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Maximum depth sequencing 
reveals an ON/OFF replication 
slippage switch and apparent 
in vivo selection for bifidobacterial 
pilus expression
Christophe Penno1,10, Mary O’Connell Motherway2,3,10, Yuan Fu4, Virag Sharma5, 
Fiona Crispie3,6, Paul D. Cotter3,6, Benoit Houeix7, Lokesh Joshi7, Francesca Bottacini8, 
Aoife O’Dwyer3, Gary Loughran9, John F. Atkins2,9 & Douwe van Sinderen2,3*

The human gut microbiome, of which the genus Bifidobacterium is a prevalent and abundant member, 
is thought to sustain and enhance human health. Several surface-exposed structures, including 
so-called sortase-dependent pili, represent important bifidobacterial gut colonization factors. Here we 
show that expression of two sortase-dependent pilus clusters of the prototype Bifidobacterium breve 
UCC2003 depends on replication slippage at an intragenic G-tract, equivalents of which are present in 
various members of the Bifidobacterium genus. The nature and extent of this slippage is modulated 
by the host environment. Involvement of such sortase-dependent pilus clusters in microbe-host 
interactions, including bacterial attachment to the gut epithelial cells, has been shown previously and 
is corroborated here for one case. Using a Maximum Depth Sequencing strategy aimed at excluding 
PCR and sequencing errors introduced by DNA polymerase reagents, specific G-tract sequences in B. 
breve UCC2003 reveal a range of G-tract lengths whose plasticity within the population is functionally 
utilized. Interestingly, replication slippage is shown to be modulated under in vivo conditions in a 
murine model. This in vivo modulation causes an enrichment of a G-tract length which appears to 
allow biosynthesis of these sortase-dependent pili. This work provides the first example of productive 
replication slippage influenced by in vivo conditions. It highlights the potential for microdiversity 
generation in “beneficial” gut commensals.
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X-gal  5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside
IPTG  Isopropyl-β-D-1-thiogalactopyranoside
PCR  Polymerase Chain Reaction
PBS  Phosphate-Buffered Saline
CDS  Coding sequence
NGS  Next Generation Sequencing
PAGE  Polyacrylamide Gel Electrophoresis
HMOs  Human Milk Oligosaccharides
LNT  Lacto-N-tetraose
LNnT  Lacto-N-neotetraose

Key factors that determine establishment and maintenance of the different species present within a microbial 
community in a given host environment largely remain elusive. However, the importance of certain metabolic 
abilities, such as carbon source utilization, in niche colonization is beyond doubt, thereby creating opportuni-
ties for dietary interventions in the case of the gut  microbiota1. Representatives of the genus Bifidobacterium are 
prevalent and abundant members of the gut microbiota and have been subject to extensive scientific scrutiny, 
which has revealed various genes relevant to host  colonization2–4. Bifidobacterium breve UCC2003, a nursling 
stool isolate, has been employed as a human gut commensal prototype to investigate microbe-host interactions 
relevant to gut  colonization5–7. Interestingly, certain bifidobacterial species can metabolize (specific) oligosac-
charides present in human milk and this ability is believed to at least partly explain their high abundance in 
breast-fed  babies8,9.

In addition to resource availability, maintenance of microbiota components in the human gut may be com-
promised by other factors, such as the sweeping action of the digestive flux in the luminal intestinal tract, which 
may cause progressive elimination of the microbiota by defecation. In the case of B. breve UCC2003, conserved 
type IVb or tight adherence (Tad) pili have been shown to play an important role in bifidobacterial colonization 
of the human gastrointestinal  tract6. In addition to the Tad pili, bifidobacteria may produce so-called sortase-
dependent  pili10. Assembly of a sortase-dependent pilus structure involves expression of a precursor pre-pilin 
monomer, its subsequent secretion by the Sec pathway, followed by maturation through cleavage at an LPXTG 
amino-acid sequence by a dedicated sortase to generate a pilus multimer which is covalently linked to the 
peptidoglycan by a housekeeping sortase [for reviews  see11,12]. Genomes of members of the Bifidobacterium 
genus may either lack or encompass one or more, genetically distinct, sortase-dependent pilus clusters, of which 
the corresponding pili are believed to enable specific attachment to various targets of the extracellular matrix, 
including glycans. They may also be involved in bacterial  aggregation10. Expression of sortase-dependent pili 
of Bifidobacterium longum appears to be regulated by environmental  conditions13. In Lactobacillus rhamnosus 
GG, the sortase-dependent SpaCBA pili interact with the C-type lectin DC-SIGN receptor of the host’s dendritic 
cells, thereby affecting cytokine  expression14. Sortase-dependent pili in Bifidobacterium bifidum not only mediate 
adherence of this bacterium to proteins of the extracellular matrix or to other bacteria, but also appear to induce 
a TNF-α immune  response15.

While bacterial surface-exposed elements may play crucial roles in host interaction and colonization, they 
may also constitute a target for the host’s immune system to allow host-mediated elimination. Bacteria have 
developed various mechanisms to evade the host’s immune system. For example, bacteria may ‘hide’ from the 
host immune system by generating diversity in the expression of certain cell surface-exposed products within 
their own population. Such diversity is triggered by specific and reversible modification of the genomic sequence 
involving specialized ON/OFF switch mechanisms, also referred to as phase variation [for a review  see16,17]. One 
such mechanism is represented by chromosomal DNA inversion events involving promoter sequences or coding 
 sequences18. For example, Mycoplasma penetrans modulates multiple surface lipoproteins mediated by a tyrosine 
recombinase recognizing specific sequences flanking an invertible promoter  region19,20. Another type of diversity 
generation is by altering the activity of a given promoter either by epigenetic control or sequence modification. 
While the former involves methylation of promoter  sequences21,22, the latter involves specific nucleotide addi-
tions or omissions by the DNA polymerase during replication in the spacer region located between the -35 
and -10 boxes of a promoter sequence thereby affecting transcriptional  efficiency23. In Haemophilus influenza, 
such InDel events in a promoter region were found to control the expression of specialized fimbriae genes 
involved in hemagglutination and adherence activity of H. influenzae24.This DNA polymerase-mediated InDel 
generating activity is known as replication slippage, and may also occur at a specific conserved slippage-prone 
sequence within a coding sequence causing changes in the translational reading frame and derived products. 
For example, the ruminant pathogen Mycoplasma agalactiae exhibits high frequency phase variation involving 
base addition/omission at a G-tract motif in the coding sequence of gsmA which is required for the secretion of 
the cell-attached β1-6-glucan, a polysaccharide that is targeted by the host immune  system25. In Campylobacter 
jejuni, a causative agent of human gastroenteritis, phase variation may be an important feature in generating 
bacterial cell shape  diversity26, as well as causing surface antigen diversity relevant to escaping the host’s immune 
 response27. In Neisseria species, O-glycosylation and acetylation of di- and tri- saccharides are both subject to 
microheterogeneity due to phase variation events occurring at an intragenic G-tract in expression of the cor-
responding glycosyltransferase and acetylase  genes28.

In the current work, we investigated an as yet unexplored aspect of micro-diversity generation in members 
of the genus Bifidobacterium involving the bacterial DNA polymerase. DNA polymerase-mediated slippage was 
studied in the prototype B. breve strain UCC2003 at G-tracts found in the sequences encoding two sortase-
dependent pilus clusters. In this work, we used Maximum Depth Sequencing (MDS) to discriminate between 
errors introduced by the host bacterial DNA polymerase from those being introduced by the polymerases 
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employed for DNA amplification and sequencing. Our results indicate that (1) (at least one of the two studied) 
sortase-dependent pili are involved in gut colonization, (2) expression of the two sortase-dependent pilus clusters 
appears to be dependent on replication slippage, (3) the slippage event is modulated by the host environment.

