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Abstract
The automatic prediction of speech intelligibility is a widely
known problem in the context of pathological speech. It has
been seen as a growing and viable alternative to perceptual eval-
uation, which is typically time-consuming, highly subjective
and strongly biased. Due to this, the development of automatic
systems that are able to output not only unbiased predictions,
but also interpretable scores become relevant. In this paper we
investigate a method to predict speech intelligibility based on
consonant phonetic similarity. The proposed methodology re-
lies on a siamese network to compute similarity scores between
healthy and pathological phonemes, and based on the combina-
tion of those scores, regresses the intelligibility values. Our ex-
perimental evaluation suggests a high baseline correlation value
of p = 0.82, when applied to our corpus of head and neck
cancer. Moreover, further conditioning of the system on spe-
cific phonemes in key contexts increased the correlation up to
p = 0.89. The given methodology also aims to promote inter-
pretability of the predicted intelligibility score, which is highly
relevant in a clinical setting.
Index Terms: speech intelligibility, pathological speech, auto-
matic speech processing, head and neck cancer.

1. Introduction
Head and neck cancer (HNC) is a type of cancer with major
functional repercussions on breathing, swallowing and speech.
Due to this, a communication impairment is likely to appear,
impacting the speech-related quality of life. As a result, percep-
tual evaluation has long been the most used method for thera-
pists to assess disordered speech. On the other hand, perceptual
evaluations are very time-consuming, biased and variant, since
the evaluation can be conditioned on, for example, patients pre-
viously assessed by the same therapist [1]. Due to the biased
nature and low reproducibility of these scores, and also due to
the increasing rate of oropharyngeal cancer incidence, the de-
velopment of an automatic assessment that is able to output
unbiased and reproducible intelligibility measures becomes of
high interest [2, 3].

From the literature, one can distinguish different ways to
predict speech intelligibility for pathological speech. These
methods can range from approaches such as regressing a score
from the word error rate achieved by automatic speech recogni-
tion (ASR) systems [4], to extract relevant features from patho-
logical speech, using automatic speech processing technolo-
gies [5, 6]. Speaker embeddings, such as i-vectors or x-vectors,
have also proved to be a viable alternative for intelligibility es-
timation [7, 8]. Similarity estimation systems, such as siamese

networks, have seen a growing use in tasks such as speaker ver-
ification [9] and sentence similarity [10]. Recent works, such
as [11] and [12], used the aforementioned methodology in a
pathological speech context. In both cases, the systems were
developed for the detection of children’s speech disorder, focus-
ing on the binary task of detecting specific mispronunciations.

In the context of pathological speech, besides being unbi-
ased and reproducible, it is also highly relevant that an auto-
matic approach maintains explainability of the produced esti-
mations, which typically lacks in the automatic systems based
on deep learning. An explainable system could provide more
relevant cues in a clinical setting and promote more objective
measures. The interpretability of the results, that normally lacks
in machine learning systems, can also be used to build trust in
the implementation of automatic approaches [13].

In the present work, we introduce an intelligibility predic-
tion system based on consonant similarity. There are multiple
motivations behind the development of such system, namely
that: (i) ASR based intelligibility prediction systems typically
underperform in patients with severe speech impairments [4];
(ii) Individual phonemes, especially consonants, are highly
relevant for perceptual speech intelligibility [14, 15], either
healthy [16] or pathological [17]; (iii) Automatic systems tend
to lack explainability [18], which is normally demanded by
health practitioners [13]. Given this, we propose an automatic
system that predicts speech intelligibility based on consonant
similarity, that is able to output not only an objective, but also
a fully explainable prediction. Since that in our previous work,
we found that there are sentences able to conduct a more accu-
rate intelligibility prediction [7], in the present work we also
explore the relevance of specific phonemes in our automatic
speech intelligibility score.

The rest of this paper is organized as follows. Section 2 in-
troduces our proposed system and the function used to regress
our intelligibility values. Section 3 details our experiments on
the French HNC Speech Corpus (C2SI). Section 4 presents an
analysis of the obtained results, the post-treatment and the dis-
cussion. Finally, section 5 summarizes the results of the work.

2. Methodology

The proposed methodology relies on three steps. The first one
corresponds to the feature extraction and data preparation. The
second uses a recurrent siamese network in order to compute
the phonetic similarity between two phones. Finally, the third
step is the computation of the intelligibility score based on the
phonetic similarity scores previously achieved.



