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Abstract 

 

During our work on exploration of molecules with some piperidine-triazole scaffolds, we realized that our 

compounds display chemical similarity with some σ, as well as dopaminergic receptor ligands. Here we 

show that this series of molecules has indeed strong affinity both for σ1 and dopamine D4 receptors. 

Moreover, they appear selective towards σ2, dopamine paralogues D1, D2, D3 and D5 receptors and hERG 

channel. Extensive molecular dynamics with our lead compound AVRM-13 were carried out on σ1, 

supporting agonist activity of the ligand. Unexpectedly, several observations suggested the existence of a 

cation binding domain, a probable regulatory site for calcium. 

 

 

Introduction 

 

The odd protein σ1, so-called “non-opioid σ receptor” is a poorly known protein involved in many cellular 

functions. Among them, it seems to act as a protein function modulator, amplifying or reducing the 

signaling initiated by other proteins.1,2,3 It was also shown to constitute a chaperone protein, protecting 

cells from the aggregation of misfolded proteins in the endoplasmic reticulum, such as low-density 

lipoprotein, insulin or brain-derived neurotrophic factor.4 

Since its discovery in the mid-1970 as a SKF-10.047 binding protein,5,6 σ1 was shown to be a membrane 

protein located mainly in the endoplasmic reticulum,7 but also in nuclear and mitochondria associated 

membranes, where it regulates Ca2+ fluxes.8 Moreover, σ1 interacts with many proteins such as ion 

channels and GPCR.2,3 It was cloned in 1996,9 and its 3D structure was solved recently through X-ray 

determination.10 According to the X-ray structure, σ1 is a homotrimeric protein whom each protomer 

consists of a single TM helix and a cytosolic globular domain encompassing a ligand binding site. The 

endogenous ligand is unknown, but several molecules have been suggested to play this role, such as 

dimethyltryptamine, D-erythro-sphingosine, choline and neurosteroids (e.g. progesterone). However, the 

above molecules have too low affinity to be conclusively considered as natural ligands. The precise 

consequence of ligand binding to σ1 are not definitely known, but it is considered that ligand causing the 

dissociation of high order oligomeric states of the receptor, as well as unbinding of σ1 protein partners, 

such as ANK2, ITPR3, BIP, ion channels or receptors11 are agonists. 
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Apart from the initial opioid ligands, several CNS-targeting molecules in clinical use were shown to bind 

σ1, with strong to moderate affinity, such a pentazocine, haloperidol, pridopidine, blarcamesine, 

dextromethorphan or antidepressants (e.g. imipramine, fluoxetine). It is currently uncertain if this 

interaction participates in the mode of action of these drugs. Many biological data and observations 

suggested that σ1 could be a promising target in neurodegenerative diseases,12 such as Huntington’s, 

Alzheimer’s or Parkinson’s diseases,11 and several selective σ1 ligands have recently entered clinical trials, 

such as pridopidine or blarcamesine. 

 

On the other hand, many CNS illnesses, such as neuropsychiatric diseases have been associated with a 

deregulation of dopamine-releasing neurons. Hence decades ago, there was a great enthusiasm around 

dopamine D4 receptors when it was discovered that the antipsychotic drug clozapine was a D4 selective 

ligand, while in the meantime D4 receptor expression was higher in schizophrenic patients than in healthy 

people. Unfortunately, disappointing clinical trials with a drug candidate from Merck have dampened the 

enthusiasm. In a new turnaround however, recent advances have renewed the interest of D4 as a 

promising target,13 with the identification of links between D4 and addiction. Genetic association studies 

in humans, D4 KO mice as well as pharmacological studies, converged on a crucial implication of the 

receptor in addictive behavior.14 For example, the D4 selective antagonist L745870 reduced ethanol intake 

and stress-induced reinstatement in vivo.15 Several links have also been found between D4 and 

neurodegenerative pathologies. For example, D4 gene methylation is associated with an increased risk of 

Alzheimer’s disease in human.16 In rats, in vivo models showed that D4 ligands altered the non-motion 

symptoms of Parkinson’s diseases.17,18 

 

 

During the course of our recent work around piperidine-triazole hybrids,19,20 we realized that our AVRM 

derivatives show significant similarity with a class of dopaminergic, as well as σ1 receptor ligands (Fig. 1). 

This appeared to us as a great pharmacological opportunity, because it is nowadays commonly estimated 

that polypharmacology, or multi-target directed ligands (MTDL) should be a more fruitful approach than 

classical one-target / one-ligand paradigm.21 This seems especially true for complex diseases such as CNS 

pathologies, as supported by the profile of recent FDA-approved drugs.22 
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Fig. 1 AVRM series and representative examples of ligands for Dopamine D4 or σ1 receptors. Biological 

data of one example are given, as well as the Tanimoto coefficient (Tc) as compared to AVRM13 (ECFC_6 

fingerprint) 

 

 

We report in the present work the complete characterization of σ and dopaminergic receptors profile of 

our lead AVRM-13 and parent molecules, with exploration of their interactions with the σ1 receptor by 

use of extensive molecular dynamic studies starting from the crystal structure of this receptor. 

