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Nonlinear Model Predictive Control for Human-Robot Handover with
Application to the Aerial Case

Gianluca Corsini1, Martin Jacquet1, Hemjyoti Das2, Amr Afifi2, Daniel Sidobre1, Antonio Franchi2,1

Abstract— In this article, we consider the problem of de-
livering an object to a human coworker by means of an
aerial robot (AR). To this aim, we present an ergonomics-
aware Nonlinear Model Predictive Control (NMPC) designed
to autonomously perform the handover. The method is general
enough to be applied to any multi-rotor aerial vehicle (MRAV)
with a minimal adaptation of the robot model. The formulation
of the optimal control problem steers the AR toward a handover
location by optimizing the human coworker ergonomics, which
includes the predicted arm joint torques of the human. The
motion task is expressed in a frame relative to the human,
whose motion model is included in the equations of the NMPC.
This allows the controller to promptly adapt to the human
movements by predicting her future poses over the horizon. The
control framework also accounts for the problem of maintaining
visibility on the human coworker, while respecting both the
actuation and state limits of the robot. Additionally, a safety
barrier is embedded in the controller to avoid any risk of
collision with the human partner. Realistic simulations are
performed to validate the feasibility of the approach and the
source code of the implementation is released open-source.

I. INTRODUCTION

Aerial robots (ARs) and more specifically multi-rotor
aerial vehicles (MRAVs) have attracted a lot of interest in
the robotics community within the last decades. The growing
research attention is motivated by their remarkable agility
and maneuverability, the modularity of the onboard sensing
equipment, and the availability of heterogeneous designs.
Consequently, they have been deployed in numerous applica-
tions, either contactless [1] or requiring physical interaction
with the environment [2].

There are multiple examples of real-world cases where the
use of an aerial robot is advantageous. A particularly relevant
one is in work environments at height, such as wind turbines,
large construction sites, or power transmission lines [3].
These settings usually require specialized and trained per-
sonnel employing expensive equipment and special vehicles.
Carrying and accessing different tools in these challenging
circumstances would require cumbersome postures and a loss
of focus from the current activity. The use of aerial vehicles
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as robotic coworkers, in these cases, can facilitate the tasks
carried out by the operators. In those scenarios, an AR can
easily fly to the target location while carrying the additional
payload of tools, relieving the human operator from carrying
extra equipment. Therefore, there is a clear opportunity
for using ARs and particularly multi-rotors to reduce the
physical and cognitive load experienced by workers at height.
Nevertheless, to achieve the aforementioned benefits, aerial
robots should explicitly take into account human ergonomics
and safety.

Despite the clear potential, the use of MRAVs in scenarios
involving working closely with human operators is still
limited. On the contrary, the literature on Human-Robot
Interaction (HRI) involving a ground robot and human part-
ners is wide and mature [4]. Recent works have investigated
the use of manipulators to assist a human coworker in the
manipulation of heavy and bulky objects or during assembly
tasks [5], [6]. Similarly, the problem of object handover has
been extensively studied in the literature [7].

In general, an object handover is characterized by several
phases [8], namely the approach, reach, and transfer phases.
Most works treat each phase separately, with some notable
exceptions. In [9], the authors propose a control architec-
ture for fluid handovers, that tackles all the phases in a
unified way. They consider the interactions arising during
the handover and, in particular, their controller is capable
of minimizing the unwanted wrench components that are
not used for moving and carrying the object. However, the
proposed control scheme does not explicitly include safety
and ergonomics, which are of paramount importance in a
control framework that is designed to enable the collabora-
tion between aerial robots and humans, in particular at height.

The idea of including human comfort and ergonomics
in the robot control and planning software has been also
treated in the literature. One of the earlier works in this area
is [10], which develops a manipulation planner that takes
into account various human aspects, as ergonomics and field
of view, amongst others. The methods of including human
ergonomics in robot controllers evolved further. For instance,
in [11], the authors propose an approach to compute the joint
torques of the human based on a whole-body dynamic model
and then control a ground mobile manipulator to minimize
the overloading of the human joints.

