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Nonlinear Model Predictive Control for Human-Robot Handover with
Application to the Aerial Case

Gianluca Corsini1, Martin Jacquet1, Hemjyoti Das2, Amr Afifi2, Daniel Sidobre1, Antonio Franchi2,1

Abstract— In this article, we consider the problem of deliver-
ing an object to a human coworker by means of an aerial robot.
To this aim, we present an ergonomics-aware Nonlinear Model
Predictive Control (NMPC) designed to autonomously perform
the handover. The method is general enough to be applied to any
mobile robot with a minimal adaptation of the robot model. Our
formulation lets the NMPC steer the robot toward a handover
location optimizing the human coworker ergonomics metrics,
which includes the predicted joint torques of the human. The
motion task is expressed in a frame relative to the human,
whose motion model is included in the equations of the NMPC.
This allows the controller to reactively adapt to the human
movements by predicting her future poses over the horizon. The
control framework also accounts for the problem of maintaining
visibility on the human coworker, while respecting both the
actuation and state limits. A safety barrier is also embedded
in the controller to avoid any risk of collision with the human
partner. Realistic simulations are used to validate the feasibility
of the approach and the source code of the implementation is
released open-source.

I. INTRODUCTION

Aerial Robots (AR) have attracted a lot of interest in the
robotics community within the last decades. The growing
research attention is motivated by their remarkable agility
and maneuverability, the modularity for the onboard sensing
equipment, and the availability of heterogeneous designs.
Multi-Rotor Aerial Vehicles (MRAVs) have been deployed
in numerous applications, either contactless [1] or requiring
physical interaction with the environment [2].

There are multiple examples of real-world cases where
the use of an aerial robot is advantageous. A particularly
relevant one is in work environments at height, such as, e.g.,
wind turbines, large construction sites or power transmission
lines [3]. These environments usually require specialized
and trained personnel employing expensive equipment and
special vehicles. Carrying and accessing different tools in
these challenging environments would require cumbersome
postures and loss of focus from the current activity. The use
of aerial vehicles as robotic coworkers, in these cases, can
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facilitate the tasks done by the operators. In those scenarios,
an aerial robot can easily fly to the target location while
carrying the additional payload of tools, relieving the human
operator from carrying extra equipment. Therefore, there is
a clear opportunity for using aerial robots and particularly
multi-rotors to reduce the physical and cognitive load expe-
rienced by workers at height. To achieve the aforementioned
benefits, aerial robots should explicitly take into account the
human’s ergonomics and safety.

Despite the clear potential, the use of aerial robots in
scenarios involving working closely with human operators
is still limited. On the contrary, the literature on Human-
Robot Interaction (HRI) involving a ground robot and human
partners is wide and mature. Recent works have investigated
the use of manipulators to assist a human coworker in the
manipulation of heavy and bulky objects or during assembly
task [4], [5].

The problem of object handover has been studied numer-
ous times in the literature. In general, an object handover is
characterized by multiple phases [6], the approach, reach,
and transfer phases. Most works treat each phase separately,
with some notable exceptions. In [7], the authors propose a
control architecture for fluid handovers, that tackles all the
phases of the handover in a unified way. They consider the in-
teractions arising during the handover, and in particular, their
controller is capable of minimizing the unwanted wrench
components that are not used for moving and carrying the
object. The proposed control scheme does not explicitly
include safety and ergonomics, which are important in a con-
trol framework that is designed to enable the collaboration
between aerial robots and humans, in particular at height.
The idea of including the human’s comfort and ergonomics
in the robot’s control and planning software has been also
treated in the literature. One of the earlier works in this area
is [8], which develops a manipulation planner that takes into
account various human aspects, as the human’s ergonomics
and field of view, amongst others. The methods of including
human ergonomics in robot controllers evolved further, e.g.,
in [9] the authors develop a method to estimate the joint
torques of the human based on the whole body dynamic
model, and then control a ground mobile manipulator to
minimize the overloading of the human joints.

