
HAL Id: hal-03716435
https://hal.science/hal-03716435v3

Submitted on 6 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Representation learning of 3D meshes using an
Autoencoder in the spectral domain

Clément Lemeunier, Florence Denis, Guillaume Lavoué, Florent Dupont

To cite this version:
Clément Lemeunier, Florence Denis, Guillaume Lavoué, Florent Dupont. Representation learning
of 3D meshes using an Autoencoder in the spectral domain. Computers and Graphics, 2022, 107,
pp.131-143. �10.1016/j.cag.2022.07.011�. �hal-03716435v3�

https://hal.science/hal-03716435v3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Computers & Graphics (2023)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Representation learning of 3D meshes using an Autoencoder in the spectral domain

Clément Lemeuniera, Florence Denisb, Guillaume Lavouéc, Florent Dupontb

aUniv Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69622 Villeurbanne, France
bUniv Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622 Villeurbanne, France
cUniv Lyon, Centrale Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, ENISE, F-42023 Saint-Étienne, France

A R T I C L E I N F O

Article history:
Received April 6, 2023

Keywords: Geometric Deep Learning,
Spectral analysis, Autoencoder, Human
body triangular meshes

A B S T R A C T

Learning on surfaces is a difficult task: the data being non-Euclidean makes the transfer
of known techniques such as convolutions and pooling non trivial. Common methods
deploy processes to apply deep learning operations to triangular meshes either in the
spatial domain by defining weights between nodes, or in the spectral domain using first
order Chebyshev polynomials followed by a return in the spatial domain. In this study,
we present a Spectral Autoencoder (SAE) enabling the application of deep learning
techniques to 3D meshes by directly giving spectral coefficients obtained with a spectral
transform as inputs. With a dataset composed of surfaces having the same connectivity,
it is possible with the Graph Laplacian to express the geometry of all samples in the
frequency domain. Then, by using an Autoencoder architecture, we are able to extract
important features from spectral coefficients without going back to the spatial domain.
Finally, a latent space is built from which reconstruction and interpolation is possible.
This method allows the treatment of meshes with more vertices by keeping the same
architecture, and allows to learn on big datasets with short computation times. Through
experiments, we demonstrate that this architecture is able to give better results than state
of the art methods in a faster way.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Recently, acquiring methods like motion capture have be-
come more affordable and have therefore increased publicly
available scans. It is now possible to digitize moving shapes
such as body or faces while keeping the pose and appearance
information at high spatial and temporal resolution. There is
today a need to develop models able to treat the information
coming from those scans that are most of the time represented
as unordered point clouds.

Most common types of deep learning techniques such as con-
volutions, pooling and up sampling enable to generalize learned
weights to unseen data in order to classify, segment or recon-
struct from a latent space. Convolutional Autoencoders are use-
ful tools to extract important features from observed samples
in an unsupervised way. By forcing the input to go through a

bottleneck, the network is able to construct a latent space rep-
resenting faithfully the manifold of the input samples like all
the possible poses of a human body for example. This inter-
esting property offers a way to generate new data by interpo-
lating in the latent space. When learning on images, the use of
convolutions is well defined, since the domain has a Euclidean
structure. But when learning on graphs or manifolds, since the
information now lies in a non-Euclidean domain, the applica-
tion of known architectures using convolutions, down and up
sampling is not well defined. Our work falls within this con-
cept of Geometric Deep Learning that aims to find techniques
capable of treating data lying on an unstructured grid.

We present a model that creates a compact representation
from 3D deformable shapes that share a common topological
structure. The main desired application using this representa-

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag


2 Preprint Submitted for review /Computers & Graphics (2023)

tion is generation, but others are possible such as classification,
segmentation, correspondence or retrieval.

Here, we focus on datasets representing human bodies. The
first idea would be to directly treat raw output of scans, but
methods having point clouds as input often lack of connectivity
information when the studied objects are human shapes that can
be deformed with near-isometric transformations. The second
idea is to add links to those raw point clouds, transforming the
data into triangular meshes with a lot of vertices and changing
connectivity, and then feed them to neural networks. As of to-
day, methods are not able to treat efficiently 3D data lying on an
unstructured grid with a changing connectivity, especially when
talking about human bodies. So most of the time the studied
models need a more simplified type of input like meshes with a
constant connectivity and a small number of vertices, ie SMPL
[1], the human body model which parameterizes the mesh by
3D joint angles and a low dimensional linear shape space.

State of the art methods treat those triangular meshes with
constant connectivity either in the spatial domain using spi-
ral convolutions [2] or in the spectral domain using first-order
Chebyshev polynomials [3]. In general, these methods are con-
strained by the number of vertices, making the training expen-
sive and long when meshes have a lot of nodes. Plus, the trans-
fer of known and useful operations such as convolutions, pool-
ing and up sampling from 2D to 3D still remains a challenge.
We aim to solve these problems by using spectral methods in a
different way.

Inspired by spectral analysis applications, we alleviate the
training of a neural network by discarding unessential informa-
tion contained in very small details. It is known that a signal
can be well approximated using a relatively small set of spectral
coefficients corresponding to low frequencies. The idea of our
work is to take profit from this energy compaction: by feeding a
neural network only with coefficients that contain a significant
amount of energy, the problems arising when treating triangular
meshes like the high number and the non-ordering of vertices
can be solved. Indeed, the quantity of data given to the model
can be drastically reduced using spectral compaction, and the
ordering coming from the difference of magnitudes of these co-
efficients can be exploited to define an ordering. An illustration
of the general process is presented in Figure 1.

Main contributions
We present a process that enables us to use traditional ar-

chitectures on surfaces by using spectral mesh processing. By
transforming the geometry of meshes in the spectral domain
with the Graph Laplacian, we obtain spectral coefficients that
have a known order. Then, using an Autoencoder like architec-
ture, we can directly apply convolutions and down/up sampling
operations to those coefficients. Our method falls within the
class of AE-based generative models for 3D shapes. The main
contributions of the proposed network are:

• the application of deep learning techniques to spectral co-
efficients of triangular meshes without going back to the
spatial domain,

• an architecture that can treat meshes in an alleviated way
by using a smaller number of frequencies than the number
of vertices,

• an architecture that gives better results than state of the art
methods in a much faster way in order to be able to treat
big datasets.

The code and a pre-trained model are available at https:
//github.com/MEPP-team/SAE.

2. Related work

In order to transfer deep learning techniques to 3D data, early
methods transform the inputs to voxels or images. Here, we will
focus only on methods based on the treatment of surfaces di-
rectly. Methods using point clouds, surfaces without connectiv-
ity information, only rely on the Cartesian coordinates of each
point, whereas graphs/manifolds methods exploit the known
connectivity, and can be used in two different domains: spatial
or spectral. Interested readers can refer to surveys [4, 5, 6, 7].

