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ABSTRACT
This paper presents an approach for the preliminary design of complex physical systems in the framework of

systems engineering. This approach is centered on the activities and actors involved in the pre-design tasks. It
focuses on the modeling of design problems with DEPS (DEsign Problem Specification), a recent formalism for
specifying and modeling design problems in engineering. This design methodology completes simulation-based
analysis approaches, which are mainly used today for the design of physical systems. In particular, our approach
allows the synthesis of pre-design architectures, which analysis/simulation approaches cannot do. Starting from
the textual specification of the requirements, the proposed approach builds a formal model of the design problem
and solves it using Constraint Programming. Ideas and concepts related to this approach are discussed: the issue
of reusability of problem models, the concepts of problem, knowledge and solutions spaces as well as the formal
specification of requirements and everything else that distinguishe a design problem model from a designed system
model. An example of a Li-ion battery design for an electric vehicle acts as a practical use case for this article.
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1 Introduction
In engineering, the design of a system aims at defining one or a set of admissible architectures and components.

Admissible architectures and components are those that satisfy all the design constraints specified in the specification of
requirements. In this paper, the authors refer to the specification of requirements as the textual and formal document that
provides the system requirements and the customer’s needs in a clear, precise, objective and explicit manner, to which each
stakeholder has agreed to [1, 2]. Optimal design also includes a criterion to be optimized. Hence, an optimal architecture is
necessarily first admissible and minimizes (or maximizes) in addition one or several “cost” criteria. Optimality is usually a
secondary concern that adds on top of admissibility, especially if the number of constraints to satisfy is very large.

The common activities in a design procedure are summarized in Figure 1 (adapted from [3, 4]). The design cycle
processes and activities addressed by the presented work are those highlighted in red. They occur between the analysis
of the requirements and the simulation activities required for detailed design or for the verification and validation phases
(“evaluation”). This synthesis process covers what is commonly referred to as preliminary design. However, synthesis
implies activities that are usually difficult and require a lot of expertise. Indeed, the result of synthesis ("expected properties")
is to be evaluated and design decisions to be taken upon it, though requirements may still evolve and the system architecture
still appears as a "draft" design. The main goal of this paper is to illustrate practically the use of new methods and tools to
equip the synthesis process in design.

A design problem is most likely to be modified during the design process by changing, adding or removing design
constraints. Some requirements may be missing or ill-posed (contradictory, leading to the absence of solutions). It is
necessary to wonder if a design problem admits solutions. The answer depends first on the specification of requirements and
on the designers’ choice (ie the design constraints) and then, on the way the design problem is formalized. Modeling the
design problem comes right after the production of the specification of requirements and it impacts consequently the after
coming solving process.

At the begining of preliminary design (pre-design), the system is said to be subdefinite [5, 6]. This means that its
architecture is at least partially unknown and presents variability, ie structural unknowns of the design problem (degrees
of freedom, DoFs). Conversely, the variables in the design models include not only these DoFs but also the behavioural
variables (i.e. the output of direct models: speed, voltage, etc.) and structural criteria (deduced from the DoFs). Let us
note that the modeling of architectures variants refers to the modeling of definite architectures and then differs from the
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Figure 1. Activities of a design cycle. The red circle emphasizes activities adressed by this paper (adapted from [3, 4]).

modeling of architectures with variability. The choice in the granularity of subdefinite system models is important. In pre-
design and for ”physical” applications (mechanical or electrical engineering), coarse models are usually chosen because
they are more suitable. By coarse, we mean algebraic models (ie analytical or semi-analytical), such as surrogate models
or equivalent circuit models. In most cases, the design process for complex systems in electrical or mechanical engineering
is performed using an analysis approach as shown in Fig. 2 (a). This procedure is mainly based on simulation tools and
iterative loops to improve or optimize the resulting solution [7, 8]. However, this approach has shows its limits when
many combinatorial variables are present. A significant number of evaluations are needed and simulation times can become
excessive. Moreover, this simulation-based procedure hardly manage or detect conflicting or contradictory requirements.
In addition, solutions are not always robust to a small change in specifications. Regarding modeling languages, a distinction
must be made between system modeling languages and problem modeling languages. As far as analysis and simulation are
concerned, system modeling languages are well adapted because they allow to represent a fully definite system from several
points of view (structural, behavioral, safety, life cycle assessment, etc). At this stage, it is necessary to emphasize that only
a known, i.e. a definite, system can be simulated or analyzed. In systems engineering, designers usually rely on Model-Based
System Engineering (MBSE) languages, either based on UML such as MARTE [9] and SysML [10] or AADL [11], EAST-
ADL [12] or Modelica [13]. MARTE, as its name indicates, “Modeling and Analysing Real Time and Embedded system”
is dedicated to the modeling and analysis of real-time fully defined systems. In the same way, AADL and EAST-ADL, as
indicated by their surnames "Architecture Analysis and Design Language”, are embedded system architecture description
languages for analysis. All these languages are used to describe a definite system for the purpose of its analysis. They were
made to model systems and not design problems, in connection with the development of simulation and analysis tools. In
this case, designers must first select and model well-defined architectures before checking their admissibility with such tools.
The methodology presented in this paper is different, it focuses on the synthesis of architectures (initially subdefinite) based
on the modeling of the design problem for producing a correct-by-construction architecture [14]. Regarding the search for
a solution, we are dealing with synthesis problems: the system is subdefinite and we need a formalism allowing to express
this concern. In this perspective, some research works have recently coupled SysML with solvers or optimizers, but no
integrated approach emerges from these works. [15] points out the difficulties of using formalisms such as SysML, initially
designed to represent totally definite systems (SysML is a System Modeling Language), to model problems. As an alternative,
they propose to use Clafer problem modeling formalism [16], associated with the Choco Constraint Programming library
[17] to model and solve the problem of allocating calculators to embedded tasks. Nevertheless, Clafer remains a language
dedicated to the configuration of software product lines. As another alternative, [18] proposes to add a first level of variability
to SysML with the help of the Choco library to solve simple configuration problems. However, since these initial research
works, dealing with synthesis problems using SysML has not progressed significantly. Such a design approach is currently
limited by the following: the low level of variability that can be taken into account, the use of a solver handling essentially
discrete constraints and a weak coupling between the formalism and the solver. The later means that the development of
models is mainly carried out in the solver language rather than in SysML. These limitations have been pointed out in [19].