As identified is [10], an important aspect of human
robot collaboration including object handovers is the human
perception. Most of the works, that focus on control and
planning aspects rely on some sort of human instrumentation
for perception of the human subject through sensors like
motion capture systems via reflective markers, wearable

mailto:gianluca.corsini@laas.fr
mailto:martin.jacquet@laas.fr
mailto:daniel.sidobre@laas.fr
mailto:antonio.franchi@laas.fr
mailto:h.das@utwente.nl
mailto:a.n.m.g.afifi@utwente.nl
mailto:a.franchi@utwente.nl


suits, etc. Indeed, a tight coupling between control and
perception is critical for the success of such tasks, since
the loss of visibility over the coworker would jeopardize
the maneuver. The problem of perception constrained control
has been tackled previously by some of the authors of this
paper in prior work [11], in which a perception constrained
motor level nonlinear model predictive controller (NMPC)
for generic aerial vehicles is presented to keep specific
features in the camera field of view (FoV) while respecting
the system actuation limits.

Going beyond the achievements of [11], this work presents
an NMPC framework that can also handle multiple aspects
of HRI in general, with a special focus on the aerial case.
We introduce an NMPC formulation that includes human’s
ergonomics and comfort as an objective, while enforcing
perception and actuation limits, which are of paramount
importance to avoid flight instability or unpredictable be-
havior, thus ensuring the human’s safety. Our approach uses
simplified models of the collaborating human within the
NMPC in a predictive fashion, while remaining real-time.

The paper is organized as follows. In Sec. II, we describe
the mathematical models of the different components of our
system. In Sec. III the optimal control problem formulation
is presented, which is then followed by the validation of
the proposed methodology in Sec. IV. We then present our
conclusions and perspectives in Sec. V.

II. MODELING

In this section, we provide the models for the two agents
involved in the handover process [7], namely the giver (the
AR) and the receiver (the human coworker).

A. Aerial Robot Dynamics

The AR is a Generically-Tilted Multi-Rotor (GTMR)
system [12], [11]. We model a GTMR as a rigid body of
mass m and inertia J ∈ R3×3. Besides, it is actuated by
n ≥ 4 motor-propellers, arbitrarily placed and oriented with
respect to (w.r.t.) its main body.

As shown in Fig. 1, we define the world inertial frame
FW , with its origin OW and its axes xW ,yW , zW . All other
frames are denoted using the same convention throughout
this manuscript, e.g., FB is the body frame of the robot.
We denote with WpB ∈ R3 the position of OB w.r.t. FW ,
and WqB ∈ R4 the unit quaternion representing the rotation
from FB to FW . The same rotation can be expressed as the
matrix WRB ∈ SO(3), or the roll-pitch-yaw angles vector
WηB = [φ θ ψ]

>. We then indicate with WvB ∈ R3 the
linear speed of OB expressed in FW , and with BωB ∈ R3

the angular velocity of FB w.r.t. FW specified in FB . Similar
notations are used for all other frame pairs.

The robot state xr is defined as

xr =
[
pB
> qB

> vB
> BωB

>
γ>
]>
∈ R13+n. (1)

In (1), and identically hereafter, we omit the reference frame
notation for any vector expressed in FW . Similar to [12],

FW

FB

FHs

FHt

O

Fig. 1: Schematic depiction of the various frames during the
handover of the red ball O to the human coworker.

the vector γ collects the n actuator forces. Accordingly, the
actuation dynamics is given by

γ̇ = ur, (2)

where ur ∈ Rn are the control inputs of the robot, which
can be related to the torques applied by the brushless motors
on the propellers [12].

In order to account for the force and torque applied on
the GTMR body by the weight of the carried object and
the physical interaction, we integrate those in the dynamical
equation of the GTMR, following the formalism of [13].

Hence, the dynamic model is given by (2) and

ṗB = vB , (3a)

q̇B =
1

2
qB ⊗

[
0

BωB

]
, (3b)[

mp̈B
JBω̇B

]
=

[
−mgzW

−BωB × JBωB

]
+

[
RBGfγ

Gτγ

]

+

[
RO O3

S(BpO)BRO
BRO

][
OfO
OτO

]
, (3c)

where ⊗ denotes the Hamilton product of two quaternions,
and g is the intensity of the gravity acceleration, the force
and moment allocation matrices, Gf and Gτ ∈ R3×n, are
mapping the thrusts generated by the robot’s actuators to the
forces and moments applied to the body, O3 is the 0 matrix
of R3, S(·) is the skew operator associated with the cross
product, and OfO, OτO are the forces and torques applied
on the object, including its weight.