Methods
Bacterial strains and culture conditions. Bacterial strains used in this study are listed in SI Table S5. 
Bifidobacterium breve UCC2003 (APC microbiome Ireland, strain collection) was routinely cultured in rein-
forced clostridial medium (RCM; Oxoid Ltd, Basingstoke, Hampshire, United Kingdom) or in de Man Rogosa 
and Sharpe Medium (MRS) prepared from first  principles29. Prior to inoculation the MRS was supplemented 
with cysteine-HCl (0.05% final w/v). Bifidobacterial cultures were incubated at 37 °C under anaerobic condi-
tions using an anaerobic chamber (Davidson and Hardy, Belfast, Ireland).

Escherichia coli was cultured in Luria Bertani broth (LB) at 37 °C with agitation. Where appropriate growth 
media contained tetracycline (Tet; 10 μg/ml), erythromycin (Em; 100 μg/ml for E. coli), chloramphenicol (Cm; 
5 μg/ml for E. coli), or kanamycin (Km; 50 μg/ml for E. coli). Recombinant E. coli cells containing pORI19 
were selected on LB agar containing Em, and supplemented with X-gal (5-bromo-4-chloro-3-indolyl-β-D-
galactopyranoside) (40 μg/ml) and 1 mM IPTG (isopropyl-β-D-1-thiogalactopyranoside).

Specific conditions for the NGS experiments. A single colony isolate of B. breve UCC2003 was obtained from 
a corresponding bacterial streak on an RCA plate, and then inoculated in RCM and incubated for 14–16 h at 
37 °C. Then, the next morning a 2% inoculum was grown in fresh RCM, following late evening by a 1% inoculum 
in 50 ml MRS supplemented with 0.05% cysteine. The day after (14-16 h later), a 5% inoculum was prepared in 
 mMRS9 supplemented with 0.05% cysteine and 1% sugar. A 10% filtered stock solution was prepared for each 
sugar: glucose, ribose, lactose, maltose, raffinose, and sucrose were purchased from Sigma Aldrich; LNT and 
LNnT were obtained from Glycom as part of their donation program. For each condition, UCC2003 was culti-
vated during 6 h.

Animal trial: For monoassociation studies six female, germ free mice (6–8 weeks old), and named M1 to M6, 
were fed with 1 ×  109 of B. breve UCC2003 daily on 5 consecutive days. Fecal samples were collected from each 
mouse at 7 days (time point T1) and 14 days (time point T2) after the last bacterial administration.

Strain construction. Chromosomal DNA was isolated from bifidobacteria as previously  described30. Mini-
preparation of plasmid DNA from E. coli was achieved using the Roche high pure Plasmid isolation kit (Roche 
Diagnostics, Bell Lane, East Sussex, UK any). Procedures for DNA manipulations were performed essentially as 
described  previously31. Restriction enzymes and T4 DNA ligase were used according to the supplier’s instruc-
tions (Roche Diagnostics). Synthetic single-stranded oligonucleotide primers used in this study were synthe-
sized by Eurofins (Ebersberg, Germany). Standard PCRs were performed using TaqPCR mastermix (Qiagen), 
while high fidelity PCR was achieved using Q5 polymerase (NEB). B. breve colony PCRs were performed accord-
ing to standard procedures with the addition of an initial single incubation step of 95 °C for 10 min to effect cell 
lysis. PCR fragments were purified using the Roche High pure PCR purification kit (Roche Diagnostics). Elec-
troporation of plasmid DNA into E. coli was performed as described  previously31. Electrotransformation of B. 
breve UCC2003 was performed as previously  described32. The correct orientation and integrity of all constructs 
was verified by DNA sequencing performed at MWG Biotech (Ebersberg, Germany).

Sequence data were obtained from the Artemis-mediated33 genome annotations of B. breve  UCC20036. Data-
base searches were performed using non-redundant sequences accessible at the National Centre for Biotechnol-
ogy Information internet site (http:// www. ncbi. nlm. nih. gov) using Blast. Sequence alignments were performed 
using the Clustal Method of the MEGALIGN program of the DNASTAR software package (DNASTAR, Madison, 
WI, USA).

Construction of B. breve UCC2003-113 and UCC2003-1889. DNA fragments encompassing the RBS 
sequence and 5’ sequences of bbr_0113 (516 bp) and bbr_1889 (301 bp) were amplified by PCR using B. breve 
UCC2003 chromosomal DNA as a template and primer pairs 113F and 113R, or 1889F and 1889R respec-
tively (SI Table S4). The polyG sequence in 113F and 1889R was changed to 10 or 9 nucleotides, respectively, so 
that following homologous recombination, the mutant strains would contain in-frame versions of bbr_113ab 
or bbr_1889ab (SI Figure S1). The PCR products generated were ligated to pNZ44, using the unique NcoI and 
XbaI restriction site that were incorporated into the forward and reverse primers, respectively, and introduced 
into E. coli EC101 by electroporation. Recombinant E. coli EC101 derivatives containing pNZ44 constructs were 
selected on LB agar containing Cm. The expected genetic structure of the recombinant plasmids, pNZ44-113 
or pNZ44-1889 was confirmed by restriction mapping and sequencing prior to amplification of the p44 pro-
moter and bbr_0113 fragment, or the p44 promoter and bbr_1889 fragment from the pNZ44 constructs with 
pNZ44F and 113R, or pNZ44F and 1889, respectively. The amplified products were ligated to pORI19, an  Ori+ 
 RepA− integration  plasmid34, using the unique HindIII and XbaI restriction sites that were incorporated into the 
primers and introduced into E. coli EC101 by electroporation. Recombinant E. coli EC101 derivatives containing 
pORI19 constructs were selected on LB agar containing Em, and supplemented with X-gal (5-bromo-4-chloro-
3-indolyl-β-D-galactopyranoside) (40 μg/ml) and 1 mM IPTG. The expected genetic structure of the recombi-
nant plasmids, pORI19-P44-113 (pORI19 containing p44 promoter and 522 bases of 113), pORI19-P44-1889 
(pORI19 containing p44 promoter and 303 bases of 1889) was confirmed by restriction mapping and sequenc-
ing prior to subcloning of the Tetracycline resistance antibiotic cassette, tetW, from  pAM535 as a SacI fragment 
into the unique SacI site on each of the pORI19 derivatives. The expected structure of a single representative of 
each of the resulting plasmids pORI19-P44-113-tet and pORI19-P44-1889-tet (SI Figure S1) was confirmed by 
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restriction analysis. The plasmids were introduced into E. coli EC101 harbouring pNZ-M.BbrII-M.BbrIII7 by 
electroporation, and transformants were selected based on Cm and Tet resistance. Methylation of the plasmid 
complement of such transformants by the M.BbrIII (isoschizomer of PstI) was confirmed by their observed 
resistance to PstI restriction. Plasmid preparations of methylated pORI19-P44-113-tet or pORI19-P44-1889-tet 
were introduced by electroporation into B. breve UCC2003 with subsequent selection on RCA plates supple-
mented with Tet. Site-specific recombination in potential Tet-resistant mutant isolates was confirmed by colony 
PCR using primer combinations tetWFw and tetWRv to verify tetW gene integration. The pair of primers “113 
confirm” with “p44 confirm”, or “1889 confirm” with “p44 confirm”, were used to verify the correct integra-
tion of the recombinant plasmid at bbr_0113 or bbr_1889 chromosomal locus, respectively. The resulting PCR 
products were sequenced to ensure that the recombinant strains harbored the expected in-frame bbr_113ab or 
bbr_1889ab genes under the control of the P44 promoter.