In the following, the authors present an integrated approach for modeling and solving design problems of complex phys-
ical systems during pre-design through the architecture synthesis of Fig. 2 (b). It relies on a recent formalism named DEPS
(DEsign Problem Specification [20]) designed to specify design problems and to overcome previously identified limitations
[21, 22]. The practical modeling with DEPS language and solving tasks are realized using an integrated environment called
DEPS Studio [23]. The first part of this paper focuses on the presentation of this design methodology. The second part is
devoted to its illustration on the design problem of a Li-ion battery for electric vehicles.

2 Designing through synthesis approach
When designing a new system, it seems natural to think that the architectures would be the ouputs of a process using the

specification of requirements as inputs. This is the point of view called synthesis of architectures as shown in Fig. 2 (b).
Because it presents two main advantages, this is a relevant alternative to simulation-based design:

1. The architecture of the system goes from subdefinite (with variability) to definite (totally known, without variability).
2. The existence of an admissible architecture is ensured at the soonest during the overall design project.
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(a) Analysis of the system architectures.

(b) Synthesis of the system architectures.

Figure 2. Two complementary points of view on system architectures for the preliminary design of complex physical systems.

Let us note that model variables can be both structural (DoFs of design) and behavioral in a synthesis approach whereas
structural variables must be fully defined in a simulation approach. The concepts of problem space, knowledge space and
solutions space are meaningful in explaining the differences between modeling a system and modeling its design problem
(see Fig. 3). This segmentation illustrates the difference between an approach based on synthesis (in the problem space)
and an approach based on analysis and simulation (in the solution space) [24, 25, 16]. In the problem space, designers
focus on defining and representing the design problem, that relies on the specification of requirements and on the support of
experts from the relevant engineering disciplines (Knowledge space). Such a representation does not attempt to describe a
specific solution. The problem of designing a physical system architecture is always very complex from the structural, the
mathematical as well as the algorithmic points of view. Therefore, the most impacting decisions must be made as early as
possible, ensuring that they will lead to acceptable final solutions. By using the Problem space, the Knowledge space and
Constraint Programming, the design approach proposed in this article shows that it is possible to control this complexity by
modeling the variability and by eliminating as quickly as possible the irrelevant design choices which will not ensure the
admissibility of solutions. The synthesis process thus generates one or more admissible solutions as soon as possible.

2.1 Relation to the ISO/IEEE 42020 design standard
Systems are currently designed according to the IEEE 1220 standard [26]. This standard specifies a design process for

software-intensive systems engineering. Nevertheless, it is also used for designing physical systems. It mainly recommands
the use of analysis tools for designing new products. As a result, the development of tools for synthesis have been put aside
for the benefit of analysis. However, limitations have been more and more pointed out by design stakeholders, specially
regarding the expression of variability. The ever-increasing complexity of new systems necessitate to rethink their design
approaches, particularly during pre-design. These observations have led to the very recent ISO/IEEE 42020 standard [27],
offering a design process more focused on architecture conceptualization, ie the synthesis of architectures. Besides, this
standard also insists on the concepts of problem and solutions spaces. While very actual, this new design standard is not
really employed as modeling and solving tools are currently lacking.

2.2 A Design approach for the synthesis of architectures
The pre-design methodology proposes by the authors is summarized in Fig. 4. It consists in two successive steps and

aims at offering a general manner to design a system architecture during pre-design, by relying mainly on the synthesis of
architectures. Regarding the ISO/IEEE 42020 standard, this approach covers the “Architecture conceptualization” and the
“Architecture elaboration”. Step 1 proposes the formal modeling of a design problem using DEPS. Step 2 focuses on solving
this problem in DEPS Studio.

Step 1 begins with the textual specification of requirements expressing the design problem in a natural language. This
specification is the result of a Trade-off between various stakeholders, including the client, the designer, engineering dis-
cipline experts as well as the project manager. At this stage, the Knowledge space helps in choosing a coarse model of
the subdefinite system to design (resulting from discussions between expert and designer). During the problem modeling,
this space helps in defining the design variables and their domains (as a result of technological constraints for example).
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Figure 3. The three subspaces of design space and their interactions (Design, Knowledge and Solution spaces).

Figure 4. An approach for pre-design through the synthesis of architectures.

Formal models are constructed, with the aim to ease the understanding of the problem. Then, these models are verified by
the compiler of DEPS Studio. During step 2, a generic computational model is generated for solving. The set of all ad-
missible architectures is synthetised with the built-in solver of DEPS Studio. An example of a design is further discussed
to illustrate the relevance of the proposed design methodology.
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Figure 5. Example of structure for a hybrid vehicle power subsystem (SySML Block Definition Diagram).

3 The study case: a Li-ion battery for electrical vehicles
Energy management is and will remain one of the major challenges of the 21st century, both in terms of reducing

consumption and the use of renewable energies. These scientific issues lead to the design of increasingly complex systems to
reduce energy consumption, pollution and CO2 emissions. The increase in complexity often comes from the need to alternate
between different technologies according to operating conditions, regulation/standards or cost constraints. The transportation
industry is directly impacted by these changes, which can be seen, for example, in the growth of electric or hybrid vehicles
[28]. As an illustration, the SySML block definition diagram of Figure 5 shows the structure of an hybrid vehicle power
subsystem. It will be noted that the need to simultaneously manage different power sources leads to a significant increase in
the structural complexity of the systems to be designed. In order not to overload this article, only a sub-part (the battery pack)
of such an assembly will be considered subsequently. Adopting an object-oriented approach in our design methodology has
proven to facilitate the re-usability of the developed models. As a result, it will always be possible to re-use these sub-models
to design a more complex system (power sub-system or complete vehicle). The problem of designing a Li-ion battery for
electric vehicle traction seems relevant and of sufficient complexity to show the current or future challenges in designing
complex systems without obstructing the reader with unnecessary technological implementations details. The choice of
this example illustrates the typical elements of a pre-design problem, and key mathematical difficulties (i.e. mixed types,
non-convex and nonlinear, selection of components from manufacturers’ catalogs).

