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A B S T R A C T

Learning on surfaces is a difficult task: the data being non-Euclidean makes the transfer
of known techniques such as convolutions and pooling non trivial. Common methods
deploy processes to apply deep learning operations to triangular meshes either in the
spatial domain by defining weights between nodes, or in the spectral domain using first
order Chebyshev polynomials followed by a return in the spatial domain. In this study,
we present a Spectral Autoencoder (SAE) enabling the application of deep learning
techniques to 3D meshes by directly giving spectral coefficients obtained with a spectral
transform as inputs. With a dataset composed of surfaces having the same connectivity,
it is possible with the Graph Laplacian to express the geometry of all samples in the
frequency domain. Then, by using an Autoencoder architecture, we are able to extract
important features from spectral coefficients without going back to the spatial domain.
Finally, a latent space is built from which reconstruction and interpolation is possible.
This method allows the treatment of meshes with more vertices by keeping the same
architecture, and allows to learn on big datasets with short computation times. Through
experiments, we demonstrate that this architecture is able to give better results than state
of the art methods in a faster way.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction1

Recently, acquiring methods like motion capture have be-2

come more affordable and have therefore increased publicly3

available scans. It is now possible to digitize moving shapes4

such as body or faces while keeping the pose and appearance5

information at high spatial and temporal resolution. There is6

today a need to develop models able to treat the information7

coming from those scans that are most of the time represented8

as unordered point clouds.9

Most common types of deep learning techniques such as con-10

volutions, pooling and up sampling enable to generalize learned11

weights to unseen data in order to classify, segment or recon-12

struct from a latent space. Convolutional Autoencoders are use-13

ful tools to extract important features from observed samples14

in an unsupervised way. By forcing the input to go through a15

bottleneck, the network is able to construct a latent space rep- 16

resenting faithfully the manifold of the input samples like all 17

the possible poses of a human body for example. This inter- 18

esting property offers a way to generate new data by interpo- 19

lating in the latent space. When learning on images, the use of 20

convolutions is well defined, since the domain has a Euclidean 21

structure. But when learning on graphs or manifolds, since the 22

information now lies in a non-Euclidean domain, the applica- 23

tion of known architectures using convolutions, down and up 24

sampling is not well defined. Our work falls within this con- 25

cept of Geometric Deep Learning that aims to find techniques 26

capable of treating data lying on an unstructured grid. 27

We present a model that creates a compact representation 28

from 3D deformable shapes that share a common topological 29

structure. The main desired application using this representa- 30
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tion is generation, but others are possible such as classification,1