 

Results and discussion 
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Our lead compound AVRM-13 was first tested on a panel of human dopamine and sigma receptors (Fig. 

2). It turned out to be very much more potent towards D4 than the four other dopamine receptors. On 

the other hand, as concerns σ, it appeared to be a stronger ligand for σ1 than σ2. We next confirmed these 

results by determination of the affinity: the Ki of AVRM-13 for receptor D2S is 6.3 µM, for D3 > 10 µM, and 

for D4 = 260 nM. Further, AVRM-13 showed stronger binding to σ1 receptor (Ki = 1.4 nM). 

 

  

Fig. 2 screening of AVRM-13 on a panel of dopamine and σ receptors. The compound was tested at 3 µM 

against reference ligand for each receptor.22 

 

 

Then we selected several close analogues of AVRM-13 to be tested on the most promising targets, namely 

D4 and σ1 receptors. The results are given in Fig. 3 and some of them are even more potent that our lead, 

with estimated Ki calculated in Table 1.23 Particularly, the para-bromo substituent of one benzyle is very 

favorable for D4R. For the other benzyle, polar substituent is disadvantaged. This structure-activity 

relationship is in complete agreement with docking experiments. AVRM-13 fitted well into the D4R 

orthosteric binding site, and docking suggested two binding modes, with head-to-tail orientation (Fig. 4A). 

In the first, the benzylpiperidine occupied the extracellular end of the binding site. In the second, it is 

engaged within the TM helices. The para-bromo substituent of AVRM-01 strongly favored the first, with 

the para-bromo benzyl deeply buried into the intra-TM cavity. The cationic piperidine formed a salt bridge 

with D115, and the proximal benzyl is in a subcavity located between TM2 and TM3. The triazole formed 

perpendicular π-stacking with H414, and the distal benzyl with F410 and / or F411 (Fig. 4B). 
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Fig. 3 Screening of AVRM-13 analogues on dopamine D4 receptors (left, tested at 0.7 µM) and σ1 

receptor (right, tested at 5 nM). 

 

Table 1.  

Estimated Ki for affinity of AVRM molecules against the dopamine D4 and σ1 receptors based on the 

above one-dose testing.23  
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Fig. 4A The docking of AVRM-13 suggested two possible binding orientation in the D4R. 4B Details of the 

AVRM-01 binding mode, with important amino-acids labelled. 

 

 

Next pharmacokinetic properties of the compounds were predicted in silico using QikProp (Schrödinger 

LL, NY, 2020). Particularly, we calculated their permeability with Caco-2 (a model of the gut-blood barrier) 

and MDCK cells (considered to be a good mimic for the blood-brain barrier). Their penetration are in line 

with drugs of high bioavailability (Table 2),24,25 particularly for AVRM-13, -01 and -04 (P> 500 nm/s).26 The 

cationic and aromatic nature of the series make these molecules possible hERG inhibitors. However, 

experimental determination of AVRM-13 activity revealed a very weak inhibitor (Ki = 4.6 µM). Taken 

together, these results suggest that our compounds might have very favorable properties for further in 

vivo exploration. 
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Table 2  

Predicted parameters and pharmacokinetic properties of the compounds. PCaco-2: apparent Caco-2 cell 

permeability. PMDCK: apparent MDCK cell permeability. logBB: brain/blood partition coefficient. 

 

 

 

Although σ1 is a very singular protein with unknown natural ligand yet, several of its xenobiotic ligands 

have been described as agonists or antagonists based on the different biological consequences of their 

binding. At the molecular level, agonists are thought to trigger, or at least facilitate the dissociation of the 

receptor oligomers. On the contrary, antagonists favor high-molecular-weight species of the 

receptor.27,28,29 Comparison of the crystal structure of σ1 bound to agonists or antagonists revealed 

structural differences: (i) a displacement of A185, whom methyl group interacts with phenyl of the agonist, 

(ii) causing an 1.8 Å increase in the distance between helix α4 and helix α5, (iii) and finally a loss of the 

inter-chain hydrogen bond between A183 and Q194.30 These modifications in agonist-bound receptor can 

be seen as early events of the protomer dissociation. 

Unfortunately, the experiences needed to show oligomeric shifts in proteins are very tricky and time-

consuming. So in order to characterize AVRM-13 activity, we used simulations and undertook molecular 

dynamics experiments. The compound was first docked in the crystal structure of trimeric σ1 (PDB: 

5HK1).10 The complex was inserted in a solvated bilayer membrane, assuming that the peptide 

R8WAWAALLLAVAAVLTQVVWLWL30 is a transmembrane helix and that the two segments helix α4 (R175-

F191) and helix α5 (F196-T216) float just above the membrane (Fig. 5).  

