
HAL Id: hal-03716668
https://hal.science/hal-03716668

Submitted on 11 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Well-Mixed Boundary–Layer Top Entrainment
Instability: Hydrodynamic Analysis

Jun-Ichi Yano

To cite this version:
Jun-Ichi Yano. Well-Mixed Boundary–Layer Top Entrainment Instability: Hydrodynamic Analysis.
Journal of the Atmospheric Sciences, 2022, �10.1175/JAS-D-21-0246.1�. �hal-03716668�

https://hal.science/hal-03716668
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Well-Mixed Boundary Layer–Top Entrainment Instability: Hydrodynamic Analysis
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ABSTRACT: The present study shows by a linear hydrodynamic stability analysis that an unstable mixed-layer deep cir-
culation can be generated in the dry convective well-mixed layer by the entrainment from the top. The newly identified in-
stability arises under the two competing processes induced by the top entrainment: the destabilization by generating
thermal perturbations and the damping by mechanical mixing. The former and the latter, respectively, dominate over the
other in the limits of large and small scales. As a result, the instability is realized at the horizontal scales larger than the or-
der of the mixed-layer depth (ca. 1 km), and the time scale for the growth is about 1 day. This study has been motivated
from a question of whether the cloud-top entrainment instability (CTEI) can induce a transition of the stratocumulus-
topped well-mixed boundary layer into trade cumulus. The present study intends to extend the previous studies based on
the local parcel analyses to a full analysis based on the hydrodynamics. Unfortunately, being based on a dry formulation,
the present result does not apply directly to the CTEI problem. Especially, the evaporative cooling is totally neglected.
Nevertheless, the present result can still be applied to moist systems, to some extent, by redefining certain terms in the
formulation.
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1. Introduction

The cloud-top entrainment instability (CTEI; Deardorff
1980) is considered a major potential mechanism for the tran-
sition of the stratocumulus to the trade cumulus over the ma-
rine subtropics [cf. Stevens (2005) as an overview]. The basic
mechanism of CTEI resides on a possibility that an environ-
mental air entrained into the cloud from the top can be dry
enough so that its mixing with the cloudy air leads to evapora-
tion of the cloud water, and induces a sufficient negative
buoyancy, leading to further entrainments of the environmen-
tal air from the cloud top. The process is expected to finally
lead to a transition of stratocumulus into cumuli. A critical re-
view of this process is provided by Mellado (2017), with the
review itself even refuting CTEI as further discussed in the
end in section 5. Bretherton and Wyant (1997) and Lewellen
and Lewellen (2002) propose the decoupling as an alternative
theoretical possibility.

However, the existing literature examines CTEI, mostly, in
terms of a local condition, such as a buoyancy anomaly at the
cloud top (inversion height). Such a parcel-based analysis
leads to a criterion for instability in terms of a sign of
buoyancy (e.g., Deardorff 1980; Randall 1980; MacVean and
Mason 1990; Duynkerke 1993). This type of approaches does
not provide a full dynamical picture of the instability, includ-
ing a quantitative estimate of a growth rate as a function of a
horizontal scale (or a wavenumber), and a spatial structure of
a preferred instability mode.

The qualitative nature of the existing criteria for CTEI
makes it also difficult to test these criteria observationally (cf.
Albrecht et al. 1985; Albrecht 1991; Kuo and Schubert 1988;
Stevens et al. 2003; Mathieu and Lahellec 2005; Gerber et al.
2005, 2013, 2016). Most fundamentally, a finite time would be
required for CTEI to realize. Unfortunately, bulk of existing
theories does not tell how long we have to wait to observe
CTEI.

A fundamental limitation of existing CTEI studies arises
from a fact that these analyses concern only with a sign of a
local buoyancy (or vertical eddy buoyancy flux), without
properly putting it into a framework of the hydrodynamic in-
stability (cf. Drazin and Reid 1981). Such a dynamically con-
sistent theoretical analysis of the instability couples a given
local instability with a full hydrodynamics. It is a standard
approach in the midlatitude large-scale dynamics to interpret
the synoptic cyclones in this manner in terms of the baroclinic
instabilities (cf. Hoskins and James 2014). In the author’s
knowledge, a hydrodynamic stability analysis is still to be per-
formed for CTEI, probably an exception of Mellado et al.
(2009; cf. section 2d). That is the basic approach of the present
study.

The hydrodynamics stability-analysis method adopted here
treats the evolution of the height of the inversion at the top of
the mixed layer explicitly with time so that, in principle, its
evolution until an ultimate transform into a cumulus regime
can be evaluated. For preparing a way for such full analyses,
the present study introduces a linear analysis method by tak-
ing the dry atmosphere as a demonstrative example. Thus, an
important purpose of the study is to show how dynamically
consistent instability analyses can be performed in problems
of atmospheric boundary layers. The author expects that
more studies will follow along this line for better elucidating
the dynamics of the cloud-topped boundary layers. Impor-
tantly, the study is going to show that even in absence of
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evaporative cooling, the mixed layer can be destabilized by
the entrainment from the top.

It may be considered questionable to perform a linear
stability analysis on a fully turbulent system such as the
boundary layers. To circumvent this difficulty, the present
study assumes that the main role of fully developed convec-
tive turbulence is to maintain a vertically well-mixed state
of the boundary layer, and that a boundary layer–deep
explicit perturbation can be considered as a linear superpo-
sition on the mean state maintained by these turbulent
flows, however, without explicitly taking into account of the
latter.

For this reason, especially, for describing the buoyancy in
the well-mixed layer, only an equation averaged over the
mixed layer is considered. Note that as a consequence of ac-
tive vertical mixing, the well-mixed layer is neutrally stratified,
in average; thus, no linear buoyancy anomaly can be gener-
ated by linear perturbation flows. In this manner, the role of
convection remains completely implicit in the present study.
However, it is important to keep in mind that the entrain-
ment, that drives the instability, is also driven by convection.
Thus, the instability considered herein is ultimately driven by
convection.

More specifically, the present study examines a perturba-
tion growth of a mixed-layer deep circulation. This approach
is contrasted with some studies, dealing CTEI primarily as a
process of generating kinetic energy for smaller-scale eddies,
that directly contribute to vertical eddy transport at the top of
the well-mixed layer associated with entrainment (e.g., Lock
and MacVean 1999; Katzwinkel et al. 2012). An overall ap-
proach of the present study may be compared with that for
the mesoscale entrainment instability by Fiedler (1984; see
also Fiedler 1985; Rand and Bretherton 1993). As a major dif-
ference, the entrainment induces negative buoyancy by a
downward displacement of inversion in the present study,
whereas Fiedler considered an enhancement of cloudy-air
positive buoyancy by entrainment of stable upper-level air.
At a more technical level, the present study considers a
change of the buoyancy jump crossing the inversion with
time, but fixing the entrainment rate. In Fiedler (1984), in
contrast, the main role of the inversion jump is to constrain
the entrainment rate.

More general words may be required for some readers
who are not familiar with the basics of the hydrodynamic
stability analysis. To perform a hydrodynamic stability anal-
ysis in a general manner, certain simplifications are always
necessary. In this respect, the hydrostatic stability does not
pursue any “realism” in the same sense as with both opera-
tional and research models widely available today. How-
ever, our experience says that those simplified theoretical
studies provide useful, and often quantitative information
on the process in concern (cf. Pedlosky 1987; Hoskins and
James 2014).

The formulation, that couples a standard mixed-layer de-
scription with a full hydrodynamics, is introduced in the next
section. A perturbation problem is developed in section 3,
and some simple solutions are presented in section 4. The

paper concludes with the discussion in the last section. An al-
ternative formulation is considered separately in appendix A.

2. Formulation

A dry well-mixed boundary layer is considered. Neverthe-
less, as we remark from time to time, to some extent, the for-
mulation may also be, at least, conceptually applied to the
stratiform-topped mixed layer.

a. Motivations

Essence of CTEI is that a mixing of the free-troposphere
air from the above with a cloudy air within stratocumulus
leads to evaporation of cloud water due to a dry and relatively
high temperature of the entrained free-atmospheric air, but
the evaporative cooling, in turn, makes the entrained air
colder than the surrounding stratocumulus-cloud air, leading
to a convective instability that drives the evaporated mixed
air farther downward (Deardorff 1980; Randall 1980).
Though less frequently considered, a possible reverse pro-
cess is an intrusion of the cloudy air from the stratocumulus
cloud into the free troposphere (e.g., MacVean and Mason
1990; Duynkerke 1993). In this case, when the detrained air
is moist enough, it can be more buoyant than the environ-
ment due to the virtual effect. Buoyancy induces a further
ascent, the ascent leads to adiabatic cooling, the cooling
may lead to further condensation of water vapor, and result-
ing condensative heating can drive the cloudy air farther
upward.