Although the design of batteries for electric vehicles is a hot topic in research and development, the vast majority of
current research focuses on material, technology and detailed modeling for simulation [29, 30, 31]. The main objectives of
the research conducted in this area are to propose alternative solutions and technologies that are more efficient than current
systems for the storage of electrical energy in vehicles. However, as explained previously, such detailed models for analysis
and simulations are poorly adapted to the pre-design of complex systems. Thus, battery design problems for complex
systems remain a challenge for manufacturers who strive to provide powerful, hybrid or all-electric vehicles. Indeed, the
performances of rechargeable batteries are limited in three aspects: their size, their mass and their high cost. Industrials
have to meet many contradictory goals during the overall design process, such as providing functional and safe systems
while reducing masses, costs, and considering the recyclability of products. Hence, to help finding new or more suited
architectures of systems, the first steps of design are decisive. Complexity manifests itself in many forms, as mentioned in
[32]. Hence, it is necessary to specify which ones are dealt with in our framework. Is it the complexity of the system ?
Nothing is less certain. Actually this paper focuses more on the complexity of the synthesis problem than of the complexity
of the system. Thus, the first can be divided into two interacting axes:

1. The complexity of the problem modeling. Indeed, very often it is already difficult to express the problem. Concerning the
problem of configurating/sizing a battery, the complexity of modeling lies in the fact that: first, the variables are mixed,
as some components (the cells) are to be chosen in manufacturers’ catalogs and second, the battery is a subdefinite
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system subject to a load profile. Thus, this load profile must be modelled as well as its relations with the subdefinite
model of the battery. We therefore need a formalism capable of capturing this modeling complexity in order to generate
one or more admissible architectures. Our goal is not to build an analysis or simulation model (which would then be the
model of a solution) but to generate a model of the design problem and to solve it. The use of reusable (object-oriented)
models to construct templates simplifies this part for other similar designs.

2. The Resolution complexity, also called computational complexity. Since we use Constraint Programming techniques,
this complexity is also much related to the model of the problem. Decreasing the complexity of resolution is generally
related to the modeling of the problem: it is by minimizing the number of unknowns and maximizing the number of
constraints that we generally obtain a decrease in computation time. The modeling language must therefore include
a mechanism capable of identifying the true unknowns among all the parameters used in the problem model. Careful
choices of heuristics and algorithms that efficiently manage global constraints also help to reduce computation time.

3.1 Positioning the design problem: a reflexion/analysis in Problem and Knowledge spaces
At first, a design problem shall be formulated. The positioning of the design problem requires a reflection/analysis

between the Problem space and the Knowledge space. It must state the system requirements and customer’s needs. The
mathematical relationships describing the subdefinite battery and the other definite systems shall be coarse. [33] presents the
design problem of a Li-ion battery for the traction of an electrical vehicle. In this reference, the electric vehicle is composed
of a chassis and an electro-magneto-mechanical power drive. This power drive consists of a Li-ion battery, a power converter,
an electric machine and a reduction gear. However, as said before, in this article we will only focus on the design of the
battery. The battery is the sole power source of the vehicle. It is an association of ns×np serial and parallel cells. Each cell
forms an energy storage. The goal in designing a battery is to find: 1) the type of cells, 2) the number of cells in serie, 3)
the number of cells in parallel, such that the battery can supply the energy necessary for driving the vehicle. An admissible
architecture of the battery is defined when these 3 variables are defined. Thus, this example is a 3 DoFs design problem.
This design correspond to a configuration problem which is particularly interesting in electrical engineering, as not common
in scientific literature. Moreover the problem contains mixed-type variables because the 3 DoFs of the design are discrete
variables (integer ∈ DDOF ⊂ N) but all other variables are continuous (real ∈ Dworking ⊂ R).

3.2 Knowledge space: a space to help the “A priori” design choices
A cell is characterized by a type, a nominal capacity, an internal resistance and a mass. Three types of cells are available

in a catalogue (type 0, 1 and 2). All the other real variables, such as the battery current or mass, are deduced from these 3
DoFs. Mixed-type variables problems are common in design but still pose many problems in terms of resolution. Discrete and
continuous design problems are well-handled separately, however, the combinatorial aspect added to a continuous problem
makes it harder to solve. In this paper, some assumptions are made for the modelling of the battery. These assumptions are
relevant as far as pre-design is concerned. In pre-design, electrical engineers usually rely on an equivalent electric circuit
to model a battery (Fig. 6 a and b). Each cell is composed of an ideal voltage source (which voltage is commonly called
open circuit voltage - OCV) and an internal serial resistor (which voltage is refered here as Vrcel), in order to reflect the real
voltage source (which voltage is commonly called “terminal voltage” - refered here as Vcel). Furthermore, all cells are viewed
as identical regarding their discharge (Rint model, [34]). The identical behavior of the cells enables to view the battery as
a uniform cell close to a factor. This factor is linked to ns and np. Also, the cell OCV, Vcel and Vrcel are linked by linear
relationships. Thus, the battery is represented by an equivalent ideal voltage source with an equivalent serial resistor.

The design problem also includes a load profile to be powered. The load is composed of the entire vehicle except for the
battery. The load profile is the energy demand necessary to move the vehicle. This energy must be supplied by the battery.
The battery copper losses can be viewed as an extra energy added to the load profile, that the battery has to supply. This
load profile imposes the battery discharge current. This instantaneous discharge current varies over time and is provided
during the vehicle movement. The load profile is a definite system. The electrical model of the load is also simplified, with
some strong assumptions made. The load profile, that is continous, is discretized into several elementary load profiles. An
elementary load profile is defined by a constant power required during a given duration (Fig. 6 c). Indeed, in pre-design, the
models of the systems shall represents the behavior of the system quasi-statically, ie either in steady state or at maximal
operation. Thus, algebraic relationships are kept by avoiding integral sums and instantaneous time dependencies. Time
dependency is implicitly eluded. The current is also discretized. The current of an elementary load profile, and thus the
battery discharge current, is considered constant during the elementary duration.