 

R1 R2 MW clogP Ro5 PCaco-2 PMDCK oral absorption logBB

%

AVRM-13 H H 332,4 4,4 0 1014 556 100 0,3

AVRM-01 H Br 411,3 5 0 1014 1473 100 0,5

AVRM-03 NO2 Br 456,3 4,1 0 117 143 88 -0,7

AVRM-04 F Br 429,3 5,2 1 1015 2659 100 0,6

AVRM-05 NH2 Br 426,4 4,1 0 244 315 94 -0,3

(nm/s)
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Fig.5 σ1 complex used for molecular dynamics experiments. AVRM-13 (white and blue spheres) was 

docked into the three protomers of σ1 receptor (colored ribbons) inserted in a lipid bilayer (water and 

ions are hidden). In the insert, details of docked AVRM-13. 

 

After equilibration, the system was free to evolve during 2 µs. It turned out to be remarkably stable, with 

the three ligands strongly bound to the binding sites. However, we noticed a general raising of the ligands 

within their pocket. This seems to be due to the formation of a sulfur/π interaction,31,32,33,34 between M93 

and the ligand triazole (Suppl. Fig. 1). The interaction which was absent in the initial conformation of the 

complex, appeared quickly, within the first 5 ns, and it is maintained till the end of the simulation. We 

observed that A185 moved away quickly from the ligand, and that distance between helix α4 and helix α5 

increased gradually (Fig. 6). 
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Fig. 6 Conformational rearrangements of the σ1 receptor after AVRM-13 binding, as seen in one protomer. 

Distance between A185 and the triazole-bound benzyle of AVRM-13 (left). Distance between helix α4 and 

helix α5 (T189 / F196 distance, right). 

 

These modifications propagated to the cytosolic end of the binding site and caused a reorganization of the 

packing of this aromatic-rich region, as well as a slight unfolding of helix α4 V177IPSTLAFALADTVF191 (Fig. 

7, Suppl. Fig. 2).  

 

Fig. 7 Superimposition of the σ1 receptor before and after 2 µs molecular dynamics. (A, left) Details of 

the ligand binding pocket: AVRM-13 is figured with thick bonds. (B, right) The two helices α4 and α5 

forming the floor of σ1 binding pocket seen from the membrane bilayer, in the trimeric receptor. Note 

the partial unfolding of the small α-helix. The initial frame is in purple ribbon / green carbon atoms, and 

final state in red ribbon/ grey carbon atoms.  

 

 

On the whole, all these movements resulted in an expansion of the binding site, with a nearly 2-fold 

increase between the initial and final state of our simulation (Fig. 8A, Suppl. Table 1). Inflation of the three 

ligand binding sites made the protomers moving away from each other, and loss of the initial hydrogen 

bond between A183 and Q194 (Fig. 8B). Separation of the three protomers is relatively small, but it might 

constitute the preliminary step of a dissociation event that takes a longer time-scale than our 2 µs 

simulation. Since dissociation of σ1 oligomers is a distinctive feature of agonists, the molecular dynamics 

experiment suggested that AVRM-13 acts as a σ1 agonist. However, further study will be needed to 
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increase the duration of the experiment and to compare the behaviour of σ1 receptor in presence of 

reference agonists and antagonists. 

 

 

Fig. 8 (A, left) Volume evolution of the interface between the three protomers. A logarithmic function is 

the best fit to the dots (thin line, r2 = 0.6). (B, right) Distance between A183 and Q194 of two adjacent 

protomers during molecular dynamics. 

 

 

Fortuitously, we noticed that the Na+ ions used to equilibrate the electric charges of the system were 

sometimes trapped into a small cavity located at the junction between the TM helix and the two helices 

α4 and α5 forming the floor of the binding site (Fig. 9). This pocket was empty at the beginning of the 

simulation. For one protomer, a sodium ion bound at 120 ns and remained here for 53 % of the simulation; 

the site of other protomers were less frequently occupied. It was bound essentially through a salt bridge 

with E213, and to a lesser extent to E202. Remarkably, the binding and unbinding events seemed 

correlated with stabilization / destabilization of the protomer structure (Fig. 10). Since the σ1 receptor has 

been described as a calcium fluxes regulator,8 this cation pocket could constitute a Ca2+ sensor domain, 

notably because it is present 3 times in the trimeric σ1 structure. Hence the response of the receptor, via 

modification of its conformation, could be different if only one, two or three calcium sites are occupied, 

proportionally to the Ca2+ concentration. Moreover, only the loop A98SLSE102 separates the cation and 

ligand binding sites, so it is easy to understand the convergent effect of ligand binding and calcium 

depletion.4 In a future work, it should be very interesting to investigate experimentally if the cavity we 

identified constitutes actually an allosteric site for Ca2+ ions and to understand its functional effect on the 

receptor.  
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Fig. 9 Identification of a cation binding site in the trimeric σ1 structure (left) during molecular dynamics. 