2.1. Convolution on point clouds

Most point cloud based methods come from the work of
Charles et al. [8] and Qi et al. [9]. Aumentado-Armstrong
et al. [10] define a VAE able to disentangle intrinsic and extrin-
sic information using spectral information prior in an unsuper-
vised way. Cosmo et al. [11] introduced a stronger geometric
prior by making the latent space preserve computed geodesic
distances using the work from Crane et al. [12] on generated
surfaces. Rakotosaona et al. [13] presented a double autoen-
coder architecture, one extracting features from point clouds
and the other one extracting features from edge lengths. Then,
by mapping the two latent spaces, the network is able to real-
istically interpolate between two point clouds using the edge
lengths latent space. All these architectures use PointNet as
an encoder, enabling to study on variable topology and reduc-
ing the limitations in the type of input data employed, but is
also making them unable to capture local correlation between
neighboor vertices: while having the advantage of using sim-
ple and efficient architectures, their capacity to reveal precise
local surfaces features are often less than structures having ac-
cess to connectivity information. More recently, Thomas et al.
[14] introduced KPConv that treats each node of a point cloud
by weighting it depending on the Euclidean distances with its
neighboorhood, thus having more information about the local
correlation of the surface. However, those are obtained using a
K-nearest algorithm, and wrong local links can be found. Meth-
ods using PointNet or KPConv architectures then lack of con-
nectivity information, especially when treating human surfaces
that can be deformed using near-isometric transformations, and
meshes-like structures are often more performant.

https://github.com/MEPP-team/SAE
https://github.com/MEPP-team/SAE


Preprint Submitted for review /Computers & Graphics (2023) 3

Fig. 1. Illustration of the general process. A mesh, lying in the spatial domain and represented as x, y, z coordinates, is transformed into frequency
coefficients lying in the spectral domain represented as u, v,w coordinates. Then, an Autoencoder is trained in order to reconstruct those spectral coefficients
by passing them through a bottleneck. There is no return in the spatial domain during training. Finally, the output mesh can be recovered from the output
spectral coefficients with an inverse spectral transform.

2.2. Convolution on meshes
The main problem when transferring known deep learning ar-

chitectures to meshes is that the grid lacks of general structure.
Architectures using the connectivity of meshes can be discerned
into two categories: the ones using computations in the spatial
domain and the ones using computations in the spectral domain.

2.2.1. Spatial domain
In the spatial domain, the global grid in a graph is irreg-

ular: there is a need to specify an order for the neighbour-
ing nodes. In order to be able to slide a window kernel over
the vertices, spatial based methods need to define convolutions
based on these nodes’ spatial relations. It is then necessary
to compute weights between them. The convolution operation
on those irregular graphs has been defined in different ways.
First, those weights can be static, learned with a preprocess
computation. Technics with mixture models/local parameter-
ization were used: Masci et al. [15] applied filters to local
patches represented in geodesic polar coordinates. Boscaini et
al. [16] exploited the same idea by formulating local intrin-
sic patches on meshes, and Fey et al. [17] utilized pre-defined
local pseudo-coordinate systems over the graphs. Also, tech-
niques with spiral like convolutions were used: preliminar work
by Lim et al. [2] introduced spiral convolutions with SpiralNet.
Bouritsas et al. [18] used similar spiral convolutions with Neu-
ral3DMM coupled with an Autoencoder based on CoMA ar-
chitecture [19]. Gong et al. [20] proposed an upgraded version
with SpiralNet++ [20]. Then, those filters can be dynamically
learned. Monti et al. [21] introduced MoNet, a mixture model
with learned weights. Verma et al. [22] presented FeastNet,
a graph convolution operator enabling the computation of dy-
namic correspondences between kernel weights and neighbor-
ing nodes with arbitrary connectivity. Zhou et al. [23], inspired
by the spiral method, proposed vertex-wise weighted convolu-
tions.

The advantage of spatial techniques is that they generalize
across domains and are able to learn filters that are intrinsic
and accurate. The downside is that they are not robust to near-
isometric deformations and can be time consuming if meshes
have a lot of vertices.

2.2.2. Spectral domain
The concept of the spectral domain methods rely on the con-

volution theorem saying that a convolution in the spatial do-
main is equivalent to a pointwise product in the spectral do-
main. Bruna et al. [24] first used the Laplacian eigenvectors
to project features/kernel on them and to multiply those pro-
jections before going back to the spatial domain, but this re-
sulted in a slow process. Instead of computing eigenvectors,
Defferrard et al. [3] used truncated Chebyshev polynomials and
Kipf et al. [25] used only first-order Chebyshev polynomials,
resulting in a faster way to do convolutions in the spectral do-
main. Ferrari et al. [19] used Convolutional Mesh Autoencoder
(CoMA) based on ChebyNet and spatial pooling. They gener-
alized downsampling and upsampling layers to meshes by col-
lapsing unimportant edges based on quadric error measure, that
some spatial methods also use.

A drawback of these methods is that they still use spatial
downsampling/upsampling. This prevents to fully exploit the
profits of the spectral domain: the speed of computation. Also,
more recent spatial methods outperformed their ability to re-
construct and generate meshes from a latent space. We aim to
use spectral mesh analysis in a different and novel way.

The challenge when trying to develop convolutions on graphs
or manifolds is the lack of an order for the nodes. Also, the
number of vertices of meshes in a dataset is still a constraint.
To overcome those problems, we aim at designing a model that
works on an ordered point cloud: the spectral coefficients. This
enables the direct application of convolutions without needing



4 Preprint Submitted for review /Computers & Graphics (2023)

Fig. 2. Transform / inverse transform mean errors as a function of the cho-
sen number of eigenvectors. Displayed meshes correspond to 64, 512, 1024
and 6890 frequencies respectively. By using all available frequencies (6890,
the number of vertices), the exact geometry is recovered.

to define a special ordering. Also, our model does not need
to go back to the spatial domain since the down/up sampling
operations are done in the spectral domain. This allows us to
develop a process that is fast and that only needs for preprocess-
ing the computation of eigenvectors of one mesh from a dataset
with constant connectivity and the spectral transformation of all
meshes in the dataset to spectral coefficients.

We start by reminding the reader about spectral mesh analy-
sis, allowing the transformation of a triangulated surface to the
frequency domain. Then, we introduce the Spectral Autoen-
coder, a neural network that takes as input spectral coefficients
containing compacted meshes’ geometry information.

3. Reminder about spectral mesh processing

In spectral mesh processing, surfaces are studied through op-
erators which are usually variants of the Laplacian and provide
new bases serving various processing applications. Vallet et al.
[26] proposed a fast computation algorithm for the Laplace-
Beltrami eigenfunctions of meshes up to a million vertices.
Reuter et al. [27] introduced a method to extract Shape-DNA, a
signature made of the Laplace–Beltrami operator’s eigenvalues.
Here, we will focus on the use of the topological Laplacian [28].

A triangular mesh M can be expressed as a set of 3D points P
coupled with a triangulation. Each point pi ∈ P is represented
as absolute Cartesian coordinates: pi = (xi, yi, zi), i ∈ [1, n], n
being the number of vertices. It is then possible to transform
those absolute coordinates to spectral coefficients by using a
topological operator: the Graph Laplacian [28]. If A is the ad-
jacency matrix, and D is the diagonal matrix of degrees of each
vertex, then the Graph Laplacian L is defined as:

L = D − A (1)

It is important to note that a dataset of meshes with a con-
stant connectivity will have only one common Graph Laplacian.

This Graph Laplacian is a square matrix of size n∗n, and can
be decomposed into a chosen number of k scalar eigenvalues
λi and k eigenvectors ϕi with i ∈ [1, k] and k <= n. Pairs of

Fig. 3. On the left, example of low frequency spectral coefficients in 3D
(only the 6 first are labeled for visibility). On the right, magnitudes of the
first 100 coefficients. Low frequencies have higher magnitudes than high
frequencies.

eigenvalue and eigenvector satisfy the equation −Lϕi = λiϕ
i.