As a result, the state of charge (SOC) of the battery can be estimated. The SOC is an important parameter for the
battery. It enables to quantify the remaining level of energy of the battery during the vehicle movement, and thus indicates if
the battery can supply the required energy. The battery SOC is also an equivalent model, considering that each cell has the
same SOC during a given duration. The SOC of a cell is expressed as a percentage of the cell nominal capacity. The SOC is
linearly linked to the OCV. The values of the OCV depends on the cell technology. For a Li-ion cell, the minimum OCV is
2.7V and the maximum OCV is 4.2V. A SOC of 1 (100% of the nominal capacity) means that the cell OCV is 4.2V. However,
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(a) A cell modeled as an electrical circuit. (b) A battery constituted with ns×np cells. (c) Load profil used as requirement of design.

Figure 6. Elements of modeling for pre-design chosen in the Knowledge space: (a) the coarse model of a cell (Rint model), (b) the coarse model of a
battery as an interconnection of ns×np cells, (c) the load profil discretized into 3 elementary load profiles.

Figure 7. Decomposition of the battery design problem (SySML Block Definition Diagram).

the minimum value of the cell SOC is settled at 0.2 (20%) and corresponds to the minimum OCV value of 2.7V. Indeed,
an important design constraint imposes the battery to keep a SOC above or equal to 20%. If the cell voltage drops below
2.7V, it may be destructive for the cell. This design constraint has to be fulfilled for each energy demand, ie at the beginning,
during and at the end of every elementary load profile. Between 20% and 100% of charge, we assume variations of internal
resistance as negligeable. Since the relationships between a cell and a battery are linear, the SOC of the battery is the SOC
of one cell. The elements of the design problems are summarized in Fig. 7 using a SySML Block Definition Diagram.

With all these assumptions, the solution to the design problem is to find all the admissible battery architectures, so that
at each elementary load profile, the power that the battery must supply is greater than or equal to the power required by the
load plus the copper losses of the battery.
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Table 1: Catalog of available cells.

Type Capacity C3
(A.h)

Mass
(kg)

Internal resistance
(m Ω)

OCV (V)

0 39 1.05 7 2.7 - 4.2

1 25 0.75 16.75 2.7 - 4.2

2 16 0.68 23 2.7 - 4.2

3.3 Problem space: a space to specify formally the design requirements
In examining this design problem from the Knowledge space, the authors suggest dealing with the following specifica-

tion of requirements as an exemple composed of 12 requirements:

R1 : the battery must supply the energy required by the load profile (driving mission).
R2 : the battery copper losses must be compensated as an additional load.
R3 : the battery state of charge must never drop below 20%.
R4 : the power/energy profile of the load is as following:

the driving mission lasts 30 min (1800 s).
Three elementary load profiles are defined (operating points): 10831 W@22.8 A, 45210 W@102 A et 740 W@50 A,
each one during 600 s.

R5 : three types of cells are available in a catalog: 0, 1, 2. Each one is characterized by a type, a nominal capacity, an
internal resistance and a mass (cf. Tab. 1).

R6 : a battery is composed of a unique type of cells.
R7 : the maximal number of serial cells is set to 5000.
R8 : the maximal number of parallel cells is set to 5000.
R9 : the battery mass cannot excede 800 kg.

R10 : the maximal cell discharge current is limited to 40 A to protect the cells.
R11 : the useful battery energy cannot excede 100 kWh.
R12 : the minimum battery efficiency is 90%.

4 Formal modeling of the design problem with DEPS
The objective of this section is to model the problem of battery design using a model-based approach that can be solved

(solving methods must be addressed at the same time as problem modeling). This resolution will then lead to the generation
of one or more admissible solutions, i.e. satisfying all the design requirements. To model and solve design problems in
”physical systems” engineering, the use of Constraint Satisfaction Problem (CSP) has proven to be very useful (see for
example [35, 36] in mechanical engineering, [37] in electrical engineering or [38] in microelectronics). A CSP is defined by
a triplet (X ,D,C) such that [39, 40]:

X = {x1,x2,x3, · · · ,xn} is a finite set of n constraint variables, with n ∈ N;
D = {d1,d2,d3, · · · ,dn} is a finite set of the domains of the constraint variables such as the domain of xi is di, ∀ i ∈
{1, · · · ,n}. di forms the set of possibilities for xi.
The domains can either be discrete, with a closed and bounded set of possible values {x1, · · · ,xl}. l ∈ N; or continuous,
as an interval of reals [xmin,xmax], with xmin and xmax two finite reals.
C = {c1, c2, c3, · · · , cp} is a finite set of constraints to be satisfied by the constraint variables, with p ∈ N, i.e. ∀ j ∈
{1, · · · , p}, ∃!Xi ⊆ X/c j(Xi).

A constraint is any type of mathematical relations (linear, quadratic, non-linear, boolean,...) involving at least one variable.
It can be logical, explicit, etc. The constraints can be algebraic equations and inequalities or even global constraints [41].
Thus representing the battery design problem as a CSP would be like identifying : (i) the set of variables of the problem,
(ii) the set of possible value domains for each variable and, (iii) all the constraints of the problem. However, it would be a
low-level representation of the problem without the possibility to explicitly express the structure of the subdefinite physical
system (i.e. the engineer’s physical quantities, the relations between subsystems, etc). If we use the analogy with computer
programming, the model (X ,D,C) is a very low-level design model like the “assembler” in computer science. For the design
of complex systems, we actually need a problem representation language capable of capturing much more than just variables,
domains and constraints. In particular, this language must be able to model the structure of the problem and to manipulate
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ordinal and cardinal quantities, that are essential for engineers and experts. To facilitate the development and the use of CSP,
the scientic community has developed a number of available libraries such as Choco [17], IBEX [42] or RealPaver [43].
Those libraries are built using object-oriented programming languages as C++ or Java. However, these are programming
languages (dedicated to programmers) and not modeling language (dedicated to designers and engineering experts). Our
purpose is therefore to adopt a high-level modeling language and an integrated environment which can on the one hand
model and solve the design problem but which is also specially dedicated to designers. For the resolution part, this language
will use Constraint Programming on mixed domains. To our knowledge, the only two solutions that currently exist for this
purpose are Clafer [16] and DEPS [21]. However, Clafer has two limits:

1. Clafer’s solver, i.e. Choco, is not integrated into the language. It is necessary to transform Clafer models to Choco,
which makes it extremely difficult to develop Clafer models. Indeed, if results produced by Choco are not satisfactory
(solving problems), models modifications can only be done in Java and not in the initial Clafer modeling language.