segmentation, correspondence or retrieval.2

Here, we focus on datasets representing human bodies. The3

first idea would be to directly treat raw output of scans, but4

methods having point clouds as input often lack of connectivity5

information when the studied objects are human shapes that can6

be deformed with near-isometric transformations. The second7

idea is to add links to those raw point clouds, transforming the8

data into triangular meshes with a lot of vertices and changing9

connectivity, and then feed them to neural networks. As of to-10

day, methods are not able to treat efficiently 3D data lying on an11

unstructured grid with a changing connectivity, especially when12

talking about human bodies. So most of the time the studied13

models need a more simplified type of input like meshes with a14

constant connectivity and a small number of vertices, ie SMPL15

[1], the human body model which parameterizes the mesh by16

3D joint angles and a low dimensional linear shape space.17

State of the art methods treat those triangular meshes with18

constant connectivity either in the spatial domain using spi-19

ral convolutions [2] or in the spectral domain using first-order20

Chebyshev polynomials [3]. In general, these methods are con-21

strained by the number of vertices, making the training expen-22

sive and long when meshes have a lot of nodes. Plus, the trans-23

fer of known and useful operations such as convolutions, pool-24

ing and up sampling from 2D to 3D still remains a challenge.25

We aim to solve these problems by using spectral methods in a26

different way.27

Inspired by spectral analysis applications, we alleviate the28

training of a neural network by discarding unessential informa-29

tion contained in very small details. It is known that a signal30

can be well approximated using a relatively small set of spectral31

coefficients corresponding to low frequencies. The idea of our32

work is to take profit from this energy compaction: by feeding a33

neural network only with coefficients that contain a significant34

amount of energy, the problems arising when treating triangular35

meshes like the high number and the non-ordering of vertices36

can be solved. Indeed, the quantity of data given to the model37

can be drastically reduced using spectral compaction, and the38

ordering coming from the difference of magnitudes of these co-39

efficients can be exploited to define an ordering. An illustration40

of the general process is presented in Figure 1.41

Main contributions42

We present a process that enables us to use traditional ar-43

chitectures on surfaces by using spectral mesh processing. By44

transforming the geometry of meshes in the spectral domain45

with the Graph Laplacian, we obtain spectral coefficients that46

have a known order. Then, using an Autoencoder like architec-47

ture, we can directly apply convolutions and down/up sampling48

operations to those coefficients. Our method falls within the49

class of AE-based generative models for 3D shapes. The main50

contributions of the proposed network are:51

• the application of deep learning techniques to spectral co-52

efficients of triangular meshes without going back to the53

spatial domain,54

• an architecture that can treat meshes in an alleviated way 55

by using a smaller number of frequencies than the number 56

of vertices, 57

• an architecture that gives better results than state of the art 58

methods in a much faster way in order to be able to treat 59

big datasets. 60

The code will be released so that the generation of the 61

datasets and the training can be reproduced. Also, pre-trained 62

models will be given. 63

2. Related work 64

In order to transfer deep learning techniques to 3D data, early 65

methods transform the inputs to voxels or images. Here, we will 66

focus only on methods based on the treatment of surfaces di- 67

rectly. Methods using point clouds, surfaces without connectiv- 68

ity information, only rely on the Cartesian coordinates of each 69

point, whereas graphs/manifolds methods exploit the known 70

connectivity, and can be used in two different domains: spatial 71

or spectral. Interested readers can refer to surveys [4, 5, 6, 7]. 72

2.1. Convolution on point clouds 73

Most point cloud based methods come from the work of 74

Charles et al. [8] and Qi et al. [9]. Aumentado-Armstrong 75

et al. [10] define a VAE able to disentangle intrinsic and extrin- 76

sic information using spectral information prior in an unsuper- 77

vised way. Cosmo et al. [11] introduced a stronger geometric 78

prior by making the latent space preserve computed geodesic 79

distances using the work from Crane et al. [12] on generated 80

surfaces. Rakotosaona et al. [13] presented a double autoen- 81

coder architecture, one extracting features from point clouds 82

and the other one extracting features from edge lengths. Then, 83

by mapping the two latent spaces, the network is able to real- 84

istically interpolate between two point clouds using the edge 85

lengths latent space. All these architectures use PointNet as 86

an encoder, enabling to study on variable topology and reduc- 87

ing the limitations in the type of input data employed, but is 88

also making them unable to capture local correlation between 89

neighboor vertices: while having the advantage of using sim- 90

ple and efficient architectures, their capacity to reveal precise 91

local surfaces features are often less than structures having ac- 92

cess to connectivity information. More recently, Thomas et al. 93

[14] introduced KPConv that treats each node of a point cloud 94

by weighting it depending on the Euclidean distances with its 95

neighboorhood, thus having more information about the local 96

correlation of the surface. However, those are obtained using a 97

K-nearest algorithm, and wrong local links can be found. Meth- 98

ods using PointNet or KPConv architectures then lack of con- 99

nectivity information, especially when treating human surfaces 100

that can be deformed using near-isometric transformations, and 101

meshes-like structures are often more performant. 102



Preprint Submitted for review /Computers & Graphics (2022) 3

Fig. 1. Illustration of the general process. A mesh, lying in the spatial domain and represented as x, y, z coordinates, is transformed into frequency
coefficients lying in the spectral domain represented as u, v,w coordinates. Then, an Autoencoder is trained in order to reconstruct those spectral coefficients
by passing them through a bottleneck. There is no return in the spatial domain during training. Finally, the output mesh can be recovered from the output
spectral coefficients with an inverse spectral transform.

