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Abstract— within the context of Industry 4.0, Cyber 

Physical Systems (CPS) are defined as technologies that 
can manage interconnected systems between its physical 
assets and computational capabilities. Successful 
integration of industry 4.0 principals requires a digital 
transformation in the production workshops, to 
interconnect the objects and equipment with the decision 
process. Due to this informatization, a big amount of data 
is generated and big data analysis must be employed in 
order to extract useful knowledge from the collected raw 
data. A literature review is conducted in this paper to 
identify data mining methods and technologies used in the 
context of production planning and scheduling. The 
results consist of a classification of papers according to 
their research methodology, CPS level implementation 
and technological optimization techniques. Finally, new 
research directions and some insights are discussed with 
regard to the implementation of a production shop floor 
4.0. 

 
Index Terms— Industry 4.0; Cyber Physical System; Big 

Data; Data mining; Scheduling; Planning. 

I. INTRODUCTION 

Industrial companies are currently preparing to undergo a 

major digital transition to meet numerous challenges of the 

next generation industry referred to as industry 4.0. Some 

examples of these challenges are related to resource usage 

efficiency, making production flexible, cost and time 

optimization, ensuring continuity in the digital production 

chain, among others. Consequently, various issues arise and 

some of them are related to Big Data, Internet of Things (IoT), 

Artificial Intelligence (AI), Augmented Reality (AR), robust 

scheduling, and man-machine cooperation (Lu 2017; Oztemel 

and Gursev 2018).  

Today, in a production workshop, industrial companies' 

objects and equipment are increasingly connected using 

sensors that regularly generate hundreds of gigabytes of data. 

Nevertheless, few knowledge is generated from the collected 

raw data due to its complexity and heterogeneity. To obtain 

synthetic decision-aid information concerning the workshop, a 

rigorous analysis of these data must be carried out. Extracted 

knowledge is expected to have a positive impact in industries 

while increasing efficiency, anticipating breakdowns, and 

making manufacturing more competitive (Qi and Tao 2018). 

The presented research consists of a literature review on the 

application of data-related-methods for optimization, 

scheduling and planning a production system. The objective is 

to analyze these methods and practices within the context of 

 
 

industry 4.0. In the current literature, there are few papers 

reviewing data techniques in the industry context. For 

example, Ismail et al. (2009) focus on the applications of data 

mining tasks in planning and scheduling. O’Donovan et al. 

(2015) provides a systematic mapping study of big data 

technologies in manufacturing. Particularly, some authors 

review data analytics in different areas of manufacturing such 

as fault detection, maintenance, and quality control 

(Choudhary, Harding, and Tiwari 2009; Harding et al. 2006). 

Cheng et al. (2018) review the development of data mining 

techniques in the big data era from a general perspective. They 

focus on its applications in production scheduling, quality 

improvement, defect analysis, and fault diagnosis. (Takeda-

Berger et al. 2020) in a recent conference paper, has 

conducted a systematic literature review that analyzes 31 

papers (published after 2011) that use machine learning 

techniques in scheduling. The work shows that the number of 

publication has grown constantly from 2015. The paper focus 

on scheduling aspect and identifies the used techniques 

without further details about the strategy of implementation.  

The existing literature do not take into account the full 

implementation aspects of industry 4.0. “How to implement” 

and “in which context” are usually two main questions that 

lack a general answer. To have a more general and global 

overview about data techniques usage within the new 

challenges brought by the industry 4.0 era, our study focuses 

on the implementation aspects. As stated by Lee et al. (2015), 

Cyber Physical System is the conceptual model required for 

industry 4.0 implementation and it includes several phases; 

from data collection up to process automation. To our 

knowledge, there is a lack of studies addressing how data 

techniques are implemented within the different phases of 

CPS. The purpose of this question is to understand the 

different data  techniques that a company may use in order to 

bring added value to its processes. We focus primarily on 

using data mining for planning/scheduling processes. 

Therefore, our main contribution consists of proposing a CPS-

based classification of literature articles and the analyses of 

the existing case study applications.  

This literature paper has three major contributions:  

1. First, recent papers are analysed using a PRISMA 

systematic research methodology to identify the 

main literature contribution that considers data 

techniques in planning and scheduling. The results 

distinguish case studies from conceptual 

contributions.    

2. As Cyber Physical System is an important aspect of 

industry 4.0, papers are analysed based on the CPS 

levels. The objective is to understand the 

advancement of industry 4.0 implementation from 

a CPS perspective.   

Literature review on using data mining in 
production planning and scheduling within the 

context of cyber physical systems 
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3. The next contribution consists of analysing deeply 

the case studies and identify the main data 

techniques used in planning and scheduling.  

The remaining of this paper is organized as follows. The 

main concepts related to data and industry 4.0 are introduced 

in Section 2, followed by the literature search methodology in 

Section 3. The results are presented and discussed in Section 

4. This section consists of subsections exposing the work 

methodology for reviewing the literature and making the 

proposed classifications. Finally, future research directions 

and conclusions are presented in the last section.  

 

II. MAIN CONCEPTS 

This section addresses some concepts related to the data era 

such as Data Analysis, Data Mining, Big Data, etc. The aim is 

to clarify these concepts and the relationship between them. A 

brief overview of the concept of Cyber Physical System and 

its levels within the context of industry 4.0 is also given. 

These concepts are used for the proposed classification 

presented in the results section (section 4).  

 

A. Data concepts 

According to Van der Aalst (2016), “Data Science” is an 

interdisciplinary field aiming to turn data into real value. We 

can say that data science aims to extract useful knowledge 

from structured or unstructured data using different methods 

and algorithms. “Big Data” is one of the most relevant 

concepts related to data science. In the literature, many 

definitions are proposed. Elgendy and Elragal (2014) define 

big data as “a data whose scale, distribution, diversity, and/or 

timeliness require the use of new technical architectures, 

analytics, and tools in order to enable insights that unlock new 

sources of business value”. In a similar way, Chen et al. 

(2014) define big data as “datasets that could not be perceived, 

acquired, managed, and processed by traditional IT and 

software/hardware tools within tolerable time”.  