The eigenvectors are of size n and correspond to columns of
the matrix:

Φ =


ϕ1

1 ϕ2
1 ... ϕk

1
...
...
...
...

ϕ1
n ϕ2

n ... ϕk
n

 (2)

Using these eigenvectors, it is possible to transform the
absolute coordinates of mesh vertices to spectral coefficients
and to inverse transform the spectral coefficients to absolute
coordinates using matrix multiplications: C = ΦT · P and
P = Φ · C respectively. Depending on the chosen number k of
eigenvectors, the recovered geometry after an inverse transform
will be more or less low pass filtered (see Figure 2).

Spectral coefficients C are a set of 3D points. Each
point can be represented as frequency coordinates:
ci = (ui, vi,wi), i ∈ [1, k] (see Figure 3). They contain
information about the geometry of the original vertices in
a compressed form. More specifically, the most important
part is contained in the low frequencies, representing the
general aspect of the surface, whereas the details are located
in high frequencies. The idea of our work relies on this fact:
visually, small details in high frequencies could be discarded,
enabling to treat less information with approximately the
same precision. This is why the truncated spectral coefficients
are the input of the presented neural network in the next section.

Spectral mesh processing therefore provides a basis defined
by the eigenvectors for mesh compression/reconstruction. The
spectral transform and the inverse spectral transform being lin-
ear functions, operations in the frequency domain (e.g. interpo-
lation) exhibits the same artifacts as in the spatial one like non
conservation of edge length or triangle area. In early works,
the frequency domain was used to alleviate the task of editing
or morphing often done in the spatial domain by truncating the
number of used frequencies. Here, we aim at alleviating the
work of a deep learning model by directly giving as input trun-
cated spectral coefficients in order to extract useful features in



Preprint Submitted for review /Computers & Graphics (2023) 5

Fig. 4. Illustration of the Spectral Autoencoder with learned pooling using 4096 frequencies (SAE-LP-4096).

an unsupervised way. This allows to go further and create an
even more compact latent space.

4. Spectral Autoencoder

We now introduce how our Spectral Autoencoder (SAE)
takes the spectral coefficients as input. The general process is
presented in Figure 1 and an illustration of the Spectral Au-
toencoder is shown in Figure 4. First, the geometry of a mesh
is transformed to spectral coefficients using the spectral trans-
form presented in the previous section. Then, those spectral co-
efficients are given to a deep convolutional Autoencoder able
to learn hierarchical representations by making the input go
through multiple layers. We here introduce how the data is
preprocessed and how the convolutions and down/up sampling
operations are applied to the spectral coefficients.

4.1. Preprocessing
The first step of preprocessing is the computation of the

eigenvectors. The idea here is to not use all available frequen-
cies, but rather a truncated version of them. In section 5, we
show the impact of using different number of frequencies. Then
the vertices of all samples in the dataset are transformed into
spectral coefficients. We can see in Table 1 the preprocessing
times of computation in terms of number of eigenvectors. They
are reasonable in comparison with the spirals time calculation
from [18, 20].

4.2. Convolutions on spectral coefficients
Convolutions are the major building blocks in deep learning

applications. In 2D, they allow the extraction of useful features
from images in an efficient way since they are fast to compute
and they reduce the number of parameters of a neural network.
It is therefore natural to try to extend the application of con-
volutions to other domains than images. As said in Section
2, the main contributions to apply convolutions on triangular
meshes take place either in the spectral domain or in the spatial
domain. Ranjan et al. [19] built a convolutional autoencoder
(CoMA) upon ChebNet with spectral convolutional filters, re-
sulting in isotropic kernels with limited expressiveness. Bourit-
sas et al. [18] improved those results with a spiral convolu-
tion operator (Neural3DMM [18]) that defines an explicit order
of the neighbors, resulting in anisotropic filters. However, this
method requires to define starting vertices for spiral orders, pre-
venting from efficiently exploiting the irregular structure of the

connectivity. Additionnaly, performance decays are involved
since zero-padding is needed in order to have fixed-size spirals.
Gong et al. [20] introduced SpiralNet++, an improved version
of Neural3DMM, making the convolutions faster by avoiding
the zero paddings.

SpiralNet++, which is the most efficient and fastest way to do
convolutions on meshes, still needs to define an order for convo-
lutions on vertices, making the implementation a complex one.
In our work, we simplify this process by doing convolutions on
the array of spectral coefficients in a natural way since the fre-
quencies are already ordered. Figure 4 shows an illustration of
the presented Spectral Autoencoder with learned pooling using
4096 frequencies (SAE-LP-4096). By simply sliding a convo-
lution kernel over the coefficients, we show that the network is
able to learn interesting features.

4.3. Pooling
The behaviour of a neural network is closely related to the

pooling procedure. Classical works for 1D signals or 2D im-
ages use a sliding window in order to retain only the maximum
values in local regions for downsampling, and add values for
upsampling to bring back a higher resolution for the next layer.
For meshes, Ranjan et al. [19] introduced a down/up sampling
method in the spatial domain. Downsampled meshes are com-
puted by contracting edges while maintaining surface error ap-
proximation and upsampled meshes are computed creating ver-
tices from the triangles barycentric coordinates of the down-
sampled meshes. Those operations are represented as trans-
form matrices. Some works proposed to learn these aggrega-
tion weights with dense mapping [29, 30] or fully-connected
layers [31]. Chen et al. [32] introduced a method where they
are learned through an attention module in order to avoid over-
parameterization.

In our work, we chose to down/up sample the spectral coef-
ficients with two methods. The first one consists in applying
classical maxpooling/upsampling operations. We will refer to
this method as Spectral Autoencoder - Classic Pooling (SAE-
CP). The second one consists in learning the mapping matrices,
as in the work from Chen et al. [32]. But we did not use an
attention module since learning directly parameters is simpler
and we do not use all available frequencies so it does not lead
to over-parameterization. We will refer to this method as Spec-
tral Autoencoder - Learned Pooling (SAE-LP). In this case,



6 Preprint Submitted for review /Computers & Graphics (2023)

down/upsampling matrices are simply filled with learnable pa-
rameters. Then, during training, these parameters are learned
along with the other parameters of the model. See Figure 5.

We show in the next section the comparison of using classical
maxpooling/upsampling and using learned down/up sampling
matrices, along with a comparison between multiple choices of
used number of frequencies.

5. Evaluation

In this section, we evaluate the presented models. We first
introduce used datasets and give details on the implementation.
Then, we evaluate our best model against two baselines: Neu-
ral3DMM [18] and SpiralNet++ [20] by presenting quantitative
and qualitative results and by comparing the speed of computa-
tion. Next, an ablation study shows that using less frequencies
still gives good result while reducing the number of parameters
of models. Then, we show that it is possible to interpolate in
the latent space in order to generate realistic meshes.

5.1. Datasets

DFAUST. The dataset from the work of Bogo et al. [33]
consists of 41,220 body meshes having 6890 vertices from 10
identities performing multiple actions. We split the data into
32,535 samples for training representing the first 8 identities
and 8,685 samples for testing representing the last 2 identities.