Being motivated by investigating this type of instability
fully dynamically, first of all, the present study explicitly de-
scribes the deformation of the inversion height with time,
associated with the entrainment of warm and drier air from
the free atmosphere above. The resulting deformation may
ultimately lead to transform into a cumulus regime. We
will consider the associated processes under a drastically
simplified dry mixed-layer formulation. In spite of these
drastic simplifications, we somehow recover some basic fea-
tures of the CTEI just described. The drastic simplification
facilitates the analysis of the coupling of these processes
with a full dynamics in a form of hydrodynamic stability
analysis.

A simple dry mixed-layer formulation is introduced in the
next two subsections. It is coupled with a full hydrodynamics
introduced in sections 2d and 2e.

b. A mixed-layer formulation for the buoyancy

We consider a well-mixed boundary layer with a depth
(inversion height) h. The basic model configuration is shown
in Fig. 1. As the most drastic simplification here, we adopt
the standard formulation for the dry boundary layer, in
which only the buoyancy b vertically averaged over the full
mixed layer is considered. This approach is well justified for
the dry boundary layer, because the buoyancy phenomeno-
logically is known to be vertically well mixed, as also sug-
gested in Fig. 1.

However, this assumption clearly breaks down for the
cloud-topped well-mixed boundary layer. Under standard
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formulations (e.g., Deardorff 1980; Schubert et al. 1979), the
buoyancy anomaly is expressed by a linear relationship with
the two conservative quantities, say, the equivalent poten-
tial temperature and the total water, which are expected to
be vertically well mixed. However, the buoyancy is not ex-
pected to be vertically well mixed, because the coefficients
for this linear relationship are height dependent [cf. Eq. (3.15)
of Schubert et al. (1979), Eqs. (15) and (22) of Deardorff
(1976)].

More seriously, although the buoyancy in the dry convec-
tive layer may vertically be well mixed in undisturbed state,
once a perturbation is applied, a nonvanishing buoyancy dis-
turbance is generated, which we will consider explicitly in the
following. Under the latter situation, the buoyancy homoge-
neity assumption no longer applies. Thus, in more general sit-
uations with presence of clouds as well as disturbances, the
buoyancy is no longer vertically homogeneous distributed.
Nevertheless, as going to be shown in the following, a self-
consistent formulation of the problem is still possible in terms
of the vertically averaged buoyancy 〈b〉 even under an ex-
plicit presence of the buoyancy perturbations.

Thus, we describe the buoyancy, b, under its vertical
average,

h


t
1 u〈 〉 

x

( )
b〈 〉 5 w′b′ 0 2 w′b′2 2 hQR, (2.1)

by following a standard formulation for the well-mixed
boundary layer [e.g., Eqs. (3.1) and (3.3) of Schubert et al.
1979; Eq. (21) of Stevens 2006]. Here, the bracket, 〈·〉, desig-
nates a vertical average over the well-mixed layer. As already
emphasized above, a deviation from a vertical average may
actually exist, but we simply neglect these contributions in the
formulation. A two-dimensional configuration has been as-
sumed for a sake of simplicity. A full three-dimensional analy-
sis would be substantially more involved without any practical
benefits.

Here, we have introduced the variables as follows: t the
time, x a single horizontal coordinate considered, u the hori-
zontal wind velocity, w′b′ the vertical buoyancy flux with the
subscripts 0 and2 designating the values at the surface and at
the level just below the inversion (i.e., h2), respectively; QR is
the loss of buoyancy due to the radiative cooling over the
well-mixed layer. Note that the buoyancy flux is discontinuous
over the inversion associated with a discontinuity of the buoy-
ancy (cf. Fig. 1).

Under a standard formulation [cf. Eqs. (1) and (2)
of Deardorff 1980], the vertical eddy flux just below the
inversion level may be expressed in terms of the entrain-
ment rate, we (. 0), and a jump, Db 5 b1 2 〈b〉, of the buoy-
ancy over the inversion (with b1 the free troposphere value at
z5 h1) as

w′b′2 5 2weDb: (2.2)

Note that the radiative cooling over the inversion layer can
also be included as a part of the buoyancy flux on the left-
hand side above.

Here, the standard CTEI criteria (Deardorff 1980;
Randall 1980) require w′b′2 . 0 or Db , 0. When this con-
dition is satisfied, the induced negative buoyancy is ex-
pected to induce further cloud-top entrainment, which
induces further negative buoyancy; that is an essence of
CTEI as described in the last subsection. Extensive CTEI
literature focuses on defining this condition carefully due to
a subtle difference between the inversion buoyancy jump
and an actual buoyancy anomaly generated by a cloud-top
mixing (cf. Duynkerke 1993). The dry formulation herein
does not take into account those aspects in any direct man-
ner. However, a similar tendency somehow arises for per-
turbation variables as seen immediately below.

c. Perturbation formulation and instability mechanism

In the following, we only consider the perturbations by
setting

h 5 h 1 h,

b〈 〉 5 b〈 〉 1 b〈 〉′,
b1 5 b1 1 b′1,

where a bar and a prime designate equilibrium and perturba-
tion values, respectively. An exception to this rule is the per-
turbation inversion height designated as h.

By linearizing Eq. (2.1), the perturbation equation for the
buoyancy is given by

h


t
1 U1



x

( )
b〈 〉′ 5 2w′b′ ′2 2 hQR: (2.3)

Here, for simplicity, we have assumed that there is no pertur-
bation surface flux, i.e., w′b′ ′0 5 0. It is also assumed that QR

do not change by perturbations. The basic instability mecha-
nism of this system is inferred by multiplying 〈b〉′ on both
sides of this equation; thus, we obtain an equation for the po-
tential-energy conservation law:

FIG. 1. Schematic configuration of the model.
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h


t
1 U1



x

( )
b〈 〉′2
2

5 2 b〈 〉′(w′b′ ′2) 2 QR b〈 〉′h: (2.4)

It is seen that the potential energy can be generated when

2 b〈 〉′(w′b′ ′2) . 0, (2.5)

i.e., the downward entrainment flux 2(w′b′ ′2) is positively
correlated with the buoyancy perturbation, 〈b〉′. This is the
basic mechanism of the entrainment-induced instability to be
investigated in the following. Thus, an essential ingredient
to induce an instability is to maintain the perturbation
flux 2(w′b′ ′2) to be nonvanishing, regardless of additional
assumptions to be introduced.

Here, there is no simple closed expression for the entrain-
ment rate we; thus, a simple assumption to satisfy the insta-
bility condition is to set the perturbation entrainment as
w′

e 5 0 so that the perturbation flux at the mixed-layer top
reduces to

w′b′ ′2 5 2weDb
′ (2.6)

from Eq. (2.2). Adding a term with w′
e to the above only

makes the following analysis more involved without adding
anything substantial. An oppositive extreme of possible op-
tions is to assume the perturbation buoyancy flux at the
mixed-layer top to vanish, i.e., w′b′ ′2 5 0, and to take
into account of the resulting perturbation entrainment w′

e.
This case is considered separately in appendix A, by follow-
ing a suggestion of one of anonymous reviewers. See the
next subsection for the discussions on the basic state, h,
and b〈 〉.

A perturbation on the buoyancy jump may be given by

Db′ 5 b′1 2 b〈 〉′: (2.7a)

Here, we assume that the perturbation to the free-atmosphere
buoyancy is solely induced by a displacement h of the in-
terface (cf. section 2e). Thus, with the help of the Taylor
expansion,

b′1 5 b|z5h11h
2 b|z5h1

5
db
dz

( )
h: (2.7b)

It shows that a positive displacement, h . 0, of the inversion
induces a positive buoyancy perturbation, Db′ . 0, and vice
versa. Downward extrapolation of the Taylor expansion could
be problematic, because the free-atmosphere profile may not
simply follow downward as the inversion height is distorted
downwards. It may be more likely that the inversion layer
simply thickens. However, the proposed formula (2.7b) is con-
sistent even under this situation by following an explicit con-
sideration of the finite-depth effect by Betts [1974, see
especially his Eq. (5)].