The significant changes brought by big data era has been 

recognized not only by researchers, but also by almost every 

company that wants to create additional value for its business. 

The global consulting agency McKinsey & Company in its 

publication of “Big data: The next frontier for innovation, 

competition, and productivity” mentioned that big data is now 

part of every sector and function of the global economy 

(Manyika et al. 2011). Other definitions are proposed by Qi 

and Tao (2018); and, Shukla et al. (2019). Usually when 

speaking about big data, authors refer to four main features 

(4Vs) that characterize it: Volume, Variety, Velocity and 

Value. The volume represents the size and how enormous the 

data are; the variety means the various formats, types and kind 

of uses of data; the velocity is used for the rapid generation 

and the rate with which data are changing; and, the value 

refers to the huge value but very low density of the data (Chen 

et al. 2014; Elgendy and Elragal 2014; Laney 2001). Besides 

Volume, Variety, Velocity and Value, Babiceanu and Seker 

(2016) in their review mentioned that recent papers propose 

Veracity, Vision, Volatility, Verification, Validation, and, 

Variability. The veracity is the consistency and 

trustworthiness of the data; the vision addresses the likelihood 

of data generation process; the volatility refers to the limits of 

the data useful life; the erification and validation address the 

conformity of the data; and, the variability refers to the data 

uncertainty and impreciseness (Babiceanu and Seker 2016). In 

this context, another interesting definition of big data is 

proposed by Gantz and Reisel (2011). It is defined as “a new 

generation of technologies and architectures, designed to 

economically extract value from very large volumes of a wide 

variety of data, by enabling high-velocity capture, discovery, 

and/or analysis.” 

Data science and big data involve many other concepts, e.g. 

data analysis, data analytics, data mining, artificial 

intelligence, machine learning, etc. According to the work of 

Qi and Tao (2018), which focus on the decision making 

process in smart manufacturing, big data analysis must be 

implemented to identify the behavior features and patterns, 

and have an insight into the potential trends. A method of 

analysis is referred to as “Data Analytics”. Data analytics is 

the process of applying algorithms in order to analyze sets of 

data. Also, it is used to extract previously unknown, useful, 

valid, and hidden patterns and information from large data 

sets, as well as to detect important relationships among the 

stored variables (Adams 2010; Elgendy and Elragal 2014). 

Russom (2011) added  that data analytics is where advanced 

analytic techniques operate on big data sets.  

In order to extract patterns from data, one of the most 

relevant concepts of data analytics is “Data Mining”. For 

years, there was no distinction between data mining and 

knowledge discovery in databases (KDD). According to 

Fayyad et al. (1996), KDD was introduced as the overall 

process of discovering useful knowledge from data. Data 

mining was introduced as a step in the KDD process. 

Likewise, Corne et al. (2012) say that data mining is at the 

heart of the KDD process. In other words, data mining is the 

application of specific algorithms for extracting patterns from 

data (Fayyad et al. 1996; Vazan et al. 2011). This area of data 

science contributes to the decision-making process in modern 

industries as far as knowledge can be obtained from the big 

amount of data generated and collected nowadays.  

As explained above, it is difficult to define the barriers 

between these data aspects. To avoid any ambiguity, we use in 

this work the term data mining or data techniques. Precisely in 

Section 4.3 of this paper, data techniques are based on the 

overview of tasks and algorithms in data mining proposed by 

Corne et al. (2012). Fig. 1 illustrates these data mining tasks 

and some of the associated algorithms.  

 
 
Figure 1. An overview of tasks and main algorithms in Data Mining 
(Corne et al. 2012) 
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Classification aims to build a model that predicts the value 

of one variable from the known values of other variables. 

Clustering is used to identify similarity between objects and to 

decompose a data set into groups. Association rules provide a 

very simple way to present correlations or other relationships 

among attributes. Finally, feature selection may be applied 

before one of the three previously presented tasks. It aims to 

find a good subset of features that form high quality clusters 

for a given number of clusters. In a manufacturing context, 

depending on the objectives that a company wants to achieve, 

some of these main four steps, if not all, are usually 

implemented to extract meaningful value from raw data.  

Other concepts are related to data science and big data, such 

as artificial intelligence (AI) and machine learning concepts. 

According to Russell and Norvig (2010), AI is a set of 

techniques that enable machines to mimic human behavior. In 

computer science, AI characterizes systems and programs that 

can perform more complex tasks than direct programming 

(Mellit and Kalogirou 2008). One subfield of AI is machine 

learning. According to the International Business Machines 

(IBM 2019), machine learning enables a system to learn from 

data rather than through explicit programming. Applying 

machine learning techniques in manufacturing generates 

knowledge that may be used to help the decision makers or to 

improve the process directly (Wuest et al. 2016). 

Both of these concepts (AI and machine learning) are not 

explored in depth in this review. The focus is mainly made on 

using data algorithms specifically data mining (such as 

presented in Fig. 1) for smart manufacturing. In Fig. 2 we 

propose a relationship summary between all aforementioned 

concepts. From a digitized transformation perspective, data 

science includes all concepts related to data. However, big 

data is a more general concept that may intersect with other 

concepts. The relation between data mining and machine 

learning is usually represented by some common algorithms, 

as shown in Fig. 2.  

 

 
Figure 2. Relationship between Data concepts 

 

B. Industry 4.0 and Cyber Physical System concepts 

 

Besides the concepts related to data, there are two other 

important concepts for this study: Industry 4.0 and Cyber 

Physical System (CPS). The term “Industrie 4.0” was used for 

the first time in 2011 by a group of representatives from 

different fields in order to increase the German 

competitiveness in the manufacturing industry. Industry 4.0 

defines a methodology to generate a transformation from 

machine dominant manufacturing to digital manufacturing 

based on automation and data exchange between machines 

(Lu 2017; Oztemel and Gursev 2018). Oztemel and Gursev 

(2018) emphasize the industry 4.0 components: Cyber 

Physical Systems (CPS), Cloud Systems, Machine to machine 

(M2M) communication, Smart factories, Big Data, etc. Some 

of these concepts and technologies have been initiated before 

2011. Lee and Singh (2019) affirm that the Internet of Things 

initiated the fourth industrial revolution and propose a timeline 

of an evolution of disruptive technologies in manufacturing 

between 1999 and 2019. 

