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Motivation & Outline

• Many analyses cannot explain GAN training as they fail to take into account alternating optimization and model the architecture and implicit biases of the discriminator. • We propose a theoretical framework solving these issues using the theory of Neural Tangent Kernels. • We deduce new insights about the flow and convergence of the generated distribution during training.

Generative Adversarial Networks

inf θ sup ϕ L g θ , f ϕ = inf θ L g θ , f ϕ ⋆ θ ≈ inf θ C(α θ , β), L g θ , f ϕ = E x∼α θ a • f ϕ (x) -E y∼β b • f ϕ (y) . E.g. for vanilla GAN C is a Jensen-Shannon, for WGAN it is the 1-Wasserstein, for LSGAN it is a χ 2 -divergence.
Issue 1: Alternating Optimization

• In practice, GANs are optimized alternatingly, f ϕ and g θ being considered to be independent of each other.

θ ← θ -η∇ θ L g θ , f ϕ ; ϕ ← ϕ + λ∇ ϕ L g θ , f ϕ . • Gradient received by g θ : ∇ θ L g θ , f ϕ ⋆ θ ⇒ ∇ θ L g θ , f ϕ .
• This changes the true generator loss C. Hence, sound studies should model alternating optimization.

Issue 2: Ill-Defined Discr. Gradients

In an alternating optimization setting:

∇ θ L(g θ , f ) = E z∼p z ∇ θ g θ (z) ⊤ ∇ x (a • f )(x)| x=g θ (z) .
• The gradient of the generator requires ∇f (chain rule).

• Without any assumption on the structure of f , as L is only defined on training points γ, ∇f is not defined. • The parameter gradient of the generator is thus also ill-defined. • Analyses need to take into account the structure of f .

Our solution: Modeling discriminator training as a neural network via its NTK.

A Background on NTKs

The Neural Tangent Kernel: For a neural network f ϕ with parameters ϕ, its NTK k f ϕ is defined as:

k f ϕ (x, y) ≜ ∂ ϕ f ϕ (x), ∂ ϕ f ϕ (y) .
In the infinite-width limit of f , during training:

k f ϕ (x, y) = k(x, y).
Kernel Integral Operator and RKHS:

T k,γ : L 2 (γ) → H γ k , h → x k(•, x)h(x) dγ(x),
where

H γ k ⊆ L 2 (Ω) is the RKHS of k generated by γ.

Discriminator Inner Loop

We consider the NNs in the NTK regime. This enables a theoretical study of their evolution w.r.t. training time t:

∂ t f t = T k,γ ∇ γ L α (f t ) .
Discriminator Structure: Under mild assumptions, f t is uniquely defined and:

∀t ∈ R + , f t = f 0 + T k,γ t 0 ∇ γ L α (f s ) ds ∈ f 0 + H γ k .
• T k,γ smooths out gradients over the whole input space by sending them into H γ k . • H γ k depends on discriminator architecture.

Differentiability of the Discriminator:

The discriminator trained with gradient descent is infinitely differentiable (almost) everywhere.

• The spatial gradient of the discriminator ∇f t is welldefined.

• The parameter gradient of the generator ∇ θ L(g θ , f t ) is well-defined.

Underlying NTK Regularity Results

To prove the above results, we establish novel regularity results on NTKs. Given, for the network f :

• a standard architecture (fully connected, convolutional, residual, etc.), • a standard activation function (tanh, softplus, ReLU-like, sigmoid, Gaussian, etc.), we prove that the NTK k of f is:

• smooth almost everywhere if the network has non-null bias terms.

• smooth everywhere if the activation is smooth. These results, obtained from similar regularity results on the conjugate kernel of f , then transfer to f .

Resulting Convergence Results

Our finer-grained framework allows us to derive novel convergence insights, with highlighted results below.

Gradient Flow of Generated Distribution:

∂ ℓ α z ℓ = -∇ S k g C(α ℓ ) = ∇ x • α z ℓ T k g ,p z z → ∇ x (a • f α ℓ )(x) x=g ℓ (z) ,
where α z ℓ is the distribution of z, g ℓ (z) under z ∼ p z .

• In the non-interacting case, i.e. T k g ,p z = id, this corresponds to a Wasserstein gradient flow:

∂ ℓ α ℓ = -∇ S k g C(α ℓ ) = -∇ W C(α ℓ ).
• In the general case, this is a gradient flow in a Stein geometry defined by the generator's NTK k g . • C(α ℓ ) is automatically decreasing via this gradient flow, as fast as possible (locally).

IPM GANs (a = b = id) and NTK MMD:

We find f t = f 0 + t E x∼α k(x, •) -E y∼β k(y, •) , hence, if f 0 = 0: C(α) = L α (f t ) ∝ MMD 2 k (α, β).

Empirical Study

• We assess the adequacy of our framework by observing how close finite and infinite-width regimes are. • We study the convergence of GANs on empirical distributions in the non-interacting case (T k g ,p z = id). • We discover the singular performance of ReLU architectures for generative modeling and explain it by studying generator gradients with our framework.

Toolkit GAN(TK) 2

• GAN analysis toolkit based on our framework. • Written in JAX with the Neural Tangents library. • Link to paper and code -------→ 
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