By substituting Eq. (2.7b) into the definition of the buoy-
ancy-jump perturbation, (2.7a), we obtain

Db′ 5
db
dz

( )
h 2 b〈 〉′ (2.8)

[cf. Eq. (2) of Tennekes and Driedonks 1981]. The first term
on the right-hand side of Eq. (2.8) shows that a displacement
of the inversion induces a buoyancy anomaly, which further
enhances the displacement by accelerating the vertical veloc-
ity in the displacement direction. This positive feedback chain
leads to an instability. To see this process more explicitly, the
buoyancy equation must be coupled with a hydrodynamic sys-
tem, as going to be introduced in next two subsections. The
second term on the right-hand side, in turn, simply states how
a buoyancy perturbation b〈 〉′ of the mixed layer modifies the
buoyancy jump Db′ at the inversion. It leads to a damping ten-
dency as seen immediately below.

Substitution of Eq. (2.8) into Eq. (2.6) reduces Eq. (2.3)
into

h


t
1 u〈 〉 

x

( )
1 we

[ ]
b〈 〉′ 5 ah, (2.9a)

where

a 5 we
db
dz

( )
2 QR: (2.9b)

Measures a feedback of the inversion height anomaly h on
the buoyancy anomaly b〈 〉′. Here, we expect a . 0. As al-
ready discussed above, the first term on the right-hand side in
Eq. (2.9b) shows that displacements of the inversion tend to
enhance the buoyancy perturbation. The second term on the
right-hand side is a negative radiative feedback, arising from
the fact the total radiative cooling rate of the mixed layer
changes by the inversion-height displacement. Negative feed-
back of radiation on CTEI has been pointed out by, e.g.,
Moeng and Schumann (1991) and Moeng et al. (1995).

Equation (2.9a) contains the two competitive processes aris-
ing from the mixed-layer-top entrainment: the first is a mechani-
cal mixing as its direct consequence, that leads to a damping, as
indicated by the last term on the left-hand side. The second is a
consequence of the inversion-height displacement, as seen on
the right-hand side, which may induce instability. The first effect
is independent of scales, whereas the second depends on scales,
as further discussed with Eq. (3.8a) below. The scale depen-
dence of the latter leads to a scale dependence of the instability
growth as will be shown in section 4.

d. Basic state

To introduce a hydrodynamics, we adopt a two-layer system
with constant densities (cf. Fig. 1), closely following a standard
formulation for the analysis of the Kelvin–Helmholtz instability
as presented, e.g., in chapter 4 of Drazin and Reid (1981). The
first layer with a density r1 represents the well-mixed layer be-
low, and the second with a density r2 the free troposphere
above. To some extent, this formulation can be considered a lo-
cal description of the dynamics around the top of the well-
mixed layer (the inversion height), z 5 h, although the bottom
(surface: z5 0) and the top (z→ 1‘) boundary conditions are
considered explicitly in the following. A height dependence of
the density can be introduced to this system, and so long as the
density-gradient scale is much larger than a vertical scale of the
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interest, the given system is still considered a good approxi-
mation. Under this generalization, for the most parts in the
following, the density values r1 and r2 refer to those at the
inversion height, z 5 h. We also assume that the horizontal
winds, given by U1 and U2, are constant with height in each
layer. Thus, we may reset U1 5 〈u〉 in the formulation of the
last subsection.

Here, an assumed sharp interface is a necessary simplifi-
cation for treating the essential features of the CTEI in lucid
manner, although both recent observational (Lenschow et al.
2000; Katzwinkel et al. 2012) and modeling (Moeng et al.
2005) studies show that the inversion actually constitutes a
finite-depth layer with rich morphologies. Mellado et al.
(2009) consider a Rayleigh–Taylor instability problem by in-
serting a positive density anomaly over this thin inversion
layer. Their study may be considered an extension to three
layers of the present formulation. However, in contrast to
the present study, the fluid density is assumed a passive sca-
lar and no possibility of its change associated with the
entrainment.

We assume that the basic state is under a hydrostatic bal-
ance; thus, the pressure field is given by

p 5
ph 2 r1g z 2 h( ), 0# z#h,
ph 2 r2g z 2 h( ), z . h,

{
(2.10)

where ph is a constant pressure value at the inversion height.
The inversion height h is described by [cf. Eq. (4) of Stevens

(2002), Eq. (31) of Stevens (2006)]



t
1 uj



x

( )
h 5 w 1 we (2.11)

for both layers with j 5 1, 2. Its steady basic state h is defined
by the balance:

w 1 we 5 0: (2.12)

Here, w is a height-dependent background vertical velocity
defined below. When w , 0, we identify an equilibrium state
at a certain height. Especially, when w is a monotonous
function of the height, the equilibrium inversion height is
unique. On the other hand, when w . 0, there is no equi-
librium height for the inversion; thus, we may generalize
above as

ḣ 5 w 1 we

with the rate ḣ of change of the basic inversion height. In the
latter case, the perturbation is applied against an unsteady

state with ḣ Þ 0. In the following, we further assume a cons-
tant background divergenceD; thus,

w 5 2Dz:

Finally, the basic state b〈 〉 for the mixed-layer buoyancy
is defined from Eq. (2.1) assuming a steady and homoge-
neous state. It transpires that the basic state is obtained
from a balance between three terms on the right-hand side.

Unfortunately, deriving the basic-state explicitly for b〈 〉 is
rather involved with a need of specifying the dependence of
w′b′ 0 and QR on 〈b〉 (i.e., specifications of physical pro-
cesses). Here, we do not discuss this procedure, because
this problem is, for the present purpose, circumvented by
simply prescribing a mean state b〈 〉. As it turns out, the
value of b〈 〉 does not play any direct role in the instability
problem.

e. Perturbation dynamics

For developing a perturbation problem, we assume that the
perturbations satisfy the following boundary conditions (with
the prime suggesting perturbation variables):

(i) u′→ 0 as z →1‘, (2.13a)

(ii) w′ 5 0 at the bottom surface z 5 0, (2.13b)
(iii) the pressure is continuous by crossing the inversion,

z 5 h; thus,

p′1 2 r1gh 5 p′2 2 r2gh (2.13c)

at z5 h after linearization. Furthermore, we may note
that the perturbation equation for the inversion height is
given by



t
1 Uj



x

( )
h 5 2Dh 1 w′

z5h

∣∣∣ (2.13d)

for j5 1 and 2.
The perturbation equations for the dynamics are given by



t
1 Uj



x

( )
w′

j 5 2
1
rj

p′j
z

1 b′j , (2.14a)



t
1 Uj



x

( )
u′j 5 2

1
rj

p′j
x

, (2.14b)

for j 5 1 and 2. Here, the buoyancy perturbation equation for
the lower layer ( j 5 1) is given by setting b′1 5 b′ in Eq. (2.9a).
In the upper layer ( j 5 2), we simply set b′2 5 0. Nonvanishing
buoyancy perturbation in the upper layer (free troposphere)
would contribute to the gravity wave dynamics (cf. Fiedler
1984). We simply neglect this contribution.

We further introduce the perturbation vorticity z ′ and
streamfunction c′ so that

z′ 5
u′

z
2

w′

x
5 $2c′, (2.15a)

w′ 5 2
c ′

x
, (2.15b)

u′ 5
c ′

z
, (2.15c)

and for a later purpose, it is useful to note from Eqs. (2.15a)
and (2.15b),

z ′

x
5 2$2w′: (2.15d)
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The perturbation equations for the vorticity in both layers are
obtained from Eqs. (2.14a) and (2.14b):



t
1 U1



x

( )
z ′1 5 2

b′1
x

, (2.16a)



t
1 U2



x

( )
z ′2 5 0: (2.16b)

3. Stability analysis

The perturbation problem is solved for the dynamics and
the buoyancy separately in the following two subsections.
Each leads to an eigenvalue problem.

a. Dynamics problem

The solution for the upper layer is obtained in a relatively
straightforward manner. From Eq. (2.16b), we find an only so-
lution satisfying the condition of the vanishing perturbation
flow toward z→1‘ (2.13a) is z ′2 5 0; thus,

$2c ′
2 5 0,

whose solution consistent with the boundary condition
(2.13a) is

c ′
2 5 ĉ2e

ikx2k(z2h)1st:

Here, both the horizontal and the vertical scales are charac-
terized by a single parameter k, which is assumed to be
positive; s is a growth rate. It immediately follows that we
may set

w′
2 5 ŵ2eikx2k(z2h)1st, (3.1a)

p′2 5 p̂2e
ikx2k(z2h)1st, (3.1b)

where ĉ2, ŵ2, and p̂2 are the constants to be determined. The
same conventions for the notation are also applied to the
lower-layer solutions below.

