
HAL Id: hal-03716156
https://hal.science/hal-03716156

Submitted on 23 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Spatio-temporal dynamics of large-scale
electrophysiological networks during cognitive action
control in healthy controls and Parkinson’s disease

patients
Joan Duprez, Judie Tabbal, Mahmoud Hassan, Julien Modolo, Aya Kabbara,
Ahmad Mheich, Sophie Drapier, Marc Verin, Paul Sauleau, Fabrice Wendling,

et al.

To cite this version:
Joan Duprez, Judie Tabbal, Mahmoud Hassan, Julien Modolo, Aya Kabbara, et al.. Spatio-
temporal dynamics of large-scale electrophysiological networks during cognitive action control
in healthy controls and Parkinson’s disease patients. NeuroImage, 2022, 258, pp.119331.
�10.1016/j.neuroimage.2022.119331�. �hal-03716156�

https://hal.science/hal-03716156
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


NeuroImage 258 (2022) 119331 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Spatio-temporal dynamics of large-scale electrophysiological networks 

during cognitive action control in healthy controls and Parkinson’s disease 

patients 

Joan Duprez a , # , ∗ , Judie Tabbal a , b , # , Mahmoud Hassan 

c , d , Julien Modolo 

a , Aya Kabbara 

c , 
Ahmad Mheich 

e , Sophie Drapier f , g , Marc Vérin 

g , h , Paul Sauleau 

h , i , Fabrice Wendling 

a , 
Pascal Benquet a , Jean-François Houvenaghel g , h 

a Univ Rennes, LTSI - U1099, F-35000 Rennes, France 
b Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Beirut, Lebanon 
c MINDig, F-35000 Rennes, France 
d School of Engineering, Reykjavik University, Iceland 
e CHUV-Centre Hospitalier Universitaire Vaudois, Service des Troubles du Spectre de l’Autisme et apparentés, Lausanne University Hospital, Les Allières – Av. Beaumont 

23, 1011, Lausanne, Switzerland 
f CIC INSERM 1414, Rennes, France 
g Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France 
h Behavioral and Basal Ganglia’ Research Unit, University of Rennes 1-Rennes University Hospital, France 
i Neurophysiology Department, Rennes University Hospital, France 

a r t i c l e i n f o 

Keywords: 

Functional connectivity 
Networks 
Dynamics 
High density EEG 
Cognitive control 
Simon task 
Parkinson’s disease 

a b s t r a c t 

Among the cognitive symptoms that are associated with Parkinson’s disease (PD), alterations in cognitive action 
control (CAC) are commonly reported in patients. CAC enables the suppression of an automatic action, in fa- 
vor of a goal-directed one. The implementation of CAC is time-resolved and arguably associated with dynamic 
changes in functional brain networks. However, the electrophysiological functional networks involved, their dy- 
namic changes, and how these changes are affected by PD, still remain unknown. In this study, to address this 
gap of knowledge, 10 PD patients and 10 healthy controls (HC) underwent a Simon task while high-density elec- 
troencephalography (HD-EEG) was recorded. Source-level dynamic connectivity matrices were estimated using 
the phase-locking value in the beta (12-25 Hz) and gamma (30-45 Hz) frequency bands. Temporal independent 
component analyses were used as a dimension reduction tool to isolate the task-related brain network states. 
Typical microstate metrics were quantified to investigate the presence of these states at the subject-level. Our 
results first confirmed that PD patients experienced difficulties in inhibiting automatic responses during the task. 
At the group-level, we found three functional network states in the beta band that involved fronto-temporal, 
temporo-cingulate and fronto-frontal connections with typical CAC-related prefrontal and cingulate nodes (e.g., 
inferior frontal cortex). The presence of these networks did not differ between PD patients and HC when analyz- 
ing microstates metrics, and no robust correlations with behavior were found. In the gamma band, five networks 
were found, including one fronto-temporal network that was identical to the one found in the beta band. These 
networks also included CAC-related nodes previously identified in different neuroimaging modalities. Similarly 
to the beta networks, no subject-level differences were found between PD patients and HC. Interestingly, in both 