2.2. Convolution on meshes1

The main problem when transferring known deep learning ar-2

chitectures to meshes is that the grid lacks of general structure.3

Architectures using the connectivity of meshes can be discerned4

into two categories: the ones using computations in the spatial5

domain and the ones using computations in the spectral domain.6

2.2.1. Spatial domain7

In the spatial domain, the global grid in a graph is irreg-8

ular: there is a need to specify an order for the neighbour-9

ing nodes. In order to be able to slide a window kernel over10

the vertices, spatial based methods need to define convolutions11

based on these nodes’ spatial relations. It is then necessary12

to compute weights between them. The convolution operation13

on those irregular graphs has been defined in different ways.14

First, those weights can be static, learned with a preprocess15

computation. Technics with mixture models/local parameter-16

ization were used: Masci et al. [15] applied filters to local17

patches represented in geodesic polar coordinates. Boscaini et18

al. [16] exploited the same idea by formulating local intrin-19

sic patches on meshes, and Fey et al. [17] utilized pre-defined20

local pseudo-coordinate systems over the graphs. Also, tech-21

niques with spiral like convolutions were used: preliminar work22

by Lim et al. [2] introduced spiral convolutions with SpiralNet.23

Bouritsas et al. [18] used similar spiral convolutions with Neu-24

ral3DMM coupled with an Autoencoder based on CoMA ar-25

chitecture [19]. Gong et al. [20] proposed an upgraded version26

with SpiralNet++ [20]. Then, those filters can be dynamically27

learned. Monti et al. [21] introduced MoNet, a mixture model28

with learned weights. Verma et al. [22] presented FeastNet,29

a graph convolution operator enabling the computation of dy-30

namic correspondences between kernel weights and neighbor-31

ing nodes with arbitrary connectivity. Zhou et al. [23], inspired32

by the spiral method, proposed vertex-wise weighted convolu-33

tions.34

The advantage of spatial techniques is that they generalize 35

across domains and are able to learn filters that are intrinsic 36

and accurate. The downside is that they are not robust to near- 37

isometric deformations and can be time consuming if meshes 38

have a lot of vertices. 39

2.2.2. Spectral domain 40

The concept of the spectral domain methods rely on the con- 41

volution theorem saying that a convolution in the spatial do- 42

main is equivalent to a pointwise product in the spectral do- 43

main. Bruna et al. [24] first used the Laplacian eigenvectors 44

to project features/kernel on them and to multiply those pro- 45

jections before going back to the spatial domain, but this re- 46

sulted in a slow process. Instead of computing eigenvectors, 47

Defferrard et al. [3] used truncated Chebyshev polynomials and 48

Kipf et al. [25] used only first-order Chebyshev polynomials, 49

resulting in a faster way to do convolutions in the spectral do- 50

main. Ferrari et al. [19] used Convolutional Mesh Autoencoder 51

(CoMA) based on ChebyNet and spatial pooling. They gener- 52

alized downsampling and upsampling layers to meshes by col- 53

lapsing unimportant edges based on quadric error measure, that 54

some spatial methods also use. 55

A drawback of these methods is that they still use spatial 56

downsampling/upsampling. This prevents to fully exploit the 57

profits of the spectral domain: the speed of computation. Also, 58

more recent spatial methods outperformed their ability to re- 59

construct and generate meshes from a latent space. We aim to 60

use spectral mesh analysis in a different and novel way. 61

The challenge when trying to develop convolutions on graphs 62

or manifolds is the lack of an order for the nodes. Also, the 63

number of vertices of meshes in a dataset is still a constraint. 64

To overcome those problems, we aim at designing a model that 65

works on an ordered point cloud: the spectral coefficients. This 66

enables the direct application of convolutions without needing 67
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Fig. 2. Transform / inverse transform mean errors as a function of the cho-
sen number of eigenvectors. Displayed meshes correspond to 64, 512, 1024
and 6890 frequencies respectively. By using all available frequencies (6890,
the number of vertices), the exact geometry is recovered.

to define a special ordering. Also, our model does not need1

to go back to the spatial domain since the down/up sampling2

operations are done in the spectral domain. This allows us to3

develop a process that is fast and that only needs for preprocess-4

ing the computation of eigenvectors of one mesh from a dataset5

with constant connectivity and the spectral transformation of all6

meshes in the dataset to spectral coefficients.7

We start by reminding the reader about spectral mesh analy-8

sis, allowing the transformation of a triangulated surface to the9

frequency domain. Then, we introduce the Spectral Autoen-10

coder, a neural network that takes as input spectral coefficients11

containing compacted meshes’ geometry information.12

3. Reminder about spectral mesh processing13

In spectral mesh processing, surfaces are studied through op-14

erators which are usually variants of the Laplacian and provide15

new bases serving various processing applications. Vallet et al.16

[26] proposed a fast computation algorithm for the Laplace-17

Beltrami eigenfunctions of meshes up to a million vertices.18

Reuter et al. [27] introduced a method to extract Shape-DNA, a19

signature made of the Laplace–Beltrami operator’s eigenvalues.20

Here, we will focus on the use of the topological Laplacian [28].21

22

A triangular mesh M can be expressed as a set of 3D points P23

coupled with a triangulation. Each point pi ∈ P is represented24

as absolute Cartesian coordinates: pi = (xi, yi, zi), i ∈ [1, n], n25

being the number of vertices. It is then possible to transform26

those absolute coordinates to spectral coefficients by using a27

topological operator: the Graph Laplacian [28]. If A is the ad-28

jacency matrix, and D is the diagonal matrix of degrees of each29

vertex, then the Graph Laplacian L is defined as:30

L = D − A (1)

It is important to note that a dataset of meshes with a con-31

stant connectivity will have only one common Graph Laplacian.32

33

This Graph Laplacian is a square matrix of size n∗n, and can34

be decomposed into a chosen number of k scalar eigenvalues35

λi and k eigenvectors ϕi with i ∈ [1, k] and k <= n. Pairs of36

Fig. 3. On the left, example of low frequency spectral coefficients in 3D
(only the 6 first are labeled for visibility). On the right, magnitudes of the
first 100 coefficients. Low frequencies have higher magnitudes than high
frequencies.

eigenvalue and eigenvector satisfy the equation −Lϕi = λiϕ
i. 37

38

The eigenvectors are of size n and correspond to columns of 39

the matrix: 40

Φ =


ϕ1

1 ϕ2
1 ... ϕk

1
...
...
...
...

ϕ1
n ϕ2

n ... ϕk
n

 (2)

Using these eigenvectors, it is possible to transform the 41

absolute coordinates of mesh vertices to spectral coefficients 42

and to inverse transform the spectral coefficients to absolute 43

coordinates using matrix multiplications: C = ΦT · P and 44

P = Φ · C respectively. Depending on the chosen number k of 45

eigenvectors, the recovered geometry after an inverse transform 46

will be more or less low pass filtered (see Figure 2). 47

48

Spectral coefficients C are a set of 3D points. Each 49

point can be represented as frequency coordinates: 50

ci = (ui, vi,wi), i ∈ [1, k] (see Figure 3). They contain 51

information about the geometry of the original vertices in 52

a compressed form. More specifically, the most important 53

part is contained in the low frequencies, representing the 54

general aspect of the surface, whereas the details are located 55

in high frequencies. The idea of our work relies on this fact: 56

visually, small details in high frequencies could be discarded, 57

enabling to treat less information with approximately the 58

same precision. This is why the truncated spectral coefficients 59

are the input of the presented neural network in the next section. 60

61

Spectral mesh processing therefore provides a basis defined 62

by the eigenvectors for mesh compression/reconstruction. The 63

spectral transform and the inverse spectral transform being lin- 64

ear functions, operations in the frequency domain (e.g. interpo- 65

lation) exhibits the same artifacts as in the spatial one like non 66

conservation of edge length or triangle area. In early works, 67

the frequency domain was used to alleviate the task of editing 68

or morphing often done in the spatial domain by truncating the 69

number of used frequencies. Here, we aim at alleviating the 70

work of a deep learning model by directly giving as input trun- 71

cated spectral coefficients in order to extract useful features in 72
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Fig. 4. Illustration of the Spectral Autoencoder with learned pooling using 4096 frequencies (SAE-LP-4096).