As identified in [7], an important aspect of human-robot
collaboration, including object handovers, is human percep-
tion. Most of the works that focus on control and planning
aspects usually rely on the possibility of perceiving the
human subject through sensors, like motion capture systems,
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wearable inertial suits, or cameras. This motivates why a
tight coupling between control and perception is critical for
the success of such tasks, as the loss of visibility over
the coworker would jeopardize the maneuver. Perception-
constrained control has been previously explored by some of
the authors of this paper. In prior work [12], a perception-
constrained motor-level Nonlinear Model Predictive Control
(NMPC) for generic aerial vehicles is presented to keep
specific features in the field of view (FoV) of the camera
while respecting the system actuation limits.

Pushing beyond the achievements of [12], this work
presents an NMPC framework that can also handle multiple
aspects of HRI, with a special focus on the aerial case.
We introduce an NMPC formulation that includes human
ergonomics and comfort as an objective, while enforcing
perception and actuation limits, which are essential to avoid
flight instability or unpredictable behavior, thus ensuring
human safety. Moreover, our approach uses a model for
the human coworker within the NMPC to predict her future
poses, while remaining real-time.

The paper is organized as follows. In Sec. II, we provide
the mathematical description of the system. The optimal
control problem (OCP) formulation is presented in Sec. III,
later followed by the methodology validation in Sec. IV. We
then present our conclusions and perspectives in Sec. V.

II. MODELING

In this section, we provide the models for the two agents
involved in the handover process [9], namely the giver (the
AR) and the receiver (the human coworker).

A. Aerial Robot Dynamics

The AR is a Generically-Tilted Multi-Rotor (GTMR)
system [13], [12]. We model a GTMR as a rigid body of
mass m ∈ R+ and inertia J ∈ R3×3. Besides, it is actuated
by nγ ≥ 4 motor-propellers actuators, arbitrarily placed and
oriented with respect to (w.r.t.) its main body.

As shown in Fig. 1, we define the world inertial frame
FW , with its origin OW and its axes xW ,yW , zW . All other
frames are denoted using the same convention throughout
this manuscript, e.g. FB is the body frame of the robot.
We denote by WpB ∈ R3 the position of OB w.r.t. FW ,
and WqB ∈ R4 the unit quaternion representing the rotation
from FB to FW . The same rotation can be expressed as the
matrix WRB ∈ SO(3), or the roll-pitch-yaw angles vector
WηB = [φ θ ψ]

>. We then indicate with WvB ∈ R3 the
linear speed of OB expressed in FW , and with BωB ∈ R3

the angular velocity of FB w.r.t. FW specified in FB . Similar
notations are used for all other frame pairs.

The robot state xr is defined as

xr =
[
pB
> qB

> vB
> BωB

>
γ>
]>
∈ R13+nγ .

(1)
In (1), and identically hereafter, we omit the reference frame
notation for any vector expressed in FW . Similar to [13],
the vector γ collects the nγ actuator forces. Accordingly,

FW

FB

O

OB

OW
FHt

OHt

FHs

OHs
HspHh

Fig. 1: Schematic depiction of the various frames during the
handover of the object O (red sphere) to the human coworker. Frame
convention is red, green, and blue for x, y, and z. As an example
of AR, a collinear quadrotor is drawn.

the actuation dynamics is given by

γ̇ = ur, (2)

where ur ∈ Rnγ are the control inputs of the robot, which
can be related to the torques applied to the propellers by the
brushless motors [13].

Following the formalism of [14], in the dynamical equa-
tion of the GTMR, we integrate also the forces and torques
applied to the robot body by the weight of the carried object
and the physical interaction.

Hence, the dynamic model is given by (2) and

ṗB = vB , (3a)

q̇B =
1

2
qB ⊗

[
0

BωB

]
, (3b)[

mp̈B
JBω̇B

]
=

[
−mgzW

−BωB × JBωB

]
+

[
RBGfγ

Gτγ

]

+

[
RO O3

S(BpO)BRO
BRO

][
OfO
OτO

]
, (3c)

where ⊗ denotes the Hamilton product of two quaternions,
and g is the intensity of the gravity acceleration. The force
and moment allocation matrices, Gf and Gτ ∈ R3×nγ , are
mapping the thrusts generated by the robot actuators to the
forces and moments applied to the body. O3 is the 0 matrix
of R3, S(·) is the skew operator associated with the cross
product, and OfO, OτO ∈ R3 are the forces and torques
applied to the object, including its weight.