Transmission electron microscopy. The presence of pili on the cell surface of B. breve UCC2003-113 
or UCC2003-1889 was analyzed by ammonium molybdate staining of bacterial cells and visualized using a Jeol 
JEM-1400 transmission electron microscope. Briefly cells from an overnight culture were washed once with 
0.1M phosphate buffer and fixed 2 h at RT with 2% glutaraldehyde in 0.1M phosphate buffer. After fixation the 
sample was washed 3 times with 0.1M phosphate buffer and stained with 1% ammonium molybdate for 1 min at 
RT. The grids were examined, and micrographs visualized, using a JEM-1400 transmission electron microscope 
(JEOL Ltd., Tokyo, Japan).

Adhesion assay by viable count method. The adenocarcinogenic cell line HT29 was used to assess 
the adhesion abilities of B. breve UCC2003 and derivative strains. L. rhamnosus GG was included as a posi-
tive control. HT29 cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% (vol/
vol) heat-inactivated (10 min at 70 °C) bovine serum. Adhesion assays were performed essentially as described 
 previously36. Briefly, six-well plates were seeded with 1 ×  106 HT29 cells per well and were maintained for 
12–15 days to allow the cells to fully differentiate. Prior to the assay, the HT29 cell monolayers were washed twice 
with phosphate-buffered saline (PBS). Overnight cultures of B. breve UCC2003, UCC2003-113, UCC2003-1889 
or L. rhamnosus GG were washed once with PBS, adjusted to an optical density at 600 nm of 1.0, and diluted 
tenfold in PBS to reach 1 ×  108 CFU  ml−1, as determined by plate counts on reinforced clostridial agar (RCA) for 
B. breve strains, or MRS for L. rhamnosus GG. One milliliter of the bacterial suspension was added to the washed 
monolayers (bacterial cell/epithelial cell ratio of 50:1) and incubated for 1 h at 37 °C (5%  CO2). Monolayers 
were washed five times with PBS to remove unbound bacteria. Adherent cells were removed by scraping, seri-
ally diluted in PBS, and plated on RCA or MRS as appropriate. The percentage adhesion was calculated as the 
number of adherent bacteria relative to the number of bacterial cells applied to the HT29 monolayer. Adhesion 
assays were performed in duplicate in three independent experiments.

Replication slippage analysis by Maximum Depth Sequencing. (1) Sample preparation of Maxi-
mum Depth Sequencing (MDS) The MDS protocol is illustrated in Fig. 3 and is based on a previously published 
 methodology37. Chromosomal DNA from a bifidobacterial culture grown under in vitro conditions was isolated 
as previously  described30, or from a fecal sample using the QiAamp DNA stool kit (Qiagen) as described by 
the supplier’s instructions. Quantification of DNA was performed with Qubit dsDNA HS Assay Kit (molecular 
probes life technologies). Digestion of chromosomal DNA strand with an appropriate restriction enzyme (AatII, 
ZraI, and MluI; SI Table S1) was performed following the supplier’s instruction (Biolabs). MDS was performed 
on samples derived either from 250 ng of chromosomal DNA (when purified from an in vitro culture sample) 
or 10 ng when purified from a fecal sample (concentration was 1–2 ng/µl). The digested reaction was purified 
with High Pure PCR product purification kit (Roche). Incorporation of the 14nt random barcode (“family tag”) 
involved a “family primer”: its 5’ part sequence contains an NGS adapter P5 sequence following by a 14nt ran-
dom barcode; its 3’ part sequence is complementary to the 3’ end sequence of the digested chromosomal DNA 
strand containing the G/C tract sequence of interest (Table S4). Incorporation of the family tag was performed as 
follow: 22.5 μl of purified digested chromosome was used in a 50 μl reaction volume containing 2.5 μl of 10 μM 
specific family primer (containing the 14nt random tag) and 25 μl of 2X Q5 High fidelity master mix (Biolabs) 
to incorporate the family tag at the 3’ end of the digested chromosomal DNA strand of interest. The reaction was 
incubated successively at 98 °C for 1 min, 60 °C for 15 s, and 72 °C for 1 min. Immediately after this incubation, 
unused primers were removed by addition of 1 μl Exonuclease and 5.5 μl 10X Exonuclease buffer (Biolabs). 
Following incubation at 37 °C for 1 h, then 80 °C for 20 min, the product was purified with a PCR clean up kit 
(Roche) and eluted in 27 μl H20. Linear amplification using forward adapter amplifier primers: The purified 
product was then used as a template for linear amplification. Reaction contains 22.5 μl of purified template, 2.5 μl 
of 10 μM primer F286, and 25 μl of 2X Q5 High fidelity master mix (Biolabs). Incubation was 13 cycles of: 98 °C 
for 5 s, 61 °C for sec, and 72 °C for 15 s. Exponential amplification: To the linear amplification reaction, 2.5 μl of 
10 μM of each primer (a gene specific reverse primer (SI Table S4) and the reverse NGS adapter primer R287) 
was added. Incubation was performed for 16 cycles: 98 °C for 15 s, 61 °C for 15 s, and 72 °C for sec. The expected 
product was then purified on a 1% TAE agarose gel using the High Pure PCR clean up kit (Roche). Elution was 
with 15 µl or 30 µl H20 depending on the relative quantity of the expected product detected on a 1% agarose gel 
stained with Safeview (NBS Biologicals ltd manufacter, NBS-SV1).

Subsequently, a limited cycle PCR using Nextera XT indices (Illumina) was performed to incorporate 
sequencing adaptors and dual-index barcodes to each PCR product. Products were then purified with Ampure 
XP beads (Beckman Coulter), quantified using the Qubit fluorimeter (Thermo Fisher) and pooled at an equimolar 
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concentration. The mix of samples was sequenced on a MiSEq (Illumina) mid input (300 cycles) with V2 chem-
istry (Illumina).

(2) Bioinformatic analysis of NGS sequences derived from Maximum Depth Sequencing A first set of NGS 
sequencing involved 40 samples analyzed on an Illumina platform using 150 bp pair-ended sequencing (Tea-
gasc sequencing platform, Ireland). This set included samples 1–36, 41–42, 47–48, each having between 2 and 
4 million reads. A second set of NGS sequencing involved 30 samples analyzed on an Illumina platform using 
150 bp paired-end sequencing. That second set included samples 37–40, 43–46, 49–54, and 95–100, and yielded 
approximately 1 million reads per sample. For each sample, the following are indicated in SI Table S1: the name 
of the sample with corresponding source of UCC2003 chromosomal DNA including bacterial cultivation condi-
tion, the chromosomal DNA strand analyzed by Maximum Depth Sequencing, the number of NGS reads, the 
number of sequences for each MDS family and sub-family.

Analysis of Indel in G-tract: First, the family tag (14nt random sequence) was located and extracted by per-
forming a Blastn alignment for both NGS reads R1 and R2 independently. Then, NGS reads containing “G’s end” 
were removed. The remaining NGS reads were subsequently filtered to retrieve those containing a homopoly-
meric G/C-tract from those where the G/C-tract contained one or more than one base G substituted by a base 
C, G or T. The identity of the G-tract was also retrieved with the corresponding family tag, and the NGS reads 
were clustered with the family tag.

For the specific analysis of InDel by MDS aims to discriminate between the error derived from the bacterial 
host polymerase from those introduced by in vitro PCR reactions, clusters were selected when containing at least 
3 NGS reads. These family sequences were subsequently filtered when a representative sequence was selected. 
Such a representative sequence corresponds to the identical sequence whose statistical value of mode and median 
were equal. Finally, family sequences were clustered together when they shared an identical G-tract. The number 
of family sequences (each reflecting a unique chromosomal molecule) associated with a specific G-tract length 
is indicated in SI Table S1.