an unsupervised way. This allows to go further and create an1

even more compact latent space.2

4. Spectral Autoencoder3

We now introduce how our Spectral Autoencoder (SAE)4

takes the spectral coefficients as input. The general process is5

presented in Figure 1 and an illustration of the Spectral Au-6

toencoder is shown in Figure 4. First, the geometry of a mesh7

is transformed to spectral coefficients using the spectral trans-8

form presented in the previous section. Then, those spectral co-9

efficients are given to a deep convolutional Autoencoder able10

to learn hierarchical representations by making the input go11

through multiple layers. We here introduce how the data is12

preprocessed and how the convolutions and down/up sampling13

operations are applied to the spectral coefficients.14

4.1. Preprocessing15

The first step of preprocessing is the computation of the16

eigenvectors. The idea here is to not use all available frequen-17

cies, but rather a truncated version of them. In section 5, we18

show the impact of using different number of frequencies. Then19

the vertices of all samples in the dataset are transformed into20

spectral coefficients. We can see in Table 1 the preprocessing21

times of computation in terms of number of eigenvectors. They22

are reasonable in comparison with the spirals time calculation23

from [18, 20].24

4.2. Convolutions on spectral coefficients25

Convolutions are the major building blocks in deep learning26

applications. In 2D, they allow the extraction of useful features27

from images in an efficient way since they are fast to compute28

and they reduce the number of parameters of a neural network.29

It is therefore natural to try to extend the application of con-30

volutions to other domains than images. As said in Section31

2, the main contributions to apply convolutions on triangular32

meshes take place either in the spectral domain or in the spatial33

domain. Ranjan et al. [19] built a convolutional autoencoder34

(CoMA) upon ChebNet with spectral convolutional filters, re-35

sulting in isotropic kernels with limited expressiveness. Bourit-36

sas et al. [18] improved those results with a spiral convolu-37

tion operator (Neural3DMM [18]) that defines an explicit order38

of the neighbors, resulting in anisotropic filters. However, this39

method requires to define starting vertices for spiral orders, pre-40

venting from efficiently exploiting the irregular structure of the41

connectivity. Additionnaly, performance decays are involved 42

since zero-padding is needed in order to have fixed-size spirals. 43

Gong et al. [20] introduced SpiralNet++, an improved version 44

of Neural3DMM, making the convolutions faster by avoiding 45

the zero paddings. 46

SpiralNet++, which is the most efficient and fastest way to do 47

convolutions on meshes, still needs to define an order for convo- 48

lutions on vertices, making the implementation a complex one. 49

In our work, we simplify this process by doing convolutions on 50

the array of spectral coefficients in a natural way since the fre- 51

quencies are already ordered. Figure 4 shows an illustration of 52

the presented Spectral Autoencoder with learned pooling using 53

4096 frequencies (SAE-LP-4096). By simply sliding a convo- 54

lution kernel over the coefficients, we show that the network is 55

able to learn interesting features. 56

4.3. Pooling 57

The behaviour of a neural network is closely related to the 58

pooling procedure. Classical works for 1D signals or 2D im- 59

ages use a sliding window in order to retain only the maximum 60

values in local regions for downsampling, and add values for 61

upsampling to bring back a higher resolution for the next layer. 62

For meshes, Ranjan et al. [19] introduced a down/up sampling 63

method in the spatial domain. Downsampled meshes are com- 64

puted by contracting edges while maintaining surface error ap- 65

proximation and upsampled meshes are computed creating ver- 66

tices from the triangles barycentric coordinates of the down- 67

sampled meshes. Those operations are represented as trans- 68

form matrices. Some works proposed to learn these aggrega- 69

tion weights with dense mapping [29, 30] or fully-connected 70

layers [31]. Chen et al. [32] introduced a method where they 71

are learned through an attention module in order to avoid over- 72

parameterization. 73

In our work, we chose to down/up sample the spectral coef- 74

ficients with two methods. The first one consists in applying 75

classical maxpooling/upsampling operations. We will refer to 76

this method as Spectral Autoencoder - Classic Pooling (SAE- 77

CP). The second one consists in learning the mapping matrices, 78

as in the work from Chen et al. [32]. But we did not use an 79

attention module since learning directly parameters is simpler 80

and we do not use all available frequencies so it does not lead 81

to over-parameterization. We will refer to this method as Spec- 82

tral Autoencoder - Learned Pooling (SAE-LP). In this case, 83
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down/upsampling matrices are simply filled with learnable pa-1