B. Sensor Model

The GTMR system features a sensor S capable of re-
trieving the 3D-pose of an observed entity. As in [12], we
model this sensor as a punctual device centered in OS ,
having principal axis zS . In addition, the pose transformation
between its frame FS and the one of the multi-rotor body
FB is constant and known. Finally, the FoV of the sensor is



described with a pyramidal shape around the principal axis,
having vertical and horizontal angles denoted by αv ∈ R+

and αh ∈ R+, respectively.

C. Human Coworker Model

In this section, we show the model used for describing the
motion of the human trunk and the arm dynamics.

1) Human Trunk: Accordingly to Fig. 1, we define a
trunk reference frame FHt having yHt coincident to the line
connecting the human shoulders, xHt pointing in the forward
walking direction, and zHt parallel to zW . For the sake of
simplicity, we assume that the human maintains a standing
position while walking; therefore, the human roll and pitch
angles are set constant and null.

The human state xh is

xh =
[
pHt

> ψHt

]>
∈ R4. (4)

Taking inspiration from [15], we adopt the following
constant-velocity model for the human state, i.e.

ẋh =
[
vHt

> Ωψ

]>
= uh, (5)

where Ωψ is the angular speed about zHt , and uh denotes the
human inputs. Contrary to the unicycle model in [15], the set
of equations (5) allows accounting also for lateral movements
of the human, which may occur during a handover.

2) Human Arm: We model the human arm involved in the
handover as a manipulator whose base is connected at the
shoulder attaching point, as depicted in Fig. 1. Therefore, we
define a shoulder reference frame denoted by FHs centered
at the manipulator base. The relative pose transformation
between FHs and FHt is assumed to be known and constant.
In particular, we take xHs and yHs to be parallel to xHt
and zHt , respectively. This manipulator is composed of a
serial chain of rigid links laying on the same plane and in
pairs connected by a 1-revolute joint. As a result, the arm is
modeled as an nq-link planar manipulator with only revolute
joints with parallel axes [16]. This assumption is motivated
by the intuition that a human would naturally move the arm
alongside the body during the handover. Consequently, the
human arm workspace lays on the vertical plane (xHs , yHs ),
or equivalently (xHt , zHt ).

The dynamics of the upper limb is given by

Bh(qh)q̈h + Ch(qh, q̇h)q̇h + Gh(qh) = τh + Jh(qh)
>

fo,
(6)

where Bh ∈ Rnq×nq is the inertia matrix, Ch ∈ Rnq×nq
accounts for the centrifugal and Coriolis terms, and Gh ∈
Rnq collects the gravitational effects. The vectors qh, q̇h,
q̈h ∈ Rnq are respectively the joint positions, velocities, and
accelerations, while τh ∈ Rnq gathers the joint torques. The
matrix Jh(qh) ∈ Rnq×3 is the Jacobian mapping the effect
of an external force fo ∈ R3 applied to the human hand to
the arm dynamics.

III. OPTIMAL CONTROL PROBLEM FORMULATION

The proposed control framework aims to successfully
achieve an object handover to a human coworker by means
of an aerial vehicle while guaranteeing human safety and
accounting for her ergonomics. To achieve the goal, the
controller has to: 1) execute a human-centered motion task
that allows approaching the receiver; 2) guarantee the safety
of the worker, thus avoiding unwanted collisions while
handing over the carried tool; 3) evaluate her articular
stress to determine the most ergonomic handover location;
4) constantly observe the human, to maintain visibility on
her; and 5) stabilize the robot dynamics by generating torque-
level commands, which are compatible with its actuation
limitations. In the following, we detail the objective functions
accounting for the individual tasks, the constraints applied
to the system, and finally, in Sec. III-E, we formalize the
corresponding OCP.