AMASS. The dataset from the work of Mahmood et al. [?
] is a unification of 15 smaller ones by fitting SMPL [1] body
model to motion capture markers, consisting of 344 subjects
and more than 10K motions. We follow the protocol splits: 1
out of 100 frames is selected for the middle 90% portion of each
sequence, resulting in 111,327 meshes for training and 10,733
for testing. Identities are not shared between the train and test
dataset. We preprocess the surfaces so that they are centered at
the origin and oriented towards the same direction.

The metric used for the experiment is a measure of the quality
of reconstructed meshes from the latent space. It is computed
as the average distance in millimeters between corresponding
vertices of the input and output meshes. This measures the ca-
pacity of the model to obtain a compact representation and to
generalise to novel surfaces from the distribution it was trained
on. All models are not normalized and have the actual size of
the person.

5.2. Implementation

We follow the setting of previous works for the architectures
of models.

Neural3DMM and SpiralNet++: the convolutional filters
of the encoder have sizes [3, 16, 32, 64, 128]. A fully-connected
layer then maps the data to the wanted latent size. After another
fully-connected layer, the convolutional filters of the decoder
have sizes [128, 64, 32, 16, 16]. A last convolutional layer maps
the data to the number of features of the geometry, 3. Dilated
convolutions with h = 2 hops and dilation ratio r = 2 are used for
the first and the last two layers of the encoder and the decoder

Method Eigenvectors DFAUST Total DFAUST AMASS Total AMASS

Neural3DMM - - ∼ 30s - ∼ 30s
SpiralNet++ - - ∼ 30s - ∼ 30s
SAE-*-6890 ∼40s ∼3s ∼ 43s ∼16s ∼ 56s
SAE-*-4096 ∼28s ∼2s ∼ 30s ∼12s ∼ 40s
SAE-*-2048 ∼36s ∼1s ∼ 37s ∼8s ∼ 44s
SAE-*-1024 ∼9s ∼0.5s ∼ 9.5s ∼7s ∼ 16s
SAE-*-512 ∼3.5s ∼0.3s ∼ 3.8s ∼3.2s ∼ 6.7s

Table 1. Comparison of preprocessing times. For Neural3DMM and Spi-
ralNet++, spirals are computed only once on a template mesh, so the time
does not depend on the dataset size. SAE-*-k stands for our Spectral Au-
toencoder with classic pooling or learned pooling using k frequencies. For
our method, this time depends on the eigenvectors computation (column
Eigenvectors) and on the transformation of all meshes in a dataset to spec-
tral coefficients (columns DFAUST and AMASS). Even with 4096 frequen-
cies, the preprocessing time is reasonable compared to spirals method. The
fact that the computation of eigenvectors for 2048 frequencies is longer
than for 4096 comes from the eigensolver.

Fig. 5. Illustration of the two pooling methods used when downsampling
2048 frequencies. (a) - A classic pooling window of size 2 with stride 2 al-
lows to reduce the resolution of the spectral coeffcients by a factor of 2. This
method is referred to Spectral Autoencoder with classic pooling (SAE-CP).
(b) - the downsampled spectral coefficients are computed by multiplying
them with a matrix containing learnable parameters. The downsampling
factor is larger than with the classic pooling (see Section 5.2 for more in-
formation). This method is referred to Spectral Autoencoder with learned
pooling (SAE-LP).

respectively. The sizes of the spirals are [12, 14, 9, 9] for the
encoder and [9, 9, 14, 12, 12] for the decoder.

We recall that for the two baselines, the inputs are the
meshes’ Cartesian coordinates from the spatial domain stan-
dardized with mean equal to zero and standard deviation equal
to one. For our models, the inputs are the spectral coefficients.

SAE-CP-k: the construction of the Spectral Autoencoder
with classic pooling using k frequencies follows com-
mon Autoencoder architectures using convolutions and pool-
ing/upsampling operations. The chosen number of frequencies
of the input spectral coefficients is always a power of two. Then,
the number of layers of the encoder depends on the number of
times we have to divide by two in order to have 32 remaining
frequencies after the last maxpooling step: 4 steps for 512 fre-
quencies, 5 steps for 1024 and so on. For 512 frequencies, the
convolutional filters of the encoder have sizes [3, 32, 64, 64,
128]. The decoder has convolutional filters of sizes [128, 64,



Preprint Submitted for review /Computers & Graphics (2023) 7

64, 32, 32, 3]. If more layers are needed because more frequen-
cies are used, we duplicate the filters of size 64. The sizes of the
convolutions kernels are 3 for all layers with a padding of 1 so
that the length of the input is not modified after the convolution
is applied. Also, the size of the window for maxpooling and the
scale factor of the upsampling is 2 for all layers.

SAE-LP-k: the construction of the Spectral Autoencoder
with learned pooling using k frequencies is similar to the pre-
vious one except for the down/up sampling layers. The convo-
lutional filters of the encoder have sizes [3, 16, 32, 64, 128].
Instead of doing classical maxpooling or upsampling, mapping
matrices containing learnable parameters are created. Then,
those parameters are learned along with the other components
of the model. The sizes of the matrices for the encoder are [k,
256, 64, 32, 16], k being the chosen number of frequencies. For
the decoder, the convolutional filters have sizes [128, 64, 32, 16,
16, 3]. The matrices for upsampling are of the same size as the
encoder ones in reverse order. The sizes for the convolutions
kernels are also 3 for this model with padding of 1.

All models are trained on the same hardware. The batch size
is 16, the learning rate is 1e-4 and a scheduler is used so that
the learning rate is reduced by a factor of 0.1 when the recon-
struction has stopped improving (with a threshold of 1e-4) for
3 epochs. Models are trained for a maximum of 20 hours.

5.3. Comparison with baselines
We first evaluate our model giving the best results: the

SAE-LP-4096. Differences between mean reconstructions on
test datasets, visual quality of the reconstructed meshes and
the times per epoch are compared to the two baselines Neu-
ral3DMM [18] and SpiralNet++ [20].

5.3.1. Quantitative results of reconstruction
We follow [18] for the choice of latent sizes, based on the

variance explained by PCA of roughly 85%, 95% and 99%
of the total variance. Fig 6 shows results of reconstruction
accuracy on the DFAUST and AMASS dataset. Here, the
SAE-LP-4096 is a model that takes as input 4096 frequencies.
We can see that for all latent sizes, our model outperforms
the two baselines. Table 2 shows the number of parameters
of the three neural networks. The SAE-LP-4096 clearly has a
lot more, but 90% of these parameters are concentrated in the
first downsampling and the last upsampling matrix (see Section
5.2). Additionnaly, we show in the Section 5.4 that models
with the same architecture but without that much parameters
still manage to get competitive results.

Moreover, we can compare the compression capacity of the
model’s latent space with the compression capacity of the spec-
tral domain. This can be done by simply measuring the recon-
struction error after applying a spectral transform and then an
inverse spectral transform (as in Fig 2) on all the test dataset’s
meshes when using a number of frequencies similar to the eval-
uated number of latent dimensions. On the DFAUST dataset,
the mean reconstruction errors when using 3, 6 and 22 fre-
quencies (resulting in 9-18-66 dimensions respectively since

Method Latent size 8 16 64

Neural3DMM 274K 331K 675K
SpiralNet++ 415K 471K 802K

SAE-LP-4096 2.23M 2.26M 2.46M

Table 2. Comparison of the number of parameters in function of the latent
space size. In this case, our model uses 4096 frequencies. More than 90% of
the parameters for the SAE-LP-4096 are located in the first downsampling
and the last upsampling matrices.

there are 3 coordinates u, v, w) are 368.1±42.7, 96.5±10.7 and
54.7±3.6 millimeters respectively. Fig 6 exhibits reconstruction
errors for 8-16-64 latent dimensions of 55.5±16.9, 33.0±10.7,
10.3±2.7 millimeters respectively. This clearly shows that the
latent spaces built by the model have a better compression ca-
pacity.