B. Sensor Model

The GTMR system features a sensor S capable of re-
trieving the 3D-pose of an observed entity. As in [11], we
model this sensor as a punctual device centered in OS ,
having principal axis zS . In addition, the pose transformation
between its frame FS and the one of the multi-rotor body FB
is constant and known. Finally, the sensor’s FoV is described
with a pyramidal shape around the principal axis, having
vertical and horizontal angles denoted with αv ∈ R+ and
αh ∈ R+, respectively.
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C. Human Coworker Model

In this section, we first define the model used to describe
the motion of the human coworker. Then, we introduce the
formulation for her arm dynamics.

1) Human Trunk: Accordingly to Fig. 1, we define a
trunk reference frame FHt at the middle point of the line
connecting the human shoulders, with xHt

being perpen-
dicular to that line and pointing in the forward walking
direction, and zHt

parallel to zW . For the sake of simplicity
it is assumed that the human maintains a standing position
when walking, therefore the human roll and pitch angles are
assumed constant and null.

The human state xh is

xh =
[
pHt

> ψHt

]>
∈ R4. (4)

Taking inspiration from [14], we adopt the following
constant-velocity model for the human state, i.e.:

ẋh =
[
vHt

> Ωψ

]>
= uh. (5)

where Ωψ is the angular speed about zHt , while uh denotes
the human inputs. Contrary to the unicycle model in [14],
the set of equations (5) allows accounting also for lateral
movements of the human, which could naturally occur during
a handover.

2) Human Arm: We model each human arm as a manip-
ulator attached to one of the edges of the line connecting
the shoulders, as depicted in Fig. 1. Therefore, for each
upper limb, we define a shoulder reference frame denoted
with FHs

centered at the manipulator’s base. The relative
pose transformation between FHs and FHt is assumed to
be known and constant. In particular, we take xHs and
yHs

to be coincident to xHt
and zHt

, respectively. Each
manipulator is composed of a serial chain of rigid links
laying on the same plane and in pairs connected by a
1-revolute joint. As a result, the arm is modeled as an nq-link
planar manipulator with only revolute joints with parallel
axes [15]. This assumption is motivated by the intuitive idea
that a human would naturally move her arm by keeping it
alongside her body during a handover task. Consequently,
the human arm’s workspace lays on the vertical yHs

-xHs

(or equivalently, zHt -xHt ) plane.
The dynamics of each upper limb is given by

Bh(qh)q̈h + Ch(qh, q̇h)q̇h + Gh(qh) = τh + Jh(qh)
>

fo,
(6)

where Bh ∈ Rm×m is the inertia matrix, Ch ∈ Rm×m
accounts for the centrifugal and Coriolis terms, and Gh ∈
Rm collects the gravitational effects. The vectors qh, q̇h,
q̈h ∈ Rm are the joint positions, velocities, and accelerations,
respectively, while τh ∈ Rm gathers the joint torques. The
matrix Jh(qh) ∈ Rm×3 is the Jacobian mapping the effect
of an external force fo ∈ R3 applied on the human’s hand to
the arm dynamics.

III. OPTIMAL CONTROL PROBLEM FORMULATION

The aim of the proposed control framework is to success-
fully achieve an object handover to a human coworker by
means of an aerial vehicle, while guaranteeing the human
safety, and accounting for her ergonomics too. To achieve the
goal, the controller has to: 1) execute a human-centered mo-
tion task that allows approaching the receiver; 2) guarantee
the worker’s safety, thus avoiding unwanted collisions while
handovering the carried tool; 3) evaluate her articular stress
to determine the most ergonomic handover location; 4) con-
stantly observe the human, to prevent losing visibility of
her ; and stabilize the robot dynamics by generating torque-
level commands, which are compatible with its actuators’
limitations. In the following, we detail the objective functions
accounting for the individual tasks, the constraints applied
on the system, and finally, in Sec. III-E, we formalize the
corresponding Optimal Control Problem (OCP).