A CPS is defined as transformative technologies for 

managing interconnected systems between its physical assets 

and computational capabilities (Lee et al. 2013, 2015). For 

Oztemel and Gursev (2018), CPS concerns the integration of 

computing and physical processes, which are essential 

components of industry 4.0 implementations. Baheti and Gill 

(2011) add that the ability to interact with, and expand the 

capabilities of, the physical world through computation, 

communication, and control is a key enabler for future 

technology developments. A benchmark on CPS architecture 

is proposed by Lee et al. (2015) and is regarded as a guideline 

for deploying industry 4.0. The proposed framework consists 

of five levels that span from data collection to decision-

making:   

• Level I: Smart Connection Level consists in 

collecting raw data from machines and their 

components using different resources such as 

sensors. 

• Level II: Data-to-Information Conversion Level is 

where meaningful information is extracted from 

the collected data. 

• Level III: Cyber Level is the central information in 

this architecture where the digital twin concept is 

incorporated. 

• Level IV: Cognition Level generates a complete 

knowledge of the monitored system. 

• Level V: Configuration Level refers to machines 

making decisions (self-configure, self-adjust and 

self-optimize).  

 

The cyber level is regarded as the main contribution of the 

proposed CPS architecture. In this level, some advanced data 

techniques are used to mimic the behavior of the physical 

level, which is referred to as cyber twin (Lee et al. 2015). 

However, these levels are usually tackled from a conceptual 

point of view rather than a technical point of view. From an 

industry 4.0 implementation perspective, it is important to 

stress the different techniques that can be used within each 

level to achieve this CPS completeness. Therefore, our main 

research questions are to understand how-and-which data 

techniques to use for production planning/scheduling in a 

digitized industry. To answer these questions, we propose a 
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literature review about works addressing the problem of 

planning and scheduling from a data perspective and industry 

4.0 point of view. In the following section, we start by 

explaining the literature search strategy/methodology for 

seeking such papers.   

 

III. RESEARCH METHODOLOGY 

In order to achieve the objectives of this research, the 

literature review process proposed by Cooper (1986) and a 

“Preferred Reporting Items for Systematic reviews and Meta-

Analyses” (PRISMA) (Moher et al. 2009) are used. Fig. 3 

shows the flow process of the bibliography research. First, in 

order to determine the relevant keywords that can be used for 

our searching process, some previous literature articles related 

to our main research question are explored (Chen et al. 2014; 

Elgendy and Elragal 2014; Fayyad et al. 1996; Lu 2017; 

Vazan et al. 2011; Chehbi-Gamoura et al. 2020). After a deep 

analysis, 17 keywords are extracted as shown in Table 1. From 

all the possible combinations, 59 relevant combinations are 

chosen. Each combination usually consists of one word related 

to data, one related to manufacturing/industry 4.0 and one 

related to scheduling/planning /optimization.  

 
TABLE I   

KEYWORDS AND DATABASES 

Keywords Databases 

Category 1 Category 2 Category 3  

   

Web of Science 

(WOS) 

Scopus 

IEEE 

Internet of things Manufactur* Schedul* 

Data mining Production Optimi* 

Data analy* 

Cyber Physical 

Production 

System 

Plan* 

Big data 

Data 

Cyber Physical 

System 
Production control 

 Industr* 4.0 Product* plan*  

  Product* optimi*  

 
 

Product* schedul* 
  

    

*Words truncated 

 

Three major databases are used for the research as shown in 

Table 1 and the initial results represent 12903 papers 

(recorded as n1 in Fig. 3). The search is based on the title, 

abstract and keywords. 2591 are from Web of Science (WOS), 

7339 from Scopus and 2973 from IEEE. It is important to 

highlight that no limitations are imposed for the initial phase, 

e.g. publication year, language, journals, conferences. 

Additionally, seven other papers are included (recorded as n2 

in Fig. 3). Two of them are related to Cyber Physical System; 

the others are related to planning and scheduling in the context 

of industry 4.0 (Cheng et al. 2018; Fang et al. 2020, 

Gopalakrishman et al. 2020, Lee et al. 2013, 2015; Lu 2017; 

Trstenjak and Cosic 2017). The first filter of the systematic 

research consists of removing the duplicates among the three 

databases. The obtained results dropped to 5990. Then, only 

papers written in English are selected which reduces the 

number to 5202. In the same step, an analysis of the titles of 

these papers is conducted by combining two keywords, in 

order to focus on scheduling and planning issues in 

production/manufacturing. All combinations are illustrated in 

Table 2. After this process, the number of papers is narrowed 

down to 795. 

 
TABLE 2   

TITLE ANALYSIS 

Keywords combination for the title analysis 
Number of 

combinations 

Schedul/Optimi/Plan/Data AND Manufactur/Production 8 

Data AND Optimi/Schedul/Plan 3 

 

 

In the eligibility step, all titles and some abstracts are 

manually analyzed in order to exclude some of the articles that 

are not related to our research question (the use of data 

techniques to improve the manufacturing shop floor). The 

selected exclusion keywords cover: additive manufacturing; 

grid computing; data stream; carbon; green; smart cities; data 

centers; agriculture; air traffic; data warehouse; project 

planning; public transportation; data/smart grid; data transfer; 

medical; wireless network; railway; micro grids. After the 

exclusion process, the results represent 513 papers. 

Finally, a citation-based index is proposed to rank the 

remaining papers. The index considers the citation number of 

a paper with regard to its year of publication. For instance, a 

paper that has been cited 30 times and has been published in 

2005 (14 years ago from 2019) has a proposed index of 2.14 

(30/14). Papers are then ranked using this index and those with 

an index of at least 0.5 are analyzed manually based on the 

title and abstract. We note that the papers published in 2018-

2020/2021 included are all considered in the eligibility phase 

regardless of the citation-based index. In the end, 60 papers 

are selected for the analysis. 

