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Motivation & Outline
• Many analyses cannot explain GAN training as they fail

to take into account alternating optimization and model
the architecture and implicit biases of the discriminator.
• We propose a theoretical framework solving these issues

using the theory of Neural Tangent Kernels.
• We deduce new insights about the flow and conver-

gence of the generated distribution during training.

Generative Adversarial Networks
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]
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E.g. for vanilla GAN C is a Jensen-Shannon, for WGAN
it is the 1-Wasserstein, for LSGAN it is a χ2-divergence.

Issue 1: Alternating Optimization
• In practice, GANs are optimized alternatingly, fϕ and

gθ being considered to be independent of each other.
θ ← θ − η∇θL

(
gθ, fϕ

)
;

ϕ← ϕ + λ∇ϕL
(
gθ, fϕ

)
.

• Gradient received by gθ:
∇θL

(
gθ, fϕ⋆

θ

)
⇒ ∇θL

(
gθ, fϕ

)
.

• This changes the true generator loss C. Hence, sound
studies should model alternating optimization.

Issue 2: Ill-Defined Discr. Gradients

In an alternating optimization setting:
∇θL(gθ, f ) = Ez∼pz

[
∇θgθ(z)⊤∇x(a ◦ f )(x)|x=gθ(z)

]
.

• The gradient of the generator requires ∇f (chain rule).
• Without any assumption on the structure of f , as L is

only defined on training points γ, ∇f is not defined.
• The parameter gradient of the generator is thus also

ill-defined.
• Analyses need to take into account the structure of f .

Our solution: Modeling discriminator
training as a neural network via its NTK.

A Background on NTKs
The Neural Tangent Kernel: For a neural network
fϕ with parameters ϕ, its NTK kfϕ

is defined as:
kfϕ

(x, y) ≜
〈
∂ϕfϕ(x), ∂ϕfϕ(y)

〉
.

In the infinite-width limit of f , during training:
kfϕ

(x, y) = k(x, y).

Kernel Integral Operator and RKHS:

Tk,γ : L2(γ)→ Hγ
k, h 7→

∫
x

k(·, x)h(x) dγ(x),

where Hγ
k ⊆ L2(Ω) is the RKHS of k generated by γ.

Discriminator Inner Loop
We consider the NNs in the NTK regime. This enables a
theoretical study of their evolution w.r.t. training time t:

∂tft = Tk,γ

(
∇γLα(ft)

)
.

Discriminator Structure:
Under mild assumptions, ft is uniquely defined and:

∀t ∈ R+, ft = f0 + Tk,γ

(∫ t

0
∇γLα(fs) ds

)
∈ f0 +Hγ

k.

• Tk,γ smooths out gradients over the whole input space
by sending them into Hγ

k.
• Hγ

k depends on discriminator architecture.

Differentiability of the Discriminator:
The discriminator trained with gradient descent is in-
finitely differentiable (almost) everywhere.

• The spatial gradient of the discriminator ∇ft is well-
defined.
• The parameter gradient of the generator ∇θL(gθ, ft)

is well-defined.

Underlying NTK Regularity Results

To prove the above results, we establish novel regularity results on NTKs.
Given, for the network f :
• a standard architecture (fully connected, convolutional, residual,

etc.),
• a standard activation function (tanh, softplus, ReLU-like, sigmoid,

Gaussian, etc.),
we prove that the NTK k of f is:
• smooth almost everywhere if the network has non-null bias terms.
• smooth everywhere if the activation is smooth.

These results, obtained from similar regularity results on the conjugate
kernel of f , then transfer to f .

Resulting Convergence Results
Our finer-grained framework allows us to derive novel
convergence insights, with highlighted results below.

Gradient Flow of Generated Distribution:

∂ℓα
z
ℓ = −∇Skg

C(αℓ)

= ∇x ·
(

αz
ℓTkg,pz

(
z 7→ ∇x(a ◦ fαℓ

)(x)
∣∣
x=gℓ(z)

))
,

where αz
ℓ is the distribution of

(
z, gℓ(z)

)
under z ∼ pz.

• In the non-interacting case, i.e. Tkg,pz
= id, this corre-

sponds to a Wasserstein gradient flow:

∂ℓαℓ = −∇Skg
C(αℓ) = −∇W C(αℓ).

• In the general case, this is a gradient flow in a Stein
geometry defined by the generator’s NTK kg.
• C(αℓ) is automatically decreasing via this gradient

flow, as fast as possible (locally).

IPM GANs (a = b = id) and NTK MMD:

We find ft = f0 + t
(
Ex∼α

[
k(x, ·)

]
− Ey∼β

[
k(y, ·)

])
,

hence, if f0 = 0:
C(α) = Lα(ft) ∝ MMD2

k(α, β).

Empirical Study
• We assess the adequacy of our framework by observing

how close finite and infinite-width regimes are.
• We study the convergence of GANs on empirical distri-

butions in the non-interacting case (Tkg,pz
= id).

• We discover the singular performance of ReLU architec-
tures for generative modeling and explain it by studying
generator gradients with our framework.

Toolkit GAN(TK)2

• GAN analysis toolkit based on our
framework.
• Written in JAX with the Neural

Tangents library.
• Link to paper and code −−−−−−−→
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