The treatment of the lower layer is slightly more involved,
because the vorticity is forced by the buoyancy. Nevertheless,
by taking into account of the bottom boundary condition
(2.13b), we may set

z′1 5 ẑ1 sin mz eikx1st, (3.2a)

w′
1 5 ŵ1 sin mz eikx1st, (3.2b)

p′1 5 p̂1 cos mz eikx1st, (3.2c)

b′1 5 b̂1 sin mz eikx1st: (3.2d)

Here, in the lower layer, the horizontal and the vertical scales
are characterized by different wavenumbers k and m. Note
that at this stage, a possibility that the vertical wavenumberm
is purely imaginary as in the upper layer is not excluded, but
it is only excluded a posteriori.

From Eq. (2.16a), we find

ẑ1 5 2
ikb̂1

s 1 ikU1
:

It immediately follow from Eq. (2.15d) that

ŵ1 5
k2

k2 1 m2( ) s 1 ikU1( ) b̂1 (3.3a)

or

b̂1 5
k2 1 m2( ) s 1 ikU1( )

k2
ŵ1: (3.3b)

Note that Eq. (3.3a) corresponds to Eq. (2.53) of Fiedler
(1984). Substitution of Eq. (3.3b) into Eq. (2.14a) further
finds

p̂1 5 2
r1m
k2

s 1 ikU1( )ŵ1: (3.4a)

A similar procedure applied to the upper layer leads to

p̂2 5
r2
k
(s 1 ikU2 1 kḣ)ŵ2: (3.4b)

Application of the height perturbation equation, Eq. (2.13d),
to both layers leads to

ŵ1 5
s 1 ikU1 1 D

sinmh
ĥ, (3.5a)

ŵ2 5 s 1 ikU2 1 D( )ĥ, (3.5b)

and further substitution of Eqs. (3.5a) and (3.5b), respectively,
into Eqs. (3.4a) and (3.4b) results in

p̂1 5 2
r1m
k2

s 1 ikU1( ) s 1 ikU1 1 D( ) ĥ

sinmh
, (3.6a)

p̂2 5
r2
k

s 1 ikU2 1 D( )(s 1 ikU2 1 kḣ)ĥ: (3.6b)

Finally, substitution of Eqs. (3.6a) and (3.6b) into the pressure
boundary condition (2.13c) leads to an eigenvalue problem to
be solved:

2r1
m
k2

s 1 ikU1( ) s 1 ikU1 1 D( )cot mh 2
r2
k

s 1 ikU2 1D( )

3 (s 1 ikU2 1 kḣ ) 2 r1 2 r2( )g 5 0: (3.7)

b. Buoyancy problem

Another eigenvalue problem is obtained from the buoy-
ancy equation, Eq. (2.9a). By substitution of the general solu-
tions, we obtain

[h s 1 ikU1) 1 we( ]
sinmz〈 〉b̂1 5 aĥ:
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Here, the vertical average, 〈sinmz〉, is evaluated by

sinmz〈 〉 5 1

h

	h

0
sinmzdz 5 2

1

mh
cos mz

∣∣∣∣h
0
5

1 2 cosmh

mh
:

Thus,

ĥ 5
1

amh
[h s 1 ikU1) 1 we( ](1 2 cosmh)b̂1: (3.8a)

On the other hand, by combining Eqs. (3.3b) and (3.5a), we
obtain

b̂1 5
k2 1 m2( ) s 1 ikU1( ) s 1 ikU1 1 D( )

k2 sin mh
ĥ: (3.8b)

By substituting Eq. (3.8b) into Eq. (3.8a), we obtain the sec-
ond eigenvalue problem

k2 1 m2( ) s 1 ikU1( ) s 1 ikU1 1 D( )[h s 1 ikU1) 1 we( ]
3 (1 2 cosmh) 2 amk2h sin mh 5 0: (3.9)

As it turns out from the result of section 4, a main balance
in Eq. (3.8b) that controls the system is

k2 1 m2( )ĥ ∼ b̂1; (3.10)

thus, the interface is displaced by the buoyancy more efficiently
for larger horizontal scales (i.e., the smaller k2). A larger inter-
face displacement ĥ, in turn, leads to a further buoyancy pertur-
bation through Eq. (2.9a); thus, the system becomes more
unstable for the larger scales as will be found in section 4.

c. Eigenvalue problems

As the analysis of the last two subsections show, the stabil-
ity problem reduces to that of solving the two eigenvalue
problems given by Eqs. (3.7) and (3.9). Here, the problem
consists of defining two eigenvalues: the growth rate s and
the vertical wavenumberm of the mixed layer for a given hor-
izontal wavenumber k. Thus, two eigenequations must be
solved for these two eigenvalues.

In the following, we first nondimensionalize these two
eigenequations, then after general discussions, derive a
general solution for the growth rate obtained from a nondi-
mensionalized version of Eq. (3.7). This solution has a gen-
eral validity. It also constitutes a self-contained solution
when a coupling of the dynamical system considered in sec-
tions 2c and 3a with the buoyancy is turned off by setting a

5 0 in Eq. (2.9a).
We note in Eq. (3.7) that a key free parameter of the prob-

lem is

m 5
m
k

cot mh: (3.11a)

A key parameter in Eq. (3.9) is a, which is nondimensional-
ized into

ã 5 (kg3)21=2a: (3.11b)

Nondimensional versions of Eqs. (3.7) and (3.9) are given by

m(s̃ 1 iŨ1)(s̃ 1 iŨ1 1 D̃) 1 r̃(s̃ 1 iŨ2 1 D̃)(s̃ 1 iŨ2 1
˙̃h)

1 (1 2 r̃) 5 0, (3.12a)

(1 1 m̃2)(s̃ 1 iŨ1)(s̃ 1 iŨ1 1 D̃)[h̃ s̃ 1 iŨ1) 1 w̃e
( ]

3 (1 2 cos m̃h̃) 2 ãm̃h̃ sin m̃h̃ 5 0, (3.12b)

where the nondimensional parameters and variables are intro-
duced by

s̃ 5 kg( )21=2s, (3.13a)

Ũ j 5 k=g
( )1=2Uj, (3.13b)

D̃ 5 kg( )21=2D, (3.13c)

r̃ 5 r2=r1, (3.13d)

˙̃h 5 k=g
( )1=2ḣ, (3.13e)

w̃e 5 k=g
( )1=2we, (3.13f)

m̃ 5 m=k, (3.13g)

h̃ 5 kh, (3.13h)

for j 5 1, 2. Note that a tilde ˜ is added for designating the
nondimensional variables.

A convenient general strategy for solving this set of eige-
nequations would be to first solve Eq. (3.12a) for s̃, and by
substituting this result, solve Eq. (3.12b) for m̃. Note that
Eq. (3.12a) is only the second order in respect to s̃; thus,
an analytical solution for the latter is readily obtained. On
the other hand, the resulting equation by substituting this
result into Eq. (3.12b) is transcendental in respect to m̃.
Thus, the solution for m̃ must be sought numerically in
general cases.

The general solution for the growth rate s̃ obtained from
Eq. (3.12a) is

s̃ 5 2 iŨ1
m 1 r̃Û
m 1 r̃

2
(m 1 r̃)D̂ 1 r̃

˙̂h
2(m 1 r̃) Ũ1

6
(mr̃)1=2Ũ1

m 1 r̃

[(
1 2 Û

)2(1 2 R̃i
)
1

r̃

4m
˙̂h 2

m 1 r̃

r̃
D̂

( )2

1 i
(
1 2 Û

)
˙̂h

]1=2
: (3.14)

Here, for simplifying the final expression, some nondimen-
sional parameters have been normalized by Ũ1:

Û 5 Ũ2=Ũ1, (3.15a)

˙
˙̂h 5

˙̃h=Ũ1, (3.15b)

D̂ 5 D̃=Ũ1: (3.15c)
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Furthermore, a Richardson number R̃i, is introduced by

R̃i 5
(m 1 r̃)(1 2 r̃)
mr̃Ũ2

1(1 2 Û)2 5
g
k

( )
mr1 1 r2( ) r1 2 r2( )
mr1r2 U1 2 U2( )2 : (3.16)

Note especially that the system is unstable when R̃i, 1 and
the shear is strong enough. However, both the deepening of the
mixed layer, ˙̃h . 0( ), and the divergence, D̃ . 0, tend to sup-
press the destabilization tendency.