Abbreviations: CAC, Cognitive action control; dBNS, Dynamic brain network state; dFC, Dynamic functional connectivity; DIFFIT, Difference in data fitting; DLPFC, 
Dorso-lateral prefrontal cortex; EEG, Electroencephalography; FC, Functional connectivity; fMRI, Functional magnetic resonance imaging; HC, Healthy controls; HD- 
EEG, High-density EEG; ICA, Independent component analysis; IFC, Inferior frontal cortex; MEG, Magnetoencephalography; PD, Parkinson’s disease; PLV, Phase 
locking value; pre-SMA, Pre-supplementary motor area; ROIS, Regions of interest; RT, Reaction time; tICA, Temporal ICA. 
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. Introduction 

Parkinson’s disease (PD) is associated with a broad spectrum of
ymptoms. Although it is mostly known for its deleterious effects
n motor function, such as bradykinesia, rigidity and resting tremor
 Hayes, 2019 ), cognitive impairments associated with PD also have a
ignificant impact on quality of life ( Lawson et al., 2016 ). One of the
ajor cognitive difficulties found in PD patients is the impairment in

fficient and fast adaptation to environmental changes. More specifi-
ally, PD patients typically show alterations in cognitive action control
CAC), a sub-process of cognitive control that enables the suppression of
utomatic responses in favor of goal-directed voluntary actions. CAC is
sually measured using conflict tasks such as the Simon task ( Simon and
udell, 1967 ) in which participants have to respond according to a stim-
lus’s color while ignoring its location. Incongruent situations in these
asks (when color and location lead to conflicting responses) result in an
ncrease in reaction time (RT) and a decrease in accuracy, which is com-
only termed the congruence effect. Dual route models ( Hommel and
iers, 2017 ) interpret this as the result of the competition between

n automatic and fast route for response activation, and a controlled,
lower one. The activation-suppression model ( Ridderinkhof, 2002 ) en-
iched this view by adding a dynamic aspect stating that fast responses in
ncongruent trials are more error-prone (impulsive action selection), and
hat slower responses are associated with stronger inhibition because
nhibitory processes had time to build-up. To date, numerous studies fo-
used not only on the average congruence effect, but also on fast errors,
o investigate impulsive action selection, and on the size of the congru-
nce effect for the slowest responses, that reflects selective inhibition
see ( van den Wildenberg et al., 2010 )). 

PD patients consistently show alterations regarding CAC compared
o healthy controls (HC). However the nature of the impairment is some-
hat inconsistent between studies. Indeed, alteration of CAC in PD was

ound through an increase in the congruence effect in PD patients on RT
r accuracy, while others found decreased selective inhibition or an in-
rease in impulsive fast errors but with no effect in average congruence
ffect( Cagigas et al., 2007 ; Duprez et al., 2017 ; Falkenstein et al., 2006 ;
ylie et al., 2010 , 2005 ). 
Importantly, even at the prodromal stages of PD, accumulation

f 𝛼-Synuclein results in synaptic and axonal dysfunctions ( Bridi and
irth, 2018 ). This could explain the presence of cognitive impairment

hat is sometimes already present at the time of diagnosis. Indeed, in-
egrity and efficiency of synaptic communication is arguably important
or processes requiring fast decision making such as CAC. Several stud-
es have investigated the correlations between brain activity on the
ne hand, and cognitive changes on the other hand, using a variety
f neuroimaging modalities (fMRI, PET, (M)/EEG). For instance, it is
ow undisputed that conflict resolution is associated with activity in
he dorso-lateral prefrontal cortex (DLPFC), the inferior frontal cortex
IFC), the pre-supplementary motor area (pre-SMA), the anterior cin-
ulate cortex, and the subthalamic nucleus ( Ridderinkhof et al., 2011 ).
n addition to this localizationist approach, studying the interaction be-
ween brain regions would help in specifying how neurodegenerative
iseases such as PD alter cognitive functions. Indeed, a large body of ev-
dence now shows that cognitive functioning emerges from the commu-
ication of distant brain regions ( Bassett and Sporns, 2017 ) and that al-
erations in these brain networks have been associated with neurological
isorders ( Fornito et al., 2015 ). Brain networks can be studied, among
2 
etwork at the subject-level was never the one that was the most durably modu-
 study identified the dynamic functional brain networks observed during CAC,
 changes in these networks that might explain behavioral changes. Although
ed to investigate the presence of task-related networks at the subject-level, this

sed dynamic functional connectivity is a promising approach in understanding
ed in PD and beyond. 