2. Choco, is designed to handle domains of discrete variables while design problems often involve mixed variables. For
example, the battery design problem used to illustrate this article essentially involves real continuous variables (physical
quantities).

Thus, DEPS is a language better suited for modeling design problems because it does not have these two limitations. The
DEPS research project aims at developing a textual formalism to specify design problems, DEPS, and a dedicated framework
to model and solve them in the same environment DEPS Studio. DEPS is a Domain-Specific Modeling Language
(DSML) dedicated to the formalization of design problems of systems (including embedded, real-time, electrical, cyber-
physical systems). DEPS is intended for pre-design and aspires to deal with sizing, configuration, architecture generation
and allocation problems, that can be mixed-type and ill-posed (including over-constrained). DEPS is a formal, declarative,
object-oriented language. Contrary to some relatively theoretical formalisms, such as Axiomatic design [44] or CK-theory
[45], the DEPS formalism is the result of an inductive approach carried out in partnership between industrial and academic
researchers. Advances around DEPS started with very concrete industrial questions and, thanks to an analysis of the limits
and strengths of the tools and languages currently available, led to a first proposal for a language and an associated IT tool
(DEPS Studio). The results of this work, far from being definitive, are in constant progress, according to the new needs in
the face of new design problems. Dedicated to designers in industrial design departments, the approach, the language and the
implementation tool are designed in a pragmatic way so as not to be rejected by potential users. Previous versions of DEPS
have already been employed to formalize continuous (in the field of robotics [21]) and discrete (in the field of integrated
avionics [22]) design problems, but many more different examples must be treated to see advantages and limits of problems
modelling with DEPS. Its use in the context of numerous examples of designs with different characteristics is also a means
of proposing evolutions of the language. To date, several upgrade versions have been offered in just a few years. Especially,
the battery design example was chosen in this submission because it addresses features of the language that had not been
explored before:

1. Mixed-type design problems (impact on solver and resolution),
2. Applications in electrical engineering (impact on the Knowledge space and design constraints),
3. Design problems with constraints tables (manipulation et implementation of catalogs of components).

DEPS is a model-oriented language that supports inheritance, aggregation (shared aggregation), composition (composite
aggregation) and polymorphism. These characteristics enhance the reusability of models of objects. Each model can be
characterized by a set of properties that each instance of this type of model must necessarily satisfy.

4.1 Modeling in DEPS
In DEPS modeling, a model of object is refered by the keyword Model (i.e. systems), and Problem (i.e. design

problems). A model is constructed as following: the keyword Model is followed by its name and the list of its arguments
in brackets (this list can be empty). Arguments can be constants or instances of other models. Parameterized models can
thus be constructed. Semantically, a problem do not take any arguments. If so, this means that the problem is in fact a
model. In DEPS, constants are separated from the variables. Constants are declared and defined in the Constants section.
Declarations and definitions end with a semicolon. Variables (DoFs) are declared in the Variables section. This section
regroups both the design variables and the deduced variables or named expressions. Indeed, the deduced variables are
expressions to which a name is given. To differentiate a design variable from a named expression, a named expression is
declared with the keyword expr. Instances of models can be declared and created in the Elements section. The elements
are all instances of other models that were priorly created.

At last, relevant design constraints can be defined in the Properties section as algebraic relationships: equalities,
inequalities, affectation (definition of the named expressions) and properties as extension. Properties as extension (extended
properties) express for example the compatibility constraint between some design variables and a tuple of possible values.
The keyword End specifies the end of a model.
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1 Quantity INTENSITY
2 Kind : ECINTENSITY ;
3 Min : -maxreal ;
4 Max : +maxreal ;
5 Unit : A ;
6 End

8 QuantityKind ECINTENSITY
9 Type : real ;

10 Min : -maxreal ;
11 Max : +maxreal ;
12 Dim : I ;
13 End

Figure 8. How to declare a model of Quantity and QuantityKind in DEPS.

14 Model Pin()
15 Constants
16 Variables
17 expr i : INTENSITY ;
18 phi : ELECTRICPOTENTIAL ;
19 Elements
20 Properties
21 End

23 Model Connect(b1, b2)

24 Constants
25 Variables
26 Elements
27 b1 : Pin ; (* system 1 terminal *)

28 b2 : Pin ; (* system 2 terminal *)

29 Properties
30 b1.phi = b2.phi ; (* compatibility of potentials *)

31 b1.i + b2.i = 0 ; (* continuity of flow *)

32 End

Figure 9. DEPS models. Left: A model of electric terminal in DEPS (“Pin”), Right: Modeling the interconnection between two systems.

DEPS is a typed language: constants as variables must be declared with a type of quantity (physical, technological,
ordinal or cardinal). Variables and constants are both declared as: name : Quantity ;. Constant name can be defined
by a value: name : Quantity = value ;. Variable name, i.e. a DoF in the design problem, can be defined by a
domain of values: name : Quantity in [domain-of-values] ;. The structure of a Quantitymodel in DEPS
is shown on Fig. 8 for INTENSITY, an electric current. This is a model specified by a Kind, a Min value, a Max value and
a Unit. Kind keyword refers to an existing Quantitykind, that sets the dimension of the quantity. For this example,
Quantitykind model is specified by a basic type (real), a Min value, a Max value and a Dim. Types can be either
predefined or user-defined. For both Quantity and Quantitykind, the Min (respectively Max) keyword specify the
minimum (resp. maximal) value of this type of constants or variables. The Unit keyword specifies a unit for the quantity.
If the quantity does not have units, this is specified as u. The Dim keyword specifies the dimension of the quantity (as for
dimensional analysis). If the quantity does not have dimension, this is specified as U.