4. Simple solutions

a. Simplest case

The general solution (3.14) is clearly a rich source of insta-
bilities, including a contribution of the shear with R̃i, that is
clearly worthwhile for further investigations (cf. Brost et al.
1982; Kurowski et al. 2009; Mellado et al. 2009; Katzwinkel
et al. 2012; Malinowski et al. 2013). However, for focusing on
the entrainment-driven instability, we turn off here the back-
ground winds Ũ1 5 Ũ2 5 0. In this subsection, we consider

the simplest case by further setting ˙̃h 5 D̃ 5 0. As a result,
the growth rate obtained from Eq. (3.12a) reduces to

s̃2 5 2
1 2 r̃

m 1 r̃
: (4.1a)

It suggests that when the system is unstable [i.e., R(s̃). 0],
the mode is purely growing with no imaginary component.
These simplifications also make the structure of the solution
much simpler: we find immediately from Eq. (3.3a) that the
mixed-layer vertical velocity w′

1 is in phase with the buoy-
ancy perturbation b′1 with the same sign, i.e., w′

1 ∼ b′1. Same
wise, we find w′

1 ∼ w′
2 ∼ h from Eqs. (3.5a) and (3.5b), and

2p′1 ∼ p′2 ∼ h from Eqs. (3.6a) and (3.6b).
The remainder of this subsection provides a self-contained

mathematical description of how a closed analytic solution is
derived. Readers who wish only to see the final results may
proceed directly to the last two paragraphs of this subsection.

Equation (3.12b) reduces to

(1 1 m̃2)s̃2(h̃s̃ 1 w̃e)(1 2 cos m̃h̃) 2 ãm̃h̃ sin m̃h̃ 5 0:

(4.1b)

We immediately notice that by substituting an explicit expres-
sion (4.1a) for s̃2 into Eq. (4.1b), the latter further reduces to

2 (1 1 m̃2) 1 2 r̃

m 1 r̃
(h̃s̃ 1 w̃e)(1 2 cos m̃h̃) 2 ãm̃h̃ sin m̃h̃ 5 0:

(4.1c)

Here, a term with s̃ is left unsubstituted for an ease of obtain-
ing a final result later.

When the dynamics is not coupled with the buoyancy
anomaly with ã 5 0, there are three possible manners for satis-
fying Eq. (4.1c): setting m̃2 5 21, s̃ 5 2w̃e=h̃, or cos m̃h̃ 5 1.
The first possibility leads to

m 5 coth h̃:

In this case, m is always positive so long as h̃ . 0. Thus, the
system is always stable so long as it is stably stratified with
r̃ , 1 according to Eq. (4.1a). The second gives a damping
mode with the value of m to be defined from Eq. (4.1a) by
substituting this expression for s̃. The last possibility leads to
m → 1‘; thus, the system becomes neutrally stable.

On the other hand, when the dynamics is coupled with the
buoyancy anomaly with ã Þ 0, the parameter m may turn neg-
ative; thus, the solution (4.1a) may become unstable. Here, re-
call the definition (3.11a) of this parameter, in which cotm̃h̃ is
a monotonously decreasing function of m̃h̃, and it changes
from1 ‘ to2‘ as m̃h̃ changes from 0 to p, passing cot m̃h̃ 5 0
at m̃h̃ 5p=2. For focusing on the state with cot m̃h̃ negative
enough, we take the limit toward m̃h̃ → p, and set

m̃h̃ 5 p 2 Dm̃h̃: (4.2)

We expect that 0,( )Dm̃h̃ ,, 1.
Note that m̃h̃ 5p corresponds to a solution that the pertur-

bation vertical velocity vanishes exactly at the inversion
height, z5 h, and as a result, the disturbance is strictly con-
fined to the mixed layer without disturbing the inversion in-
terface. In this case, no buoyancy anomaly is induced.
Equation (4.2) with m̃h ,p suggests that the perturbation
vertical velocity slightly intrudes into the free atmosphere.

Under the approximation (4.2), we obtain

sin m̃h̃ � Dm̃h̃, (4.3a)

cos m̃h̃ �21, (4.3b)

as well as

m �2m̃(Dm̃h̃)21, (4.4)

where

m̃ � p=h̃ 5 p=kh (4.5)

from the leading-order expression in Eq. (4.2). Note that from
Eq. (4.4) and an assumption of |Dm̃h̃|,, 1, we also expect
|m| .. 1. As a result, in the growth rate (4.1a), m becomes
dominant in denominator, and it reduces to

s̃2 �2
1 2 r̃

m
� 1 2 r̃

m̃
Dm̃h̃: (4.6)

By substituting all the approximations introduced so far into
Eq. (4.1c):

2(1 1 m̃2) 1 2 r̃

m̃
(Dm̃h̃)(h̃s̃ 1 w̃e) 2 ãm̃h̃Dm̃h̃ � 0:

Two major terms share a common factor Dm̃h̃ that can simply
be dropped off, and a slight rearrangement gives

s̃ 1
w̃e

h̃
� ã

2(1 2 r̃)
m̃2

1 1 m̃2 :

It leads to a final expression:

s̃ 5 2D 1 A, (4.7)
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where

D 5
w̃e

h̃
5 k21=2D0, (4.8a)

A 5
ã

2(1 2 r̃)
m̃2

1 1 m̃2

( )
5 k21=2Ã̃(k)A0, (4.8b)

with the coefficients, D0 and A0, and a function Ã̃(k) defined
by

D0 5
we

g1=2h
∼ 1024 km21=2, (4.9a)

A0 5
a

2(1 2 r̃)g3=2 ∼ 1024 km21=2, (4.9b)

Ã̃(k) 5 [
1 1 (kh=p)2]21

: (4.9c)

Here, the order of magnitude estimates above are based on
the values listed in appendix B. By further substituting the ex-
pressions (4.8a) and (4.8b) into Eq. (4.7):

s̃ � [2D0 1 Ã̃ k)A0( ]
k21=2: (4.10)

Finally, the growth rate of the instability is given by

s 5 g1=2[2D0 1 Ã̃ k)A0( ]
(4.11)

after dimensionalizing the result (4.10) by following Eq. (3.13a).
Here, Ã̃(k) is a decreasing function of k, and asymptotically
Ã̃(k) → 1 and 0, respectively, toward k → 0 and 1‘. Thus,
the growth rate is asymptotically s→ g1=2 2D0 1A0( ) and
s→2 g1=2D0, respectively, as k → 0 and 1‘. It is seen that the
sign of the growth rate with k → 0 is defined by relative mag-
nitudes of the entrainment-induced mechanical damping
D0 and buoyancy feedback A0. When the latter dominates
the system is unstable in the large-scale limit, whereas when
the former dominates it is damping. As the horizontal scale
decreases (toward k → 1‘), contribution of the entrain-
ment-induced buoyancy feedback gradually decreases, and
the system becomes simply stable due to the mechanical
damping. These points are visually demonstrated in Fig. 2 by
plotting the growth rates for selected values of A0=D0. Here,
the order of magnitude of the growth rate is estimated as
s ∼ g1=2D0 ∼ g1=2A0 ∼ 1025 s21.

Recall that this solution is derived under an approximation of
Eq. (4.2). Under this approximation, we seek a solution with
convective plumes in the mixed layer slightly intruding into the
free troposphere (cf. Fig. 3), as inferred by examining the as-
sumed solution forms (3.2a)–(3.2d). By combining this fact with
the phase relations between the variables already identified
Eqs. (3.3a), (3.3b), (3.4a), (3.4b), (3.5a), (3.5b), (3.6a), and
(3.6b), we can easily add spatial distributions of the other varia-
bles to Fig. 3, as already outlined after Eq. (4.1a) in section 4a.

b. Large-scale divergence effect

The simplest case considered in the last subsection illus-
trates how an instability can be induced by the mixed-layer-

top entrainment. However, the setting is rather unrealistic by
neglecting a contribution of the large-scale divergence rate D̃
to the problem. An existence of a positive finite divergence
rate D̃ defines the equilibrium height h of the inversion under

FIG. 2. Nondimensional growth rate s=g1=2D0 [Eq. (4.11)] as a
function of the horizontal wavenumber k (km21). The curves are
with the fractional contribution of the cloud-top buoyancy feed-
back of A0=D0 5 0:5 (solid), A0=D0 5 1 (long dashed), and
A0=D0 5 2 (short dashed). Note that the dimensional order of the
growth rate is g1=2D0 ∼ 1day21.