5.3.2. Qualitative results of reconstruction
Visual reconstructions are shown in Fig 7. We compare mod-

els all with a latent dimension of 64. The main observation
is that when the baselines have to handle parts of bodies in a
position not oftenly saw during training (especially arms and
hands), we can see that the details are more degenerated. In
contrast, the Spectral Autoencoder is able to reconstruct them
with more smoothness, leading to visually better results. This
can be explained by the fact that, during early training, our mod-
els first learn to better reconstruct the information contained in
the low frequencies since low coefficients have a higher mag-
nitudes than the high frequency ones. This leads to body parts
in the right position but without enough details. Then, in late
part of training, the model learns to reconstruct the details. In
contrast, the baselines struggle to reconstruct those body parts.

5.3.3. Time per epoch
The main advantage of our method is the speed of compu-

tation. We can see in Table 3 the difference of time per epoch
for Neural3DMM, SpiralNet++ and the SAE-LP-4096. Since
we do not take as input all available frequencies, the process
is much faster, while still having access to important frequen-
cies. Also, Neural3DMM and SpiralNet++ need to rearange
the arrays of vertices in order to do convolutions specified by
the precomputed spirals, unlike our method where convolutions
are done on arrays in a classical way. Then, even if SpiralNet++
managed to decrease the computation time per epoch compared
to Neural3DMM, our network is way faster.

We showed that the Spectral Autoencoder with learned pool-
ing using 4096 frequencies is able to learn features on triangu-
lar meshes and construct a latent space where reconstruction is
possible, giving better results than state of the art methods. We
now show the impact of using different configurations for our
architecture.

5.4. Ablation study
In this section, we evaluate the behaviour of our architecture

using learned pooling, classic pooling and a different number
of frequencies. We first present quantitative results in order to



8 Preprint Submitted for review /Computers & Graphics (2023)

Fig. 6. Reconstruction results on DFAUST and AMASS datasets between Neural3DMM, SpiralNet++ and our best model. For all latent sizes, our method
outperforms the two baselines.

Method DFAUST AMASS

Neural3DMM ∼ 156s ∼ 472s
SpiralNet++ ∼ 68s ∼ 200s

SAE-LP-4096 ∼ 28s ∼ 83s

Table 3. Time per epoch comparison on DFAUST and AMASS Datasets
between the SAE-LP-4096 and the baselines. Our model is faster by a
large margin.

Method AMASS

SAE-CP-512 ∼ 84s
SAE-CP-1024 ∼ 89s
SAE-CP-2048 ∼ 93s
SAE-CP-4096 ∼ 115s

Table 4. Time per epoch of models with classic pooling. For the SAE-CP,
increasing the number of given frequencies leads to higher computation
times because the factor of downsampling is 2, leading to arrays of bigger
sizes in hidden layers. See Figure 5.

.

compare the mean reconstruction error with different configu-
rations. Then, results are presented showing the capacity of a
model trained on a dataset to generalise on the other dataset.
Finally, qualitative results show that the reconstructed meshes
are still visually acceptable even when using less frequencies.

5.4.1. Quantitative results
Tables 7 and 8 show the number of parameters in function of

the number of used frequencies and the size of the latent space.
Results of reconstruction on the AMASS dataset using different
configurations are presented in Figure 8. The red line indicates
the best attainable score for each number of used frequencies,
corresponding to the mean error on the test dataset after an in-
verse spectral transform, see Figure 2. It is clear that when
using 512 frequencies, our models can’t have a better score for
a latent dimension of 128. First, for a latent dimension of 16,
both our architectures give better results. For a latent dimension
of 32, the SAE-CP gives similar results as the baseline, while
the SAE-LP still has a better reconstruction score. For higher

Method AMASS

SAE-LP-512 ∼ 80s
SAE-LP-1024 ∼ 83s
SAE-LP-2048 ∼ 83s
SAE-LP-4096 ∼ 83s

Table 5. Time per epoch of models with learned pooling in function of used
frequencies. Even with more frequencies, the time of computation remains
constant.

latent dimensions, the SAE-CP struggles and outputs less ac-
curate meshes while the SAE-LP gives similar results than the
baselines when using a low number frequencies, and gives bet-
ter scores when using more frequencies. The worse behaviour
of the SAE-CP comes from the pooling method, corrected by
the one used with the SAE-LP. Also, when using too few fre-
quencies, the networks do not have access to details informa-
tion, leading to meshes without enough precision. Additional
results are given in the table in supplementary material.

5.4.2. Qualitative results
Different levels of details on a head and a foot of recon-

structed meshes with different number of used frequencies are
presented in Figure 9. We can see that by giving enough fre-
quencies to the model, it is able to reconstruct meshes with as
much precision as Neural3DMM. Then, Figure 10 shows visual
results compared to SpiralNet++. For reconstructed meshes
with 1024 frequencies, we can see that details contained in high
spectral coefficients are missing: this results in symmetric parts
on the body with small errors (see Figure 2 for a comparison).
Nevertheless, the model using only 1024 frequencies still man-
ages to reconstruct some parts of the body with more preci-
sion and more smoothness compared to SpiralNet++. Then, the
models using more frequencies give the same kind of results as
the one with 1024 frequencies but with more details.

5.4.3. Time per epoch
Times per epoch for the SAE-CP are first presented in Table

4. We can see that when treating more frequencies, the net-
work gets slower but is still faster than SpiralNet++. This is



Preprint Submitted for review /Computers & Graphics (2023) 9

Fig. 7. Comparison of reconstructions between Neural3DMM (left), Spiral-
Net++ (middle) and our model using 4096 frequencies, the SAE-LP-4096
(right). The latent dimension is 64. When reconstructing parts of body
not usually seen in the dataset, our model produces more detailed or more
smooth surfaces, especially on the hands.

because the SAE-CP number of layers depend on the number
of frequencies as input, leading to more convolutions applied
to bigger arrays of spectral coefficients. Then, Table 5 shows
the computation time per epoch of the SAE-LP. Taking as in-
put more spectral coefficients does not deteriorate the speed
and still gives training times that are much shorter than base-
lines. This is probably the main advantage of our method since
training on datasets with a lot more samples, like the AMASS
dataset sampled with more frames, is now feasible in a reduced
time.

5.4.4. Crossing databases
We then try to observe the ability of a model trained on a

dataset to generalise on a different one. Table 6 shows re-
sults when crossing datasets. Naturally, models trained on
the DFAUST dataset struggle to reconstruct meshes from the
AMASS dataset since the latter is larger. Inversely, models
trained on the AMASS dataset manage to get a score that is
close to the one obtained by models trained on the DFAUST
dataset. This shows the advantage for a model of being fast,
thus able to learn on a large dataset.

