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Abstract: This paper presents a computational technique for finding the nth derivative of a 

geometric series using binomial coefficients, and some useful results. These results refer to the 

methodological advances which are useful for researchers who are working in computational 

science. Computational science is a rapidly growing multi-and inter-disciplinary area where 

science, engineering, computation, mathematics, and collaboration use advance computing 

capabilities to understand and solve the most complex real life problems. 
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1. Introduction 

In the earlier days, geometric series [1-5] served as a vital role in the development of differential 

and integral calculus and as an introduction to Taylor series and Fourier series. In calculus, the 

derivative of a function is the instantaneous rate of change of the function with respect to one of 

its independent variables. The geometric series and combinatorics [6-10] have significant 

applications in computational science. Computational science is a rapidly growing inter-

disciplinary area where science, engineering, computation, mathematics, and collaboration use 

advance computing capabilities to understand and solve the most complex real life problems.  

 

2. The First Derivative of Geometric Series   

Differentiation is the derivative [7] of a function with respect to an independent variable. In this 

section, a geometric series is considered as the function of independent variable x as follows: 

The function of geometric sereis is  𝑓(𝑥) = ∑ 𝑥𝑖

𝑟

𝑖=0

= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑟 =
𝑥𝑟+1 − 1

𝑥 − 1
.    

Let 𝑁 = {0, 1, 2, 3, 4, 5, ⋯ } be the set of natural numbers including zero element.  
 

The first derivative of geometric series is give below: 

𝑓1(𝑥) = 1 + 2𝑥 + 3𝑥2 + 4𝑥3 ⋯ + 𝑟𝑥𝑟−1 = 𝑓1 (
𝑥𝑟+1 − 1

𝑥 − 1
) =

(𝑟𝑥 − 𝑟 − 1)𝑥𝑟 + 1

(𝑥 − 1)2
 

⟹ 𝑉0
1 + 𝑉1

1𝑥 + 𝑉2
1𝑥2 + 𝑉3

1𝑥3 ⋯ + 𝑉𝑟−1
1 𝑥𝑟−1 =

(𝑟𝑥 − 𝑟 − 1)𝑥𝑟 + 1

(𝑥 − 1)2
, (𝑥 ≠ 1). 

By substituting 𝑥 = 2 in  𝑓1(𝑥), we get the mathematical equation as follows:  

1 + 2(2) + 3(2)2 + 4(2)3 + ⋯ + 𝑟2𝑟−1 =
(𝑟 − 1)2𝑟 + 1

(2 − 1)2
= (𝑟 − 1)2𝑟 + 1. 
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For  𝑥 = 3, 1 + 2(3) + 3(3)2 + 4(3)3 + ⋯ + 𝑟3𝑟−1 =
(2𝑟 − 1)3𝑟 + 1

(3 − 1)2
=

(2𝑟 − 1)3𝑟 + 1

22
. 

 

For  𝑥 = 4, 1 + 2(4) + 3(4)2 + 4(4)3 ⋯ + 𝑟4𝑟−1 =
(3𝑟 − 1)4𝑟 + 1

(4 − 1)2
=

(3𝑟 − 1)4𝑟 + 1

32
. 

Similarly, for any number k that is equal to x, ∑ 𝑉𝑖
1

𝑟−1

𝑖=0

=  
(𝑘𝑟 − 𝑟 − 1)𝑘𝑟 + 1

(𝑘 − 1)2
.  

3. The n
th

 Derivative of Geometric Series   

𝑦 = 𝑓(𝑥) = ∑ 𝑥𝑖

𝑟

𝑖=0

=
𝑥𝑟+1 − 1

𝑥 − 1
.  The derivatives of  y are given below. 

1

1!

𝑑𝑦

𝑑𝑥
= ∑ 𝑉𝑖

1𝑥𝑖

𝑟−1

𝑖=0

⟹
1

2!

𝑑2𝑦

𝑑𝑥2
= ∑ 𝑉𝑖

2𝑥𝑖

𝑟−2

𝑖=0

⟹
1

3!

𝑑3𝑦

𝑑𝑥3
= ∑ 𝑉𝑖

3𝑥𝑖

𝑟−3

𝑖=0

⟹ ⋯
1

𝑛!

𝑑𝑛𝑦

𝑑𝑥𝑛
= ∑ 𝑉𝑖

𝑛𝑥𝑖

𝑟−𝑛

𝑖=0

. 

 

The nth derivative [7] of geometric series is  

 

1

𝑛!

𝑑𝑛𝑦

𝑑𝑥𝑛
= ∑ 𝑉𝑖

𝑛𝑥𝑖

𝑟−𝑛

𝑖=0

=
1

𝑛!
𝑓𝑛(𝑥) =

1

𝑛!
𝑓𝑛 (

𝑥𝑟+1 − 1

𝑥 − 1
). 

 

∑ 𝑉𝑖
1𝑥𝑖

𝑟−1

𝑖=0

=
1

1!
𝑓1 (

𝑥𝑟+1 − 1

𝑥 − 1
) ; ∑ 𝑉𝑖

2𝑥𝑖

𝑟−2

𝑖=0

=
1

2!
𝑓2 (

𝑥𝑟+1 − 1

𝑥 − 1
) ;  & ∑ 𝑉𝑖

3𝑥𝑖

𝑟−3

𝑖=0

=
1

3!
𝑓3 (

𝑥𝑟+1 − 1

𝑥 − 1
) 

are first, second, and third derivatives respectively.  

 

4. Conclusion  

In this article, the 𝑛th derivative (𝑛 = 1, 2, 3, ⋯ ) of a geometric series using binomial 

coefficients is introduced in an innovative way. These results refer to the methodological 

advances which are useful for researchers who are working in science, economics, engineering, 

management, computation, and medicine [11]. 
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