FIG. 3. Schematic structure of the perturbation solution: the
streamfunction c (contours) and the inversion-height deformation
(thick solid curve).
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its balance with the entrainment is a crucial part of the well-
mixed boundary layer problem. Thus, in this subsection, we
consider the modification of the problem by including a con-
tribution of nonvanishing D̃.

Equation (3.12a) for the growth rate is modified to

s̃(s̃ 1 D̃) 5 2
1 2 r̃

m 1 r̃
, (4.12a)

and its solution is

s̃ 5 2
D̃
2

6
D̃
2

( )2
2

1 2 r̃

m 1 r̃

[ ]1=2
: (4.12b)

Note that as suggested by the first term of the growth-rate ex-
pression, (4.12b), a primarily role of the environmental de-
scent is to damp the inversion-interface instability. However,
as seen below, the full role of the environmental descent is
subtler than just seen here.

The second eigenvalue equation, Eq. (3.12b), reduces to

(1 1 m̃2)s̃(s̃ 1 D̃)(h̃s̃ 1 w̃e)(12 cos m̃h̃)2 ãm̃h̃ sin m̃h̃ 5 0:

(4.12c)

Note that the first two appearance of s̃ in Eq. (4.12c) exactly
constitutes the expression of the left-hand side of Eq. (4.12a).
The direct substitution of this expression into the correspond-
ing place in Eq. (4.12c) reduces the latter into Eq. (4.1c), as
obtained for the case without the background divergence
D̃. In other words, the effect of the environmental descent
cancel out under the inversion-interface buoyancy condition.
It immediately follows that we obtain the identical growth rate
as the case without background divergence.

c. Under steady deepening by entrainment

Alternative consistent treatment is to turn off the environ-
mental descent, i.e., D̃ 5 0, but instead, to assume that the
well-mixed layer deepens steadily by entrainment; thus, ˙̃h Þ 0
(and we will set ˙̃h 5 w̃e at the last stage). In this case,
Eq. (3.12b) still reduces to Eq. (4.1b) as in section 4a. On
the other hand, Eq. (3.12a) leads to

s̃2 5 2
1

m 1 r̃

[
r̃
˙̃hs̃ 1 (1 2 r̃)

]
: (4.13)

Substituting this expression for s̃2 into Eq. (4.1b), and only
where s̃2 itself is found, leads to

2
r̃h̃ ˙̃h

˙

m 1 r̃
(1 1 m̃2) s̃2 1

1 2 r̃

r̃ ˙̃h
1

w̃e

h̃

( )
s̃ 1

1 2 r̃

r̃h̃ ˙̃h
w̃e

[ ]

3 (1 2 cos m̃h̃) 2 ãm̃h̃ sin m̃h̃ 5 0:

Finally, as before, we introduce approximations (4.3a), (4.3b),
and (4.4) obtained under Dm̃h̃ ,, 1. We retain only the terms
with O(Dm̃h̃). Thus, the term with s̃2 drops off in the above,

because it is expected to be O(Dm̃h̃) by itself. After further
reductions, we obtain

s̃ 5 1 1
r̃

1 2 r̃

w̃e
˙̃h

h̃

( )21

(Ã 2 D̃): (4.14)

The result is the same as before apart from a prefactor con-
taining ˙̃h Þ 0 to the front. The growth rate diminishes by this
prefactor. The order of this correction is

r̃

1 2 r̃

w̃e
˙̃h

h̃
5

r̃

1 2 r̃

w2
e

gh
∼ 1026;

Thus, the contribution of the prefactor is negligible, and the
same conclusion as before holds.

5. Discussion

A hydrodynamic stability analysis has been applied to the
dry convective well-mixed boundary layer with an ultimate
application of the methodology to the CTEI in mind. The key
difference of this approach from the more conventional par-
cel-based analysis is that it can derive the growth rate of an in-
stability as a function of the horizontal wavenumber as well as
its spatial structure.

The analysis has identified a new type of instability associ-
ated with the mixed-layer-top entrainment. This instability
arises under a competition between the destabilization tendency
due to the entrainment-induced buoyancy perturbation and the
stabilization tendency due to the mechanical damping associated
with entrainment. Importantly, these two entrainment effects
can be separated into these the two terms in the buoyancy equa-
tion, Eq. (2.9a). Damping tendency of the buoyancy perturba-
tion is directly proportional to the entrainment velocity we,
whereas the destabilization tendency by buoyancy perturbation
is generated by the displacement of the interface, which is more
directly controlled by another parameter a [Eq. (2.9b)]. This in-
stability is, more fundamentally, driven by the entrainment,
which is in turn, driven by convection in the well-mixed layer.

Obtained growth-rate tendencies with changing horizontal
scales are consistent with qualitative arguments in section 3
associated with Eq. (3.10). In the small-scale limit, the mechani-
cal damping effect dominates over the destabilization tendency
by buoyancy perturbation, and as a result, the perturbation is al-
ways damping. In the large-scale limit, instability may arise
when the magnitude of the destabilization tendency by buoy-
ancy feedback is stronger than the mechanical damping as mea-
sured by a ratio between the two parameters A0 and D0 defined
by Eqs. (4.9a) and (4.9b). A transition from the small-scale
damping regime to the large-scale unstable regime is defined by
the scale kh=p ∼ 1, where the horizontal scale, p/k, of the dis-
turbance is comparable to the mixed-layer depth h (∼1 km)
with an exact transition scale depending on the ratio A0=D0. It
can easily be shown that this ratio is essentially proportional to
the vertical gradient of the buoyancy in the free troposphere,
and a contribution of the entrainment rate is completely re-
moved when a radiative feedback is set QR 5 0 in Eq. (2.9b).
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Thus, rather ironically, the identified entrainment-induced in-
stability does not strongly depend on the entrainment rate.

The identified instability is inherently of a large-scale na-
ture, and a reasonably large domain is required to numerically
realize it, as suggested by Fig. 2. If this instability had any im-
plication for the CTEI, it could explain why the evidence for
the CTEI by LES studies so far is rather inconclusive (e.g.,
Kuo and Schubert 1988; Siems et al. 1990; MacVean 1993;
Yamaguchi and Randall 2008). In these simulations, relatively
small domain sizes (5 km square or less) are taken, that may
prevent us from observing a full growth of the CTEI. The ob-
tained growth time scale is also very slow, about an order of a
day. With typically short simulation times with LESs (about
few hours), that could be another reason for a difficulty for real-
izing a CTEI with these simulations. Direct numerical simula-
tions (DNSs) by Mellado (2010), in spite of an advantage of
resolving everything explicitly, are even in less favorable posi-
tion for simulating a full CTEI due to an even smaller modeling
domain. Unfortunately, dismissal of a possibility of CTEI by
Mellado (2017) in his review is mostly based on this DNS result.

In contrast to these more recent studies, it may be worthwhile
to note that an earlier study by Moeng and Arakawa (1980)
identifies a reasonably clear evidence for CTEI over a high sea
surface temperature (SST) region of their two-dimensional non-
hydrostatic experiment with a 1000-km horizontal domain, as-
suming a linear SST distribution. A preferred scale identified by
their experiment is 30–50 km, qualitatively consistent with the
present linear stability analysis, although it is also close to the
minimum resolved scale in their experiment due to a crude res-
olution. A time scale estimated from the present study is also
consistent with a finding by Moeng and Arakawa (1980) that
their CTEI-like structure develops taking over 24 h. However,
due to limitations of their simulations with parameterizations of
eddy effects, a full LES is still required to verify their result.
From an observational point of view, an assumption of horizon-
tal homogeneity of the stratocumulus over such a great distance
may simply be considered unrealistic in respect of extensive
spatial inhomogeneity associated with the stratocumulus as real-
ized in LESs (e.g., Chung et al. 2012; Zhou and Bretherton
2019).

In this respect, it may be interesting to note that a recent
observational study by Zhou et al. (2015) suggests a possibility
of a certain cloud-top instability, if not CTEI, leading to a de-
coupling, which ultimately induces a transition to trade cumu-
lus regime. We should realize that a slow time scale suggested
for CTEI by the present study may be another reason for dif-
ficulties of identifying it observationally. Previous observa-
tional diagnoses on CTEI criterions have been based on
instantaneous comparisons (e.g., Albrecht et al. 1985; Albrecht
1991; Kuo and Schubert 1988; Stevens et al. 2003; Mathieu and
Lahellec 2005; Gerber et al. 2005, 2013, 2016). A finite time lag
could be a key missing element for a successful observational
identification of CTEI. If that is the case, data analyses from a
point of view of the dynamical system as advocated by Yano
and Plant (2012) as well as Yano et al. (2020) becomes a vital al-
ternative approach.