rameters. Then, during training, these parameters are learned2

along with the other parameters of the model. See Figure 5.3

We show in the next section the comparison of using classical4

maxpooling/upsampling and using learned down/up sampling5

matrices, along with a comparison between multiple choices of6

used number of frequencies.7

5. Evaluation8

In this section, we evaluate the presented models. We first9

introduce used datasets and give details on the implementation.10

Then, we evaluate our best model against two baselines: Neu-11

ral3DMM [18] and SpiralNet++ [20] by presenting quantitative12

and qualitative results and by comparing the speed of computa-13

tion. Next, an ablation study shows that using less frequencies14

still gives good result while reducing the number of parameters15

of models. Then, we show that it is possible to interpolate in16

the latent space in order to generate realistic meshes.17

5.1. Datasets18

DFAUST. The dataset from the work of Bogo et al. [33]19

consists of 41,220 body meshes having 6890 vertices from 1020

identities performing multiple actions. We split the data into21

32,535 samples for training representing the first 8 identities22

and 8,685 samples for testing representing the last 2 identities.23

AMASS. The dataset from the work of Mahmood et al. [34]24

is a unification of 15 smaller ones by fitting SMPL [1] body25

model to motion capture markers, consisting of 344 subjects26

and more than 10K motions. We follow the protocol splits: 127

out of 100 frames is selected for the middle 90% portion of each28

sequence, resulting in 111,327 meshes for training and 10,73329

for testing. Identities are not shared between the train and test30

dataset. We preprocess the surfaces so that they are centered at31

the origin and oriented towards the same direction.32

The metric used for the experiment is a measure of the quality33

of reconstructed meshes from the latent space. It is computed34

as the average distance in millimeters between corresponding35

vertices of the input and output meshes. This measures the ca-36

pacity of the model to obtain a compact representation and to37

generalise to novel surfaces from the distribution it was trained38

on. All models are not normalized and have the actual size of39

the person.40

5.2. Implementation41

We follow the setting of previous works for the architectures42

of models.43

Neural3DMM and SpiralNet++: the convolutional filters44

of the encoder have sizes [3, 16, 32, 64, 128]. A fully-connected45

layer then maps the data to the wanted latent size. After another46

fully-connected layer, the convolutional filters of the decoder47

have sizes [128, 64, 32, 16, 16]. A last convolutional layer maps48

the data to the number of features of the geometry, 3. Dilated49

convolutions with h = 2 hops and dilation ratio r = 2 are used for50

the first and the last two layers of the encoder and the decoder51

Method Eigenvectors DFAUST Total DFAUST AMASS Total AMASS

Neural3DMM - - ∼ 30s - ∼ 30s
SpiralNet++ - - ∼ 30s - ∼ 30s
SAE-*-6890 ∼40s ∼3s ∼ 43s ∼16s ∼ 56s
SAE-*-4096 ∼28s ∼2s ∼ 30s ∼12s ∼ 40s
SAE-*-2048 ∼36s ∼1s ∼ 37s ∼8s ∼ 44s
SAE-*-1024 ∼9s ∼0.5s ∼ 9.5s ∼7s ∼ 16s
SAE-*-512 ∼3.5s ∼0.3s ∼ 3.8s ∼3.2s ∼ 6.7s

Table 1. Comparison of preprocessing times. For Neural3DMM and Spi-
ralNet++, spirals are computed only once on a template mesh, so the time
does not depend on the dataset size. SAE-*-k stands for our Spectral Au-
toencoder with classic pooling or learned pooling using k frequencies. For
our method, this time depends on the eigenvectors computation (column
Eigenvectors) and on the transformation of all meshes in a dataset to spec-
tral coefficients (columns DFAUST and AMASS). Even with 4096 frequen-
cies, the preprocessing time is reasonable compared to spirals method. The
fact that the computation of eigenvectors for 2048 frequencies is longer
than for 4096 comes from the eigensolver.

Fig. 5. Illustration of the two pooling methods used when downsampling
2048 frequencies. (a) - A classic pooling window of size 2 with stride 2 al-
lows to reduce the resolution of the spectral coeffcients by a factor of 2. This
method is referred to Spectral Autoencoder with classic pooling (SAE-CP).
(b) - the downsampled spectral coefficients are computed by multiplying
them with a matrix containing learnable parameters. The downsampling
factor is larger than with the classic pooling (see Section 5.2 for more in-
formation). This method is referred to Spectral Autoencoder with learned
pooling (SAE-LP).

respectively. The sizes of the spirals are [12, 14, 9, 9] for the 52

encoder and [9, 9, 14, 12, 12] for the decoder. 53

We recall that for the two baselines, the inputs are the 54

meshes’ Cartesian coordinates from the spatial domain stan- 55

dardized with mean equal to zero and standard deviation equal 56

to one. For our models, the inputs are the spectral coefficients. 57

SAE-CP-k: the construction of the Spectral Autoencoder 58

with classic pooling using k frequencies follows com- 59

mon Autoencoder architectures using convolutions and pool- 60

ing/upsampling operations. The chosen number of frequencies 61

of the input spectral coefficients is always a power of two. Then, 62

the number of layers of the encoder depends on the number of 63

times we have to divide by two in order to have 32 remaining 64

frequencies after the last maxpooling step: 4 steps for 512 fre- 65

quencies, 5 steps for 1024 and so on. For 512 frequencies, the 66

convolutional filters of the encoder have sizes [3, 32, 64, 64, 67

128]. The decoder has convolutional filters of sizes [128, 64, 68
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64, 32, 32, 3]. If more layers are needed because more frequen-1