 

Figure 3. Systematic research based on PRISMA 

IV. ANALYSIS OF THE SELECTED LITERATURE 

This section presents the results and discussion about the 52 
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papers analyzed. Three cross analysis are performed. First, in 

Section 4.1 a work methodology classification is applied, 

followed by the CPS-based classification in Section 4.2. 

Finally, in Section 4.3, a classification based on data mining 

techniques regarding planning and scheduling is proposed. 

A. Classification based on work methodology 

This classification is based on whether the work is: a 

Review, Conceptual/Theoretical work, or a Case 

study/Application. Table 3 shows the result of the 

classification. Review papers are studied mainly to provide an 

overview on the topic and complete the discussion about the 

research question of this work. Papers are considered 

conceptual/theoretical when theories and/or conceptual-

framework are discussed or the authors propose a new 

approach to solve a problem without further application. Case 

studies and applications concern articles with a practical 

implementation. This implementation may be a real case study 

(e.g. implementation in industry) or based on a standard 

literature problem (e.g. job shop scheduling problem). Some 

papers can be classified into more than one category such is 

the case for the second row of Table 3.  
 

 
TABLE 3   

Work methodology classification 

 

Author Review 
Conceptual/ 

Theoretical 

Case study/ 

Application 
Number of papers 

(Babiceanu and Seker 2016), (Ismail et al. 2009), (Harding et 

al. 2006), (Choudhary et al. 2009), (Qi and Tao 2018), 

(Rossit and Tohmé 2018), (Uhlmann and Frazzon 2018), 

(Shukla et al. 2019), (O’Donovan et al. 2015), (Singhal, Qi, 

and Ganeshan 2018), (Lu 2017), (Cheng et al. 2018), 

(Takeda-Berger et al. 2020).  
 

x   13 

(Bubeník and Horák 2014), (Schuh et al. 2017), (Harrath, 

Chebel-Morello, and Zerhouni 2002), (Altaf et al. 2018), 

(Zhong et al. 2014), (Balasundaram, Baskar, and Sankar 

2012), (Wang et al. 2014), (Kück et al. 2016), (Shahzad and 

Mebarki 2012), (Zhu, Qiao, and Cao 2017), (Metan, 

Sabuncuoglu, and Pierreval 2010), (Woo, et al., 2018), 

(Gopalakrishman et al. 2020), (Leusin et al. 2018), (Morariu 

et al. 2020), (Ji, Yin, & Wang, 2019), (Ritou, et al., 2019). 

 x x 17 

(Lanza, Stricker, and Moser 2014), (Uhlemann et al. 2017), 

(Seitz and Nyhuis 2015), (Lee et al. 2015), (Lee et al. 2013), 

(Trstenjak and Cosic 2017), (Lee and Singh 2019), (Khan et 

al. 2015), (Bubenik, et al., 2014), (Li et al., 2015), (Blum, et 

al., 2017), (Fang et al. 2020),  

 x  12 

 

(Wang 2007), (Ning, 2018), (Mao, et al., 2015), 

(Karthikeyan, et al., 2012), (Bergmann, et al., 2015), (Zhong, 

et al., 2015), (Makrymanolakis, et al., 2016), (Mavin, et al., 

2018), (Subramaniyana, et al., 2018), (Zhong, 2018), 

(Kozjek, et al., 2018), (Küfner, et al., 2018), (Ning, et al., 

2018), (Zahmani, et al., 2019), (Pimentel, et al., 2018), 

(Wauters, et al., 2011), (Dolgui, et al., 2018), (Yahouni, et 

al., 2021) 

  x 18 

                        Total 60 

 

According to Table 3, 13 review papers were studied to 

provide an overview about the topic and analyze what has 

been done until the end of 2018. Analysis of these papers 

shows that current literature work reviews already big data, 

industry 4.0 and related concepts, digital twin, etc. However, 

few information are given about considering data techniques 

such as data mining within the implementation aspects of the 

industry 4.0 in the context of planning and scheduling. 

Lu (2017) presents an overview of the content, scope, and 

findings of Industry 4.0. Qi and Tao (2018) review the 

concepts and applications of big data and digital twins. In the 

same way of big data concepts, Singhal et al. (2018) and 

Shukla et al. (2019) summarize the concepts emerged with big 

data and the use of big data analytics in manufacturing and 
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service sectors. Differently, Babiceanu and Seker (2016) 

review the current status of virtualization and cloud-based 

services for manufacturing systems and the use of big data 

analytics from a general point of view.  Uhlmann and Frazzon 

(2018) identify what has been studied about the production 

rescheduling process. Finally, Rossit and Tohmé (2018) 

investigate how the classical process of scheduling operations 

is affected by CPS. These papers address the impact of CPS 

and industry 4.0 elements on the decision/planning/scheduling 

process from a conceptual point of view without addressing in 

detail the potential data techniques and methods to emphasize 

the implementation aspects.   

Examples of other studies reviewing data mining are those 

of Cheng et al. (2018), Ismail et al. (2009), O’Donovan et al. 

(2015), Choudhary et al. (2009) and Harding et al. (2006). 

Some authors review data mining in different areas of 

manufacturing such as fault detection, maintenance, and 

quality control (Choudhary et al. 2009; Harding et al. 2006). 

More general, O’Donovan et al. (2015) provides a systematic 

mapping study of big data technologies in manufacturing. 

Ismail et al. (2009) focus their discussion on the application of 

data mining tasks in planning and scheduling. Moreover, the 

work in Cheng et al. (2018) reviews the development of data 

mining techniques in the big data era by analyzing relevant 

papers from 2010. They focus on the applications of data 

mining techniques in production scheduling, quality 

improvement, defect analysis, and fault diagnosis. For the 

planning and scheduling problem, seven papers are identified 

which handle the problem from two perspectives; they either 

extract new scheduling rules using data mining or dynamically 

choosing the optimal schedule.  

Even that these papers are somehow related to our work, 

there is still a missing link between the three aspects: 

planning/scheduling, data techniques (data mining) and 

industry 4.0 implementation. The concept of CPS has emerged 

recently and stresses the implementation issue of industry 4.0. 