On the other hand, although the present analysis has been
performed by assuming a dry atmosphere, it is less likely than

in the marine stratiform-topped boundary layers that this in-
stability is to be seen in dry well-mixed convective boundary
layers. The latter typically go through very pronounced diur-
nal cycles with the boundary layer itself becomes stably strati-
fied during nights; thus, a good stationarity of the system
required to observe such a slow growth of instability is hardly
satisfied.

The present study focuses on the instability induced by the
boundary layer–top entrainment. Nevertheless, a basic formu-
lation is presented in fully general manner. Thus, its simple
extension can consider rich possibilities of the mixed-layer
inversion-interface instabilities under a coupling with the buoy-
ancy anomaly. Especially, the present formulation allows us to
explicitly examine a possibility of the Kelvin–Helmholtz insta-
bility over the mixed-layer observationally suggested by Brost
et al. (1982), Kurowski et al. (2009), Katzwinkel et al. (2012),
and Malinowski et al. (2013).

Furthermore, the present analysis of the dry convective
well-mixed layer constitutes a first step to fully examine the
CTEI as a hydrodynamic-instability problem, most impor-
tantly, by explicitly introducing the evaporative cooling effect
(cf. de Lozar and Mellado 2015). Other types of possible in-
stabilities in the cloud-topped boundary layers, such as decou-
pling (Bretherton and Wyant 1997; Lewellen and Lewellen
2002), can equally be addressed by the present framework.

Extensive physics can also be incorporated. In this respect,
LESs by Yamaguchi and Randall (2008) can be instructive: al-
though their idealized version of LES leads to a positive feed-
back suggesting CTEI, the tendency is overcompensated by
longwave radiation and surface heat flux in simulations with full
physics. LES studies also show that the cloud-top entrainment
rate is sensitively modified under aerosol–cloud (Xue et al.
2008; Hill et al. 2008, 2009) and cloud–radiation interactions
(Zhou and Bretherton 2019). The present formulation provides
a basis for elucidating those various feedbacks between physics
under the framework of the linear-stability analysis.

A crucial aspect of the present formulation is to treat a de-
formation process of the inversion interface explicitly, that
could ultimately transform the well-mixed layer into a cumulus
regime. The main original contribution of the present study is,
under a crude representation of the well-mixed layer, to pre-
sent its linear growth rate as a function of the horizontal scale.
More elaborated studies would certainly be anticipated, and
the present study suggests that they are actually feasible. A
more elaborated entrainment formulation (cf. Stevens 2002) is
just one example. The most challenging step is to proceed to a
fully nonlinear formulation, probably, by taking an analogy with
the contour dynamics for the vortex dynamics (cf. Dritschel
1989; Dritschel and Ambaum 1997), but by considering a full
nonlinear evolution of the inversion height as a contour. Such
an extension would be able to simulate a transformation of stra-
tocumulus into trade cumulus in terms of a finite amplitude
deformation of the inversion height. Both modeling and obser-
vational studies are further expected to follow.
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APPENDIX A

Alternative Formulation with Entrainment Perturbation

An alternative formulation of the perturbation to Eq. (2.2)
with w′

e Þ 0 is obtained by assuming that no perturbation to
the buoyancy flux w′b′2 is generated at the top of the mixed
layer, i.e.,

w′b′ ′2 5 0: (A.1a)

This assumption can partially justified, because it is phenom-
enologically suggested that the mixed-layer-top flux tends to
be constrained by the surface flux (cf. Betts 1973; Carson
1973; Tennekes 1973). However, it is also emphasized that
the known tendency is established only in average sense, and
there is no existing observation suggesting that the same also
applies to the perturbations. Nevertheless, one of the anony-
mous reviewers strongly prefers the assumption (A.1a) over
the assumption of w′

e 5 0 in the main text. This is the main
motivation of the present appendix.

Here, note that the perturbation buoyancy flux, w′b′ ′2, is
controlled by the two perturbation variables as

w′b′ ′2 5 2wdDb
′ 2 w′

eDb: (A.1b)

Substitution of Eq. (A.1a) into Eq. (A.1b) leads to

w′
e 5 2bDb′, (A.2a)

where

b 5 we=Db ∼ 1021 s21: (A.2b)

Due to the assumption of (A.1a), the perturbation buoy-
ancy is no longer affected by entrainment, and Eq. (2.9a) is
replaced by

h


t
1 U1



x

( )
b〈 〉′ 5 ah (A.3a)

with the definition (2.9b) of the parameter a replaced by

a 5 2QR: (A.3b)

Thus, the perturbation buoyancy is no longer damped by the
entrainment, but instead the downward displacement of the

inversion warms rather than cools the mixed layer by a radia-
tive feedback. Consequently, the entrainment-driven instability
considered in the main text is no longer available in this case.

In turn, due to the modification of the formulation, the
entrainment perturbation modifies the evolution of h, with
Eq. (2.13d) modified into



t
1 Uj



x

( )
h 5 2Dh 1 w′

z5h 1 w′
e:

∣∣∣ (A.4)

Note that, in this case, the basic mechanism of the instabil-
ity is an increase of the potential energy due to the inver-
sion-height deformation by a entrainment forcing. It is seen
by multiplying h on Eq. (A.4) so that the conservation law
for the potential energy in concern is obtained:



t
1 Uj



x

( )
h2

2
5 2Dh2 1 w′h z5h 1 w′

eh:
∣∣∣

Thus, the condition for the instability is given by

w′
eh . 0:

A more explicit instability process is seen by substituting
Eq. (A.2a) into Eq. (A.4):



t
1 Uj



x
1 D*

( )
h 5 w′

z5h 1 b b〈 〉′
∣∣∣ (A.5a)

with the divergence, D, replaced by the effective value:

D* 5 D 1 b
db
dz

: (A.5b)

Note that with the two terms on the right-hand side of
Eq. (A.5b) are of the same order (1025 s21), the modified
formulation finds a larger effective divergence D* than the
actual. Also note an additional term proportional to b, arising
from entrainment-rate feedback, found on the right-hand side
of Eq. (A.5a).

Here, a positive perturbation buoyancy, b〈 〉′ . 0, leads to a
decrease of the inversion jump, i.e., Db′ , 0, by Eq. (2.7a);
Db′ , 0, in turn, leads to an enhanced entrainment, w′

e . 0,
by Eq. (A.2a). As a result, a positive buoyancy perturbation
in the mixed layer tends to move the inversion height farther
upward, and vice versa. This tendency provides a source of
new instabilities.

As a result, Eqs. (3.5a) and (3.5b) are modified into

s 1 ikU1 1 D*
( )

ĥ 5 ŵ1 sin mh 1 bb̂1 sinmz〈 〉, (A.6a)

s 1 ikU2 1 D*
( )

ĥ 5 ŵ2 1 bb̂1 sinmz〈 〉: (A.6b)

To obtain closed expressions for ŵj ( j 5 1, 2) in terms of ĥ,
we need a help of Eq. (3.3b). Its substitution into Eq. (A.6a)
leads to

ŵ1 5 1 1 bg
k2 1 m2( ) s 1 ikU1( )

k2

[ ]21

s 1 ikU1 1 D*
( ) ĥ

sin m̂
:

(A.7a)
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It also follows that

ŵ2 5 1 1 bg
k2 1 m2( ) s 1 ikU1( )

k2

[ ]21[
s 1 ikU1 1 D*
( )

1
i k2 1 m2( ) s 1 ikU1( )

k
bg U2 2 U1( )

]
ĥ, (A.7b)

b̂1 5 1 1 bg
k2 1 m2( ) s 1 ikU1( )

k2

[ ]21
k2 1 m2( ) s 1 ikU1( )

k2

3 s 1 ikU1 1 D*
( ) ĥ

sin m̂
, (A.7c)

where

g 5
sinmz〈 〉
sinmh

5
1 2 cos m̂
m̂ sin m̂

, (A.8)

and m̂ 5mh. Note especially that Eq. (A.7c) replaces
Eq. (3.8b). Equation (A.7b) may also be worthwhile to pay
particular attention to, because it suggests that the shear effect
here potentially leads to a further possibility of instabilities.