A. Human-frame Motion

ARs are usually requested to follow a list of waypoints
specified w.r.t. an inertial reference frame. However, in HRI
scenarios, the robot should maintain a certain relative posi-
tion and orientation, in conjunction with a precise velocity
profile w.r.t. its human partner. Hence, to ensure that the
aerial robot tracks a relative trajectory, we introduce a motion
task expressed in the human-trunk frame FHt as part of the
cost function.

Thus, we first derive the human-relative coordinates of the
robot, expressed in FHt , as

HtpB = RHt
>(pB − pHt),

HtRB = RHt
> RB , (7)

In addition, by computing the derivatives of (7), it is
possible to obtain the relative robot linear and angular
velocities, expressed in FHt , as

HtvB = RHt
>
(
vB − vHt − S(ωHt) RHt

HtpB

)
, (8a)

S(HtωB) = HtRB
>
[(
S(HtωW )RHt

>
)

RB +

+ RHt
> (S(ωB) RB

) ]
, (8b)

where vB , ωB , and vHt , ωHt are respectively the linear
and angular velocities of the robot and the human trunk, and
HtωW is given by

HtωW = RHt
> (− ωHt) . (9)

Finally, to account for the human motion (5) over the
prediction horizon, we define the controller state x as

x =
[
xr
> xh

>
]>
. (10)

B. Safety

During the whole operation and while handing over the
object, the robot has to ensure the safety of the human
coworker. Thus, in the cost function, we introduce a barrier
function that precludes the robot from crossing a safety
distance, which guarantees to avoid collisions between the



two agents. This objective term has to strongly affect the
robot behavior only in the near proximities of the chosen
distance and provide an almost null contribution anywhere
else to avoid disturbing other tasks. Therefore, we define the
safety function ys as

ys =
εm

dh,r − dg
, (11)

where dg ∈ R+ is a minimum guard distance, and dh,r is
the relative distance between the robot and the human on
the plane (xHt , yHt ). Finally, εm ∈ R+ is a scaling factor
to shape ys according to an additional margin.

C. Ergonomics

The human-robot interaction has to occur in the most
natural and comfortable way. Consequently, the robot has
first to bring the object in a position that is both reachable
and far enough to appear natural and not to scare the human.
Secondly, the human should not exert excessive physical
exertion at the joints to hold the object in the handover
location.

Therefore, in our proposed approach, the controller com-
putes the best handover location based on the trade-off
between minimizing the human effort and maximizing the
spontaneity of the interaction. In the following, we show
how to evaluate the human joint torques that the human has
to apply to hold the exchanged object in a given position.
Then, we propose an approach to make the robot request the
interaction at a comfortable and natural distance.

1) Effort: Similarly to [11], we relate the degree of
ergonomics to the torques the human needs to apply at the
joints to hold the received object at a given location. Then,
we assume that the task takes place as a quasi-static process,
given that the human slowly moves the hand in the proper
position to receive the exchanged object, hence:

q̈h = q̇h = 0. (12)

By substituting (12) into (6), we can compute the torques
the human applies on the arm to hold the received object O
as follows

τh = Gh(qh)− Jh(qh)
>

fo, (13)

where fo is the weight force induced by the object mass mo.
We then rely on inverse kinematics to relate the Cartesian

hand position to the corresponding joint variables. Conse-
quently, if we denote by HspHh the hand coordinates in the
shoulder frame FHs , the following equation holds

qh = ΦIK

(
HspHh

)
, (14)

where ΦIK

(
HspHh

)
: R3 → Rnq denotes the inverse-

kinematics function of the human arm.
The human hand and the exchanged object must be in

the same position to successfully perform the handover.
Therefore, substituting (14) into (13), and replacing HspHh
with the position of O expressed in FHs (HspO), it results

τh = Gh

(
ΦIK

(
HspO

))
− Jh

(
ΦIK

(
HspO

))>
fo. (15)

Through rototranslations similar to (7), HspO can be
related to the robot pose in FHt . Using (15), we can compute
the torques the human has to apply at the joints to hold the
object O as a function of the robot position and orientation
relative to the shoulder. Therefore, the NMPC can compute
a handover pose reducing the human joint stress.