4.2 Models construction
There are many ways to model a design problem, all the more if the design also aims at enhancing the reusability of

models. This secondary goal needs to be considered right from the start of modeling. Indeed, the more reusable the models
become, the higher the level of difficulty becomes. As with any object-oriented modeling, a rigorous preliminary domain
analysis must be conducted from the Knowledge space to determine the correct objects and the correct structure of the
design problem. Iterations on this step are sometimes, and often, necessary. In this sense, problem modeling is constructive
and inductive. In addition, designers need to think about the level of information to reveal to the users of the models. Users
should not be aware of the specific implementation details, for models to be easier to understand and to use. This property is
known as “encapsulation” in object-oriented modeling.

4.2.1 Models and reuseability
Electric terminals of interconnected multipoles are features that can be modeled to enhance the reuseability of models

of physical objects or components. This feature is, for example, used in component- or object-oriented simulation languages
(Spice, VHDL, Verilog, Modelica). This can be easily implemented in DEPS as shown in the Pin models Fig. 9 left. Thus,
the modeling approach based on the two Generalized Kirchhoff Laws (as in Energy and Networks methods [46]) can be
used in DEPS. These two laws can be defined in a model as on Fig. 9 right - lines 30-31. Similar models can be constructed to
connect more systems together. In DEPS, comments are defined for both lines and sections inside the (* and *) delimiters.

This way of modeling physical systems allows an acausal definition of the constitutive laws for every interconnected
physical system. Using a representation based on dual electrical variables (current, voltage) to describe interconnections
between physical components also makes it possible to automatically satisfy energy conservation laws [46]. This represen-
tation allows to model the power through a system as a flow that can flow in and out. The system behavior is acausal from
a physical point of view. Indeed, until the battery is connected to the other systems, its behavior is unknown. If the battery
is connected to a load, the power flows out. If the battery is connected to a charger device, the power flows in. This unique
model of the battery can be used for both discharge and charge instead of specifying a model for each operating mode.
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34 Model Battery()
35 Constants
36 Variables
37 ns : INTEGER in [1,10000] ;(* number of serial cells

*)

38 np : INTEGER in [1,10000] ;(* number of parallel

cells *)

39 expr ibat : INTENSITY ;(* current *)

40 expr ocvbat : VOLTAGE ;(* ocv *)

41 expr vbat : VOLTAGE ;(* terminal voltage *)

42 expr rbat : RESISTANCE ;(* internal resistance *)

43 expr mbat : MASS ;(* battery mass *)

44 expr energy : ENERGY ; (* available energy *)

45 (...)
46 Elements
47 n : Pin() ;
48 p : Pin() ;
49 cell : LiIonCell() ;
50 Properties
51 ...
52 End

54 Model LiIonCell()
55 Constants
56 peukert : REAL = 1.1 ; (* Peukert coefficient*)

57 Variables
58 cellType : INDEX ; (* type of cell *)

59 r0 : RESISTANCE ; (* static resistance *)

60 c3 : CHARGECAPACITY ; (* nominal capacity *)

61 mcel : MASS ; (* mass *)

62 icel : INTENSITY ; (* current through a cell *)

63 expr vcel : VOLTAGE ; (* cell voltage *)

64 ...
65 Elements
66 e0 : VoltageSource(2.7, 4.2) ; (* ideal DC voltage

source *)

67 rcel : Resistor() ; (* resistor *)

68 n : Pin() ; (* negative pin *)

69 p : Pin() ; (* positive pin *)

70 connectER : Connect(e0.p, rcel.p) ;
71 Properties
72 Catalog([cellType, r0, c3, mcel], cellTable) ;
73 ...
74 End

Figure 10. DEPS Models. Left: Modeling a subdefinite battery, Right: Modeling a subdefinite Li-ion cell.

4.2.2 Models for definite and subdefinite systems
The content of the Variables section of a DEPS model allows to distinguish the model of a definite system from the

model of a subdefinite one. The model of a definite system do not contain design variables, i.e. structural DoFs. On the other
hand, the model of subdefinite systems always contains variables in the Variables section. Figure 10 left partially shows
a subdefinite battery model with two DoFs: ns and np. These two design variables are declared inside this model. Their
domains of values are also chosen as part of designers’ knowleges. Minimum values are both set to "1" for realistic purposes,
and maximal values to a number small enough to reduce the solutions space, but high enough not to create overconstraints.
The named expressions (e.g. ibat) are then declared. A battery is viewed as a system composed of a negative terminal n and
a positive one p. It is modeled as the composition of a cell (line 49) which is an instance of the subdefinite LiIonCell
model. A part of LiIonCell is shown on Fig. 10 right.

4.2.3 Modeling a configuration problem in DEPS
One of the difficulties of configuration problems is that components to choose are defined by tuples: in this example,

cells are defined by the following tuple {type, mass, nominal capacity, internal resistance}. Thus, if one of its attributes is
defined during solving, a cell is implicitly chosen and all the other attributes are defined as well. As a result, the solutions
space is reduced into particular sets of values (e.g. {0, 1.05, 39, 0.007} for cells of type 0). This kind of design constraint is
called a catalog constraint (as the component is chosen inside a catalog). A catalog constraint is a global constraint like,
for example, the “All different” constraint [41]. In DEPS, the configuration problem associated with the choice of a particular
cell is therefore modeled in two stages.

1. First, the table of available cells is modeled. In DEPS, catalogs are modeled throught the concept of Table (Fig. 11
left). A Table is a object that contains only structural data without properties. The four attributes of a cell are declared
in the Attributes section. They are defined for each cell as Tuples separated by coma. Any number of cells can
be specified (only three are given in this example).

2. Then, the catalog constraint is modeled inside the model LionCell. First, attributes of tables are declared as design
variables in the Variables section. In the Elements section, the instances of e0, rcel, p and n (resp. instance
of the VoltageSource, Resistor and Pin models) are declared and created. These two components are then
interconnected through the use of a Connect model. Finally, the catalog constraint is modeled as a property using
Catalog keyword (line 72). This implicitly specifies that an instance of LiIonCell can solely take the values of
one tuple inside cellTable.