The Na+ are shown as purple spheres and AVRM-13 ligands as colored surface. On the right, details of the 

ion binding pocket. 
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Fig. 10 Na+ binding and unbinding to E213 (filled bars: ion bound, empty bars: unbound) superposed to 

the radius of gyration (calculated for α-carbons of the protomer), as an outward sign of protein 

flexibility. 

 

Conclusion 

 

During the course of our work on inhibitors of Bcl-xL protein-protein interactions, we noticed that our lead 

inhibitor AVRM-13 was structurally related to some ligands of dopamine and σ receptors. Here we showed 

that molecules in this series have indeed a strong affinity for both D4 and σ1 receptors. They are in the 

same activity range than several previously reported D4 ligands, also found to have σ1 affinity.35 

There is currently a great hope in medicinal chemistry around multi-target-directed-ligands (MTDL), 

particularly for CNS disorders. Recently for example, a macromolecular complex involving dopamine D1, 

ghrelin 1A and σ1 receptors has been evidenced and suggested to mediate the anorexic effect of cocaine.36 

MTDL implicating other dopamine receptors has been recently substantiated by cariprazine, a 5-

HT2B/D2/D3 receptor ligand,37 which has received a marketing authorization in the US for schizophrenia 

and bipolar disorders. The MTDL strategy involving σ1 has also recently associated histamine H3,38 or µ 

opioid receptor.39 Further work will be needed to probe the full therapeutic potential of a D4 and σ1 dual 

ligand, but it might be very promising, as judged by the prominent role of both receptors in CNS functions. 

 

Chemistry 

 

The synthesis together with the spectral and analytical properties of the molecules used in this paper have 

been fully reported in the reference 19. 

 

Molecular modeling Material & Method  

Molecular docking was performed with Glide, using the standard precision mode (enhanced 

sampling for ligand conformers, enhanced planarity for conjugated π-group, post-docking 

minimization and strain correction term for final scoring). The OPLS3e force field was used. The 

crystal structure PDB: 5WIUwas used for D4R,40 and PDB: 5HK1 for σ1R.10 
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For molecular dynamics experiment, AVRM-13 was first docked onto each of the three 

protomers. Then the complex was inserted in a solvent box constituted of a solvated POPC bilayer 

membrane of about 120 x 120 x 146 Å. (4 Na+ and nearly 49500 water molecules for a total of 

216311 atoms). Using periodic boundary conditions, molecular dynamics started after (i) energy 

minimization for 0.3 ns with restraints for protein and ligand (only ions and water were allowed to 

move, (ii) energy minimization for 0.3 ns with restraints on protein backbone (iii) 0.1 ns 

equilibration in NPT conditions (300 K, 1 bar), using the RESPA integrator (2 fs / 6 fs time steps for 

near or far atoms), and a cut-off radius of 9 Å for Coulombic interactions, keeping protein backbone 

restraints (iv) production for 2 µs in the same conditions, without any restraint. Statistical 

parameters were calculated with Desmond, as implemented in Maestro v. 12.4 (Schrödinger LLC, 

San Diego, CA).  

 

Biochemistry Material & Method 

 

Biological testings were performed by Eurofins (Eurofins-Cerep, Le Bois l’Evêque, 86600 Celle l’Evescault, 

FRANCE). Percentage inhibition and Ki of the tested compounds were determined by competition with 

reference tritiated ligands, using the condition reported in the following table: 

 

 

DTG is 1,3 di-ortho-tolylguanidine 

 

protein
reference                     

tritiated    ligand

concentration 

(nM)

incubation time 

(min)
temperature

D1R SCH 23390 0,3 60 RT

D2R methyl-spiperone 0,3 60 RT

D3R methyl-spiperone 0,3 60 RT

D4R methyl-spiperone 0,3 60 RT

D5R SCH 23390 0,3 60 RT

σ1R (+) pentazocine 15 120 RT

σ2R (+) pentazocine + DTG 1000 + 25 60 RT

hERG dofetilide 10 60 RT
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For hERG assay, HEK293 cells were stably transfected with the human hERG receptor gene. Binding assays 

were performed using 10 µg of cell membranes suspended in 10mM Na-Hepes pH 7.4, 135 mM NaCl, 60 

mM DL-Aspartic Acid Potassium, 1 mM EGTA, 0.8 mM MgCl2, 10 mM (D+)-Glucose. 
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