With the help of those modified solutions, Eqs. (3.4a)
and (3.4b) are replaced by

p̂1 5 2 1 1 bg
k2 1 m2( ) s 1 ikU1( )

k2

[ ]21
s 1 ikU1( )

k2

3 s 1 ikU1 1 D*
( ) r1mĥ

sin m̂
, (A.9a)

p̂2 5 1 1 bg
k2 1 m2( ) s 1 ikU1( )

k2

[ ]21 (s 1 ikU2 1 kḣ)
k2

3

[
s 1 ikU2 1 D*
( )

1
i k2 1 m2( ) s 1 ikU1( )

k

3 bg U2 2 U1( )
]
r2ĥ: (A.9b)

By substituting Eqs. (A.9a) and (A.9b) into Eq. (2.13c), we ob-
tain the first revised dispersion relation in place of Eq. (3.7):

2
r1m
k2

s 1 ikU1( ) s 1 ikU1 1 D*
( )

cot m̂

2
r2
k

(
s 1 ikU2 1 kḣ

)[
s 1 ilU2 1 D*
( )

1
i k2 1 m2( ) s 1 ikU1( )

k
bg U2 2 U1( )

]

5 1 1 bg
k2 1 m2( ) s 1 ikU1( )

k2

[ ]
r1 2 r2( )g: (A.10)

In the buoyancy problem, we obtain from Eq. (A.3a),

ĥ 5
1
am

s 1 ikU1( )(1 2 cos m̂)b̂1: (A.11)

Consistency between Eqs. (A.7c) and (A.11) leads to the
second dispersion relation, in place of Eq. (3.9):

k2 1 m2( ) s 1 ikU1( )2 s 1 ikU1 1 D*
( )(1 2 cos m̂)

2 amk2 sin m̂ 1 1 bg
k2 1 m2( ) s 1 ikU1( )

k2

[ ]
5 0: (A.12)

Nondimensionalization of the dispersions (A.10) and (A.12)
is performed in the identical manner as in the main text ex-
cept for D* is nondimensionalized into D̃ in place of D.
Additionally, we set

b̃ 5 gk( )1=2b: (A.13)

The resulting nondimensional dispersion relations, obtained
in place of Eqs. (3.12a) and (3.12b), are

m(s̃ 1 iŨ1)(s̃ 1 iŨ1 1 D̃) 1 r̃(s̃ 1 iŨ2 1
˙̃h )[ s̃ 1 iŨ2 1 D̃)(

1 igb̃(1 1 m̃2)(s̃ 1 iŨ1)(Ũ2 2 Ũ1)],
1 (1 2 r̃)[1 1 gb̃ 1 1 m̃2)(s̃ 1 iŨ1) 5 0,

(
(A.14a)

m̂g(1 1 m̃2)(s̃ 1 iŨ1)2(s̃ 1 iŨ1 1 D̃)
2 ãm̃[gb̃ 1 1 m̃2)(s̃ 1 iŨ1) 1 1

( ]
5 0: (A.14b)

Note especially rich possibilities of the shear instabil-
ities found in Eq. (A.14a), which are to be further
investigated.

However, for now, we focus on the case without shear by
setting, Ũ1 5 Ũ2 5 0. We also set ˙̂h 5 0. Thus, Eqs. (A.14a)
and (A.14b) reduce to

(m 1 r̃)s2 1 (m 1 r̃)D̃ 1 gb̃(1 2 r̃)(1 1 m̃2)[ ]
s̃ 1 (1 2 r̃) 5 0,

(A.15a)

m̂g(1 1 m̃2)(s̃ 1 D̃)s̃2 2 ãm̃[gb̃ 1 1 m̃2)s̃ 1 1
( ]

5 0:

(A.15b)

These two relations lead to two expressions for the growth
rates:

s̃=D̃ 5 2F=26 2L 1 F2=4
( )1=2

≡ s16=D̃, (A.16a)

s̃=D̃ 5 2G=2F 6 G2 2 4FH( )1=2=2F ≡ s26=D̃: (A.16b)

Note that the second solution is obtained by substituting an
expression for s̃2 obtained directly from Eq. (A.15a) into
Eq. (A.15b). Here,

F 5 1 1
gk1r̃
m 1 r̃

k̃ 1
m̂2

k̃

( )
, (A.17a)

L 5
k2r̃k̃
m 1 r̃

, (A.17b)

G 5 1 1 L 1 1 gk3 1 1
m̂2

k̃2

( )[ ]
1 k4, (A.17c)

H 5 L 1
k5
g

1 1
m̂2

k̃2

( )21

, (A.17d)
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in which some parameters are introduced by

k1 5
b̃0

D̃0

1 2 r̃

r̃
∼1, k2 5

1 2 r̃

r̃D̃2
0

∼ 106, k3 5 b̃0D̃0 ∼ 1026,

k4 5
ã0b̃0

D̃2
0

∼21, k5 5
ã0

D̃3
0

∼2106,

with the orders of magnitude estimates also provided based
on the values listed in appendix B, also assuming the di-
verging state (i.e., D̃ . 0). As a minor modification, the
sign of ã is simply reversed based on Eq. (1.3b). Note that
the signs of k1, k3, and k5 must be reversed when the con-
verging state is considered. These values are adopted in the
graphic presentation below. The subscript, 0, in the above
definitions suggest the values of the nondimensionalized pa-
rameters with k5 h

21
. Finally, the nondimensional horizon-

tal wavenumber is introduced by k̃ 5 kh.
Asymptotic expansions as in the main text have also

been attempted, but without success. Thus, eigensolutions
are numerically sought over the range of 1022# k̃#102 and
0, m̂=p, 2. More precisely, solutions are sought for a
fixed horizontal wavenumber by dividing the full range of
m̂ in 400 segments of equal distance, and an interval that
two curves, s16 and s26, cross is identified. A solution with
s16 5 s26 is determined iteratively by a bisection method
over this identified segment.

The result is summarized in Fig. A1. Here, only the most
prominent mode (i.e., fastest growing or least damping) is
plotted both for diverging and converging background
flows. In the divergent-flow regime (i.e., D̃ . 0: solid), the
nondimensional growth rate increases with the increasing
wavenumber, and it reaches 102 (approximately in the unit
of day21) above k 5 1 (km21). This is unrealistic, because
no growth of disturbances at these scales is observed in dry
convective well-mixed boundary layer. On the other hand,
one of the anonymous reviewers believe that the result
herein with much simplified assumptions does not necessar-
ily mean that this instability mechanism is unrealistic: pre-
sumably, unrealistically large growth rates are attributed to
the absence of horizontal smoothing due to turbulence in
the present analysis.

Note that in the converging-flow regime (i.e., D̃ , 0), no in-
stability realizes with the least-damping mode plotted instead.

APPENDIX B

Typical Physical Values

Typical physical values (in the orders of magnitudes) of
the problem are as follows:

Acceleration of the gravity: g ∼ 10 m s22

Entrainment rate: we ∼ 1022 m s21 (cf. Stevens et al. 2003;
Gerber et al. 2013)

Inversion height: h ∼ 103 m (cf. Schubert et al. 1979)

Here, the values for we and h may be considered upper
bounds, but they provide convenient rounded-up values.

These two values further provide an estimate of a typical
divergence rate:

D 5 we=h ∼ 1025 s21

(cf. Schubert et al. 1979).
The feedback rate a of the inversion height anomaly h to

the buoyancy anomaly b〈 〉′ is estimated by substituting
these typical values into Eq. (2.9b) as

a ∼ we
db
dz

∼ 1022 m s21 3 1024 s22 ∼ 1026 m s23,

where

db
dz

∼ g
u

du
dz

∼ 10 m s22 3
3 3 1023 K m21

300K
∼ 1024 s22,

and u is the basic state for the potential temperature. It fur-
ther provides a rate of the change of buoyancy anomaly by

a
h

h
∼ a ∼ 1026 m s23,

which leads to a buoyancy anomaly of the order b〈 〉′ ∼ 1022 m s22

over a period of an hour (∼104 s). This value may be consid-
ered an underestimate compared with those obtained by local

FIG. A1. (a) Nondimensional growth rate s̃= D̃
∣∣ ∣∣ in the same for-

mat as in Fig. 2 but assuming that the perturbation of the buoyancy
flux vanishes at the top of the mixed layer: when the background
flow is diverging (i.e., D̃ . 0: solid) and diverging (i.e., D̃ , 0: long
dashed). (b) As in (a), but for the vertical wavelength p/m of the
perturbation mode is plotted as a function of the wavenumber k.
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analyses: 0.01 , b , 0.2 m s22 (Fig. 3 of Stevens 2002),
22 , b , 1 K (Fig. 2 of Duynkerke 1993).

We also set 12 r̃ � 1022 assuming a jump of the temper-
ature DT � 3 K crossing the inversion in estimating the
parameter values in the main text.
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