Bioinformatic search of G-tract sequences in Bifidobacterium strains. Fully sequenced and pub-
licly available Bifidobacterium genomes (Table  1) were searched for the presence of sortase-dependent pilus 

Table 1.  G-tract mapping in sortase dependant pilus genes specified in other Bifidobacterium strains. 
Columns from left to right indicate the name of the bacterial species and strains, the number and name of 
sortase-dependent pilus cluster(s) containing a G-tract of specific nt length with the corresponding genomic 
coordinates and chromosomal DNA strand.

Species Strain
Sortase pilus 
clusters (total) PolyG pilus locus PolyG length (bp) PolyG position Strand

Bifidobacterium 
longum

NCIMB8809 1 B8809_1831-29 12 2303726–2303737 −

NCC2705 1 BL0674-76 11 1662690–1662700  + 

DJO10A 1 BLD_1467-69 10 1704297–1704306  + 

BBMN68 1 BBMN68_1404-06 10 1679020–1679029  + 

Bifidobacterium 
breve

UCC2003 2 Bbr_0113-15 11 164606–164616  + 

Bbr_1889-07 10 2376297–2376306 −

JCM 7017 2 B7017_0130-32 11 170185–170195  + 

B7017_2091-93 10 2242600–2242609 −

NCFB 2258 2 B2258_0100-02 11 133056–133066  + 

B2258_1894-96 10 2272238–2272247 −

215W447a 2 BB215W447A_0128-30 10 164763–164772  + 

082W48 1 BB082W48_0128-30 9 164929–164937  + 

NRBB02 1 NRBB02_0129-31 9 164595–164603  + 

Bifidobacterium 
dentium

NCTC11816 5 NCTC11816_00529-31 10 629858–629867  + 

NCTC11816_01833-35 13 2144867–2144879 −

Bd1 7 BDP_0534-38 11 629857–629867  + 

BDP_1874-76 13 2145404–2145416 −

E7 5 J7M36_02635-50 10 633200–633209  + 

N8 6 J7M35_10275-90 11 2468221–2468231 −

Bifidobacterium 
pseudocatenulatum

DSM 20438 2 BBPC_1756-59 11 2194167–2194177 −

YIT11956 5 KYE72_04985-10 11 1186707–1186717  + 

KYE72_09605-25 10 2289128–2289137 −

N8 6 J7M35_08440-50 10 2034919–2034928 −

J7M37_09250-70 11 2242771–2242781 −

Bifidobacterium 
bifidum

PRL2010 3 BBPR_1820-22 9 2185007–2185015 −

HN002 3 JQN90_03530-50 8 868939–868946 −

BGN4 3 BBB_1816-20 10 2194102–2194111 −
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clusters, particularly a sortase-encoding gene (PF04203) with associated surface proteins. The identified clusters 
were searched for the presence of a G-tract sequence up to 500 bp upstream and 200 bp downstream the pre-
dicted gene start in the first gene of the operon.

Ethics approval and consent to participate. All experiments using mice were approved by the Uni-
versity College Cork animal ethics committee and all methods were performed in accordance with the relevant 
guidelines and regulations. The study is reported in accordance with ARRIVE guidelines.

Results
Replication slippage allows functional assembly of sortase-dependent pilus. The B. breve 
UCC2003 genome contains two loci, corresponding to locus tags bbr0113-bbr0115 and bbr1889-bbr1886, each 
of which is predicted to encode the biosynthetic machinery for sortase-dependent pili. They consist of a cluster 
of three and four genes, respectively. These two gene clusters contain a basic arsenal of functional elements 
allowing gene expression, protein secretion and polymerization required for pilus assembly (Fig. 1, panels A&B). 
It includes genes encoding: (1) a dedicated sortase, a key enzyme involved in polymerization of pilin protein 
sub-units by a transpeptidation reaction at an LPXTG  motif38,39, (2) the LPXTG motif present in each of the 
pilin subunits, (3) the presence of a Sec secretion signal specified by each gene, being required for export to the 
bacterial cell surface.

Interestingly, the first product of each cluster, a pilin subunit precursor, has the Sec secretion signal and 
LPXTG motif encoded by two distinct ORFs separated by a sequence containing a homopolymeric G-tract. A 
potential re-framing mechanism at this G-tract to join the two ORFs into a single CDS was considered in the 
original annotated version of GenBank submission CP000303.1 (updated 31st January 2014) of the UCC2003 
genome, though was not considered in the most recent update NC_020517.1 (on 30th March 2017). Here, the 
former B. breve UCC2003 ORFs containing the coding sequences [coordinates 164585-164608] and [coordinates 
164607-169169] are re-designated as ORFs bbr_0113a (the ‘upstream ORF’) and bbr_0113b (the ex-bbr_0113), 
respectively; and those representing the sequences [2376304-2376500] and [2368283–2376305] are re-named 
as bbr_1889a (the ‘upstream 65-AA encoding ORF’) and bbr_1889b (the former 2674-AA encoding bbr_1889).

The bbr_0113a and bbr_1889a genetic elements are highly transcribed, and transcription is strongly reduced 
downstream of the 3’ stop codon in both bbr_0113a and bbr_1889a39. Interestingly, a ‘dispersed’ profile of 
transcription termination sites can be observed within the 600nt sequence downstream of the stop codon of 
bbr_0113a or bbr_1889a40. This is indicative of a progressive release of the RNA polymerase from the DNA 
template by a polarity effect rather than by the presence of a specific transcriptional termination signal which 
would have been characterized by a much more defined termination site. While in NC_020517.1 bbr_0113b 
(ex-bbr_0113) and bbr_1889b (ex-bbr_1889) have annotated ‘start codons’, the coding sequence surrounding 
these ‘start codons’ lack a canonical Shine Dalgarno sequence and predicted (N-terminal) Sec secretion signal. 
Therefore, the apparent lack of translational signals to allow pilus expression, and the observed polarity effect 
provides evidence for lack of translational initiation at those sites.

Since a (strong) active  promoter40 and translation initiation sequences are available for expression of 
bbr_0113a and bbr_1889a, we first explored if appropriate omission or addition of base(s) would lead to the 
successful assembly of surface-exposed pili. Pilus production was examined in derivatives of B. breve UCC2003 
in which bbr_0113a and bbr_0113b, or bbr_01189a and bbr_1889b, had been placed in-frame by insertional 
mutagenesis at their corresponding chromosomal loci (SI Figure S1 & Materials and Methods). The presence 
of pili was analyzed by ammonium molybdate staining and visualized by transmission electron microscopy. In 
contrast to the parent strain, B. breve UCC2003, apparent pilus-like structures were observed on the cell surface 
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Figure 1.  Sortase-dependent pilus gene clusters of UCC2003. Genetic organization of the locus containing 
bbr_0113 (A) and bbr_01889 (B). Coding sequences are indicated with an arrow, with the annotated bbr_0113 
(green) bbr_1889 ORF (grey) re-named bbr_0113b and bbr_1889b. The corresponding upstream ORF is named 
bbr_0113a (blue) and bbr_1889 (brown). Other sortase-dependent pilus genes are highlighted in white and the 
dedicated sortase enzyme by a stripped arrow. Signal peptide and LPTxG motifs are indicated by vertical red 
and yellow bars respectively. The UCC2003 genomic coordinates of NC_020517.1 are indicated above the arrow.
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of UCC2003-113 or UCC2003-1889 (Fig. 2, panels C-E). As expected such alteration of the number of Gs allows 
expression of the fused genes. It apparently also results in expression of the 3’-located genes of the two pilus 
gene clusters, including the corresponding dedicated sortase-encoding gene, thereby apparently allowing the 
production of surface-exposed pilus structures.