Moreover, the number of papers considering data analysis in 

the last decade has significantly increased and new techniques 

are proposed. Therefore, the aim of our work is to understand 

the relation between planning/scheduling, data techniques and 

CPS implementation. In the next section, we present an 

overview about the work done within each level of the CPS, 

so as to provide some insights about how to implement a 

complete digital production chain.  

 

B. CPS-based classification 

CPS concerns the management of interconnected systems. 

According to Lu (2017), the main roles of a CPS are to fulfill 

the agile and dynamic requirements of production, and to 

improve the effectiveness and efficiency of the entire industry. 

Oztemel and Gursev (2018) complement that sensors and CPS 

facilitate easy communication capability between machines. In 

Table 4, a CPS-based classification of the 

conceptual/theoretical and case study/application articles is 

proposed based on the five levels introduced in Lee et al. 

(2015).  

 

 
TABLE 4   

CPS-based classification 
 

Work methodology Author Level I Level II Level III Level IV Level V 
Number 

of papers 

Case study 

(Mao, et al., 2015), (Küfner, et 

al., 2018) 
 x    2 

 

(Karthikeyan, et al., 2012), 

(Pimentel, et al., 2018) 

   
 

x 
 

 

2 

 

(Zhong, 2018) 

 

x 

 

x 
   

 

1 

 

(Zhong, et al., 2015) x   x  1 

       

(Zahmani, et al., 2019), (Ning 

& You, 2018, p. b), (Kozjek, et 

al., 2018), (Makrymanolakis, et 

al., 2016), (Fang et al. 2020), 

(Dolgui, et al., 2018). 

 x  x  6 

 

(Ning & You, 2018, p. a) 
  

 

x 

 

x 
 

 

1 

 

(Wang 2007), (Wauters, et al., 

2011), (Yahouni, et al., 2021) 

 

x 

 

x 
 

 

x 
 

 

2 

 

(Mavin, et al., 2018), 

(Subramaniyana, et al., 2018) 

x  x x  2 

 

(Bergmann, et al., 2015) 
 

 

x 

 

x 

 

x 
 

 

1 
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Conceptual/ 

Theoretical 

(Khan et al. 2015), (Bubenik, et 

al., 2014) 
 x    2 

 

(Uhlemann et al. 2017), (Blum, 

et al., 2017) 

 

  x   2 

(Lanza et al. 2014)    x  1 

 

(Li et al., 2015) 

 

x 
  

 

x 
 

 

1 

 

(Seitz and Nyhuis 2015), (Lee 

et al. 2013), (Trstenjak and 

Cosic 2017) 

 

x x x x  3 

(Lee et al. 2015), (Lee and 

Singh 2019) 
x x x x x 2 

Conceptual/ 

Theoretical and Case 

study/ 

Application 

(Harrath et al. 2002),   x    1 

(Balasundaram et al. 2012), (Ji, 

Yin, & Wang, 2019) 
 x  x  2 

 

(Kück et al. 2016), (Shahzad 

and Mebarki 2012) 

  x x  2 

 

(Zhu et al. 2017) 

 

x 

 

x 

 

x 
  

 

1 

       

 

(Schuh et al. 2017), (Wang et 

al. 2014), (Gopalakrishman et 

al. 2020), (Morariu et al. 2020), 

(Ritou, et al., 2019) 

 

x 

 

x 
 

 

x 
 

 

4 

       

(Bubeník and Horák 2014)  x x x  1 

(Altaf et al. 2018), (Zhong et al. 

2014), (Metan et al. 2010), 

(Woo, et al., 2018)   

x x x x  4 

 

(Leusin et al. 2018) 
x  x x  1 

       

 

Total of papers for each level 

 

24 34 20 38 2  

 Total of papers      47 

 

In the above table, papers are classified in the Smart 

Connection Level (level I) when they address data collection. 

In the Data-to-Information Conversion Level (level II), we 

seek for the transformation of the raw data into information 

using some techniques, among which we can cite the data 

mining techniques, for instance. The Cyber Level (level III) is 

related to the digital twin. Articles are classified in this level, 

if they present some information generated from the connected 

machines; specific analytics must be used. Articles are 

classified in the Cognition Level (level IV) when data are 

synthetized and decisions are taken by the expert users. 

Finally, the Configuration Level (level V) allows closing the 

loop by interconnecting the fifth level to the first. For Lee et 

al. (2015; 2019), in this level, machines are able to self-

configure, self-adjust and self-optimize, without human 

interaction. For such self-sufficiency, the machines must be 

capable of performing all levels of CPS concept, starting from 

level 1. 

As mentioned before, an implementation of an industry 4.0 

consists of implementing a CPS within the five levels 

perspectives. We observe from Table 4 that only two papers 

consider all five levels and are rather theoretical. Most of the 

papers tackle only specific parts of the CPS digital chain. 

Therefore, in the following, we try to understand the practical 
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implementation of each level so to understand the link 

between levels and overall the practical implementation of a 

CPS.   

• Level I and Level II 

Thirty-seven out of the forty-seven selected papers consider 

at least one of these two levels. Eighteen papers address the 

first level and stress the issue of data collection. Acquiring 

accurate and reliable data from machines then transforming it 

into useful information is often a challenge. Usually, data is 

captured by sensors, controllers or information systems (Lee et 

al. 2015). (Seitz and Nyhuis 2015) discussed the challenges of 

combining CPS with logistic models for improving production 

monitoring and control. One of the most used technologies is 

radio frequency identification (RFID), mentioned in Altaf et 

al. (2018), Zhong et al. (2014) and Fang et al. (2020). RFID is 

widely used in manufacturing for collecting shop floor data. 

Cutting force, vibration, acoustic emission, temperature, 

pressure, task starting/finishing time, are some of the different 

types of signals that can be captured from the workshop. Data 

can be transmitted through a Manufacturing Execution System 

such as in (Wauters, et al., 2011).   