To embed (15) in an NMPC controller, we need to provide
the solver with an expression for evaluating ΦIK. In general,
the inverse kinematics problem of a manipulator involves the
solution of nonlinear equations, and it may have multiple,
infinite, or no solution at all [16]. In the case of non-
redundant manipulators with a small number of degrees
of freedom (DoFs), it is possible to derive geometrical
relationships that allow solving the problem analytically.
Therefore, we decide to reduce the human arm to a simple
2-DoFs planar manipulator (nq = 2), for which closed-form
results are available in textbooks, selecting only elbow-down
configuration to comply with the human elbow articulation.

Moreover, the existence of solutions for the inverse kine-
matics problem is guaranteed only if the given object posi-
tion, HspO, belongs to the human arm workspace [16]. For
a 2-DoFs planar manipulator, the workspace is the space in-
between two concentric co-planar circles [16], whose outer
radius is equal to the sum of the link lengths, and the inner
radius to their difference. As the handover shall take place in
a comfortable and safe configuration, we consider only the
front half of such a region as the human workspace.

As a result, the NMPC controller cannot evaluate the
human ergonomics until the robot gets close enough. To
overcome this problem, in (15), we consider the closest po-
sition to the robot that belongs to the human arm workspace.
Accordingly, we first project the current object position onto
the arm plane. Then, if the projected point is already part of
the human arm workspace, the inverse kinematics admits a
feasible solution. Otherwise, we radially project it onto the
outer border of the workspace.

Besides, to assure having the object in the human arm
plane, the controller is tasked to minimize the normal pro-
jection of HspO to the plane (xHs , yHs ). This is achieved
by introducing the following term in the control task

yz = HspOz ∈ R, (16)

which represents the z coordinate of HspO.
Finally, to prevent the object to enter the inner circle, a

constraint is imposed on the squared 2-norm of the object
position in the human arm plane, denoted by cho:

cho ≥ (a1 − a2)2, (17)

where a1, a2 ∈ R+ are the link lengths of the human arm.
2) Handover Distance: By minimizing only the human

joint torques, the robot would prefer to hand over the object
at the arm resting configurations, since they constitute the
two global minima of (15). These locations are incompatible
with the objective of achieving a safe and natural interaction.
Therefore, a second term is optimized by the controller
which represents a primitive distance at which the handover
appears comfortable and natural, without neither scaring



nor endangering the human. Hence, we define an objective
function yho as

yho =
b

(dh,o − dref)
, (18)

where dh,o is the relative distance between the object and
the human on the plane (xHs , zHs ), dref ∈ R+ is a desirable
distance, and b ∈ R+ is a scaling factor.

Lastly, we impose dg < dref < (a1 + a2) to assure the
handover at a reachable position and the operator safety.

D. Additional Constraints

Based on previous works [13], [12], we impose additional
constraints on the OCP to ensure the task feasibility.

First, maintaining the visibility of the human coworker is
of paramount importance since not knowing her position in
the workspace would jeopardize the safety of the task.

Thus, as shown in [12], we impose two constraints on the
trunk position, expressed in FS , SpHt = [ xHt yHt zHt ]

>:∣∣xHt/zHt∣∣ ≤ tan
αh
2
,
∣∣yHt/zHt∣∣ ≤ tan

αv
2
. (19)

Moreover, to achieve robust tracking, we introduce a vis-
ibility objective as an additional term of the cost function in
the OCP. As in [12], this quantity consists in maximizing the
cosine of the angular distance between SpHt and zS , denoted
by cβ. As a result, the controller would maintain the human
trunk close to the center of the FoV of the sensor, while
dealing with the other tasks. This enables a larger reactivity
of the system w.r.t. the human motion, while avoiding the
configurations where the visibility constraints (19) might
interfere with the realization of other tasks.

Finally, to account for the physical limitations of the
motor-propeller actuators (e.g. due to inertia and fric-
tion) [13], [12], we impose bounds on γ and γ̇ as

γ
¯
≤ γ ≤ γ̄, (20a)

γ̇
¯
(γ) ≤ ur ≤ ¯̇γ(γ), (20b)

where the upper and lower bounds γ
¯
, γ̄, γ̇

¯
(γ), ¯̇γ(γ) are

obtained through an identification campaign on the actual
hardware, as detailed in [13].