Adhesion of B. breve strains to HT29 epithelial cells. We next explored the biological properties of 
each of the two sortase-dependent pili to mediate cell surface adhesion. Strains B. breve UCC2003 (WT), B. 
breve UCC2003-113 and B. breve UCC2003-1889 were tested for their ability to adhere to HT29 epithelial cells. 
B. breve UCC2003 and UCC2003-1889 exhibit similar adhesion abilities with approximately 7% of bacterial cells 
adhering to the HT29 cells, while the adhesion ability of UCC2003-113 was significantly higher, with more than 
20% of bacterial cells adhering to HT29 epithelial cells (Fig. 2, panel F). This data indicates that expression of 
sortase-dependent pili, at least by B. breve UCC2003-113, promotes significantly enhanced adhesion to epithe-
lial cells. This apparent pilus-mediated adhesion is likely to be an advantageous feature for bifidobacteria in the 
context of host colonization and host–microbe interaction.

Analysis of replication slippage by Maximum Depth Sequencing. Considering that the length of 
a homopolymeric G/C tract is presumed to determine its propensity for DNA polymerase-mediated slippage, a 
Maximum Depth Sequencing (MDS) approach was  performed37 to allow discrimination between errors intro-
duced by the DNA polymerases required for in vitro amplification and sequencing from those generated by the 
bifidobacterial host DNA polymerase during genome replication.

MDS focuses on the analysis of a sequence of interest (in our work a G- or C-tract) present in one chromo-
somal DNA strand (Fig. 3), and is based on the incorporation of a random tag (named “family” tag) 3’ to the 
region of interest prior to any amplification. This incorporation involves the generation of a new 3’ DNA end 
which is specifically extended by polymerase synthesis to incorporate the family tag specified by a DNA oligo-
nucleotide template (Fig. 3). Next, each chromosomal sequence encompassing the region of interest associated 
with its unique tag is used as a template in a linear amplification reaction to generate a pool of single-stranded 
sequences. This maximizes recovery of the same sequences associated with a unique family tag. Then, the pool 
is used as template for an exponential amplification step to generate a double-stranded product suited to Next 
Generation Sequencing. The derived amplicon products of ≈150 bp encompassing the nucleotide tract and the 
family tag, were subjected to a 150 bp paired-end sequencing on an Illumina platform in order to maximize the 
recovery of the “family” tag and the associated G or C tract (see Materials and Methods). The determination of 
the identity of the original chromosomal sequence of interest (G or C tract) is now possible by retrieving from 
each family, a corresponding sequence whose occurrence within a particular family is statistically representative 
of the region of interest in the original chromosomal  molecule37.

In the current work, the identity of the tract (being G’s or C’s) is indicated with respect to the chromosomal 
DNA strand used to perform MDS analysis. Therefore, the restriction site indicated in MDS experiments is 
located 3’ to that tract (on the original chromosomal locus) and was used to incorporate a 14nt random tag 
(‘Family tag’) and the P5 NGS adapter containing the sequence of the NGS primer R1 (generating “R1” reads 
during paired-end Illumina sequencing). Therefore, the Illumina sequencing reaction performed with primer R1 
uses a DNA template containing the same identity of base sequence as the chromosomal DNA strand analyzed 
by MDS. The corresponding NGS reads generated with primer R1 have the general sequence: (from 5′ to 3′) 
the 14nt tag (Family tag), followed by the G/C tract (the sequence of which represents the complementary and 
reverse sequence of the tract present in the original chromosomal strand used to perform MDS).

A 150 bp paired-end Illumina sequencing was performed to exclude sequencing errors within the G- or 
C-tract specified by either of the two DNA strands of the PCR product. Unexpectedly with the G-tract containing 
template, the counterpart sequence of the derived NGS reads through and beyond the G-tract template sequence, 
corresponds to repetitive G base(s), named in this current work “G’s end (Fig. 4). This phenomenon is believed 
to be caused during Illumina sequencing of a G-tract-containing template due to either a G-tract-forming sec-
ondary structure thereby forming a physical roadblock for the DNA polymerase or to non-specific, repetitive 
binding of fluorescent Guanine nucleotide. Therefore, the bioinformatic analysis of the paired-end NGS data 
was performed with only one of the two NGS reads, R1 or R2. The general workflow of the MDS bioinformatic 
analysis is shown in Fig. 5. The description of the NGS samples can be found in SI Table S1, as well as details of the 
bioinformatics corresponding to the occurrence of the “G’s end” phenomenon (SI Table S2), and the generation 
of the “family” reflecting a sequence of interest derived from one specific chromosomal molecule (SI Table S3).

MDS analysis of InDel at the bbr_0113 and bbr_1889 chromosomal loci. To validate the MDS 
method with the analysis of the identity of the G/C tract at the bbr_1889a-1889b locus, two control experiments 
were performed. Each control included a chemically synthesized oligonucleotide, PAGE purified, containing the 
bbr_0113 locus sequence specified by one of the chromosomal DNA strands. One of the oligonucleotides has a 
G11 sequence (SI Table S4, oligo F449) and the other has a C11 (oligo F450) tract. Each oligonucleotide was used 
as a template and tested using a 100-fold range of two concentrations (see Materials and Methods). The NGS 
paired-end sequencing of the derived PCR product reveals the presence of the “G’s end” phenomenon when the 
DNA strand (of the PCR product) used as a template contained a G-tract. Therefore, the reads exhibiting such 
“G’s end” were discarded, while the remaining reads were analyzed.

The NGS results for the G-tract-containing synthetic template correspond to samples 95 & 96, and for the 
C-tract-containing synthetic template to samples 97 & 98 (Fig. 6A). Within each set, the first sample represents 
sequencing data when a 100-fold higher concentration of oligonucleotide template was employed compared to 
the second sample. With the G11-tract control, sequencing reads from sample 96 showed the presence of just 36 
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Figure 2.  Phenotype and biological activity. A schematic of the expression of Bbr_0113ab and Bbr_1889ab 
pilus products derived by replication slippage is indicated in (A) and (B) where ORFs are indicated by a 
rectangle, for bbr_0113 locus (A) with bbr_0113a (in blue) and bbr_0113b (in green), for bbr_1889 locus (B) 
with bbr_1889a (in brown) and bbr_1889b (in grey). Above is indicated a presumably initiation of translation 
encompassing the translational codon for bbr_0113a and bbr_1889b (indicated in same color as their ORF) 
and a potential Shine-Dalgarno sequence (underlined). Below is shown the impact of standard or adequate 
replication slippage causing, respectively, the expression of a truncated or complete pilus product. Expression of 
sortase-dependent pili by recombinant strains of (C) B. breve UCC2003, (D) UCC2003-113 or (E) UCC2003-
1889. Cells were stained with ammonium molybdate and visualized by transmission electron microscopy. 
Biological functionality of pili in cell interaction of (F) B. breve UCC2003, UCC2003-113, UCC2003-1889 to 
HT29 cells as determined by the viable count method. Data presented are an average of triplicate experiments. 
L. rhamnosus GG was included as a control.
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MDS families (after bioinformatic filtering). Sample 95 was shown to correspond to 808 MDS families exhibiting 
a frequency of base addition of ≈0.5% and a base omission frequency of ≈2.7%. For the C11-tract control, the 
corresponding number of NGS families for samples 97 and 98 were shown to be 240 and 528, respectively. The 
result shows a similar frequency of slippage distribution with ≈94% having the expected number of G’s within 
the G-tract, ≈5% having one base omission (G10), and 1% having one base addition (G12), (Fig. 6A). Because the 
MDS allows discrimination between errors due to the polymerase reagent, this implies that ≈3.2% of the oligonu-
cleotide F449 is heterogeneous at the G-tract, and ≈6% of oligonucleotide F450 is heterogeneous at the C-tract. 
This is presumed to be due to errors in chemical synthesis of an oligonucleotide containing a homopolymeric 
sequence. Chemical synthesis of oligonucleotides involves nucleotide cycle addition at the 3’ end of the nucleic 
acid and the incorporation of the cognate nt at each cycle is not 100% efficient at each  cycle41,42. Therefore, it 
should be expected that without purification the oligonucleotide population contains a mix of sequences having 
at least one base less at the homopolymeric sequence. Though the oligonucleotide encompassing the expected 
sequence was PAGE purified, it cannot be excluded that potential secondary structure formation of the oligo-
nucleotide may have affected its migration within the PAGE, generating a PAGE-purified product that contains 
a mixed population of varying homopolymeric nt length. 