Latent size Test Train Mean Cross
dataset dataset (mm) error (mm)

8
DFAUST DFAUST 55.5 -

AMASS 64.0 +8.5

AMASS AMASS 57.4 -
DFAUST 119.2 +61.8

16
DFAUST DFAUST 33.0 -

AMASS 35.9 +2.9

AMASS AMASS 26.5 -
DFAUST 73.6 +47.1

64
DFAUST DFAUST 10.3 -

AMASS 17.9 +7.6

AMASS AMASS 5.1 -
DFAUST 27.9 +22.8

Table 6. Comparison of reconstruction errors when crossing datasets using
the model SAE-LP-4096. The cross error is the difference of mean recon-
struction between models trained on different datasets but evaluated on
the same. A model trained on AMASS, a big dataset, is able to correctly
reconstruct the DFAUST dataset which is smaller.

5.5. Interpolation
Finally, we show the interpolation capacity of our model

compared to Neural3DMM. By performing linear algebra in the
latent space, it is possible with an Auoencoder-like architecture
to generate new samples. We select two different samples from
the test set c1 and c2, encode them to their latent representations
z1 and z2, and produce new meshes by sampling along the line:
z = a ∗ z1 + (1 − a) ∗ z2, a ∈ [0, 1]. Figure 11 compares interpo-
lations between Neural3DMM and the SAE-LP-4096. For the
first line, meshes on the extremities are the ones sampled from
the test dataset, and the three meshes in the middle correspond
to linear interpolation of the Cartesian coordinates. When us-
ing all frequencies, the result is the same when interpolating
spectral coefficients since the Laplacian transform is a linear
function. For the two other lines, meshes on the extremities
are the reconstructions of the two sampled meshes. Then, in-
terpolated and decoded latent codes are presented in the three
middle columns for different a values. For the interpolation in
the spatial domain, the arms’ length of the model are greatly re-
duced, which is typically an unwanted behaviour when interpo-
lating human bodies. The two models manage to overcome this
problem, meaning that they built a latent space representing the
manifold of possible poses for a human body. Nevertheless, as
seen previously, the reconstruction quality of our model is bet-
ter than the Neural3DMM one, especially for a latent dimension
of 16 used here, leading to cleaner generated meshes. Also, it is
important to note that for all models, the interpolation capacity
is well represented only for this size of latent space where both
mean reconstruction error and latent space size are not too high.

6. Conclusion

This work falls in the category of Geometric Deep Learning
applied to triangular human meshes. The problem with cur-
rent state of the art methods is that they are limited by the high
number of vertices, the unstructured grid and the time of com-
putation. We showed in this paper that by using spectral mesh



10 Preprint Submitted for review /Computers & Graphics (2023)

Fig. 8. Comparison of reconstruction results between the baseline SpiralNet++, the SAE-CP and the SAE-LP using different number of frequencies and
latent dimensions on the AMASS dataset. The minimum attainable, represented as Spectral reconstruction, is computed for each number of frequencies
and corresponds to the mean error on the test dataset between original meshes and reconstructed meshes after an inverse spectral transform. Even when
using a simpler pooling method or less frequencies, the SAE is able to give competitive results.

Fig. 9. Examples of details on reconstructed meshes with models using dif-
ferent number of frequencies, zoomed on head and foot. Giving the model
access to higher frequencies leads to reconstructed meshes with more de-
tails.

processing methods on triangulated surfaces, we are able to
solve multiple problems. First, directly treating frequency coef-
ficients instead of Euclidean ones allows the direct application
of convolutions since spectral coefficients are ordered depend-
ing on their magnitudes. This notion also allows to increase
the speed of the networks since convolutions are done on ar-
rays without rearrangement instead of state of the art methods.
Furthermore, it is possible to increase the number of vertices
of meshes from the dataset while keeping the same neural net-
work architecture since there is no computation in the spatial
domain. Finally, upon these advantages, we showed that our
models give better results than state of the art methods in terms
of reconstruction and interpolation.

Fig. 10. Comparison of reconstructions between SpiralNet++ and the Spec-
tral Autoencoder with learned pooling using 1024, 2048 and 4096 frequen-
cies. The latent dimension is 64 for all models. While showing errors corre-
sponding to the lack of high frequency information, the model using 1024
frequencies still manages to reconstruct parts of the body in a better way
than SpiralNet++.



Preprint Submitted for review /Computers & Graphics (2023) 11

Fig. 11. The first line shows a linear interpolation of the two meshes’ Carte-
sian coordinates on the right and on the left. The second and third line
shows mesh generation by interpolating two samples’ latent codes in the
latent space. The latent dimension is 16 for the two models.

While our method still needs a constant connectivity (as state
of the art ones), it is possible to synchronize bases computed
from different triangulation. Future works will then be fo-
cused on trying to generalize this process to shapes of arbi-
trary topologies, enabling to directly work on triangulated out-
put from raw scans with a high number of vertices and a chang-
ing connectivity while keeping the same number of parameters
and the same speed of computation.

Acknowledgments

This work was supported by the ANR project Human4D
ANR-19-CE23-0020 and was granted access to the HPC re-
sources of IDRIS under the allocation 2022-AD011012424R1
made by GENCI.

Method Latent size 8 16 32 64 128

SAE-LP-512 400K 433K 499KK 630K 892K
SAE-LP-1024 662K 695K 761K 892K 1.15M
SAE-LP-2048 1.18M 1.22M 1.28M 1.41M 1.67M
SAE-LP-4096 2.23M 2.26M 2.33M 2.46M 2.72M

Table 7. Number of parameters for Spectral Autoencoders using learned
pooling. Most of the parameters are contained in the first downsampling
and the last upsampling matrices, especially when the number of used fre-
quencies is high.

Method Latent size 8 16 32 64 128

SAE-CP-512 159K 225K 356K 618K 1.14M
SAE-CP-1024 184K 250K 381K 643K 1.16M
SAE-CP-2048 209K 274K 405K 668K 1.19M
SAE-CP-4096 233K 299K 430K 692K 1.21M

Table 8. Number of parameters for Spectral Autoencoders using classic
pooling.

References

[1] Loper, M, Mahmood, N, Romero, J, Pons-Moll, G, Black, MJ. SMPL:
a skinned multi-person linear model. ACM Transactions on Graph-
ics 2015;34(6):1–16. URL: https://dl.acm.org/doi/10.1145/

2816795.2818013. doi:10.1145/2816795.2818013.
[2] Lim, I, Dielen, A, Campen, M, Kobbelt, L. A Simple

Approach to Intrinsic Correspondence Learning on Unstructured 3D
Meshes. arXiv:180906664 [cs] 2018;URL: http://arxiv.org/abs/
1809.06664; arXiv: 1809.06664.

[3] Defferrard, M, Bresson, X, Vandergheynst, P. Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filter-
ing. arXiv:160609375 [cs, stat] 2017;URL: http://arxiv.org/abs/
1606.09375; arXiv: 1606.09375.

[4] Xu, K, Kim, VG, Huang, Q, Kalogerakis, E. Data-Driven Shape Anal-
ysis and Processing. arXiv:150206686 [cs] 2015;URL: http://arxiv.
org/abs/1502.06686; arXiv: 1502.06686.

[5] Bronstein, MM, Bruna, J, LeCun, Y, Szlam, A, Vandergheynst, P.
Geometric deep learning: Going beyond euclidean data. IEEE Signal
Processing Magazine 2017;34(4):18–42. URL: https://doi.org/10.
1109/msp.2017.2693418. doi:10.1109/msp.2017.2693418.