A. Human-frame Motion

Aerial robots are usually requested to follow a list of
waypoints specified w.r.t. an inertial reference frame. How-
ever, in tasks involving human-robot interaction, the robot
should maintain a certain relative position and orientation, in
conjunction with a precise velocity profile w.r.t. its human
partner. Hence, to ensure that the aerial robot tracks a relative
trajectory, we introduce a motion task expressed in the
human-trunk frame FHt

as part of the cost function.
Thus, we first derive the human-relative coordinates of the

robot, expressed in FHt
, as

HtpB = RHt

>(pB − pHt
), HtRB = RHt

> RB , (7)

In addition, by computing the derivatives of (7), it is
possible to obtain the relative robot’s linear and angular
velocities, expressed in FHt

, as

HtvB = RHt

>
(
vB − vHt − S(ωHt) RHt

HtpB

)
,

(8a)

S(HtωB) = HtRB
>
[(
S(HtωW )RHt

>
)

RB +

+ RHt

> (S(ωB) RB

) ]
, (8b)

where vB , ωB , and vHt , ωHt are the linear and angular
velocities of the robot and the human trunk, respectively,
and HtωW is given by

HtωW = RHt

> (− ωHt

)
. (9)

Finally, to account for the human motion (5) over the
predictive horizon, we define the controller state x as

x =
[
xr
> xh

>
]>
. (10)
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B. Safety

During the whole operation and while handovering the
object, the robot has to ensure the safety of the human
coworker. Thus, in the cost function, we introduce a barrier
function that precludes the robot from crossing a safety
distance, which guarantees to avoid collisions between the
two agents. This objective term has to strongly affect the
robot behavior only when in the near proximities of the
chosen distance and provide an almost null contribution
anywhere else, to avoid disturbing other tasks. Therefore,
we define the safety function ys as

ys =
εm

dh,r − dg
, (11)

where dg is the minimum guard distance, and dh,r is the
distance on the x, y plan between the robot and zHt

. Finally,
εm ∈ R+ is a scaling factor to shape ys according to an
additional margin.

C. Ergonomics

The human-robot interaction has to occur in the most
natural way possible, as instinctively arising during human-
human interactions. In particular, the robot has to encourage
and guide the human coworker to perform the handover
in a comfortable position. Consequently, the robot has first
to bring the object in a position that is both reachable
and far enough, to appear natural and not to scare the
human, respectively. Secondly, the robotic companion has
to wait in the handover location for the human receiver to
spontaneously take the object without forcibly requesting
the interaction in a pre-defined reference position. Thirdly,
the handover location should be such that holding the item
does not require excessive effort or causes loss of postural
stability, which becomes more and more pivotal as its weight
increases [16].

Therefore, we propose to let the controller determine the
best handover location based on the trade-off between mini-
mizing the amount of effort required by the human receiver
and maximizing the spontaneity of the handover process. In
the following, we show how to relate the human joint torques
that the human has to apply to hold the exchanged object at a
given position. Then, we propose an approach to let the robot
request the interaction at a comfortable and natural distance.

1) Effort: Similarly to [9], we relate the degree of er-
gonomics to the torques that the human needs to apply
at her joints to hold the received object at a given loca-
tion. However, we consider the handover task ending right
before any physical engagement arises. Thus, we neglect
any wrench exchange between the two agents while the
object is passed, which constitutes an objective for future
investigations. Furthermore, we assume that the task takes
place as a quasi-static process such that the human slowly
varies her joint variables to bring her hand in the proper
position to receive the exchanged object, hence:

q̈h = q̇h = 0. (12)

By substituting (12) into (6), we can compute the torques
the human applies on her arm to hold the received object O
in a given position as follows

τh = Gh(qh)− Jh(qh)
>

fo, (13)

where fo is the weight force induced by the object mass mo.
Since we model the human arm as a manipulator, we rely

on inverse kinematics to relate the Cartesian hand position to
the corresponding joint variables. Consequently, if we denote
with HspHh

the hand coordinates in the shoulder-frame FHs ,
the following equation holds

qh = ΦIK

(
HspHh

)
, (14)

where ΦIK

(
HspHh

)
: R3 → Rm denotes the inverse-

kinematics function of the human arm. Since there may
exist several solutions, we will later discuss the choice of
a meaningful one.

The human hand and the exchanged object must be in
the same position to successfully perform the handover.
Therefore, substituting (14) into (13), and replacing HspHh

with the position of O expressed in FHs
(HspO), it results

τh = Gh

(
ΦIK

(
HspO

))
− Jh

(
ΦIK

(
HspO

))>
fo. (15)

Using rototranslations similar to (7), HspO can be related
to the pose of the robot pose in FHt

. Using Eq. (15), we
can compute the torques the human has to apply at her joints
to hold the object O as a function of the robot position and
orientation relative to her shoulder. Therefore, the NMPC can
compute a handover pose reducing the human joint stress.