Then, the MDS method was executed employing chromosomal DNA from B. breve UCC2003 cultivated in 
complex MRS media. A single colony grown on an RCA plate was used to prepare a subculture prior to inocula-
tion in MRS liquid culture (see Materials and Methods). Chromosomal DNA was then purified from the bacterial 
culture when in exponential phase of growth to perform the MDS analysis. In the case of the bbr_0113a-0113b 
locus, the NGS result of the chromosomal DNA strand containing the G-tract sequence, involving MDS per-
formed with the AatII site (Fig. 3), was considered only with R2 reads. The obtained results show that 37% of the 

Figure 3.  Maximum Depth Sequencing (MDS). The chromosomal DNA strand containing the sequence of 
interest, such as G11 of bbr_0113, is digested 3’ by a restriction enzyme (AatII). A synthetic oligonucleotide 
containing 5’ the NGS adapter P5 sequence (blue line), 14nt random sequence “family tag” (orange rectangle) 
and a sequence (green line) being reverse and complementary to the sequence of the newly produced 3’end 
of the chromosome strand, is used as template to incorporate the family tag and adapter sequence 3’ to 
the sequence of interest. Un-incorporated oligos are digested by Exonuclease I. Then, 12 cycles of linear 
amplification are performed with a specific “primer amplifier” complementary to the newly neo-synthesized 
DNA 3’end. Corresponding products are then used as template in exponential amplification involving the 
addition of a second primer. It contains 5’ the NGS adapter P7 sequence (in blue), an 8nt random sequence but 
can be facultative (in grey rectangle), and a sequence (in green) being reverse and complementary to a specific 
sequence of the sequence of interest. The purified PCR product is then subjected to NGS sequencing with the 
family tag reflecting a unique chromosomal DNA strand molecule.
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population contains a G11 tract which is the number of annotated G’s, 59% has a G12 tract (an extra G), and 3% 
possesses a G10 sequence (one base omission) (Fig. 6A, sample 1). Confirming the above result is the counterpart 
MDS experiment performed on the complementary chromosomal DNA strand containing the C-tract using 
MluI. Analysis of the NGS reads R1 revealed a slippage distribution at the C-tract that was consistent with that 
found at the G-tract (Fig. 6A, sample 19).

To summarize, the consistency of the bbr_0113 MDS results obtained (1) from the PCR products derived from 
the sequence present in a given chromosomal DNA strand, and (2) from utilization of one of the NGS reads of 
a paired end sequencing set (R1 or R2), demonstrates that the MDS method is a robust approach to determine 
the length of a G/C tract at a specific location in a particular chromosomal strand. Therefore, the sum (63%) 
of the stacked frequency of base(s) additions and omissions (Fig. 6A) implies that 37% of the assessed B. breve 
UCC2003 population possesses a bbr_0113a-0113b locus with its number of G’s identical to the number of G’s 
annotated in the Refseq sequence (NC_020517.1).

With the bbr_1889a-1889b locus, a control experiment for the MDS method for the bbr_1889 was included. 
It involved a chemically synthesized, PAGE purified oligonucleotide template containing a sequence correspond-
ing to the bbr_1889 section with the G10-tract (SI Table S4, oligo F451). The corresponding sample names are 
99 (corresponding to 156 MDS families passing the bioinformatic filter) and 100 (with just 19 identified MDS 
families). Similar to the situation for bbr_0113, the NGS paired-end sequencing exhibits “G’s end” with R1 reads 
(SI Table S2). Therefore, only the NGS reads generated by R2 were considered for the analysis. With sample 
99 (tested with 100-fold higher concentration of a synthetic template), the result showed that ≈99% of single 
family-associated reads possess the G10 tract (the expected number of G’s), while just 1% contain a G9 sequence 
configuration (Fig. 6B, sample 99).

Analysis at the bbr_1889a-1889b locus of the chromosomal DNA strand containing the G-tract involved the 
restriction site ZraI. The results show that ≈93.4% contains G10 the number of G’s annotated for the bbr_1889a-
1889b locus, and ≈6.5% have G9, i.e. corresponding to a single base omission (Fig. 6B, sample 29). Base addition 
was determined to be ≈0.1%, therefore representing a small minority of the assessed population. This indicates 
that most cells of the analyzed UCC2003 population contain a bbr_1889a-1889b locus with a G-track of 10 Gs, 
which is identical to that annotated in the Refseq sequence (NC_020517.1).

In conclusion, the MDS results indicate that the UCC2003 population under the conditions tested exhib-
its a strong heterogeneity in the number of G’s at the bbr_0113a-bbr_0113b locus but much less so at the 
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Figure 4.  G’s end phenomenon. The position of available restriction sites present in the double stranded 
chromosomal locus of bbr_0113 (A) and bbr_1889 (B) used to generate a newly 3’end, downstream the sequence 
of interest, of one of the two chromosomal DNA strands are indicated. Because this 3’ end incorporates a 
14nt random tag and the complementary sequence of the NGS primer R1 during the first step of MDS, the 
corresponding NGS reads generated using R1 will sequence first the 14nt family tag, followed by the tract, and 
then the 8nt tag. When MDS targets a chromosomal strand containing a G-tract (using either AatII or ZraI), 
the NGS read generated with primer R1 causes a G’s end phenomenon, which does not occur for primer R2 
(C). Conversely, when MDS focus on a chromosomal DNA strand containing a C-tract (MluI), the G’s end 
phenomenon occurs with R2 but not with R1 (D).
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bbr_1889a-1889b locus. This indicates that G11, at least within the bbr_0113a-0113b genetic context, represents 
a strong slippage motif when compared to a G10 motif. This slippage heterogeneity which exhibits a higher pro-
portion of G12 tract (60%) within the population rather than the annotated G11 (37%) points to high frequency 
slippage at G11 of the bbr_0113a-0113b locus in our experimental condition or a limitation of the sequencing/
assembly method when the B. breve UCC2003 genome sequence was originally determined (NC_020517.1).

Replication slippage frequency with different carbon sources. Considering the possibility of 
potential stimulation of slippage by a nutrient present in the MRS medium (a rich and complex growth medium 
containing both yeast extract and glucose) due to the surprisingly heterogeneous variation in the length of the 
G-tract found at the bbr_0113 locus, we explored the impact of a more defined medium on the frequency of rep-
lication slippage. Because B. breve UCC2003 is known to be able to utilize a large variety of sugars, including cer-
tain Human Milk Oligosaccharides (HMOs;9, we tested minimal MRS (absence of yeast extract) supplemented 
with a specific sugar as the sole carbon source.

We assessed the G-tract in the bbr_0113a-0113b locus by MDS analysis following growth of B. breve UCC2003 
on the following carbohydrates: lactose (Fig. 6A, samples 3 &12 for the chromosomal strand containing the 
G-tract, vs sample 22 for the other strand containing the C-tract), glucose (samples 4 &13, vs 23), ribose (sam-
ples 11, vs 21), sucrose (samples 5 &14, vs 24), maltose (samples 8 &17, vs 27), raffinose (samples 9 &18, vs 28), 
and the HMOs lacto-N-tetraose (LNT; samples 6 &15, vs 25), and Lacto-N-neotetraose (LNnT; 7 &16, vs 26). 
Interestingly, all analyzed samples were shown to exhibit a very similar distribution of frequencies of base(s) 
additions and omissions when compared to those found in glucose-containing media (see samples 1 &19, as 
discussed above). Notably, independent of the carbohydrate used for growth of B. breve, we observed a slightly 
more frequent addition of one C base, and more frequent addition of two C bases within the chromosomal DNA 
strand containing the C-tract when compared to the strand containing the G-tract (see “Discussion”).

