of the form
of Eq. (8) to obtain the ground state eigenvector. The matrix
elements are impacted by statistical fluctuations, so we have
made simulations with increasingly large numbers of sam-
ples. To show the impact of these fluctuations on the energy
of the obtained eigenvector, we report in Fig 2 the conver-
gence of the variational energy of the eigenvector as a func-
tion of the wall-clock time used to sample the matrices with
72 CPU cores. We also report on the same figure the conver-
gence of the SR approach applied to the same problem with
a step size τ = 0.01 (Eq.(9)). We compare these variational
energies with those obtained with the two first iterations of
the iterative dressing scheme. In order to make the compar-
ison more fair, instead of using the exact analytical integrals
involved in ĤBTC, we sampled the dressing elements in VMC
using the estimator a(V1)

I of Eq. (31) with the Coulomb po-
tential of Eq. (33). At each iteration, the dressing vector was
sampled using a run of 50 minutes on 72 cores. From Fig. 2
we can observe that the variational energies obtained with the
two schemes converge essentially to the same energy as the
one obtained with the TC optimization scheme, the latter be-
ing the lowest obtained within the CPU time spent. One can
also notice the slow convergence and the erratic behaviour of
the GEP approach, which is caused by the large fluctuations of
the sampled matrix elements17. Regarding the SR approach,
one can also see the slow rate of convergence. These calcu-
lations show that, even for a basis of Slater determinants far
from being complete such as the CI with single and double
substitutions (CISD) in a cc-pCVDZ basis set, the error with
respect to the true minimum is negligible, and in that precise
case the new scheme provides a lower variational energy than
the two other schemes based on usual VMC approaches. This

demonstrates that the error induced by a finite sampling are
more important than the finite basis approximations.

B. Large wave function optimizations on atomic and
molecular systems

The optimization of CI coefficients in all-electron calcula-
tions is considered a difficult task because of the wide fluc-
tuations of the sampled matrix elements. The large magni-
tude of the contributions to the local energy of the electrons
close to the nucleus are responsible for these large fluctua-
tions. As illustrated in Fig. 2, this strongly impacts the rate of
convergence of the optimization algorithms. Here, we illus-
trate the efficiency of our improved estimators on all-electron
calculations of C2, N2, O2, and F2 with expansions made of a
few hundred thousand parameters. It is worth mentioning that
point-group symmetry was not exploited in the optimization.

Throughout this section, the following Jastrow factor was
used:

J(r) =

N∑
i< j

ri j

2(1 + b ri j)
−

N∑
i=1

M∑
A=1

(
αA riA

1 + αA riA

)2

. (52)

We performed all electrons calculations using Dunning’s cc-
pVTZ basis set.75, and in order to investigate the behaviour
of the present schemes within pseudo-potential calculations,
we report calculations in the case of the N2H4 molecule using
the Burkatzki-Filippi-Dolg effective core potentials (ECPs)76

in the compatible double zeta basis set. The energy was com-
puted in the determinant localization approximation.77

For all diatomics, the bond lengths were taken to be the
experimental ones given by Huber and Herzberg.78 The ge-
ometry of N2H4 is the experimental geometry. The Jastrow
factors were optimized at the Hartree-Fock (HF) level with a
single determinant, and then frozen-core CIPSI calculations
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I (Eq. (31)), aI (Eq. (36)), and ãI (Eq. (40)), obtained

in a common VMC sampling.

were made in the full valence CI space using Hartree-Fock
orbitals in the cc-pVTZ basis set to generate the initial CI ex-
pansions.

1. Reduction of statistical fluctuations through control variates

We begin this study by investigating the reduction of statis-
tical fluctuations of the sampled quantities using the various
control variates presented in Sec. III C. We report in Fig. 3 a
comparison between the statistical errors obtained in a single
VMC run for the 25 most important determinants of the N2
molecule using different estimators: i) the standard estimator
aI given in Eq. (26); ii) the improved estimators a(V1)

I and a(V2)
I

of Eq. (31), corresponding to the model potentials of Eqs. (33)
and (34) with µ = 10, respectively; iii) the TC-correlated es-
timators aI and ãI (Eqs. (36) and (40)) which involve the Jas-

trow factor J with the parameters given in table I. For N2,
as well as for other systems considered in the following, the
parameters were optimized to reduce the fluctuations of the
weighted variance given in Eq (42).