[6] Xiao, YP, Lai, YK, Zhang, FL, Li, C, Gao, L. A survey on deep geom-
etry learning: From a representation perspective. Computational Visual
Media 2020;6(2):113–133. URL: https://link.springer.com/10.
1007/s41095-020-0174-8. doi:10.1007/s41095-020-0174-8.

[7] Wu, Z, Pan, S, Chen, F, Long, G, Zhang, C, Yu, PS. A Compre-
hensive Survey on Graph Neural Networks. IEEE Transactions on Neu-
ral Networks and Learning Systems 2021;32(1):4–24. URL: https://
ieeexplore.ieee.org/document/9046288/. doi:10.1109/TNNLS.
2020.2978386.

[8] Charles, RQ, Su, H, Kaichun, M, Guibas, LJ. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Honolulu, HI: IEEE. ISBN 978-1-5386-0457-1; 2017, p.
77–85. URL: http://ieeexplore.ieee.org/document/8099499/.
doi:10.1109/CVPR.2017.16.

[9] Qi, CR, Yi, L, Su, H, Guibas, LJ. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space.
arXiv:170602413 [cs] 2017;URL: http://arxiv.org/abs/1706.

02413; arXiv: 1706.02413.
[10] Aumentado-Armstrong, T, Tsogkas, S, Jepson, A, Dickinson,

S. Geometric Disentanglement for Generative Latent Shape Mod-
els. arXiv:190806386 [cs, eess] 2019;URL: http://arxiv.org/abs/
1908.06386; arXiv: 1908.06386.

[11] Cosmo, L, Norelli, A, Halimi, O, Kimmel, R, Rodolà, E. LIMP:
Learning Latent Shape Representations with Metric Preservation Pri-
ors. In: Vedaldi, A, Bischof, H, Brox, T, Frahm, JM, edi-
tors. Computer Vision – ECCV 2020; vol. 12348. Cham: Springer
International Publishing. ISBN 978-3-030-58579-2 978-3-030-58580-
8; 2020, p. 19–35. URL: https://link.springer.com/10.1007/

https://dl.acm.org/doi/10.1145/2816795.2818013
https://dl.acm.org/doi/10.1145/2816795.2818013
http://dx.doi.org/10.1145/2816795.2818013
http://arxiv.org/abs/1809.06664
http://arxiv.org/abs/1809.06664
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1502.06686
http://arxiv.org/abs/1502.06686
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1109/msp.2017.2693418
http://dx.doi.org/10.1109/msp.2017.2693418
https://link.springer.com/10.1007/s41095-020-0174-8
https://link.springer.com/10.1007/s41095-020-0174-8
http://dx.doi.org/10.1007/s41095-020-0174-8
https://ieeexplore.ieee.org/document/9046288/
https://ieeexplore.ieee.org/document/9046288/
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://ieeexplore.ieee.org/document/8099499/
http://dx.doi.org/10.1109/CVPR.2017.16
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1908.06386
http://arxiv.org/abs/1908.06386
https://link.springer.com/10.1007/978-3-030-58580-8_2


12 Preprint Submitted for review /Computers & Graphics (2023)

978-3-030-58580-8_2. doi:10.1007/978-3-030-58580-8_2; se-
ries Title: Lecture Notes in Computer Science.

[12] Crane, K, Weischedel, C, Wardetzky, M. Geodesics in heat: A new
approach to computing distance based on heat flow. ACM Transactions
on Graphics 2013;32(5):1–11. URL: https://dl.acm.org/doi/10.
1145/2516971.2516977. doi:10.1145/2516971.2516977.

[13] Rakotosaona, MJ, Ovsjanikov, M. Intrinsic Point Cloud Interpo-
lation via Dual Latent Space Navigation. In: Vedaldi, A, Bischof,
H, Brox, T, Frahm, JM, editors. Computer Vision – ECCV
2020; vol. 12347. Cham: Springer International Publishing. ISBN
978-3-030-58535-8 978-3-030-58536-5; 2020, p. 655–672. URL:
https://link.springer.com/10.1007/978-3-030-58536-5_39.
doi:10.1007/978-3-030-58536-5_39; series Title: Lecture Notes in
Computer Science.

[14] Thomas, H, Qi, CR, Deschaud, JE, Marcotegui, B, Goulette, F, Guibas,
L. KPConv: Flexible and Deformable Convolution for Point Clouds. In:
2019 IEEE/CVF International Conference on Computer Vision (ICCV).
Seoul, Korea (South): IEEE. ISBN 978-1-72814-803-8; 2019, p. 6410–
6419. URL: https://ieeexplore.ieee.org/document/9010002/.
doi:10.1109/ICCV.2019.00651.

[15] Masci, J, Boscaini, D, Bronstein, MM, Vandergheynst, P.
Geodesic convolutional neural networks on Riemannian manifolds.
arXiv:150106297 [cs] 2015;URL: http://arxiv.org/abs/1501.

06297; arXiv: 1501.06297.
[16] Boscaini, D, Masci, J, Rodolà, E, Bronstein, MM. Learn-

ing shape correspondence with anisotropic convolutional neural net-
works. arXiv:160506437 [cs] 2016;URL: http://arxiv.org/abs/
1605.06437; arXiv: 1605.06437.

[17] Fey, M, Lenssen, JE, Weichert, F, Müller, H. SplineCNN:
Fast Geometric Deep Learning with Continuous B-Spline Kernels.
arXiv:171108920 [cs] 2018;URL: http://arxiv.org/abs/1711.

08920; arXiv: 1711.08920.
[18] Bouritsas, G, Bokhnyak, S, Ploumpis, S, Zafeiriou, S, Bron-

stein, M. Neural 3D Morphable Models: Spiral Convolutional Net-
works for 3D Shape Representation Learning and Generation. In:
2019 IEEE/CVF International Conference on Computer Vision (ICCV).
Seoul, Korea (South): IEEE. ISBN 978-1-72814-803-8; 2019, p. 7212–
7221. URL: https://ieeexplore.ieee.org/document/9009455/.
doi:10.1109/ICCV.2019.00731.

[19] Ranjan, A, Bolkart, T, Sanyal, S, Black, MJ. Generating 3D Faces
Using Convolutional Mesh Autoencoders. In: Ferrari, V, Hebert,
M, Sminchisescu, C, Weiss, Y, editors. Computer Vision – ECCV
2018; vol. 11207. Cham: Springer International Publishing. ISBN
978-3-030-01218-2 978-3-030-01219-9; 2018, p. 725–741. URL:
http://link.springer.com/10.1007/978-3-030-01219-9_43.
doi:10.1007/978-3-030-01219-9_43; series Title: Lecture Notes in
Computer Science.

[20] Gong, S, Chen, L, Bronstein, M, Zafeiriou, S. SpiralNet++: A Fast
and Highly Efficient Mesh Convolution Operator. In: 2019 IEEE/CVF In-
ternational Conference on Computer Vision Workshop (ICCVW). Seoul,
Korea (South): IEEE. ISBN 978-1-72815-023-9; 2019, p. 4141–
4148. URL: https://ieeexplore.ieee.org/document/9021965/.
doi:10.1109/ICCVW.2019.00509.

