A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi, Emmanuel de Bézenac, Ibrahim Ayed, Mickaël Chen,
Sylvain Lamprier, Patrick Gallinari

To cite this version:
Jean-Yves Franceschi, Emmanuel de Bézenac, Ibrahim Ayed, Mickaël Chen, Sylvain Lamprier, et al..
A Neural Tangent Kernel Perspective of GANs. Thirty-ninth International Conference on Machine
Learning, Jul 2022, Baltimore, MD, United States. hal-03716574

HAL Id: hal-03716574
https://hal.science/hal-03716574
Submitted on 7 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License
We consider the NNs in the NTK regime. This enables a theoretical study of their evolution w.r.t. training time t: $\partial f_t / \partial t = \mathcal{L}(f_t, \nabla^2 \mathcal{L}(f_t));$

Discriminator Inner Loop

Under mild assumptions, f_t is uniquely defined and:

$$\begin{align*} & \forall \alpha \in \mathbb{R}, \ f_{t+\alpha} = \alpha \mathcal{T}_w + f_t \quad (\text{w.r.t. } \alpha) \text{ in Stein flow, as fast as possible (locally).} \\
& \mathcal{T}_w : \text{smoother over the whole input space by sending it to } H_{\mathcal{T}}. \\
& H_{\mathcal{T}} \text{ depends on discriminator architecture.} \\
& \text{Differentiability of the Discriminator:} \\
& \mathcal{D}_{\text{fully differentiable (almost) everywhere.}} \text{over } \mathcal{D} \text{ in NTK framework.} \\
& \mathcal{D}_{ \text{spatial gradient of the discriminator } \nabla \mathcal{L}(f_t) \text{ is well-defined.} } \\
& \mathcal{D}_{ \text{parameter gradient of the generator } \nabla^2 \mathcal{L}(f_t) \text{ is well-defined.} } \\
\end{align*}$$

Resulting Convergence Results

Our finer-grained framework allows us to derive novel convergence insights, with highlighted results below.

Gradient Flow of Generated Distribution:

$$\begin{align*} & \partial U_{\mathcal{L}(f_t)} / \partial t = \mathcal{L}(f_t, \nabla^2 \mathcal{L}(f_t)); \\
& \mathcal{L}(f_t, \nabla^2 \mathcal{L}(f_t)) = \mathcal{L}(f_t) \quad (\text{w.r.t. } f_t) \text{ in NTK flow, as fast as possible (locally).} \\
& \mathcal{L}(f_t) \text{ is the distribution of } f_t. \\
& \mathcal{L}_t \text{ approaches } \mathcal{L}_{\text{infinite}} \text{ as } t \to \text{infinite.} \\
\end{align*}$$

IPM GANs $(a = b = s)$ and NTK MMD:

We find $f_0 = f_t + (\mathcal{L}_{\text{infinite}} - \mathcal{L}(f_0))$, hence, if $f_0 = 0$:

$$\mathcal{L}(f_t) \propto MMD_{\text{NTK}}(a, b).$$

Empirical Study

We assess the adequacy of our framework by observing how close finite and infinite-width regimes are.

Toolkit GAN(TK)2

- **GAN analysis toolkit based on our framework.**
- **Written with JAX with the Neural Tangents library.**
- **Link to paper and code.**