As apparent from Fig. 3, the fluctuations of the improved
estimators are much smaller than those of the standard esti-
mator. The singularity-free potential (estimator a(V2)

I ) yields
smaller statistical errors than the Coulomb potential (estima-
tor a(V1)

I ). The noise is further reduced using the TC-based
estimators aI and ãI , and we can observe that neglecting the
three-electron terms in the local energy does not increase the
fluctuations. The latter is extremely important from a compu-
tational perspective as the TC calculations without any of the
three-electron terms has essentially the same computational
scaling as a standard calculation using the regular Hamilto-
nian (i.e. without any Jastrow factor).

To get an overview of the reduction of the statistical error
on the complete set of coefficients, we compared for each es-
timator a the ratio of the sum of the standard deviations with
the one obtained with the bare estimator α using the ratio

r(a) =

∑Ndet
I=1 σ(aI)∑Ndet
I=1 σ(αI)

. (53)

We obtained r(a(V1)
I ) = 0.027, r(a(V2)

I ) = 0.022, r(aI) = 0.009,
r(ãI) = 0.009, showing that the reduction of statistical error is
observed for all determinants and not only the most important
ones.

2. Optimization of large wave functions for molecular systems

Having established the estimator with the lowest statistical
fluctuations in Sec. IV B 1, we optimize the CI parameters of
the CIPSI-Jastrow wave functions using the estimator ãI(r)
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TABLE I: Parameters and energies (a.u.) associated with the different wave functions. The convergence of the energy with the
iterations of optimization is shown in the bottom part of the table.

C2 N2 O2 F2 N2H4

Basis set cc-pVTZ cc-pVTZ cc-pVTZ cc-pVTZ BFD/cc-pVDZ
Ndet 287 998 298 250 123 711 191 538 1 000 000
r0 (Å) 1.2425 1.0977 1.2075 1.4119 −

b 1.382 1.829 1.923 2.206 1.000
α 0.882 0.691 0.882 0.691 N:0.690, H:0.170
µ 0.738 2.161 2.263 1.619 -
β 0.635 4.288 × 10−3 6.209 × 10−3 0.410 -
HF energy −75.40144 −108.98347 −149.65257 −198.75204 −21.73877
HF/J energy −75.6587(1) −109.2668(1) −150.0060(1) −199.0884(1) −22.1008(1)
Selected CI energy −75.77204 −109.35465 −150.09752 −199.26114 −22.11353
Energies along the optimization:
CI/J IT 0 −75.8808(1) −109.4785(1) −150.2451(2) −199.3766(3) −22.1969(5)
CI/J IT 1 −75.8896(1) −109.4986(1) −150.2670(1) −199.4297(2) −22.2297(3)
CI/J IT 2 −75.8902(1) −109.4986(1) −150.2671(1) −199.4300(2) −22.2297(3)
CI/J IT 3 −75.8903(1) −109.4989(1) −150.2673(1) −199.4306(2) −22.2302(3)

given in Eq. (40). We begin our study with all electron calcu-
lations on the C2, N2, O2 and F2 molecules. The parameters
of J for each molecule and the corresponding VMC energies
are reported in table I.

For all systems, we observe a sub-milliHartree convergence
after two optimization iterations, although a single iteration
could be sufficient. The gains in VMC energy are 10 mH
for C2, 20 mH for N2, 22 mH for O2 and 53 mH for F2. It
is remarkable that the optimization is still stable for the F2
molecule which has the largest total energy. These results con-
firm that this optimization method can be used as a black box
method in routine calculations.

We conclude our study by a calculation on the N2H4
molecule using a BFD ECP with the corresponding double
zeta basis set. For this system, 1 000 000 CI coefficients are
optimized. The results of the optimization are presented in
table I and show that two iterations are required to converge
to the minimum energy which is about ∼ 32 mEh below the
initial energy. This result confirms that the present scheme
allows the optimization in an ECP framework of very large
CI expansions even with the simplest estimator (Eqs. (31) and
(33)).