 

The captured data can be enormous and full of inaccurate, 

incomplete and missing records (Zhong et al. 2014). For 

Schuh et al. (2017) the quality of the decision-making is 

highly dependent on the quality and integrity of the used data. 

In this context, three prerequisites are mentioned and must be 

fulfilled for excellent data integrity: the data need to be 

complete, consistent and correct (Schuh et al. 2017).  

However, in most cases raw data are barely useful, even if it 

is free of noise, and several further steps are required to 

extract value from it (Qi and Tao 2018). This concerns the 

second level of CPS: Data is transformed into synthetic 

information using data analysis techniques such as data 

mining. Fig. 4 shows the intersection between data mining and 

CPS levels. Examples of papers that apply data mining 

algorithms are: Balasundatam et al (2012), Bubeník and Horák 

(2014), Harrath et al. (2002), and (Khan et al. 2015). In this 

second level, different data algorithms may be applied such as 

decision tree, hierarchical ascending clustering, etc. Moreover, 

in a manufacturing context, data can be difficult to process due 

to its complexity, diversity and time-scale heterogeneity. The 

processing step can be very specific to the manufacturing 

context/expertise.  

 

 
Figure 4. Relationship between CPS levels and data mining 

 

• Level III 

This level characterizes the key aspect of the cyber physical 

architecture, where the physical word communicates with the 

virtual world. It consists of transforming the information 

generated in level II to a more synthetic information for the 

decision making process (level IV). It is also the intermediate 

phase of data mining application where knowledge is 

generated.  

In this level, the concept of digital twin comes out and 

different definitions are proposed in the literature. According 

to Schroeder et al. (2016), it is a virtual representation of a real 

process in the context of Cyber Physical System. For Gabor et 

al. (2016) digital twin is the simulation of the physical object 

itself to predict future states of the system. Other definitions 

can be found in Negri et al. (2017). In a manufacturing 

context, a cyber-twin is responsible for capturing time 

machine records and synthesizing future steps to provide self-

awareness and self-prediction as stated by (Lee et al. 2015). 

Also, recently it was pointed out that data-driven modeling 

can enable manufacturing companies to obtain useful 

information and integrate them with other technologies for 

improving productivity and innovation (Lee and Singh 2019).  

Most of the analyzed papers mention simulation when it 

comes to the digital twin. In (Zhu et al. 2017) for example, a 

data-based scheduling discrete event simulation model is 

proposed to mimic the behavior of the physical world. 

Collected production data are fed back to the model to update 

the parameters of the scheduling model and keep it 

effective/accurate with respect to the physical system. The 

idea is to predict a key performance indicator at time t using 

simulation. Then, compare it with the real value of the 

manufacturing system at time t. If a deviation is found, 

dispatching rules are adjusted at time t+1. In (Mavin, et al., 

2018), simulation is used with optimization for the scheduling 

problem of a construction product manufacturing facility. The 

idea is to evaluate the feasibility of a pre-calculated schedule 

through simulation. This will help schedulers evaluate what-if 

scenarios either during the scheduling or the rescheduling 

phase if a disturbance occurs.  

These papers consider other levels as well, such as the 

previous ones or the next one (level IV) where simulation is 

used for decision-making. In a manufacturing context, 

simulation models are highly dependent on the pre-processed 

collected data (level I and II). Models are used for adjusting 

the parameters of the simulation model or for evaluating a KPI 

of a possible solution. The challenge is to create a simulation 

model that mimics the exact dynamic behavior of a system, 

which is difficult due to the changes that may arise in the real 

system. However, simulation can be very crucial for the 

decision process and especially for evaluating a what-if 

scenario (level IV).   

 

• Level IV and Level V 

According to Lee and Singh (2019), the up-to-date real time 

information would be a waste if the results cannot be 

communicated clearly and effectively to decision makers. In 

the fourth level of a CPS, through graphs, charts and reports, 

humans make decisions and improve the system. Using data 

mining analysis, the behavior features and patterns can be 

identified in order to provide some insights about the trends, 

helping users making decisions (Qi and Tao 2018). This 

process is considered as the last step of data mining (Fig. 4).  

The decision may be classified in short, medium or long-

term. In business forecasting, short-term usually refers to 

under three months; medium-term, three months to two years; 

and long-term, greater than two years (Ismail et al. 2009). In a 

production workshop we could use the same reference time, 
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e.g. if a machine-tool degrades the quality of a production 

part, deciding whether to stop the process or not could be 

considered as short term. Moreover, planning the production 

or investing in new equipment could be considered tactical 

and strategic, respectively, and therefore medium-long term. 

From Table 4, it can be shown that thirty-eight papers 

consider level 4. Different works has been proposed 

combining data mining and decision making/aiding. For 

example, in (Karthikeyan, et al., 2012), authors use a 

combination of particle swarm optimization algorithm (PSO) 

and data mining for solving flexible job shop scheduling 

problems. PSO is used to propose a set of solutions and 

generated data is mapped into different classes to find the 

relationship between operations’ characteristics and their 

order. In (Zhong & Xu, 2015), a data-driven model for the job 

shop problem is proposed. This model uses real-time data as 

feedback to correct the scheduling parameters and improve 

decision-making. In (Wang 2007), author discusses about the 

use and implementation of data mining for product design and 

manufacturing. Two practical cases are studied: manufacturing 

maintenance decision-making and predicting assembly 

quality. Decision tree is used for both cases. Author stresses 

the limits of using datamining techniques such as: time 

consumption for data cleaning/preparation and need of good 

collaboration between users and experts to have a clear 

understanding of the manufacturing problem and the provided 

solution. Moreover, in (Subramaniyana, et al., 2018), a 

predictive algorithm is applied for detecting potential 

machines bottlenecks using machines active periods. ARIMA 

(Autoregressive Integrated Moving Average) statistical 

method is applied on real data captured from the 

manufacturing execution system to forecast active periods of 

machines and detect future bottlenecks.  