To embed (15) in an NMPC controller, we need to provide
the solver with an expression for evaluating ΦIK. In general,
the inverse kinematics problem of a manipulator involves the
solution of nonlinear equations, and it may have multiple, in-
finite, or no solution at all [15]. In the case of non-redundant
manipulators with a small number of DoFs, it is possible
to derive geometrical relationships that allow solving the
problem analytically. Therefore, we decide to reduce the
human arm to a simple 2-DoF planar manipulator (nq = 2),
for which closed-form results are available in textbooks,
selecting only elbow-down configuration to comply with the
human elbow articulation.

Finally, the existence of solutions for the inverse kinemat-
ics problem is guaranteed only if the given object position,
HspO, belongs to the human arm’s workspace [15]. As
a result, the NMPC controller cannot evaluate the human
ergonomics until the robot gets close enough. To overcome
this problem, in (15) it is considered the closest position to
the robot that belongs to the human-arm workspace. This
workspace is, for a 2-DoF serial manipulator, the space in-
between two concentric co-planar circles [15], whose outer
radius is given by the sum of the lengths of the links, and
inner radius by their difference. Moreover, for the handover
to take place in a comfortable and safe configuration, we con-
sider only the front half of such region as human workspace.
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Accordingly, we first project the current object position
onto the manipulator’s plane. Then, if the projected planar
point is already part of the human arm’s workspace, the
inverse kinematics admits a feasible solution. Otherwise,
we radially project the point onto the outer border of the
workspace.

However, using the approach presented so far may not
lead to have the object in the manipulator’s plane, thus the
controller is tasked to minimize also the normal projection
of HspO to the xHs

-yHs
. This is achieved by introducing

the following term in the controller

yz = HspOz ∈ R, (16)

which represents the z coordinate of HspO.
Finally, to prevent the object to enter the inner circle, a

constraint is imposed on the squared 2-norm of the object
position in the manipulator’s plane, denoted cho:

cho ≥ (a1 − a2)2, (17)

where a1 ∈ R+ and a2 ∈ R+ are the link lengths of the
human arm.

2) Handover Distance: By minimizing only the human
joint torques, the robot would prefer to handover the object at
the arm’s resting configurations, since they constitute the two
global minima of function (15). Clearly, these locations are
incompatible with the objective of guaranteeing the worker’s
safety and achieving a natural interaction. Therefore, we
introduce a second term to be optimize by the controller,
which represents a primitive distance at which the handover
could appear comfortable and natural, without neither scaring
the human nor jeopardize her safety. Hence, we define an
objective function yho as

yho =
b

(dh,o − dref)
, (18)

where dh,o is the planar distance between the object and the
yHs

, dref is a desirable distance, and b ∈ R+ is a scaling
factor.

In order to let the handover occur at a reachable position
and not compromise the operator’s safety, we impose dg <
dref < r, r being the length of the human arm.

D. Additional Constraints

Based on previous works [12], [11], we impose additionnal
constraints on the OCP to ensure the feasibility of the task.

First, maintaining the visibility of the human coworker is
of paramount importance, since not knowing her position in
the workspace would jeopardize safety of the task.

Thus, as shown in [11], we impose two constraints on the
trunk position SpHt

= [ xHt yHt zHt ]
>:∣∣xHt

/zHt

∣∣ ≤ tan
αh
2
,
∣∣yHt

/zHt

∣∣ ≤ tan
αv
2
. (19)

Moreover, to achieve robust tracking, we introduce a
visibility objective as an additional term of the cost func-
tion of the OCP. As in [11], this quantity consists of the
maximization of the cosine of the angular distance between

SpHt
and zS , denoted cβ. As a result, the controller would

maintain the human trunk close to the center of the sensor’s
FoV, while dealing with the other tasks. This allows a larger
reactivity of the system w.r.t. the human motion, while
avoiding as much as possible the configurations where the
visibility constraints (19) might disturb the realization of
other tasks.