V. SUMMARY

We have presented an iterative method to optimize large
CI expansions in the presence of a general correlation fac-
tor. The main idea is to consider a similarity-transformation
of the Hamiltonian by the Jastrow factor which results in an
effective Hamiltonian, the so-called TC Hamiltonian, having
the same right-eigenvectors than the usual ground state VMC
eigenvector in the limit of a complete basis. The effect of the
Jastrow factor in the TC approach can be written as an addi-
tive dressing of the standard Hamiltonian. The QMC simula-
tions are then used only to sample the quantities required for
such a dressing, and to compute the variational energy asso-
ciated with the wave function. The main advantages of the

present approach are i) a large part of the quantities required
to optimize the wave function are analytical (i.e. with zero
fluctuations), ii) the number of quantities to sample is equal
to the number of determinants, and iii) the fluctuations of the
sampled quantities are small.

After having illustrated in Sec. IV A the robustness of the
present approach on calculations on the Be atom even far from
the complete basis set limit (i.e. in realistic cases), we have
shown in Sec. IV B its efficiency on wave functions made of a
few hundred thousand Slater determinants. We demonstrated
in Sec. IV B 1 how one can significantly lower the statistical
fluctuations of the computed quantities thanks to control vari-
ates, and in Sec. IV B 2 how it performs on molecular sys-
tems with wave functions with 105 − 106 determinants. The
efficiency of this approach comes from the mixing of the de-
terministic transcorrelated method, with the QMC method: a
large fraction of the needed matrix elements can be computed
in the standard framework of wave function methods, and only
a small number of contributions come from the QMC simula-
tions. Therefore, the quantities of interest have by nature a
very low variance. It is possible to put more computational
weight on the deterministic part of the calculation to reduce
even more the statistical fluctuations, and the user has the flex-
ibility to find the best compromise between the computational
cost of the control variates and the QMC simulations.

We have also shown that this method has several advantages
regarding computational considerations. First, the memory
required in the QMC code is minimal: only Ndet quantities
need to be stored since the overlap matrix is not needed, and
these quantities are computed using building blocks that are
already needed for the computation of the energy. Hence, the
extra computational cost is also minimal. Finally, it is impor-
tant to mention that the fast convergence of the method (less
than three iterations) is extremely important when considering
massively parallel simulations. The only necessary blocking
communications take place at the beginning and at the end of
an iteration, so it is preferable to have an optimization algo-
rithm with long computing phases and very few iterations than
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the opposite.
In this paper, we have limited our examples to the opti-

mization of CI expansions, but it is worth mentioning that this
method can of course be applied in a super-CI framework for
the optimization of the coefficients of the molecular orbitals.
We plan to elaborate more on these aspects in a subsequent
work.
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VI. APPENDIX

A. VMC, Transcorrelation and projection in an incomplete
basis set

The aim of the present section is to make a proper link be-
tween the VMC optimization and the TC approach when they
are both projected in the same basis set.

1. Definition of the projector on a basis set

Let B be a N-electron basis set, which can be for instance a
set of N-electron Slater determinant

B = {|I〉 , I = 1,NB}, (54)

which we will assume orthonormal for the sake of simplic-
ity. Such a basis span a vector space VB which is made of
any functions |ΨB〉 being a linear combinations of the Slater
determinants in B

VB =

{
|ΨB〉 =

∑
I∈B

cI |I〉 , cI ∈ C
}
. (55)

From B one can build the projector P̂B

P̂B =
∑

I

|I〉 〈I| , (56)

which verifies the projector property

P̂BP̂B = P̂B. (57)

Such a projector coincide with the identity for all wave func-
tions inVB

P̂B |ΨB〉 = |ΨB〉 . (58)

Therefore, in virtue of Eq.(57) one obtains that

P̂BP̂B |ΨB〉 = |ΨB〉 , (59)

which implies that (
P̂B

)−1
= P̂B. (60)

One can define the complementary basis set B⊥ which is
the set of Slater determinants such that it completes the basis
set