In the work of (Pimentel, et al., 2018), simulation is 

combined with data-driven optimization for solving a flexible 

job shop problem. In this case study, simulation is used as a 

decision making tool. The proposed scenario consists of 

computing the order between tasks using a genetic algorithm, 

then simulation is used for estimating the completion time of 

the schedule. Simulation is used in this case to implement the 

probabilistic processing times of operations. If a disturbance 

occurs such as a machine breakdown, a change in the 

processing time, etc., the genetic algorithm computes another 

schedule based on the new data. The management team uses 

the simulation results to make decisions and cope with 

disturbances.  

The last level of CPS usually refers to the automation of the 

processes based on the collected feedback and decisions made 

in the cognition level (Lee et al. (2015; 2019)). The loop of the 

CPS is then completed and the whole process is supposed to 

function automatically without too much human intervention. 

In the studies presented in Lee et al. (2015; 2019), automation 

guarantees a worry free, near zero downtime production and 

production planning optimization.  

From the table above, it can be seen that there are no case 

studies yet considering level IV and level V at the same time. 

This may be because the majority of connected devices in 

manufacturing are not that smart yet and not able to make all 

decisions without human intervention (Lee and Singh 2019). 

Furthermore, due to the perturbations that may occur on 

manufacturing shop floors, human intervention during the 

decision process is crucial. Especially for medium and long-

term decisions, such as in planning. Therefore, the 

configuration level can be characterized by a partial 

automation depending on the problem nature. For a short time 

decision, such as stopping a machine, data analytics can 

provide KPI about failures or quality defects that cannot be 

manually or rapidly detected and need to be urgently taken 

care of.  

 

C. Classification based on data techniques 

CPS combined with logistic models has the potential of 

improving production planning and control. To understand 

how CPS can be implemented in practice, we focus on only 

case studies. Then, only papers describing data mining 

techniques in planning or scheduling are analyzed. Table 5 

summarizes the analysis of the twenty-six selected papers. The 

objective is first, to highlight the most used data techniques 

(clustering, prediction, etc.) and seconds, to understand how 

optimization algorithms are used with these techniques in the 

context of planning and scheduling.  

 

Table 5 shows that most of the papers that use data mining 

focus on the classification process using the decision tree 

technique. Besides that, C4.5 program is mostly used for 

generating the decision tree/rules. Decision tree is a supervised 

machine learning method for constructing prediction models 

from data (Balasundaram et al. 2012). It is one of the most 

popular techniques due to its easier use and its simplicity to be 

understood and interpreted (Balasundaram et al. 2012; Corne 

et al. 2012).  

Furthermore, the most used optimization scheduling 

techniques are simple dispatching rules such as FIFO (First In 

First Out), EDD (Earliest Due Date), SPT (Shortest Processing 

Time) and CR (critical ratio). The fact that they are often used 

can be explained by their simplicity. Dispatching rules are 

characterized by a low effort of implementation as explained 

in (Kück et al. 2016). In some cases, metaheuristics such as 

Simulated Annealing, Swarm particle optimization or Genetic 

algorithms are used.  

Different approaches are considered for coupling these data 

techniques with optimization and simulation. Three interesting 

approaches are highlighted in the following:  

 

1) Many authors exploit historical data using data 

mining techniques to discover or select dispatching 

rules. See for instance the work by (Shahzad and 

Mebarki 2012), (Bergmann, et al., 2015), (Zhu et 

al. 2017), (Zahmani, et al., 2019), (Metan et al. 

2010) and (Kozjek, et al., 2018). In the work of 

Zhu et al. (2017) for example, a discrete event 

simulation model is proposed to mimic the 

behavior of the physical world. Then, scheduling 

strategies are extracted from the simulation and 

applied to the production line of wafers in semi-

conductors industry.  

 



TABLE 5  CLASSIFICATION OF DATA MINING AND OPTIMIZATION TECHNIQUES WITH REGARD TO PLANNING AND SCHEDULING 

Planning/Scheduling Author Data mining techniques 
Optimization techniques 

(Heuristic/Metaheuristic) 

Planning and Scheduling 

 

(Kozjek, et al., 2018) Random forest algorithms and regression for prediction Dispatching rule, simulation 

(Subramaniyana, et al., 2018) 
Autoregressive Integrated Moving Average (ARIMA) statistical 

method 
 

(Ning & You 2018a) Parameter correlation (kernel density estimation)  

(Altaf et al. 2018) RANSAC 
Simulated Annealing, Particle 

Swarm Optimization 

(Zhong et al. 2014) Decision tree; C4.5 Dispatching rule 

Planning 

(Bubeník and Horák 2014) Decision tree; C4.5  

(Mavin, et al., 2018) Simple preprocessing of data 
Hybrid simulated annealing with 

genetic algorithm, Simulation 

(Zhong, 2018) Data cleasing and K-means for data clusturing  

(Küfner, et al., 2018) Artificial Neural Network for prediction 
 

 

(Ning & You, 2018b) Likelihood estimation for the Multinoulli distribution,   

(Woo, et al., 2018), (Ji, Yin, & Wang, 2019) Artificial Neural Network and Regression (for Woo et al. 2018)  

(Schuh et al. 2017) Adapted Association rules induction  

 

 

 

 

 

 

 

Scheduling 

(Wang 2007) Decision tree; C4.5  

(Harrath et al. 2002) ChiMerge; Decision tree (C4.5 and See5) Genetic algorithm 

(Balasundaram et al. 2012) Decision tree Dispatching rule 

(Wang et al. 2014), (Metan et al. 2010)  Decision tree; C4.5 Dispatching rule 

(Shahzad and Mebarki 2012) Decision tree Dispatching rule; Tabu search 

(Karthikeyan, et al., 2012) 
Attribute-oriented mining for classification & Concept hierarchy for 

clustering  
Particle Swarm Optimization 

(Zahmani, et al., 2019) Decision tree with multi-label classification Dispatching rules, Simulation 

(Makrymanolakis, et al., 2016) Decision tree 
Threshold acceptance (deterministic 

version of simulation anealing)  

(Fang, et al., 2020) Deep Neural Network for prediction and   

(Bergmann, et al., 2015) 
K-Nearest Neighbors, decision trees, Naive Bayes Classifier and 

support vector machines 
 

(Morariu et al. 2020) One class Support Vector Machine  

(Wauters, et al., 2011) Neural Network, Regression trees, model trees and K-nearest neighbor LSP scheduling and local search 
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2) Other works use data techniques for estimating the 

processing time or finding the probability 

distribution of operations such as (Pimentel, et al., 

2018), (Zhong et al. 2014), (Ning & you, 2018a), 

(Wauters, et al., 2011). The estimated values are 

then used in the simulation and/or optimization 

algorithms. 