vailable techniques, via the estimation of functional connectivity (FC)
etween brain areas, as estimated from electrophysiological ((M)EEG)
r metabolic (MRI, PET) signals. FC is not in itself a direct measure of
ommunication between brain areas, but rather reflects statistical de-
endencies of brain activity between different regions. (M)EEG FC is
articularly interesting since it is usually inferred through the phase syn-
hronization of neural oscillations, a mechanism that has been proposed
o facilitate communication between neuronal assemblies ( Fries, 2015 ).
 growing body of literature has shown that neural oscillations in dif-

erent frequency bands are associated with cognition. For instance, beta
ctivity has been suggested to implement top-down control processes,
hile gamma activity is more likely to support bottom-up sensory pro-

essing ( Miller et al., 2018 ). Regarding CAC, midfrontal theta power
as been shown to be associated with conflict resolution, and to co-
rdinate beta activity through cross-frequency coupling ( Cohen, 2014 ;
uprez et al., 2020 ). 

So far, most studies have evaluated FC in PD using resting-state
MRI ( Baggio et al., 2015 , 2014 ; Lopes et al., 2017 ; Skidmore et al.,
011 ; Wolters et al., 2019 ). The literature focusing on FC evaluated
y (M)EEG and/or during cognitive tasks in PD is scarcer, although it
ould surely provide valuable insights on the neurophysiological alter-
tions caused by the disease and its relationship with cognitive symp-
oms. While (M)EEG does not benefit from the same spatial resolution as
MRI, recent advances in cortical source reconstruction now enable the
nference of cortical area long-range FC ( Hassan and Wendling, 2018 ).
ne major advantage of (M)EEG techniques is their excellent temporal

esolution (millisecond scale), which is fundamental when studying cog-
itive processes that are inherently fast and dynamic. For instance, CAC
s a process that has obvious dynamic properties at the behavioral level:
ction selection and suppression are time-resolved processes allowing
onflict resolution, and these aspects were usually masked by focusing
n task-averaged behavioral performances in previous studies ( van den
ildenberg et al., 2010 ). 
Similarly to cognitive processes, FC is also time-dependent and brain

etworks dynamically rearrange themselves during resting state and
asks ( Baker et al., 2014 ; Bola and Sabel, 2015 ; de Pasquale et al., 2016 ;
assan et al., 2015 ; Kabbara et al., 2021 ; O’Neill et al., 2018 , 2017 )
ith consequences on behavior ( Allen et al., 2018 ). Several new meth-
ds now allow investigating how inter-regional communication varies
ith time ( Sizemore and Bassett, 2018 ; Tabbal et al., 2021 ). Such meth-
ds would tremendously help in understanding how dynamic cognitive
rocesses such as CAC unravel, and how those processes can be impaired
n neurodegenerative diseases such as PD. In this study, we aimed at de-
cribing the spatio-temporal characteristics of the functional networks
uring CAC and to test whether impairments in such characteristics are
ound in PD patients. We use the example of a classic conflict task, the
imon task, paired with high-density EEG (HD-EEG, 256 channels) re-
onstructed at the cortical source level in a group of 10 PD patients and
0 HC. We combine the calculation of dynamic FC matrices with a di-
ension reduction method (independent component analysis, ICA) and
icro-state metrics to investigate the time-varying changes in brain net-
orks at the group- and subject-level. Microstates are quasi-stable topo-
raphical patterns that can be used to investigate EEG dynamics. Some
etrics were defined to investigate the presence of these microstates at

he subject-level ( Lehmann et al., 2005 , 1987 ). We propose to use these
etrics to quantify, instead of microstates, the presence of functional
etworks at the single subject-level. Since the method that we used is