B⊥ = {|L〉 < B}, (61)

the corresponding vector spaceV⊥
B

V⊥B =

{ ∣∣∣Ψ⊥B〉 =
∑

L∈B⊥
cL |L〉

}
(62)

and the corresponding projector P̂⊥
B

such that

P̂B + P̂⊥B = 1, (63)

where 1 is the identity operator defined on the complete basis
made of the reunion ofVB andV⊥

B

1 |Ψ〉 = |Ψ〉 ∀ |Ψ〉 ∈ VB ∪V
⊥
B. (64)

An important property is that the projector P̂B and the com-
plementary projector P̂⊥

B
are orthogonal

P̂BP̂⊥B = P̂⊥BP̂B = 0. (65)

2. Link between the VMC and transcorrelated Hamiltonian within
the same basis set

The purpose of the present section is to establish the formal
link between the VMC Hamiltonian and the TC one projected
in a basis set. Let J be a Jastrow factor, one can then define
the VMC Hamiltonian as

HVMC = eJ HeJ , (66)

the corresponding TC Hamiltonian as

HTC = e−J HeJ , (67)

which are of course related by

HVMC = e2J HTC. (68)

The corresponding operators projected onto a basis set B are
defined as

ĤBVMC = P̂BHVMCP̂B, (69)

ĤBTC = P̂BHTCP̂B, (70)
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and we would like to express ĤBVMC in terms of ĤBTC. To do so
we write

ĤBVMC = P̂Be2J HTCP̂B
= P̂Be2J11HTCP̂B
= P̂Be2J(P̂B + P̂⊥B)(P̂B + P̂⊥B)HTCP̂B

(71)

which, in virtue of Eq. (65), reads

ĤBVMC = P̂Be2J P̂BĤBTC + P̂Be2J P̂⊥BHTCP̂B. (72)

If we define
(
e2J)

B = P̂Be2J P̂B and

∆TC-VMC
B

= P̂Be2J P̂⊥BHTCP̂B (73)

we can then write

ĤBVMC =
(
e2J)

BĤBTC + ∆TC-VMC
B

. (74)

Of course, in the limit where B is complete, one has that P̂⊥
B

=

0 and then ∆TC-VMC
B

= 0.

3. Link between the eigenvectors of the TC and VMC

When working on a complete basis set, we know that the
eigenvectors of HVMC coincides with the right-eigenvectors of
HTC

eJ HeJ |Ψi〉 = Eie2J |Ψi〉

⇔e−2JeJ HeJ |Ψi〉 = Eie−2Je2J |Ψi〉

⇔e−J HeJ
∣∣∣Ψi

〉
= Ei

∣∣∣Ψi
〉
.

(75)

We want now to find the same kind of relationship when the
operators are projected in a basis set B. We start from the

eigenvalue equation for ĤBVMC

ĤBVMC

∣∣∣Ψi
B

〉
= Ei

B

(
e2J)

B

∣∣∣Ψi
B

〉
, (76)

and inserting now the expression of ĤBVMC in terms of ĤBTC one
obtains((

e2J)
BĤBTC + ∆TC-VMC

B

) ∣∣∣Ψi
B

〉
= Ei

B

(
e2J)

B

∣∣∣Ψi
B

〉
(77)

and multiplying by the inverse of
(
e2J)

B (which is
(
e−2J)

B)
from the left it comes

ĤBTC

∣∣∣Ψi
B

〉
+

(
e−2J)

B∆TC-VMC
B

∣∣∣Ψi
B

〉
= Ei

B

∣∣∣Ψi
B

〉
. (78)

One can explicit the term
(
e−2J)

B∆TC-VMC
B

which gives

(
e−2J)

B∆TC-VMC
B

= P̂Be−J
(
e−J P̂BeJ − 1

)
HeJ P̂B. (79)

Defining

δB = −e−J P̂⊥BeJ , (80)

one obtains

(
e−2J)

B∆TC-VMC
B

= P̂Be−JδBHeJ P̂B. (81)

Therefore, the fact that the eigenvectors of ĤBVMC and ĤBTC
do not coincide comes from the fact that δB , 0 in an incom-
plete basis set.
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