E. Optimal Control Problem

In this section, we formulate the discrete-time OCP, sam-
pled in N shooting points, which the controller solves at
each sampling instant t, over the receding horizon T .

First, we define the output map y as

y =
[
ym
> ys

> ye
> yv

>
]>
, (21)

where ym, ys, ye, and yv are the motion, safety, ergonomics,
and visibility tasks, respectively. In turn, the individual ob-

yrm
yrs,y

r
e,y

r
v

ur

Human
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p

x
Flight
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Fig. 2: Block diagram of the control framework.

jectives are given by

ym =
[
HtpB

> HtqB
> HtvB

> HtωB
>
]>
∈ R13,

(22a)
ys = ys ∈ R, (22b)
yv = 1− cβ ∈ R, (22c)

ye =
[
τh
> yz yho

]>
∈ R4, (22d)

whose reference values are denoted by yr•. The motion
reference yrm is provided by an external trajectory planner,
and yrs , yre , and yrv are set to 0.

Consequently, we compute the cost function of the OCP as
the sum of the invidivual task costs. Each term is given by the
weighted square Euclidean norm of the difference between
yj and yrj , denoted by ‖•‖2Wj

, where Wj a diagonal
weighting matrix for the task j ∈ {m, s, e, v}.

As a result, we can formulate the OCP as follows

min
x0...xN

u0...uN−1

N∑
k=0

m,...,v∑
j

‖yj,k − yrj,k‖
2
Wj

+

N−1∑
k=0

‖ur‖2Wur

(23a)

s.t. x0 = x(t), (23b)
xk+1 = f (xk,uk,pk) , k∈{0,...,N−1} (23c)
yk = h (xk,uk,pk) , k∈{0,...,N} (23d)
γ
¯ k
≤ γk ≤ γ̄k, k∈{0,...,N} (23e)

γ̇
¯ k
≤ uk ≤ ¯̇γk, k∈{0,...,N−1} (23f)

(a1 − a2)2 ≤ cho,k, k∈{0,...,N} (23g)∣∣xHt/zHt∣∣k ≤ tan
αh
2
, k∈{0,...,N} (23h)∣∣yHt/zHt∣∣k ≤ tan

αv
2
, k∈{0,...,N} (23i)

where x(t) is the measurement of the current state, and f syn-
thetically denotes the system dynamics, expressed by (2), (3),
and (5), and p contains the external parameters provided to
the controller, namely the human velocities uh.

IV. VALIDATION

A. Motion Reference Generation

The motion reference trajectory yrm drives the AR in
front of the human. This trajectory is generated by a motion



Fig. 3: On the left, a snapshot of the simulated platform performing
the Approaching phase presented in Sec. IV-C. On the right, a frame
of the robot onboard camera, taken during this motion.

planner employing a spline interpolation to connect a set of
intermediary waypoints. The first waypoint of the trajectory
is the initial location of the AR, while the final one is a
position in front of the human. Moreover, the robot has to
maintain a suitable distance from the human, which shall be
not too close to result unpleasant and not too far to make
evident the intent of the robot to interact. Thus, the robot
approaches the human until reaching this distance. Then, the
robot moves toward the human trunk performing a circular
path. Once in sight of the human, it starts approaching more
closely, and later the controller delivers the object.

B. Simulation Setup

This section depicts the simulation of a human-robot han-
dover, with the AR starting from a random location behind
the human coworker. The robot is a collinear quadrotor,
which hands over a small object with a weight of 250g,
picturing a small tool. The object is attached on a stick in
front of the AR shifted by 45◦ w.r.t. the arms. A picture of
the simulated system is provided on the left of Fig. 3.