[21] Monti, F, Boscaini, D, Masci, J, Rodola, E, Svoboda, J, Bronstein,
MM. Geometric Deep Learning on Graphs and Manifolds Using Mix-
ture Model CNNs. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Honolulu, HI: IEEE. ISBN 978-1-5386-
0457-1; 2017, p. 5425–5434. URL: http://ieeexplore.ieee.org/
document/8100059/. doi:10.1109/CVPR.2017.576.

[22] Verma, N, Boyer, E, Verbeek, J. FeaStNet: Feature-Steered Graph
Convolutions for 3D Shape Analysis. arXiv:170605206 [cs] 2018;URL:
http://arxiv.org/abs/1706.05206; arXiv: 1706.05206.

[23] Zhou, Y, Wu, C, Li, Z, Cao, C, Ye, Y, Saragih, J,
et al. Fully Convolutional Mesh Autoencoder using Efficient Spa-
tially Varying Kernels. In: Larochelle, H, Ranzato, M, Had-
sell, R, Balcan, MF, Lin, H, editors. Advances in Neural Infor-
mation Processing Systems; vol. 33. Curran Associates, Inc.; 2020,
p. 9251–9262. URL: https://proceedings.neurips.cc/paper/
2020/file/68dd09b9ff11f0df5624a690fe0f6729-Paper.pdf.

[24] Bruna, J, Zaremba, W, Szlam, A, LeCun, Y. Spectral Networks and
Locally Connected Networks on Graphs. In: 2nd International Con-
ference on Learning Representations, ICLR 2014, Banff, AB, Canada,

April 14-16, 2014, Conference Track Proceedings. 2014,URL: http:
//arxiv.org/abs/1312.6203.

[25] Kipf, TN, Welling, M. Semi-Supervised Classification with Graph
Convolutional Networks. arXiv:160902907 [cs, stat] 2017;URL: http:
//arxiv.org/abs/1609.02907; arXiv: 1609.02907.

[26] Vallet, B, Lévy, B. Spectral Geometry Processing with Man-
ifold Harmonics. Computer Graphics Forum 2008;27(2):251–260.
URL: https://hal.inria.fr/inria-00331894. doi:10.1111/j.
1467-8659.2008.01122.x.

[27] Reuter, M, Wolter, FE, Peinecke, N. Laplace–beltrami spec-
tra as ‘shape-DNA’ of surfaces and solids. Computer-Aided De-
sign 2006;38(4):342–366. URL: https://doi.org/10.1016/j.cad.
2005.10.011. doi:10.1016/j.cad.2005.10.011.

[28] Fiedler, M. Algebraic connectivity of graphs. Czechoslovak Mathe-
matical Journal 1973;23(2):298–305. URL: https://dml.cz/handle/
10338.dmlcz/101168. doi:10.21136/CMJ.1973.101168.

[29] Ying, R, You, J, Morris, C, Ren, X, Hamilton, WL, Leskovec,
J. Hierarchical Graph Representation Learning with Differentiable Pool-
ing. arXiv:180608804 [cs, stat] 2019;URL: http://arxiv.org/abs/
1806.08804; arXiv: 1806.08804.

[30] Bianchi, FM, Grattarola, D, Alippi, C. Mincut pooling in graph neu-
ral networks. 2020. URL: https://openreview.net/forum?id=
BkxfshNYwB.

[31] Doosti, B, Naha, S, Mirbagheri, M, Crandall, D. HOPE-
Net: A Graph-based Model for Hand-Object Pose Estimation.
arXiv:200400060 [cs] 2020;URL: http://arxiv.org/abs/2004.

00060; arXiv: 2004.00060.
[32] Chen, Z, Kim, TK. Learning Feature Aggregation for Deep 3D Mor-

phable Models. arXiv:210502173 [cs] 2021;URL: http://arxiv.org/
abs/2105.02173; arXiv: 2105.02173.

[33] Bogo, F, Romero, J, Pons-Moll, G, Black, MJ. Dynamic FAUST: Reg-
istering Human Bodies in Motion. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE. ISBN
978-1-5386-0457-1; 2017, p. 5573–5582. URL: http://ieeexplore.
ieee.org/document/8100074/. doi:10.1109/CVPR.2017.591.

https://link.springer.com/10.1007/978-3-030-58580-8_2
http://dx.doi.org/10.1007/978-3-030-58580-8_2
https://dl.acm.org/doi/10.1145/2516971.2516977
https://dl.acm.org/doi/10.1145/2516971.2516977
http://dx.doi.org/10.1145/2516971.2516977
https://link.springer.com/10.1007/978-3-030-58536-5_39
http://dx.doi.org/10.1007/978-3-030-58536-5_39
https://ieeexplore.ieee.org/document/9010002/
http://dx.doi.org/10.1109/ICCV.2019.00651
http://arxiv.org/abs/1501.06297
http://arxiv.org/abs/1501.06297
http://arxiv.org/abs/1605.06437
http://arxiv.org/abs/1605.06437
http://arxiv.org/abs/1711.08920
http://arxiv.org/abs/1711.08920
https://ieeexplore.ieee.org/document/9009455/
http://dx.doi.org/10.1109/ICCV.2019.00731
http://link.springer.com/10.1007/978-3-030-01219-9_43
http://dx.doi.org/10.1007/978-3-030-01219-9_43
https://ieeexplore.ieee.org/document/9021965/
http://dx.doi.org/10.1109/ICCVW.2019.00509
http://ieeexplore.ieee.org/document/8100059/
http://ieeexplore.ieee.org/document/8100059/
http://dx.doi.org/10.1109/CVPR.2017.576
http://arxiv.org/abs/1706.05206
https://proceedings.neurips.cc/paper/2020/file/68dd09b9ff11f0df5624a690fe0f6729-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/68dd09b9ff11f0df5624a690fe0f6729-Paper.pdf
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://hal.inria.fr/inria-00331894
http://dx.doi.org/10.1111/j.1467-8659.2008.01122.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01122.x
https://doi.org/10.1016/j.cad.2005.10.011
https://doi.org/10.1016/j.cad.2005.10.011
http://dx.doi.org/10.1016/j.cad.2005.10.011
https://dml.cz/handle/10338.dmlcz/101168
https://dml.cz/handle/10338.dmlcz/101168
http://dx.doi.org/10.21136/CMJ.1973.101168
http://arxiv.org/abs/1806.08804
http://arxiv.org/abs/1806.08804
https://openreview.net/forum?id=BkxfshNYwB
https://openreview.net/forum?id=BkxfshNYwB
http://arxiv.org/abs/2004.00060
http://arxiv.org/abs/2004.00060
http://arxiv.org/abs/2105.02173
http://arxiv.org/abs/2105.02173
http://ieeexplore.ieee.org/document/8100074/
http://ieeexplore.ieee.org/document/8100074/
http://dx.doi.org/10.1109/CVPR.2017.591

	Introduction
	Related work
	Convolution on point clouds
	Convolution on meshes
	Spatial domain
	Spectral domain


	Reminder about spectral mesh processing
	Spectral Autoencoder
	Preprocessing
	Convolutions on spectral coefficients
	Pooling

	Evaluation
	Datasets
	Implementation
	Comparison with baselines
	Quantitative results of reconstruction
	Qualitative results of reconstruction
	Time per epoch

	Ablation study
	Quantitative results
	Qualitative results
	Time per epoch
	Crossing databases

	Interpolation

	Conclusion