cies are used, we duplicate the filters of size 64. The sizes of the2

convolutions kernels are 3 for all layers with a padding of 1 so3

that the length of the input is not modified after the convolution4

is applied. Also, the size of the window for maxpooling and the5

scale factor of the upsampling is 2 for all layers.6

SAE-LP-k: the construction of the Spectral Autoencoder7

with learned pooling using k frequencies is similar to the pre-8

vious one except for the down/up sampling layers. The convo-9

lutional filters of the encoder have sizes [3, 16, 32, 64, 128].10

Instead of doing classical maxpooling or upsampling, mapping11

matrices containing learnable parameters are created. Then,12

those parameters are learned along with the other components13

of the model. The sizes of the matrices for the encoder are [k,14

256, 64, 32, 16], k being the chosen number of frequencies. For15

the decoder, the convolutional filters have sizes [128, 64, 32, 16,16

16, 3]. The matrices for upsampling are of the same size as the17

encoder ones in reverse order. The sizes for the convolutions18

kernels are also 3 for this model with padding of 1.19

All models are trained on the same hardware. The batch size20

is 16, the learning rate is 1e-4 and a scheduler is used so that21

the learning rate is reduced by a factor of 0.1 when the recon-22

struction has stopped improving (with a threshold of 1e-4) for23

3 epochs. Models are trained for a maximum of 20 hours.24

5.3. Comparison with baselines25

We first evaluate our model giving the best results: the26

SAE-LP-4096. Differences between mean reconstructions on27

test datasets, visual quality of the reconstructed meshes and28

the times per epoch are compared to the two baselines Neu-29

ral3DMM [18] and SpiralNet++ [20].30

5.3.1. Quantitative results of reconstruction31

We follow [18] for the choice of latent sizes, based on the32

variance explained by PCA of roughly 85%, 95% and 99%33

of the total variance. Fig 6 shows results of reconstruction34

accuracy on the DFAUST and AMASS dataset. Here, the35

SAE-LP-4096 is a model that takes as input 4096 frequencies.36

We can see that for all latent sizes, our model outperforms37

the two baselines. Table 2 shows the number of parameters38

of the three neural networks. The SAE-LP-4096 clearly has a39

lot more, but 90% of these parameters are concentrated in the40

first downsampling and the last upsampling matrix (see Section41

5.2). Additionnaly, we show in the Section 5.4 that models42

with the same architecture but without that much parameters43

still manage to get competitive results.44

45

Moreover, we can compare the compression capacity of the46

model’s latent space with the compression capacity of the spec-47

tral domain. This can be done by simply measuring the recon-48

struction error after applying a spectral transform and then an49

inverse spectral transform (as in Fig 2) on all the test dataset’s50

meshes when using a number of frequencies similar to the eval-51

uated number of latent dimensions. On the DFAUST dataset,52

the mean reconstruction errors when using 3, 6 and 22 fre-53

quencies (resulting in 9-18-66 dimensions respectively since54

Method Latent size 8 16 64

Neural3DMM 274K 331K 675K
SpiralNet++ 415K 471K 802K

SAE-LP-4096 2.23M 2.26M 2.46M

Table 2. Comparison of the number of parameters in function of the latent
space size. In this case, our model uses 4096 frequencies. More than 90% of
the parameters for the SAE-LP-4096 are located in the first downsampling
and the last upsampling matrices.

there are 3 coordinates u, v, w) are 368.1±42.7, 96.5±10.7 and 55

54.7±3.6 millimeters respectively. Fig 6 exhibits reconstruction 56

errors for 8-16-64 latent dimensions of 55.5±16.9, 33.0±10.7, 57

10.3±2.7 millimeters respectively. This clearly shows that the 58

latent spaces built by the model have a better compression ca- 59

pacity. 60

5.3.2. Qualitative results of reconstruction 61

Visual reconstructions are shown in Fig 7. We compare mod- 62

els all with a latent dimension of 64. The main observation 63

is that when the baselines have to handle parts of bodies in a 64

position not oftenly saw during training (especially arms and 65

hands), we can see that the details are more degenerated. In 66

contrast, the Spectral Autoencoder is able to reconstruct them 67

with more smoothness, leading to visually better results. This 68

can be explained by the fact that, during early training, our mod- 69

els first learn to better reconstruct the information contained in 70

the low frequencies since low coefficients have a higher mag- 71

nitudes than the high frequency ones. This leads to body parts 72

in the right position but without enough details. Then, in late 73

part of training, the model learns to reconstruct the details. In 74

contrast, the baselines struggle to reconstruct those body parts. 75

5.3.3. Time per epoch 76

The main advantage of our method is the speed of compu- 77

tation. We can see in Table 3 the difference of time per epoch 78

for Neural3DMM, SpiralNet++ and the SAE-LP-4096. Since 79

we do not take as input all available frequencies, the process 80

is much faster, while still having access to important frequen- 81

cies. Also, Neural3DMM and SpiralNet++ need to rearange 82

the arrays of vertices in order to do convolutions specified by 83

the precomputed spirals, unlike our method where convolutions 84

are done on arrays in a classical way. Then, even if SpiralNet++ 85

managed to decrease the computation time per epoch compared 86

to Neural3DMM, our network is way faster. 87

We showed that the Spectral Autoencoder with learned pool- 88

ing using 4096 frequencies is able to learn features on triangu- 89

lar meshes and construct a latent space where reconstruction is 90

possible, giving better results than state of the art methods. We 91

now show the impact of using different configurations for our 92

architecture. 93

5.4. Ablation study 94

In this section, we evaluate the behaviour of our architecture 95

using learned pooling, classic pooling and a different number 96

of frequencies. We first present quantitative results in order to 97
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Fig. 6. Reconstruction results on DFAUST and AMASS datasets between Neural3DMM, SpiralNet++ and our best model. For all latent sizes, our method
outperforms the two baselines.