2.1. Data Preparation

We used individual phones as input to our system, which
were obtained via forced alignment using the Montreal Forced
Aligner toolkit [19]. For each file, 13 Mel Frequency Cep-
stral Coefficients (MFCCs) were extracted. Filterbank features,
MFCCs + delta coefficients and phonetic posteriors [20] were
also experimented, however, in our specific context they con-
ducted to a poorer generalization ability of the system. In-
terestingly, the work of [21] also found that simple MFCCs
conducted to a better intelligibility classification in contin-
uos children’s speech, when used in a recurrent system. The
phones were then paired in two categories: same-phoneme and
different-phoneme pairs, which were used to train the network.
Due to the nature of the corpus used, further explained in sub-
section 3.1, and the motivation stated in section 1, the phonemes
used in this study correspond to the 16 French consonants.

2.2. Siamese Network

The proposed system uses a siamese network to detect phonetic
similarities. The system receives as input two phones, one as a
reference and another as a test, and computes their similarity. A
mispronunciation is detected whenever the test phone is found
to be dissimilar from the reference one. The system uses two
bilateral Gated Recurrent Units (GRU) as encoders with shared
weights, in which the two outputs form embedding representa-
tions (see figure 1).

Figure 1: Schematic diagram of the proposed system.

The encoders are comprised of two hidden layers, with a
hidden dimension of 100. The embedding representation cor-
responds to the concatenation of the last two hidden states, of
forward and backward context of the bilateral GRU used. This
generates an embedding representation of size 200. The abso-
lute difference between the two fixed-length representations is
then computed. It is expected that the system models the input
phonemes so that same-pair phonemes are closer in the embed-
ding space than different-pair phonemes. Afterwards, a Deep-
Neural-Network block is appended. This block is composed
of 3 fully-connected layers of size 200. The Rectified Linear
Unit function is used as an activation function in all of the lay-
ers except for the final one, which used a sigmoid. A dropout
rate of 0.25 and batch normalization are applied on every fully-
connected layer.

2.3. Intelligibility Estimation

Based on the similarity scores obtained by our system, we com-
pute an intelligibility score for each speaker:

I(Sa) =

∑16
n=1

Sima(n)
Tota(n)

16
∗ 10 (1)

This scoring function corresponds to the arithmetic mean
of each patient’s individual consonant score. Sima(n) refers
to the number of similar phones of one of the 16 consonants

obtained by a speaker (Sa), while Tota(n) is the total number
of representations of that consonant issued by a speaker.

3. Experiments and Results
3.1. C2SI Corpus

The present work made use of the French head and neck cancer
speech corpus C2SI [22]. The corpus includes a variety of pa-
tients that suffer from the oral cavity or oropharyngeal cancer,
with different onset tumor locations, and also healthy speakers.
All of the patients were asked to record a variety of tasks, and in
this study, we used the isolated pseudo-word task. In this task,
each speaker was asked to record a set of 52 pseudo-words,
nonexistent in the French language [23]. Each pseudo-word
was automatically generated so that it respects French phono-
tactic and orthographic rules, following a C(C)1V1C(C)2V2

structure, where C(C)i is either a single consonant or a conso-
nant group and Vi a single vowel. Each speaker was attributed a
phonetically balanced pseudo-word set that contains at least one
instance of each consonant in the applicable contexts of begin-
ning and middle of the word. The correct pronunciation of each
pseudo-word was played to each speaker before recording. All
audio files were recorded with a sampling rate of 48 kHz. While
all the french consonants were present in each set of 52 pseudo-
words, either isolated or in consonant groups, there were only 8
vowel representations. Due to this and the other reasons afore-
mentioned in section 1, we focused mainly on consonant simi-
larity in this study.

Table 1: Example of a set of 52 pseudo-words with the afore-
mentioned structure of C(C)1V1C(C)2V2.

banfou bleja boucti brimpli chessant choniou
clifant cogu crimpin daillu dinrant dredi

fanrsi flinrpu fouma fravi gabi glunou grorvo
guchin joutu juro lanvin lerda messo mouco

nianlo niejo noksa nouillou pastu pidant
ploniou pripin psila quiga rinta rurnu

sanvrin scuna souquin spaclant sticho tangri
tougzu tradrou virjant vumou yainzi

yaltin zebou zouzant

The intelligibility values, used as targets, were computed
based on the independent perceptual evaluation of six different
therapists. A score between 0 and 10 was attributed, based on
those evaluations, the smaller the score is, the less intelligible
the speaker is. A total of 102 speakers, 24 healthy controls (HC)
and 78 patients, were used in the present study.

3.2. Experimental Setups

In order to learn phonetic similarity, we used same-phoneme
pairs as positive and different-phoneme pairs as negative. 24
HC of the C2SI corpus were used as training data. After force
aligning and extracting the features, we obtained a total of 3,323
training phones (consonants only). For each one of the 16 con-
sonants groups, an individual training set was created. For a
specific training set, every consonant was paired with every
other representation of the same consonant, and also to a ran-
dom set of 650 different consonants. Out of those formed pairs,
a random subset of 50k pairs was extracted. This subset corre-
sponds to the final training set for that same consonant.