J. Duprez, J. Tabbal, M. Hassan et al. NeuroImage 258 (2022) 119331 

b  

f  

T  

n

2

2

 

(  

s  

(  

w  

<  

c  

n  

c  

(  

f  

c  

s  

o  

(  

a  

i

 

c  

t  

t  

t  

m  

1

2

 

R  

t  

s  

s  

d  

(  

2  

a  

(  

p  

s  

c  

F  

t  

c

ased on a sliding window approach of phase-based FC, we were there-
ore limited to the investigation of the gamma and beta frequency bands.
his allowed us to identify and characterize the frequency-dependent
etworks underlying CAC in PD patients and HC. 

. Materials and methods 

.1. Participants 

Ten patients (6 males, 4 females) diagnosed with idiopathic PD
 Hughes et al., 1992 ), aged between 48-59 years (mean = 53.6,
td = 4.2) and 10 HC (4 males and 6 females), aged between 45-57 years
mean = 52.8, std = 4.3) participated in this study ( Table 1 ). Patients
ith major cognitive deficits (Montreal Cognitive Assessment [MoCA],
 22) or with other past or present neurological (other than PD) or psy-
hiatric pathology, as well as patients with deep brain stimulation, were
ot included in the study. The same criteria were used for HC. Global
ognitive functioning was assessed in all participants using the MoCA
 Nasreddine et al., 2005 ). Additional standardized tests were assessed
or PD patients, representing several cognitive abilities. These tests in-
luded: the Symbol Digit Modalities Test (SDMT; Smith, 1982 ), the Digit
pan test ( Wechsler, 1981 ), the Stroop test ( Stroop, 1935 ), the judgment
f line orientation test ( Benton et al., 1978 ), the Boston naming test
 Graves et al., 2004 ), as well as semantic fluency (animal names gener-
tion task in 60 seconds), and phonemic fluency (words generation task
n 60 seconds). 
Table 1 

Demographic and clinical data. Data are presented as mean (range; sd). 

PD patients 

n 10 
Age (years) 53.6 (48-59; 4.2) 
Sex (F/M) 4/6 
Laterality (L/R) 2/8 
Education level (years) 13.4 (9-17; 2.8) 
Motor characteristics 

Disease duration (years) 9.1 (6-17; 3.2) 
Onset side (L/R) 5/5 
UPDRS III ON (/132) 12.1(4-29; 6.6) 
UPDRS III OFF (/132) 40.9 (24-68; 12.6) 
Hoehn & Yahr ON (/5) 0.8 (0-2; 0.8) 
Hoehn & Yahr OFF (/5) 1.9 (1-2.5; 0.5) 
Schwab & England ON (/100) 94 (90-100; 5.2) 
Schwab & England OFF (/100) 76 (50-90; 12.6) 
Levodopa Daily Dose Equivalent (mg/d) 1535 (995-2204; 398.2) 
Cognitive characteristics 

MoCA (/30) 27.5 (26-30; 1.5) 
SDMT 

Number in 90 s (/150) 49.6 (43-67; 7.2) 
Error (/150) 0.9 (0-4; 1.4) 
Digit Span 

forward (/9) 5.9 (5-7; 0.9) 
backward (/9) 4.8 (3-6; 0.9) 
Stroop task 

interference time (s) 49 (38-72; 9.7) 
interference errors (n errors) 0.5 (0-2; 0.7) 
Judgement of line orientation (/30) 26.6 (24-29; 1.6) 
Boston naming test (/15) 12.3 (10-15; 1.6) 
Verbal fluency 

Semantic (animals in 60s) 21.2 (15-30; 5.2) 
Phonemic (P in 60s) 16.9 (11-24; 4.7) 
Simon task 

Overall RT 520 (103) 
Congruent RT 497 (66) 
Incongruent RT 544 (64) 
Overall accuracy 0.96 (0.2) 
Congruent accuracy 0.98 (0.02) 
Incongruent accuracy 0.94 (0.04) 

UPDRS : Unified Parkinson’s Disease Rating Scale; SDMT : Symbol Digit Mod
Tomlinson et al. (2010) . 