4.2.4 Modeling an elementary load profile
Figure 11 right shows how a definite elementary load profile can be modeled. An elementary load profile is modeled as

a system with two terminals (p and n). It is defined by a duration (constant deltat), a required power (constant ploadk)
and a required current (constant iloadk). The corresponding load voltage vloadk is also declared (line 97) as a difference
of potentials (line 104).
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75 Table cellTable
76 Attributes
77 type : INDEX ;
78 resistance : RESISTANCE ;
79 capacity : CHARGECAPACITY ;
80 mass : MASS ;
81 Tuples
82 [0, 0.007, 39, 1.05], (* cell 0 *)

83 [1, 0.01675, 25, 0.75], (* cell 1 *)

84 [2, 0.023, 16, 0.68], (* cell 2 *)

85 End

91 Model ELProfile(deltat, ploadk, iloadk)
92 Constants
93 ploadk : POWER ; (* required power *)

94 iloadk : INTENSITY ; (* required current*)

95 deltat : TIME ; (* duration *)

96 Variables
97 expr vloadk : VOLTAGE ; (* required voltage *)

98 Elements
99 p : Pin() ;

100 n : Pin() ;
101 Properties
102 p.i := iloadk ; (* receptor convention *)

103 n.i := - p.i ;
104 vloadk := p.phi - n.phi ;
105 vloadk = ploadk / iloadk ;
106 End

Figure 11. DEPS models. Left: Modeling the catalog of cells, Right: Modeling an elementary profile of load.

107 Model Todo(elp, b)
108 Constants
109 Variables
110 socini : REAL in [0.2,1] ;
111 expr socfin : REAL ;
112 Elements
113 elp : ELProfile[...] ;
114 b : Battery ;
115 g : Ground() ;
116 c : Connect(elp, b, g) ;
117 Properties
118 elp.iloadk <= b.ibat ;
119 elp.vloadk <= b.vbat ;
120 socfin := socini - b.cell.icel/b.cell.c3 * elp.deltat

;
121 socfin >= 0.2 ;
122 End

133 (* supply energy for the load profile *)

135 Model Supply(elp, elp2, elp3, b)
136 Constants
137 Variables
138 expr socini : REAL ;
139 expr socfin : REAL ;
140 expr energy : ENERGY ;
141 expr s : BOOLEAN ;
142 Elements
143 elp1 : ELProfile[...] ;
144 elp2 : ELProfile[...] ;
145 elp3 : ELProfile[...] ;
146 b : Battery ;
147 td1 : Todo(elp1, b) ;
148 td2 : Todo(elp2, b) ;
149 td3 : Todo(elp3, b) ;
150 Properties
151 socini = 1 ;
152 td1.socini = socini ;
153 td2.socini = td1.socfin ;
154 td3.socini = td2.socfin ;
155 energy := (elp1.ploadk * elp1.deltat + elp2.ploadk *

elp2.deltat + elp3.ploadk * elp3.deltat) ;
156 b.energy >= energy ;
157 ...
158 End

Figure 12. DEPS models. Left: Modeling an energy supply demand, Right: Connecting the load profile and the battery.

4.2.5 Modeling the energy supply requirement
First, to model the requirements R1 and R3, a battery can be connected to each instance of elementary profile elp (of

the model ELProfile): model Todo of the Fig. 12 left - line 116. The model ELProfile is specified with its signature
in square brackets replaced here by [. . . ] for clarity purposes. The power demand is defined in terms of current and voltage to
supply, resp. lines 118 and 119. The battery copper losses are implicitly considered through the terminal voltage expression
(vbat = ocvbat− rbat · ibat). The design constraints related to the battery SOC are expressed lines 120-121. Second, the
elementary load profiles can be connected to form the load profile, as in the model Supply (Fig. 12 right - lines 152-154)).
The model Supply allows a higher level of implementation by allowing a direct interconnection between a battery and a
load profile. In the context of design, the initial SOC of a new battery is known and equals 1 (line 151). This design constraint
is independent from the load and can be expressed in Supply. In addition, the energy demand is specified (lines 155-156).

4.2.6 Modeling the design problem of the battery
A modeling of the battery design problem is shown on Fig. 13 left. The problem model is a part of the package

BatteryPackage. Packages are specified by the keyword Package. BatteryPackage uses the packages Types and
Components (lines 159-160) with the Uses keyword. Types and Components respectively contain the Quantity,
QuantityKind and the Models. Components actually uses the package CatalogofComponents inside which the
Table cellTable is defined. Then, the BatteryPb problem is created (lines 162-180).

Some constants are declared and defined to set limits on battery structure (nsmax, npmax, mbatmax) and its behavior,
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159 Package BatteryPackage ;
160 Uses Types, Components ;
161 (* battery problem model *)

162 Problem BatteryPb
163 Constants
164 nsmax : INTEGER = 5000 ;
165 npmax : INTEGER = 5000 ;
166 mbatmax : MASS = 800 ;
167 icelmax : INTENSITY = 40 ;
168 energymax : ENERGY = 100000 ;
169 efficiencymin : REAL = 0.9 ;
170 Variables
171 Elements
172 battery : Battery() ;
173 elp1 : ELProfile(600, 10831, 22.8) ;
174 elp2 : ELProfile(600, 45210, 102) ;
175 elp3 : ELProfile(600, 740, 18.9) ;
176 supply1 : Supply(elp1, elp2, elp3, battery) ;
177 max1 : MaxValues(battery, nsmax, npmax, mbatmax,

icelmax, energymax) ;
178 min1 : MinValues(battery, efficiencymin) ;
179 Properties
180 End

183 (* values limitations for a battery *)

185 Model MaxValues(b, nsmx, npmx, mbatmx, icelmx,
energymx)

186 Constants
187 nsmx : INTEGER ;
188 npmx : INTEGER ;
189 mbatmx : MASS ;
190 icelmx : INTENSITY ;
191 energymx : ENERGY ;
192 Variables
193 Elements
194 b : Battery ;
195 Properties
196 b.ns <= nsmx ;
197 b.np <= npmx ;
198 b.mbat <= mbatmx ;
199 b.cell.icel <= icelmx ;
200 b.avenergy <= energymx ;
201 End

Figure 13. DEPS models. Left: Modeling the battery design problem, Right: Modeling of the design constraints limitations.