Finally, to account for the physical limitations of the
motor-propeller pairs (e.g., due to inertia and friction) [12],
[11], we impose bounds on γ and γ̇ as

γ
¯
≤ γ ≤ γ̄, (20a)

γ̇
¯
(γ) ≤ ur ≤ ¯̇γ(γ), (20b)

where the upper and lower bounds γ
¯
, γ̄, γ̇

¯
(γ), ¯̇γ(γ) can

be obtained through an identification campaign on the actual
hardware, as detailed in [12].

E. Optimal Control Problem

In this section, we formulate the discrete-time Optimal
Control Problem (OCP), sampled in N shooting points,
which the controller solves at each sampling instant t, over
the receding horizon T .

First, we define the output map y as

y =
[
ym
> ys

> ye
> yv

>
]>
, (21)

where ym, ys, ye, and yv are the motion, safety, ergonomics,
and visibility tasks, respectively. In turn, the individual ob-
jectives are given by

ym =
[
HtpB

> HtqB
> HtvB

> HtωB
>
]>
∈ R13,

(22a)
ys = ys ∈ R, (22b)
yv = 1− cβ ∈ R, (22c)

ye =
[
τh
> yz yho

]>
∈ R4, (22d)

whose reference values are denoted with yr•. The motion
reference yrm is provided by an external trajectory planner,
and yrs , yre , and yrv are set to 0.

Consequently, we compute the cost function of the OCP as
the summation of the invidivual task costs. Each term is given
by the weighted square Euclidean norm of the difference
between yj and yrj , denoted with ‖•‖2Wj

, where Wj a
diagonal weighting matrix for the task j.

As a result, we can formulate the OCP as follows

min
x0...xN

u0...uN−1

N∑
k=0

m,...,v∑
j

‖yj,k − yrj,k‖
2
Wj

+

N−1∑
k=0

‖ur‖2Wur

(23a)
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Fig. 2: Block diagram of the framework.

s.t. x0 = x(t), (23b)
xk+1 = f (xk,uk,pk) , k∈{0,...,N−1} (23c)
yk = h (xk,uk,pk) , k∈{0,...,N} (23d)
γ
¯ k
≤ γk ≤ γ̄k, k∈{0,...,N} (23e)

γ̇
¯ k
≤ uk ≤ ¯̇γk, k∈{0,...,N−1} (23f)

cho,k ≥ (a1 − a2)2 k∈{0,...,N} (23g)∣∣xHt
/zHt

∣∣
k
≤ tan

αh
2
, k∈{0,...,N} (23h)∣∣yHt

/zHt

∣∣
k
≤ tan

αv
2
, k∈{0,...,N} (23i)

where x(t) is the measurement of the current state, and f syn-
thetically denotes the system dynamics, expressed by (2), (3),
and (5), and p contains the external parameters provided to
the controller at each control cycle t, namely the human
velocities uh.

IV. VALIDATION

A. Motion Reference Generation

The motion reference trajectory yrm, needs to be defined in
order to drive the AR in front of the human. Such trajectory
is generated by a standard motion planner employing a spline
interpolation to connect a set of intermediary waypoints.
The initial point of this trajectory is the starting position
of the AR, while the final destination is to arrive in front of
the human. Moreover, the robot has to maintain a suitable
distance from the human, which is not too close to scare
her and also not too far in order to make clear its intent
of approaching. This distance defines the radius of the
navigation circle. Once this distance is reached, the robot
will move towards the human’s trunk, performing a circular
path. Once in sight from the human, it will start approaching
more closely, until reaching a desired distance in front of the
human. At this point the controller switches to the reaching
phase.

B. Simulation Setup

This section depicts the simulation of a human-robot
handover, with the AR starting from a random location
behind the human coworker. It is achieved using a collinear
quadrotor, which performs the handover of a small object,
whose weight is set to 250g, picturing a small tool. The
object is attached on a stick in front of the UAV, shifted by
45◦ w.r.t. the arms, both to have the object further from the
propellers, and to allow easier compensation of the torque
induced by the object on the quadrotor body. The simulated

Fig. 3: On the left, a snapshot of the simulated platform performing
the approaching phase presented in Sec. IV-C. On the right, a frame
of the robot’s onboard camera, taken during this motion.

human coworker is controlled by a joystick, both for her
planar position and yaw, and for the motion of the arm. A
picture of the simulated system in the handover task is shown
on the left of Fig. 3.