3 
All HC were recruited from the general population during public
onferences and through participation calls. Patients were recruited at
he University Hospital of Rennes, France during hospitalization for
heir usual care. All participants provided informed consent for par-
icipation in the study, which was approved by a national ethics com-
ittee review board (CPP ID-RCB: 2019-A00608-49; approval number:
9.03.08.63626). 

.2. Experimental task 

In this study, we used a color version of the Simon task ( Simon and
udell, 1967 ) to investigate the changes in CAC associated with PD. Par-

icipants were seated at a distance of 80 cm from a 22 inches’ computer
creen. At the beginning of a trial, a central dark fixation cross was pre-
ented on a white screen, during a variable period (pseudo-randomly
efined from 1750 ms to 2170 ms). Then, a blue or a yellow circle
3.9 cm diameter) was displayed either to the right or left side during
00 ms ( Fig. 1 ). Participants were asked to press a left or right button
ccording to the color of the circle displayed, while ignoring its location
color/side mapping was counterbalanced across participants). Partici-
ants had to respond within 1000 ms after stimulus offset. The location
ide of the colored circle stimulus could match (congruent) or not (in-
ongruent) the side of the correct button press associated with the color.
or example, when the color “blue ” is mapped to the “right ” button, the
rial is congruent when a blue circle appears on the right side, and in-
ongruent when it appears on the left side ( Fig. 1 ). 
HC Welch’s t-test 

10 
52.8 (45-58; 4.3) t = 0.42; df = 18; p = 0.68 
6/4 - 
0/10 - 
14.4 (9-17; 2.7) t = -0.8; df = 17.9; p = 0.43 

- - 
- - 
- - 
- - 
- - 
- - 
- - 
- - 
- - 

28.9 (26-30; 1.4) t = -2.1; df = 18; p = 0.048 

- - 
- - 

- - 
- - 

- - 
- - 
- - 
- - 

- - 
- - 

580 (126) t = -1.7 ; df = 1 ; p = 0.1 
556 (81) t = -1.8 ; df = 17 ; p = 0.09 
606 (95) t = -1.7 ; df = 16 ; p = 0.11 
0.96 (0.2) t = -0.5 ; df = 18 ; p = 0.6 
0.99 (0.01) t = -1.4 ; df = 12 ; p = 0.19 
0.93 (0.05) t = -0.18 ; df = 17 ; p = 0.86 

ality Test; Levodopa equivalent daily dose was calculated according to 
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Fig. 1. Overview of the Simon Task. The central fixation point was displayed 
randomly from 1750 to 2170 ms, with a 30 ms step. Then, the stimulus display 
lasted 200 ms. Participants had 1000 ms to answer by pressing the button. Two 
conditions could occur: congruent, when color and location of the circle led 
to the same response; and incongruent, when color and location didn’t lead to 
the same response. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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After a 60-trials training session, participants performed 10 blocks
f 60 trials, with short pauses between blocks and a longer pause every
hree blocks to check EEG electrodes’ impedance. In total, 600 trials
ere performed with 300 congruent and 300 incongruent trials with a
seudo-randomized display. 

.3. Data acquisition and preprocessing 

EEG signals were recorded using a HD-EEG system (EGI, Electrical
eodesic Inc., 256 channels), with a sampling frequency of 1000 Hz.
99 electrodes were kept, removing most of the jaw and neck elec-
rodes, as shown in the channel file available in the GitHub repository
see section 2.8 ). EEG preprocessing was performed manually using the
rainstorm toolbox ( Tadel et al., 2011 ). Preprocessing was performed
s follows. First, DC offset removal was applied. Second, a notch filter
t 50 Hz and a band-pass filter of 1-100 Hz were applied. Third, sig-
als were visually inspected, and bad channels were removed before
eing interpolated using Brainstorm’s default parameters. Fourth, Inde-
endent Component Analysis (ICA) was used to remove eye blinks and
uscle artifacts. Fifth, we segmented the recorded signals into epochs