Method DFAUST AMASS

Neural3DMM ∼ 156s ∼ 472s
SpiralNet++ ∼ 68s ∼ 200s

SAE-LP-4096 ∼ 28s ∼ 83s

Table 3. Time per epoch comparison on DFAUST and AMASS Datasets
between the SAE-LP-4096 and the baselines. Our model is faster by a
large margin.

Method AMASS

SAE-CP-512 ∼ 84s
SAE-CP-1024 ∼ 89s
SAE-CP-2048 ∼ 93s
SAE-CP-4096 ∼ 115s

Table 4. Time per epoch of models with classic pooling. For the SAE-CP,
increasing the number of given frequencies leads to higher computation
times because the factor of downsampling is 2, leading to arrays of bigger
sizes in hidden layers. See Figure 5.

.

compare the mean reconstruction error with different configu-1

rations. Then, results are presented showing the capacity of a2

model trained on a dataset to generalise on the other dataset.3

Finally, qualitative results show that the reconstructed meshes4

are still visually acceptable even when using less frequencies.5

5.4.1. Quantitative results6

Tables 7 and 8 show the number of parameters in function of7

the number of used frequencies and the size of the latent space.8

Results of reconstruction on the AMASS dataset using different9

configurations are presented in Figure 8. The red line indicates10

the best attainable score for each number of used frequencies,11

corresponding to the mean error on the test dataset after an in-12

verse spectral transform, see Figure 2. It is clear that when13

using 512 frequencies, our models can’t have a better score for14

a latent dimension of 128. First, for a latent dimension of 16,15

both our architectures give better results. For a latent dimension16

of 32, the SAE-CP gives similar results as the baseline, while17

the SAE-LP still has a better reconstruction score. For higher18

Method AMASS

SAE-LP-512 ∼ 80s
SAE-LP-1024 ∼ 83s
SAE-LP-2048 ∼ 83s
SAE-LP-4096 ∼ 83s

Table 5. Time per epoch of models with learned pooling in function of used
frequencies. Even with more frequencies, the time of computation remains
constant.

latent dimensions, the SAE-CP struggles and outputs less ac- 19

curate meshes while the SAE-LP gives similar results than the 20

baselines when using a low number frequencies, and gives bet- 21

ter scores when using more frequencies. The worse behaviour 22

of the SAE-CP comes from the pooling method, corrected by 23

the one used with the SAE-LP. Also, when using too few fre- 24

quencies, the networks do not have access to details informa- 25

tion, leading to meshes without enough precision. Additional 26

results are given in the table in supplementary material. 27

5.4.2. Qualitative results 28

Different levels of details on a head and a foot of recon- 29

structed meshes with different number of used frequencies are 30

presented in Figure 9. We can see that by giving enough fre- 31

quencies to the model, it is able to reconstruct meshes with as 32

much precision as Neural3DMM. Then, Figure 10 shows visual 33

results compared to SpiralNet++. For reconstructed meshes 34

with 1024 frequencies, we can see that details contained in high 35

spectral coefficients are missing: this results in symmetric parts 36

on the body with small errors (see Figure 2 for a comparison). 37

Nevertheless, the model using only 1024 frequencies still man- 38

ages to reconstruct some parts of the body with more preci- 39

sion and more smoothness compared to SpiralNet++. Then, the 40

models using more frequencies give the same kind of results as 41

the one with 1024 frequencies but with more details. 42

5.4.3. Time per epoch 43

Times per epoch for the SAE-CP are first presented in Table 44

4. We can see that when treating more frequencies, the net- 45

work gets slower but is still faster than SpiralNet++. This is 46
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Fig. 7. Comparison of reconstructions between Neural3DMM (left), Spiral-
Net++ (middle) and our model using 4096 frequencies, the SAE-LP-4096
(right). The latent dimension is 64. When reconstructing parts of body
not usually seen in the dataset, our model produces more detailed or more
smooth surfaces, especially on the hands.

because the SAE-CP number of layers depend on the number1

of frequencies as input, leading to more convolutions applied2

to bigger arrays of spectral coefficients. Then, Table 5 shows3

the computation time per epoch of the SAE-LP. Taking as in-4

put more spectral coefficients does not deteriorate the speed5

and still gives training times that are much shorter than base-6

lines. This is probably the main advantage of our method since7

training on datasets with a lot more samples, like the AMASS8

dataset sampled with more frames, is now feasible in a reduced9

time.10

5.4.4. Crossing databases11

We then try to observe the ability of a model trained on a12

dataset to generalise on a different one. Table 6 shows re-13

sults when crossing datasets. Naturally, models trained on14

the DFAUST dataset struggle to reconstruct meshes from the15

AMASS dataset since the latter is larger. Inversely, models16

trained on the AMASS dataset manage to get a score that is17

close to the one obtained by models trained on the DFAUST18

dataset. This shows the advantage for a model of being fast,19

thus able to learn on a large dataset.20

Latent size Test Train Mean Cross
dataset dataset (mm) error (mm)

8
DFAUST DFAUST 55.5 -

AMASS 64.0 +8.5

AMASS AMASS 57.4 -
DFAUST 119.2 +61.8

16
DFAUST DFAUST 33.0 -

AMASS 35.9 +2.9

AMASS AMASS 26.5 -
DFAUST 73.6 +47.1

64
DFAUST DFAUST 10.3 -

AMASS 17.9 +7.6

AMASS AMASS 5.1 -
DFAUST 27.9 +22.8

Table 6. Comparison of reconstruction errors when crossing datasets using
the model SAE-LP-4096. The cross error is the difference of mean recon-
struction between models trained on different datasets but evaluated on
the same. A model trained on AMASS, a big dataset, is able to correctly
reconstruct the DFAUST dataset which is smaller.