The framework is implemented in C++, using GenoM [17]
which is a middleware-independent component generator that
can be compiled for a given middleware, e.g. ROS. The ref-
erence generation is implemented in MATLAB. The NMPC
implementation is the one introduced in [12], based on [18].
The simulated hardware interface, the state estimation, and
the path planning rely on the TeleKyb3 software, available
on the OpenRobots platform1. The software framework is
connected to a Gazebo simulated system that emulates the
actual platform interface, whose inputs are the rotor veloci-
ties. Furthermore, in the simulator, we can control the planar
position, the yaw, and the motion of the arm of the simulated
human coworker by means of a joystick. Details on how to
use this software can be found in the provided git repository2.
The block diagram of the framework is drawn in Fig. 2.

The state estimation of the AR is achieved using simu-
lated motion capture (MoCap) and IMU, whose respective
frequencies are 50Hz and 500Hz. The rotor velocities are

1https://git.openrobots.org/projects/telekyb3
2https://redmine.laas.fr/projects/nmpc-handover

retrieved at 100Hz. Gaussian noise is applied to each of these
simulated measurements, with respective standard deviations
of 0.003m, 0.003rad/s and 0.02m/s2, and 0.03rad/s. The
simulated AR is equipped with a front-facing 60Hz monoc-
ular camera. The simulated human features a set of AruCo
fiducial markers [19], which are used to retrieve the position
of the human trunk in the world frame, pHt . This choice is
motivated by the practicality of such markers, and by the low
computational time and little power required for the detection
process. This allows providing pHt effectively at 60Hz to
the filtering algorithm. Recent developments in machine
learning algorithms allow embedding fast, computationally
efficient, and reliable object detection solutions on board
ARs, e.g. [20]. The use of such algorithms would relieve the
human coworker from wearing markers. However, they are
usually trained on specific datasets, and might not provide
the desired pose estimate in a handover configuration where
the AR is standing very close to the human. The integration
of such tools is promising, but is left out of the scope of this
work.

In the simulator, we neglect the weight of the carried
tool and the wrench arising from the physical interaction,
accounting for the last term in (3c). The compensation of
this effect is left for future work, as this manuscript focuses
on safety and ergonomic awareness in the control approach.

The simulation is composed of two phases. First, the
robot performs the Approaching phase where, from the initial
position, it moves in front of the human using the algorithm
of Sec. IV-A. Later, in the Reaching phase, it narrows the
distance to the human coworker to perform the Handover.
We first present the greater reactivity allowed by considering
the motion in FHt , specifically during the Approaching
phase. Then, the effects of enabling the ergonomic costs are
demonstrated during the Reaching phase, where the handover
takes place.

Videos of the reported simulation can be found in the
attached multimedia file.

C. Approaching

The (x, y) motions during the Approaching phase are
depicted in Fig. 4. The blue (1) and orange (2) curves
correspond to simulations with and without the prediction
of the human motion in the controller, i.e. respectively with
u
(1)
h 6= 0 and u

(2)
h = 0. The initial AR position is marked

as a blue square while the starting human location as a red
circle.

We first present the simulation depicted by the blue curve.
The human moves from the red circle toward the location
denoted by a red star when the AR reaches the blue circle.
Similarly, when the human starts moving to the final position
marked with a red triangle, the robot is at the blue star.
Finally, the AR reaches the final position denoted by a blue
triangle. As a result, since the trajectory is specified w.r.t.
FHt , the controller modifies the robot motion according to
the human one.

As shown, this scheme allows positioning the AR in front
of the human for the Approaching phase regardless of the

https://git.openrobots.org/projects/telekyb3
https://https://redmine.laas.fr/projects/nmpc-handover
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Fig. 4: Top view of the Approaching phase. In light blue, the initial
reference motion task generated by the motion planner. In blue and
orange, the motion of the robot in two simulations, (1) and (2),
and in red the trajectory of the human.
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Fig. 5: Estimated and ground-truth values of the human position
and yaw during the Approaching phase.

unknown human motion, without the need for online re-
planning. In addition to this, the integration of the human
state in the NMPC allows a better reactivity, since the
controller can propagate it through the horizon to predict
the future poses of the coworker.

The orange curve shows a replica of the previous simu-
lation, where the coworker moves in the same way, but the
human motion is disabled in the controller (i.e. uh = 0). In
this case, the motion of the AR reflects with less fidelity the
original planned path. Moreover, the distance between the
robot and the human is shorter, which could induce safety
hazards.