Next, we analyzed the G-tract in the bbr_1889a-1889b locus for B. breve UCC2003 cultivated on the follow-
ing carbohydrate: lactose, sucrose, LNT, LnNT and raffinose (Fig. 6B, samples 31, 32, 33, 34 & 35, respectively). 
All assessed samples exhibit similar results as those found in glucose-containing medium (previous sample 29).

In conclusion, the replication slippage at the bbr_0113 or bbr_1889 loci does not appear to be modulated 
by any of the carbon sources tested. Importantly, the results obtained under these varying medium conditions 
show a consistent discrepancy between the identity of the G-tract at bbr_0113 locus being annotated as G11 in 
the Refseq sequence NC_020517.1, and the two major G-tract populations, i.e. G11 (present at ≈37%) and G12 
(present at ≈60%), encountered in the assessed UCC2003 cell cultures (see “Discussion”).

The gastrointestinal environment stimulates replication slippage at G-tracts present in two 
sortase-dependent pilus loci. Assuming that bifidobacterial sortase-dependent pili, which represent 
surface-exposed appendages, convey a biological attachment property, it may be that pilus expression is stimu-
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Figure 5.  MDS bioinformatic workflow. Selection and clustering of the “family” sequences containing a specific 
G/C tract specified at bbr_0113 and bbr_1889 chromosomal loci.
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lated within the gastrointestinal tract of the mammalian host. Therefore, replication slippage was investigated in 
a murine model.

We performed MDS analysis of the chromosomal DNA strand specifying the G-tract of the bbr_0113a-0113b 
locus, thus involving NGS reads derived from primer R2 of the NGS paired-end sequencing. The chromosomal 
DNA was purified from fecal samples of six mice (named from M1 to M6). Each was analyzed at 7 days (named 
T1) and 14 days (named T2) following administration of B. breve UCC2003: M1 (sample 37 at T1 vs sample 43 at 
T2), M2 (38 at T1 vs 44 at T2), M3 (39 vs 45), M4 (40 vs 46), M5 (41 vs 47) and M6 (42 vs 48). The MDS results 
reveal a similar slippage pattern in all six mice (Fig. 6A). The frequency of base(s) omission is at least 4 times 
higher than that of base(s) addition. Omission of one base (≈30%) is approximately 10 times more frequent than 
omission of two bases (≈3%). Interestingly, comparison of time points T1 and T2, show that for mice M2, M3, M5 
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Figure 6.  Replication slippage analysis by Maximum Depth Sequencing (MDS). The stacked frequency of 
inDel at G/C tract of bbr_0113 locus (A) and bbr_1889 locus (B) is indicated for each specific number of base(s) 
addition or omission, with the frequency of the annotated nt length being omitted. The MDS analysis reveals 
the distribution of InDel derived from only one of the chromosomal DNA strands specifying the G-tract (DNA 
coding strand) or the C-tract (non-coding DNA strand). The identity of the chromosomal DNA strand with 
the restriction site used for the MDS is indicated at the top. The general cultivation condition of UCC2003 for 
each sample (numbering above each stacked frequency bar) is shown at the bottom, with the specific cultivation 
conditions also indicated in SI Table S1. The condition ‘control’ refers to a control experiment involving 
chemically synthesized oligonucleotides specifying the region of interest encompassing either the forward or 
reverse chromosomal DNA strand of bbr_0113 or bbr_1889 locus.
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& M6, the frequency of base(s) omission tends to slightly increase with their corresponding overall frequency of 
base addition remaining similar. For mice M1 and M4, the overall frequency of base omission slightly decreases 
between time point T1 and T2, with for mouse M1 a decrease in the frequency of base addition. To summarize, 
while some variation is observed between individual mice, the results show a strong and consistent slippage pat-
tern of Indel base(s) distribution with base omission(s) being more preponderant than base addition(s). It also 
indicates that within each mouse, 30% of the UCC2003 population contains a single base omission resulting in 
a G10 tract at the bbr_0113 locus. With the genotype G10, bbr_0113a and bbr_0113b fuse to form a single ORF 
(Fig. 1A) whose translation would lead to the production of sortase-dependent pili (Fig. 7). This genotype is 
therefore 10-times more preponderant in the gastrointestinal environment compared to when assessed under 
in vitro growth conditions.

To assess the bbr_1889a-1889b locus under in vivo conditions, MDS was performed on chromosomal DNA 
purified from the fecal samples of four mice with time points for the following samples: M1 (sample 49 at T1), 
M2 (sample 50 at T1 and sample 52 at T2), M3 (sample 53 at T2) and M4 (sample 51 at T1 vs sample 54 at T1). 
The obtained results show a very similar slippage pattern among the samples from different mice. Interestingly, 
the slippage occurs in both directions with the overall frequency of base addition(s) and omission(s) being 
similar ≈10–12% (Fig. 6B). This in vivo result contrasts with that found for the in vitro culture where slippage 
was shown to mostly generate base omission(s) rather than base addition(s). With a single base omission, the 
nt length of the G-tract (G9) tract allows fusion of bbr_1889a and bbr_1889b into a single ORF (Fig. 1B) whose 
translation is expected to facilitate expression of the corresponding sortase-dependent pili. Interestingly, the 
occurrence of this G9 tract is about two times more frequent under in vivo conditions compared to the in vitro 
cultivation condition.
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In conclusion, replication slippage events (of −1+3n; with n being an integer) that lead to ORF fusion i.e. 
generation of uninterrupted Bbr_0113ab, or Bbr_1889ab, appear to be enriched under in vivo (gastrointestinal) 
conditions when compared to the in vitro cultivation conditions. This enrichment is twofold for bbr_1889ab 
and tenfold for bbr_0113ab (Fig. 7).

G-tracts are found in other sortase-depending pili genes in Bifidobacterium strains. The pres-
ence of homopolymeric sequences was explored through a computational search in other sequenced Bifidobac-
terium strains (Method). The result (Table 1), revealed that this apparent pilus-associated, replication-mediated 
frameshift mechanism is observed across various representatives of Bifidobacterium species. B. breve and B. 
dentium were the species harbouring either one or two clusters with associated predicted poly-G stretches. B. 
longum, B. bifidum and B. pseudocatenulatum showed limited occurrence of G-tracts in pilus biosynthesis gene 
clusters, generally restricted to a single cluster per genome. The obtained results suggest that while not all pilus-
specifying gene clusters contain G-tracts, this genetic feature is indeed commonly observed in a number of 
clusters across various members of this genus.