(icelmax, SOC), as specified by the requirements R7-R12 (lines 163-169). In the Elements section, a single battery
instance is first created (line 172) as well as the three elementary load profiles specified by R4 (lines 173-175). The next
lines express the connection of each battery with the load profile (R1-R3 - line 176). At last, the design constraints setting
the limitations are expressed (lines 177-178).

The design constraints could be modeled as properties of the problem. However, as models are constructed to be
reuseable, factorizing out recurring design constraints into parameterized models proves to be more efficient (Fig. 13 right).
Requirement R12 is modeled inside a similar MinValues model. Thus, Properties section is also empty.

5 Compiling and solving a design problem
The environment DEPS Studio allows:

1. The edition of the packages (that include the models).
2. The organization in problem modeling projects (regrouping Problem and Models packages).
3. The compilation of design problems (built-in compiler).
4. The solving of design problems (built-in solver).

The consistency of each model is first checked by the compiler (syntax, lexicon and models dependencies). A single instance
of the problem is created and other subdefinite elements are created from this instance. The debugging of the models is
directly realized in DEPS. It does not rely on the language used by the solver. The errors capture occurs during this step,
which allows the designers to correct their models if necessary, before solving. After compiling, solving can be considered.
Then, DEPS models are compiled in DEPS Studio, to produce an internal and generic computational model for solving.
A computational model gathers the sets of variables, domains of definition and the constraints elements, specified as a
constraint network in the DEPS models [23]. The computational models can be solved either with the DEPS Studio
built-in solver, or with external solver [47]. The solving methods employed by both solvers rely on Constraint Programming
for mixed-type variables [48, 49, 50]. Finally, a set of admissible architectures is synthetized as a result of the solving of
this design problem. For this design problem, the resolution time is about two seconds on a personal computer equipped
with a dual core Intel i7-6600U processor and 8GB of RAM (CP solver uses a first-fail heuristic and an Hull consistance
filtering). Like all Constraint Programming solvers, if several solutions exist, the solver will be able to find them all. Table 2
shows one (among several possible) admissible architecture for the BatteryPb problem. The architecture of the battery
corresponding to this solution is defined by: (i) ”type 0” cells, (ii) ”5” cells in serie and (iii) ”118” cells in parallel. No
optimization criteria were specified in the requirements for this design issue. However, the DEPS Studio solver allows
to propose an optimal solution as soon as one is able to express algebraically a cost function to be minimized (mass of the
system, economic cost, etc). It is simply a matter of using an iterative loop that increasingly constrains this criterion until it
reaches the limit where there are no more solutions. The use of this algorithm to solve optimization problems is classic in
Constraint Programming [36].
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Table 2: One (among several possible) admissible architecture for the BatteryPb problem.

Variables Values Units Requirements

type 0 R6

ns 5 R7

np 118 R8

icel 20 A R10

ibat 102 A R1

Variables Values Units Requirements

vbat 478 V R1

powerbat 48831 W R1, R2

energy 93354 W·h R11

soc 73 % R3

efficiency 96 % R12

6 Conclusions
The purpose of this article is twofold. First, it presents an approach for pre-designing physical systems through a

model-based approach based on a synthesis process. One of the main objectives of this work is to propose a methodology
and a framework that is dedicated to industrial designers facing concrete and complex design problems. In this context,
the vision embraced is at the same time constructive, inductive and evolutive. One of the key aspects of this approach
is to encourage the formalization of the design requirements and the design problem in order to accommodate the point of
view of the different stakeholders (customers, designers, experts, project leaders). This methodology is based on the problem
specification language DEPS and its modeling/solving integrated environment DEPS Studio. The DEPS language exploits
the many advantages of object oriented languages (reusability, decomposition, generalization/specialization, inheritance)
and the resolution steps use Constraint Programming. This approach is advisable as soon as we design structured systems
(functionally and/or structurally) and that we are able to establish a set of design properties such as equations, algebraic
and/or logical inequalities. This does not serve the purpose of pure innovation or creativity.

Second, this methodology is illustrated on a use case based on the design of a Li-ion battery for electric vehicle. The
relevance and effectiveness of this approach are demonstrated on this example. It is obvious that, as with any new method, a
phase of learning the language and computer tools is necessary and that it will be easier for users who are already familiar
with object-oriented modeling. However, being the result of an industrial/academic partnership, a special effort has been
made so that the formalism and language can be used by experts from industrial design departments. In this way, we
encourage those interested to test it for their own design needs and to help us improve the current version (more information
is available on the DEPS Association website [20]). As with any object-oriented or module-based language, models built in
DEPS can be reused for different or more complex design problems (e.g. a complete vehicle for the use case or for different
requirements). Currently, the authors are working on extending the battery example to account for environmental constraints
and integrating the battery into a larger design problem, electric or hybrid vehicle. The resolution of the use case shows that
Constraint Programming is well suited because the resolution times remain very low. Nevertheless, the overall design time
is not restricted to the resolution time, it must also include the time spent on specifying the requirements and modeling the
design problem. One of the objectives of these extensions is to assess whether it is indeed possible to save design time by
exploiting the re-usability of the models provided by our design approach and the use of the DEPS language.

The DEPS language is recent and therefore continues to evolve. Since its first version, new features have been added
and some should emerge in the future. For example, the use case discussed in this article uses its ability to handle catalog
constraints and mixed variable. This paper focuses on the design of physical systems, but other papers have addressed the
design of software for embedded systems, which makes it possible to consider using it to design Cyber-Physical systems
or Product-Service systems. In future work, we also plan to connect the solutions generated by the synthesis process to
a modelica simulation in order to illustrate the synthesis/analysis cooperation in the manner of the overall design cycle of
Figure 1. As illustrated in this figure, feedback loops on the specification of requirements and on the synthesis in pre-design
will then be possible if the evaluation/validation phases invalidate the admissibility of an initially pre-designed solution.
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