The framework is implemented in C++, using GenoM [17]
which is a middleware-independent component generator,
that can be compiled for a given middleware, e.g., ROS. The
reference generation is implemented in Matlab. The NMPC
implementation is the one introduced in [11], based on [18].
It uses a 4th order explicit Runge-Kutta integrator and
implements a RealTime Iteration solving scheme, allowing
high frequency control. The block diagram of the framework
is drawn in 2. The simulated hardware interface as well as
the state estimation and path planning are done using the
TeleKyb3 software, available on the OpenRobots platform1.

The software framework is connected to a Gazebo sim-
ulated system that emulates the actual platform interface,
whose inputs are the rotor velocities. Details on how to use
this software can be found in the provided git repository2.

The state estimation of the AR is achieved using simu-
lated motion capture (MoCap) and IMU, whose respective
frequencies are 50Hz and 500Hz. The rotor positions are
retrieved at 100Hz. A Gaussian noise is applied on each
of these simulated measurements, with respective standard
deviations of 0.003m, 0.02rad/s and 0.1m/s2, and 0.03rad.

The simulated AR are equipped with a front-facing
monocular camera, having a sampling frequency of 60Hz.
The simulated human is equipped with a set of AruCo
fiducial markers [19]. These markers are used to retrieve the
position of the human trunk in world frame, pHt

, during
the reaching phase. This choice is motivated by the practi-
cality of such markers, and on the low computational time
and power required for the detection process. This allows
providing pHt

effectively at 60Hz to the filtering algorithm.
Recent developments of machine learning algorithms allow
embedding fast, computationally efficient, and reliable object
detection solutions on board ARs, e.g. [20]. The use of
such algorithm would relieve the human coworker from

1https://git.openrobots.org/projects/telekyb3
2https://redmine.laas.fr/projects/nmpc-handover
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Fig. 4: Top view of the Approaching phase. In light-blue, the initial
reference motion task generated by the motion planner. In blue and
orange, the motion of the robot in two simulations, (1) and (2),
and in red the trajectory of the human.

her markers. However, such algorithm are usually trained
on specific datasets, and might not provide the desired
pose estimate in a handover configuration where the AR is
standing very close to the human. The integration of such
tool is promising, but is left out of the scope of this work.

We also neglect the weight of the carried tool, as well as
the physical contact with the human. Accounting for those
require the use of, e.g., a wrench-observer to estimate the last
term in (3c). These aspects are left for future work, as this
manuscript focuses on the safety and ergonomics-awareness
in the approach and reaching phases.

This simulation is composed of two phases. First, the
robot performs an Approaching phase where, from the initial
position, it moves in front of the human, using the algorithm
of Sec. IV-A. Later, in the Reaching phase, it narrows the
distance to the human coworker to perform the Handover.
We first present the greater reactivity allowed by considering
the motion in FHt

, in particular during the approaching
phase. Then, the effects of enabling the ergonomic costs are
demonstrated during the reaching phase, which lead the AR
to actually perform the handover.

Videos of the reported simulation can be found in the
attached multimedia file.

C. Approaching

The (x, y) motions during the approaching phase are
depicted in Fig. 4. The blue and orange curves correspond
respectively to simulations with and without the prediction
of the human motion in the controller (i.e., uh = 0). The
initial AR position is marked as the blue square, while the
initial position of the human as the red circle.
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Fig. 5: Estimated and ground-truth values of the human position
and yaw.

We first present the simulation depicted by the blue curve.
The human moves from the red circle when the AR is
at the blue circle, toward the location denoted with a red
star. Similarly, when the human moves to the final position
marked with a red triangle, the robot is at the blue star.
Finally, the robot reaches the final position denoted with a
blue triangle.

As a result, since the trajectory is specified w.r.t. FHt
, the

controller modifies the motion of the robot accordingly.
As shown, this scheme allows positioning the AR in front

of the human for the approaching phase regardless of the
unknown human motion, without the need of an online re-
planning. In addition to this, the integration of the human
state in the NMPC, allows a better reactivity, since the
controller can propagate it through the horizon to predict
her future poses.

The orange curve shows a replica of the previous simula-
tion with the same human motion. In this case, the motion of
the AR reflects with less fidelity the original planned path.
Moreover, the distance between the robot and the human is
shorter, which could induce safety hazards.