Discussion
Productive utilization of a (programmed) slippage-prone motif, especially within a coding sequence, can be 
of obvious benefit when it is associated with the expression of functional product(s). In the current work, the 
length of the G-tract within the first upstream gene of two pilus biosynthesis gene clusters (bbr_0113-0115 
and bbr_1889-1886) is shown to be crucial for functional assembly of the corresponding sortase-dependent 
pilus cluster. Though we do not provide direct evidence for production of the pilus proteins Bbr_0113ab and 
Bbr_1889ab, we believe that the observation by EM of surface exposed pilus-like structures for the IN-frame 
strains UCC2003-113 and UCC2003-1889 is due to the genetically modification of the nt length of the G-tract 
within the coding sequence of the first gene of each operon. This observation indeed provides compelling evi-
dence for action pilus expression. The correct genotype of the G-tract is an important constraint for the expres-
sion of any downstream located gene, therefore highlighting that replication slippage at a G-tract is indeed an 
important mechanism for expression of the two gene clusters. The first gene of each cluster contains a G-tract 
whose length determines if translation initiated within the first ORF (bbr_0113a or bbr_1889a) will continue in 
the second ORF (bbr_0113b or bbr_1889b), (Fig. 2, A&B). Because of the lack of active translational initiation 
in the second ORF, productive replication slippage to generate the fusion products (Bbr_0113ab or Bbr_1889ab) 
is also important for expression of the downstream genes, including a dedicated sortase-encoding gene (Fig. 1). 
Indeed, in the absence of adequate slippage, transcription polarity can occur within bbr_0113b or bbr_1189b 
due to uncoupling of translation and transcription inherent to translation termination at the 3’ stop codon of 
the first ORF (eg. bbr_0113a or bbr_1889a)40.

Authenticity of G-tract sequences. Accurate assessment of the number of bases at a homopolymeric 
sequence, especially at a G-tract is challenging because in vitro DNA polymerase reactions used in slippage 
detection are also sensitive to slippage. Here, G/C tract length was determined using Maximum Depth Sequenc-
ing (MDS)37 aimed at excluding errors introduced during PCR and sequencing procedures. Surprisingly, the 
distribution of G/C tract length, and corresponding frequency, can differ significantly from the annotated 
sequences (NC_020517.1). This highlights the need for caution when considering the reality of annotation of 
homopolymeric G-tracts present in sequence databases, with potential significance for population heterogeneity 
of their nt lengths at specific genomic loci. Such plasticity of nt length is also supported by our experiments as 
one single purified bacterial colony was used in our in vitro culture conditions. Another challenge with G-tracts 
is their intrinsic capability for structure formation, especially G-quadruplex  structure43. This could be the reason 
for the limitation of Illumina NGS sequencing of some G-tract templates resulting in the “G’s end” phenomenon 
(Fig. 5). This is presumably also relevant to errors that may occur during chemical synthesis of oligonucleotides 
containing a G-tract.

Regulation of replication slippage or selection of phenotype or both? Our results show a dra-
matic change of slippage pattern for bbr_0113 and bbr_1889 sortase-dependent pili after passage of UCC2003 
within the gastrointestinal environment of mice. Mechanical aspects of slippage directionality resulting in 
base(s) addition versus base(s) omission) has been shown for some polymerase enzymes to be related to a back-
ward or forward re-alignment of the 3’ end of the nascent transcript with respect to its template, following by 
incorporation of the cognate substrate specified at the re-aligned template base  position44. Productive slippage at 
bbr_0113 and at bbr_1889 corresponds to (−1+3n, with n integer) slippage events, with the preponderant event 
being the omission of a single base. Such directionality may be relevant to potential stimulation of functionally 
productive slippage by the relative concentration of the cognate substrate specified by the slippage-prone motif 
and the template base 3’ adjacent to that motif. This was shown for various slippage-prone motifs of divergent 
polymerases, including RNA polymerases and Reverse  Transcriptases45–47. Because dedicated polymerases are 
involved in the synthesis of the leading and lagging DNA strand at the replication fork, it is also plausible that 
efficiency of slippage is more prevalent in one of the two newly synthesized DNA strand (SI Discussion). With 
DNA polymerases, small nucleotide pool imbalances have a major impact on cancer disease related to poly-
merase  fidelity48,49. Interestingly, the nucleotide pool was also shown to influence G-quadruplex structure with 
perturbation on  transcription50. Therefore, it is possible that the environmental condition of the gastrointestinal 
tract affects the intracellular nucleotide pool of UCC2003, and thereby the InDel distribution at bbr_0113 and 
bbr_1889 loci. With the replication process being semi-conservative, the InDel generated in the neo-synthesized 
DNA strand would ultimately generate a “bulge” at the corresponding base(s) pairing position with the original 
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DNA template strand. Such a “bulge” is the target for universal mismatch repair  system51,52. Therefore, regula-
tion of InDel generation at bbr_0113 and bbr_1889 loci could influence the DNA repair system. This is relevant 
to the maintenance of the InDel within the newly synthesized chromosomal DNA strand when considering the 
semi-conservative process of replication (see SI Discussion and Figure S2).

While mechanical aspects of replication-slippage are important, we consider that the enrichment of ‘ON’ 
slippage-derived sequence found in vivo (Fig. 7) is likely explained by positive selection for the phenotype 
associated with production of sortase-dependent pili at the surface of the bacteria. While such pilus expression 
could trigger the immune  system53,54 and so contribute to decrease their abundance, surface-exposed appendages 
may also be important for retention within the  gut55. Such an in vivo/in vitro selection for particular variants is 
well observed in a number of host-adapted pathogens encoding genes which undergo similar phase-variation 
 events56,57. Therefore, enrichment of productive slippage at bbr_0113 and bbr_1889 is expected to improve bac-
terial attachment within (certain locations within) the murine intestinal tract and so limit their elimination by 
defecation. This could ultimately favor the multiplication of clusters of attached bacterial having a ‘pilus-positive’ 
phenotype, and so enrich the abundance of the corresponding G-tract genotype in the bacterial population. 
Potential selection of the pilus-positive phenotype is supported by the enrichment of a genotype corresponding 
to bbr_0113ab, or bbr_1889ab, resulting from the fusion of two ORFs.

Broadening the scope of replication slippage utilization beyond B. breve UCC2003 is the presence of similar 
G-tract sequences present in other Bifidobacterium strains, including potential for combination of multiple phe-
notypes for some strains. With replication slippage, UCC2003 can exhibit at least two phenotypes for each of the 
two sortase-dependent pili. With a productive InDel, an “ON” phenotype corresponds to pilus expression, and an 
“OFF” phenotype to no or a functionally unproductive, InDel. Therefore, 4 relevant combinations of phenotypes 
could be produced within the UCC2003 population (No expression of the two sortase-dependent pili, expression 
of just Bbr_0113ab, expression of just Bbr_1889ab, or expression of both Bbr_0113ab and Bbr_1889ab). While 
being outside the scope of this manuscript, we have also identified other relevant G-tracts in UCC2003, some of 
them being intragenic or present within the spacer sequences of promoter sequences. Taken together, productive 
replication slippage within B. breve UCC2003 seems to be an important contributor for microdiversity genera-
tion of the UCC2003 population and so could be an important mechanism for its colonization and maintenance 
within the human gastrointestinal tract.

Conclusions
1- Bioinformatic analysis show conserved intragenic G-tract sequences within the coding sequence of the sortase-
dependent pilus biosynthesis genes among members of the Bifidobacterium genus.

2- A fraction of the population of Bifidobacterium possess a genotype of nucleotide G-tract length which 
would ultimately cause the expression of sortase-dependent pili, and perform its presumed function for epithelial 
cell attachment.

3- For the first time we show that replication slippage at a G-tract seems to be subject to in vivo modulation 
generating an enrichment of bacteria which would ultimately express sortase-dependent pili.

4- This study suggests that microdiversity generation derived by replication slippage is not a stochastic phe-
nomenon, but that co-evolution between Bifidobacterium and its host has selected the G-tract sequence as a 
slippery prone sequence, not only to mediate a range of G tract lengths, but possibly underlying novel, yet 
unknown microbe-host interactions.

Data availability
Raw NGS reads are deposited in SRA database under the accession number PRJNA689291. The correspondence 
between the names of each samples indicated in this manuscript and the raw NGS reads files deposited in SRA 
is in SI Table S6. Supplemental Information contains Tables S1–S6, including the description of bacteria strains 
and plasmids (Table S5), Figures S1–S2, and SI Discussion.
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