3.2.1. System Training

Sixteen different models, one for each consonant, were created.
Each individual model was fine-tuned on four hyperparameters:
learning rate (between 0.001 and 0.0001), epochs (between 2
and 8), batch size (either 256 or 512) and GRU dropout rate
(either 0.0 or 0.25). A binary cross-entropy loss function was
used, optimized by the SGD algorithm [24].

3.2.2. System Validation

A set of six patients from the C2SI corpus, unseen during train-
ing, was used to validate the proposed model instead of a sub-
set of the HC. The chosen patients had high intelligibility (over
9.8 on a 0 to 10 scale), making them virtually indistinguishable
from HC. The validation phones were grouped into the 16 dif-
ferent consonant groups. Each new phone is paired with all the
reference phones seen during training. The median similarity
is computed between each test and reference consonant groups
(see figure 2).

Figure 2: Siamese network validation heatmap. Consonant
phonemes are illustrated by their respective French SAMPA
symbols.

A reliable distinction between all phonetic groups was ob-
tained. This aspect was less evident in the plosive consonants,
where the difference between the key consonant to be tested
and the other consonants was more subtle when compared to
the remaining groups. This was expected due to the nature of
forced-alignment, that segments plosives in short time intervals.
This in turn provided less contextual information, making the
phonetic distinction a slightly more difficult task. This aspect,
however, did not prove to be problematic as all speakers were
submitted to the same forced-alignment.

3.2.3. Evaluation Scores

To generalize the trained models on the remaining patients of
the corpus, we used as a threshold the median values obtained
by the validation patients for each consonant group, also known
as the diagonal values of figure 2. In order to make the sys-
tem more robust to the different median values, we added to the
threshold the median absolute deviation (MAD) [25]. The clas-
sification method is as follows. If a new phone has a similarity
score above the threshold (x̃i − MADi), where x̃i is the me-
dian, it is considered a similar phone, otherwise it is considered
dissimilar. The intelligibility score is computed according to
equation 1.

By correlating the predicted scores with the given intelligi-
bility reference values, we were able to achieve a Spearman’s
correlation coefficient of ρ = 0.82 (see figure 3).

Figure 3: Intelligibility prediction plot using the proposed con-
sonant similarity approach.

4. Outlier Analysis
We performed an analysis on the predicted values that had a
large deviation from the target intelligibility, all of which had
a prediction below target. From the perceptual evaluation of
these outliers, we found that the system was underperforming
in specific contexts, namely very breathy/hoarse speech and pa-
tients with nasalized plosives. All of the cases corresponded to
phonetic mispronunciations, and it was expected that the sys-
tem would classify them as such, since it was neither trained
nor validated with speakers that had similar mispronunciations.
On the other hand, despite the phonemes being mispronounced,
we noticed that in these cases the reference intelligibility values
were still high, pointing out that in the aforementioned contexts,
those specific mispronunciations had a little affect on the refer-
ence intelligibility values.

4.1. Phonetic Suppression Post-Processing

We noticed that by suppressing specific consonants we were
able to obtain a better intelligibility estimation. Thus, we
made use of the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) [26]: an ensemble of acoustic parameters tailored
for indexing physiological changes in voice production, with an
added degree of theoretical significance and explainability, and
we went to search for hand-crafted features used in the literature
to address the key types of speech impairment aforementioned.
We found a set of three acoustic parameters:

• Slope UV0-500 (mean) - Mean value of the linear regres-
sion slope of the logarithmic power spectrum within 0-500Hz
on unvoiced segments. Related to breathy and hoarse voice
qualities [27].

• Loudness (percentile 20) - Estimate of perceived signal
intensity from an auditory spectrum. In our context, we hypoth-
esize that it can help to detect nasalized plosives [28] due to the
added intensity found in this type of mispronunciation.

• LogRel F0-H1-A3 (mean) - Ratio of energy of the first
F0 harmonic (H1) to the energy of the highest harmonic in the
third formant range (A3). Relevant feature for breathy/hoarse
voice assessment as well [29].



By using this set of features, we can model the speakers
with the aforementioned speech pathologies and suppress cer-
tain phonetic groups accordingly. The modelization of these
speakers according to these features can be found described in
table 2, where a threshold indicates the cutoff region for each
feature. Results from this phonetic suppression are in table 3.

Table 2: Phonemes used and suppressed in the intelligibility
score function according to the GeMAPS features.