5.5. Interpolation 21

Finally, we show the interpolation capacity of our model 22

compared to Neural3DMM. By performing linear algebra in the 23

latent space, it is possible with an Auoencoder-like architecture 24

to generate new samples. We select two different samples from 25

the test set c1 and c2, encode them to their latent representations 26

z1 and z2, and produce new meshes by sampling along the line: 27

z = a ∗ z1 + (1 − a) ∗ z2, a ∈ [0, 1]. Figure 11 compares interpo- 28

lations between Neural3DMM and the SAE-LP-4096. For the 29

first line, meshes on the extremities are the ones sampled from 30

the test dataset, and the three meshes in the middle correspond 31

to linear interpolation of the Cartesian coordinates. When us- 32

ing all frequencies, the result is the same when interpolating 33

spectral coefficients since the Laplacian transform is a linear 34

function. For the two other lines, meshes on the extremities 35

are the reconstructions of the two sampled meshes. Then, in- 36

terpolated and decoded latent codes are presented in the three 37

middle columns for different a values. For the interpolation in 38

the spatial domain, the arms’ length of the model are greatly re- 39

duced, which is typically an unwanted behaviour when interpo- 40

lating human bodies. The two models manage to overcome this 41

problem, meaning that they built a latent space representing the 42

manifold of possible poses for a human body. Nevertheless, as 43

seen previously, the reconstruction quality of our model is bet- 44

ter than the Neural3DMM one, especially for a latent dimension 45

of 16 used here, leading to cleaner generated meshes. Also, it is 46

important to note that for all models, the interpolation capacity 47

is well represented only for this size of latent space where both 48

mean reconstruction error and latent space size are not too high. 49

6. Conclusion 50

This work falls in the category of Geometric Deep Learning 51

applied to triangular human meshes. The problem with cur- 52

rent state of the art methods is that they are limited by the high 53

number of vertices, the unstructured grid and the time of com- 54

putation. We showed in this paper that by using spectral mesh 55
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Fig. 8. Comparison of reconstruction results between the baseline SpiralNet++, the SAE-CP and the SAE-LP using different number of frequencies and
latent dimensions on the AMASS dataset. The minimum attainable, represented as Spectral reconstruction, is computed for each number of frequencies
and corresponds to the mean error on the test dataset between original meshes and reconstructed meshes after an inverse spectral transform. Even when
using a simpler pooling method or less frequencies, the SAE is able to give competitive results.

Fig. 9. Examples of details on reconstructed meshes with models using dif-
ferent number of frequencies, zoomed on head and foot. Giving the model
access to higher frequencies leads to reconstructed meshes with more de-
tails.

processing methods on triangulated surfaces, we are able to1

solve multiple problems. First, directly treating frequency coef-2

ficients instead of Euclidean ones allows the direct application3

of convolutions since spectral coefficients are ordered depend-4

ing on their magnitudes. This notion also allows to increase5

the speed of the networks since convolutions are done on ar-6

rays without rearrangement instead of state of the art methods.7

Furthermore, it is possible to increase the number of vertices8

of meshes from the dataset while keeping the same neural net-9

work architecture since there is no computation in the spatial10

domain. Finally, upon these advantages, we showed that our11

models give better results than state of the art methods in terms12

of reconstruction and interpolation.13

Fig. 10. Comparison of reconstructions between SpiralNet++ and the Spec-
tral Autoencoder with learned pooling using 1024, 2048 and 4096 frequen-
cies. The latent dimension is 64 for all models. While showing errors corre-
sponding to the lack of high frequency information, the model using 1024
frequencies still manages to reconstruct parts of the body in a better way
than SpiralNet++.
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Fig. 11. The first line shows a linear interpolation of the two meshes’ Carte-
sian coordinates on the right and on the left. The second and third line
shows mesh generation by interpolating two samples’ latent codes in the
latent space. The latent dimension is 16 for the two models.

While our method still needs a constant connectivity (as state1

of the art ones), it is possible to synchronize bases computed2

from different triangulation. Future works will then be fo-3

cused on trying to generalize this process to shapes of arbi-4

trary topologies, enabling to directly work on triangulated out-5

put from raw scans with a high number of vertices and a chang-6

ing connectivity while keeping the same number of parameters7

and the same speed of computation.8
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Method Latent size 8 16 32 64 128

SAE-LP-512 400K 433K 499KK 630K 892K
SAE-LP-1024 662K 695K 761K 892K 1.15M
SAE-LP-2048 1.18M 1.22M 1.28M 1.41M 1.67M
SAE-LP-4096 2.23M 2.26M 2.33M 2.46M 2.72M

Table 7. Number of parameters for Spectral Autoencoders using learned
pooling. Most of the parameters are contained in the first downsampling
and the last upsampling matrices, especially when the number of used fre-
quencies is high.

Method Latent size 8 16 32 64 128

SAE-CP-512 159K 225K 356K 618K 1.14M
SAE-CP-1024 184K 250K 381K 643K 1.16M
SAE-CP-2048 209K 274K 405K 668K 1.19M
SAE-CP-4096 233K 299K 430K 692K 1.21M

Table 8. Number of parameters for Spectral Autoencoders using classic
pooling.
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