Finally, in Fig. 5, we show the quality of the onboard
estimation of the human position and yaw. The dashed lines
are the ground-truth values, while the solid ones the output
of the onboard estimates. The orange line corresponds to
the first displacement of the human shown in the previous
figure, while the purple one to her second motion. In general,
the human position is well estimated, except for the fist
part of the simulation, where the distance toward the human
is large, increasing the difficulty of detecting precisely the
AruCo markers. During the phase in which the coworker
moves, it can be noticed that the estimation is instead less
affected by noise. The reason can be appreciated in Fig. 3,
where a frame of the robot’s onboard camera is shown. That
image has been taken while the robot is navigating around
the coworker to reach the final position. In that moment,
the camera is observing two AruCo markers, which provide
more measurements to better estimate the human pose.

D. Handover

When the AR is in position, i.e., in front of the operator,
the handover phase is initiated. The ergonomic objectives are
enabled and the motion task is disabled, as presented in III-C.
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Fig. 6: Side view of the human arm’s plane. The color gradient
shows the sum of joint torques. pO is the projection of O over the
reaching phase, from the square to the triangle.

Figure 6 shows the path of the AR and the object in the plane
of the human shoulder. The color gradient clearly shows how
the object is moved toward the hand, while staying in the
region that minimizes the sum of the absolute values of the
human joint torques. The absolute minimum, corresponding
to the rest configuration of the arm, is not reached due to the
trade-off with the visibility and the desired handover tasks.
Indeed, moving towards that location would jeopardize the
detection of the human trunk, and result unnatural for the
human coworker. Instead, the controller drive the robot to
another location, where it will wait for the human to grab
the delivered object. In this way, the control method will
prevent the robot from forcibly pushing the object into her
hands and, at the same time, it will guarantee a good level
of ergonomics.

Lastly, in Fig. 7, we report the visibility task over the
approaching phase. As the plot suggests, the controller can
maintain the human trunk inside the camera’s FoV during the
whole simulation, and close to the center (cβ = 1). Large
deviations from the reference value are noticeable when the
human moves, and in the last portion of the plot, where the
robot has to stop in the final position. Similarly, the actuation
constraints are respected during the whole handover (not
displayed here for space limitation).

V. CONCLUSIONS

In this work, we propose an ergonomics-aware NMPC
designed to autonomously perform the handover of an object
with a human coworker. The formulation considers the
closed-form equations of the shoulder and elbow torques
of the human to determine handover position, in order to
minimize the effort stress imposed during the operation.
We build upon previous works to ensure that the actuation
limitations of the system are strictly observed during the
motion, while maintaining the human in the FoV of an
onboard camera, used to estimate the human-AR relative
pose. Besides, the controller motion is computed relative
to the human, in order to increase the reactivity of the
framework with any unexpected human motion, without the
need of a constant online replanning. The human motion
model is included in the NMPC equations, which allows the

40 50 60 70 80 90
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Fig. 7: Visibility constraint over time during the experiment, where
cβ synthetically summarizes the FoV constraints (19) in a 1D
representation.

controller to predict her future poses through the horizon.
Additionally, the relative formulation allows embedding a
safety barrier to avoid collisions with the human, which is of
paramount importance during any human-robot interaction.
Finally, the framework is tested in a Gazebo simulation. The
controller tracks the desired path and bring the robot at the
correct position for performing the handover.

Despite its richness, the presented work still leaves some
open challenges. Firstly, the physical interaction between the
two agents is neglected, while a wrench will arise during
the exchange of the object, by pulling or pushing the object
before being released. Therefore, the controller should com-
pute motor commands to compensate for the human actions
and, at the same time, prevent the risk of losing stability
and consequently impacting the partner. Secondly, the model
used for the human arm considers only the dynamics of
the shoulder and the elbow, and it neglects the transfer of
interaction to the torso. Therefore, it is possible to enlarge
this model to address both the wrist and the shoulder joints,
and take into consideration the trunk posture. Accordingly,
this would imply relating the ergonomics not only to the
torques of the arm, but also to the wrench transmitted to the
trunk, causing a shift in the body configuration of the human.
Thirdly, the use of higher DoF models makes unfeasible
finding a closed-form solution to the inverse kinematics
problem. Consequently, the use of optimization to solve the
inverse-kinematics problem could be investigated, e.g., the
mapping of the joint torques to the object pose could be
directly embedded inside the OCP.
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