Finally, in Fig. 5, we show the quality of the onboard
estimation of the human position and yaw. The dashed lines
are the ground-truth values, while the solid ones are the
output onboard estimates. The brown vertical dotted line
corresponds to the first displacement of the human shown in
the previous figure, while the pink one to her second motion.
In general, the human position is well estimated, except for
the first part of the simulation, where the distance toward the
human is large, increasing the difficulty of detecting precisely
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Fig. 6: Visibility constraint over time during the Approaching phase,
where cβ synthetically summarizes the FoV constraints (19) in a
1D representation.

the AruCo markers. In the time during which the coworker
moves, it can be noticed that the estimation is less affected by
noise. The reason can be appreciated in Fig. 3, where a frame
of the robot onboard camera is shown. That image has been
taken while the robot navigates around the coworker to reach
the final position. At that moment, the camera is observing
two AruCo markers, which provide more measurements to
better estimate the human pose.

Lastly, in Fig. 6, we report the visibility task over the
Approaching phase. As the plot suggests, the controller can
maintain the human trunk inside the FoV of the camera
during the whole simulation, and close to the center (cβ =
1). Large deviations from the reference value are noticeable
when the human moves, and in the last portion of the plot,
where the robot has to stop in the final position.

D. Handover

Once the AR is in front of the operator, the handover phase
starts: the ergonomic objectives are enabled, and the motion
task is disabled, as presented in Sec. III-C.

Fig. 7 shows the path of the AR and the object in the
plane of the human shoulder. The color gradient clearly
shows how the object is moved toward the hand while
staying in the region that minimizes the sum of the absolute
values of the human joint torques. The absolute minimum,
corresponding to the rest configuration of the arm, is not
reached due to the trade-off between the visibility and the
desired handover distance (displayed as a brown vertical
dotted line). Indeed, moving toward the most ergonomic
location would jeopardize the detection of the human trunk
and feel unnatural for the human coworker. Instead, the
controller drives the robot to another position which prevents
forcibly pushing the object into the human hands and, at the
same time, provides a good level of ergonomics.

V. CONCLUSIONS

In this work, we propose an ergonomics-aware NMPC
designed to autonomously perform the handover of a tool
to a human coworker. The formulation considers the closed-
form equations of the human shoulder and elbow torques
to determine the best handover position which minimizes
the human physical effort required to retrieve the object.
We build upon previous works to ensure that the actuation
limitations of the system are strictly observed during the
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Fig. 7: Side view of the human arm plane. The color gradient shows
the sum of the joint torques. pO is the projection of O over the
Reaching phase, from the initial position (square) to the handover
location (triangle).

motion, while maintaining the human in the FoV of an
onboard camera, used to estimate the human-AR relative
pose. Besides, the controller motion is computed relative
to the human to increase the reactivity of the framework
with any unexpected human motion, without the need for
online re-planning. The human motion model is included in
the NMPC equations allowing the controller to predict the
future poses of the worker through the horizon. Additionally,
the relative formulation allows embedding a safety barrier
to avoid collisions with the human, which is of paramount
importance in HRI. Finally, the framework is tested in a
Gazebo simulation. The controller tracks the desired path
and brings the robot to the correct position for performing
the handover.

Despite its richness, the presented work still leaves some
open challenges which will be addressed in future work.
Firstly, the physical interaction between the two agents is
neglected, while a wrench may arise during the exchange
of the tool (e.g. by the human pulling or pushing the
object before being released by the robot). Therefore, the
controller should compute motor commands to compensate
for the human actions and, at the same time, prevent the risk
of losing stability and consequently impacting the partner.
Secondly, the model used for the human arm considers only
the torques at the shoulder and the elbow, and it neglects the
transfer of interaction to the torso. Therefore, it is possible to
enlarge this model to take into consideration also the trunk
torques and relate the ergonomics to the shifts in the body
posture. Thirdly, the use of higher DoF models makes finding
a closed-form solution to the inverse kinematics problem
unfeasible. Consequently, the use of optimization to solve
the inverse-kinematics problem could be investigated, and
the mapping of the joint torques to the object pose could be
directly embedded inside the OCP.
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