Feature
name

Suppressed
phonemes Threshold Used

phonemes

Slope
UV0-500
(mean)

[b], [d], [g],
[z], [Z], [v],
[m], [n], [l]

> 2.41 [p], [t], [k],
[s], [S], [f ],

[R]LogRel
F0-H1-A3

(mean)
< 15.00

Loudness
(percentile 20)

[p], [t], [k],
[b], [d], [g]

> 0.31

[s], [S], [z],
[Z], [f ], [v]
[m], [n], [l],

[R]

Table 3: Correlation results achieved by the proposed method-
ology and by the phonetic suppression post-processing.

p
Automatic Speech Recognition

Approach 0.63

X-vector Speaker
Embedding Approach 0.74

Consonant Similarity
Approach

Predicted 0.82

Predicted + Loudness 0.83

Predicted + LogRelF0-H1-A3 0.86

Predicted + SlopeUV0-500 0.87

Predicted + LogRelF0-H1-A3
+ SlopeUV0-500 + Loudness 0.89

4.2. Discussion

The results suggest that we can reliably predict speech intelli-
gibility using consonant similarity. Moreover, by conditioning
the used consonants on key mispronunciations and the external
GeMAPS features, we are able to obtain an even higher level of
correlation (ρ = 0.89). This aspect points out that, depending
on the speech impairment a speaker may have, there are mis-
pronounced phonemes that do a little contribution to the overall
intelligibility score: for patients with a high level of hoarse-
ness, all voiced phonemes were classified as non-similar by the
system. By suppressing the voiced phonemes, we were able to
obtain more accurate predictions. To detect this hoarseness, we
used the Slope and LogRel (see table 2). Any patient that had a
feature value above a threshold had their voiced phonemes sup-
pressed, and the remaining phonemes were used for the score.
The suppression of the full plosive group, displayed on table 2,
also lead to more accurate predictions, showing that those mis-
pronunciations did not affect much the perceptual intelligibility
estimations (see correlation values on table 3). As expected, the

used features also isolated a few patients that did not have the
specific mispronunciations aforementioned, however, the same
phonetic suppression poorly affected those intelligibility scores,
confirming a certain level of robustness of the chosen features.

The assumption that different phonemes have different de-
grees of relevance corroborates the fact that for each speaker,
there are sentences that are able to convey a better intelligibility
estimation than others, concluded in [7]. A deeper feature anal-
ysis should be investigated in order to identify other contex-
tual key phonemes that are less important in the intelligibility
score. Further robust feature conditioning could help provide
more accurate scores and also a more objective and explainable
patient-specific information. We hypothesize that an a priori
knowledge of patient’s specific features (e.g. tumor location, re-
construction type), which are known in a clinical context, could
condition the system to obtain even more accurate results. We
leave this analysis for future work.

The results were also compared to two previous approaches
used on the same corpus (see table 3), one based on the applica-
tion of a Wagner-Fischer algorithm to the distance between the
automatically transcribed (ASR) and ground truth pseudo-word
[6], and the other based on x-vector speaker embeddings [7].
The same set of speakers and respective pseudo-words (see fig-
ure 3) were submitted to both approaches. A significant increase
in correlation can be found in both cases. Moreover, an added
degree of explainability can be obtained when using our pro-
posed approach, since the intelligibility score can be fully traced
back to the amount of similar/dissimilar consonant phones that
a speaker has.

The correlation values, illustrated on table 3, also show that
despite the subjectivity of the perceptual evaluations, high val-
ues can be found when using an automatic objective intelligi-
bility estimation. This aspect mitigates the low reproducibility,
variance and subjectivity of the perceptual measures in favor of
a reproducible, objective and interpretable automatic prediction.
The more objective way to predict speech intelligibility and the
resulting added degree of explainability become highly relevant
in a clinical context [30].

5. Conclusions
This paper investigated an automatic approach to predict speech
intelligibility based on consonant similarity. Our approach
made use of a pseudo-word task, in the context of head and
neck cancer, that was force-aligned in order to train a siamese
network. A base correlation of p = 0.82 was obtained between
the predicted and reference values, which showed a significant
correlation gain over two previous approaches. When condi-
tioning the intelligibility prediction on certain consonants, the
correlation increased up to p = 0.89. This showed that depend-
ing on the speech impairment experienced by the speaker, there
are phonemes that have a greater or smaller importance in the
intelligibility score. The proposed system also maintains a high
degree of interpretability, since the final intelligibility score is
a function of the individual scores of each phoneme, which is
relevant in a clinical setting. Future work will investigate the
importance of specific phonemes and co-articulations between
consonants and vowels on the intelligibility score.
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