3) More rarely, Data mining is also used for parameter 

setting of optimization/simulation tools. For 

example, (Makrymanolakis, et al., 2016) estimate 

the three parameters (number of solutions, number 

of repetition and number of sets) of the threshold 

accepting metaheuristics using a decision tree.  

 

V. DISCUSSION 

It can be seen from the CPS-based classification (table 4) 

that there is a missing link between all levels. This link should 

ensure the digital chain continuity between the physical world 

(machines and equipment) and the higher-level services in a 

company such as decision-making. This classification (table 4) 

still does not explain the practical implementation of a CPS 

such as “which data techniques are used in these levels”. 

Nevertheless, the proposed data mining classification (table 5) 

helps understanding which algorithms are mostly used in 

planning and scheduling and how optimization algorithms can 

be enhanced using data mining.   

Overall, different optimization approaches are used with 

data mining in the context of planning and scheduling as 

shown in table 5. The aim of such techniques is to deploy 

optimal/near-optimal scheduling rules, but different challenges 

have to be considered. The scheduling problem is NP-hard. 

Furthermore, it is often a non-deterministic problem in the 

industrial context even though most optimization methods 

treat it as a deterministic one. The problem has been studied 

for decades and robust optimization where flexibility is 

introduced seems to be a more adaptive solution for real case 

studies. To handle the uncertainties and cope with the different 

disturbances that may occur in a shop floor, data mining 

techniques can be used for anticipating or reacting to these 

changes (i.e. constructing a flexible robust schedule for 

example).  

In this context, simulation can be a very useful tool either 

for providing KPIs about what-if-scenario or for validating 

new models based on historical data. The idea behind this 

second point is to replay a historical scenario using a 

simulation model and check whether the simulation output 

matches the expected results. The challenge however, is 

constructing a robust simulation model that mimics exactly the 

behavior of the physical world. Then, test data can be 

generated from this simulation model and processed to 

anticipate a machine breakdown for example. In this scenario 

point of view, the digital twin represented by simulation 

should link the gap of what happened in the past and what is 

expected to happen in the future.  

VI. CONCLUSION AND FUTURE RESEARCH DIRECTION 

This paper proposes a literature review analysis about the 

usage of data techniques for optimizing the shop floor in the 

context of industry 4.0. The focus is mainly made on using 

data mining for planning and scheduling. By analyzing the 

selected papers from the literature, we observe that the 

concepts mainly related to data might be confusing. Therefore, 

we introduce the relationship between data concepts such as 

big data, data mining, data analytics, etc. 

In view of the existing papers, we start by classifying the 

papers based on their work methodology, then based on the 

CPS levels. Finally, we investigate the applications of data 

mining with regard to the planning and scheduling problem. 

From the previous analysis, three main approaches are 

identified for optimizing the production workshop using data 

mining. The application of a data mining algorithm depends 

on the problem and objective context. However, without a 

doubt, these techniques can provide additional value within 

the digitalization era.  

Studies in this area are still arising and different challenges 

are still to be addressed. These challenges are summarized in 

the following points and may be considered as future research 

directions:  

• First, as said above research around this topic has 

significantly increased in the last few years. The 

year-on-year publication growth for big data in 

manufacturing and supply chain management from 

2000 to 2015 is impressive (Lamba and Singh 

2017) and the tendency is still growing (Takeda-

Berger et al. 2020). Many papers were not 

included in this review due to the large number of 

articles. It is suggested for further analysis to use 

text-mining techniques to find patterns among 

papers and to automate the process of analyzing 

the articles. The technique used in Choudhary et al. 

(2009) can be applied for future research.   

• Concerning the phases of data analytics and 

particularly data mining, the data collection phase 

is a crucial process, on which the final decision 

depends. Capturing data from the workshop is 

nowadays less challenging. However, processing 

these data in real time for quick decision-making is 

still problematic. Most of the studies use a 

posteriori analysis based on historical data. Thus, 

exploring cases where data are collected, cleaned, 

corrected and analyzed in short/real time may be 

an interesting topic.  

• As seen in Section 4.2, the digital twin represents 

the main feature of a CPS for its integration and 

communication between the physical and virtual 

world. However, different definitions appear for 

digital twin and the Cyber level implementation in 

the industry is still at its development phase. For 

some authors, the definition of digital twin is 

related to simulation, for others, it is more general 

and is about virtual representation (Negri et al. 

2017). Future perspective studies may focus on the 

CPS third level, analyzing the possible digital twin 

implementations within different contexts of 

application, e.g. production workshop. 
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• The proposed CPS-based classification in this work 

relies on the five levels proposed by Lee et al. 

(2015). As shown from the analysis, research 

addressing the whole connection between the five 

levels is still recent and rather conceptual. 

Moreover, most of the case studies are conference 

papers and are under development. Furthermore, 

the papers do not explore in depth the process of 

CPS automation/Configuration Level (level V). In 

this level, the machine for instance, is supposed to 

be smart and should be able to self-configure, self-

adjust and self-optimize. This means that the 

results of data mining must be fed back to the 

machine in an automatic way. The advances in 

artificial intelligence might be an opportunity and 

open up new research possibilities at level V. 

• Connection, communication and decision-making 

are some of the central themes of industry 4.0. 

However, future research could explore the 

position of humans in the loop of the future 

industry automation. Some important questions 

may arise concerning the Level of Automation. 

This question is not new and different levels from 

fully manual to fully automatic are proposed by 

researchers for decision-making and cognitive 

fields. However, the question is still open within 

the context of the new technologies brought by the 

era of industry 4.0 such as Automated Integrated 

vehicles, Cobots, etc.  
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