rom -700 ms to 1200 ms relative to the stimulus onset. Finally, a vi-
ual inspection was performed to manually reject epochs with excessive
emaining noise. For EEG analyses, we focused on correct incongruent
rials only, because they are associated with efficient control in a con-
ition of strong conflict and because congruent situations could involve
ifferent networks. Thus, comparing networks in two conditions for PD
nd HC would be challenging. As a result, out of originally 300 incon-
ruent trials, 174 incongruent trials per subject on average (STD = 49.2)
ere kept for further analyses because of the removal of errors, the ab-

ence of response, or because of remaining artifacts. 
After EEG preprocessing, several steps were applied to identify the

ynamic brain network states in all participants (HC and PD), as sum-
arized in Fig. 2 and explained below. 

.4. EEG source connectivity 

. Forward Model 

Following the equivalent current dipole model, EEG signals mea-
ured from Q channels can be expressed as linear combinations of P
ime-varying current dipole sources as follows: 

( 𝑡 ) = 𝐺.𝑆( 𝑡 ) + 𝑁( 𝑡 ) (1)
4 
here 𝐺( 𝑄 × 𝑃 ) represents the forward model, often called the lead
eld matrix, and 𝑁( 𝑡 ) denotes the additive noise. The lead field ma-
rix is computed from a realistic head model along with the po-
ition of electrodes. Here, we used the Boundary Element Method
BEM) head model fitted to the ICBM MRI template ( Kötter et al.,
001 ), downloaded from https://www.mcgill.ca/bic/software/tools-
ata-analysis/anatomical-mri/atlases/icbm152lin using the OpenMEEG
oolbox ( Gramfort et al., 2010 ), and used the Electrical Geodesic Inc
EGI) configuration for the EEG electrodes. 

i. Inverse Solution: wMNE 

The EEG inverse problem consists in estimating the unknown param-
ters of dipolar source S(t) at the cortical level (position, orientation, and
agnitude), from the measured EEG signals X(t) at the scalp level. Here,
e used the Destrieux atlas parcellation (148 ROIs) ( Destrieux et al.,
010 ) to locate cortical sources, and constrained their orientation nor-
ally to the cortical surface ( Dale and Sereno, 1993 ). Therefore, the EEG

nverse problem was reduced to the estimation of sources magnitude: 

 ( 𝑡 ) = 𝑊 .𝑋 ( 𝑡 ) (2)

To compute the inverse matrix W, we used the weighted mini-
um norm estimate (wMNE) ( Lin et al., 2006 ) method, that com-
ensates the tendency of the classical minimum norm estimate (MNE)
 Hämäläinen and Ilmoniemi, 1994 ) to favor weak and surface sources: 

 = 𝐵 𝐺 

𝑇 ( 𝐺𝐵 𝐺 

𝑇 + 𝛼𝐶) −1 (3)

here B is the diagonal weighting matrix (inversely proportional to the
orm of lead field vectors), G is the lead field matrix, 𝛼 is the regular-
zation parameter (based on signal to noise ratio: 𝛼 = 1/SNR, and C is
he noise covariance matrix (calculated from our 700 ms pre-stimulus
aseline). Here, we used the Matlab function implemented in the Brain-
torm toolbox to compute wMNE. The SNR was set to 3, and the depth
eighting value to 0.5 (default values). 

ii. Dynamic Functional Connectivity: PLV - sliding window 

Several approaches have been proposed to compute functional con-
ectivity between reconstructed regional time series. In this study, we
sed the phase-locking value (PLV) method ( Lachaux et al., 2000 ). Since
e aimed to assess functional connectivity dynamics, we chose the slid-

ng window approach defined by its length 𝛿 with an overlapping step
. Hence, for each correct incongruent trial, PLV measures the phase

ynchronization between two signals 𝑥 ( 𝑡 ) and 𝑦 ( 𝑡 ) within each temporal
indow t: 

 𝐿𝑉 ( 𝑡 ) = 

|
|
|
|
|
|

1 
𝛿 ∫

𝑡 + 𝛿2 

𝑡 − 𝛿2 

𝑒 𝑗( 𝜑 𝑦 ( 𝑡 ) − 𝜑 𝑥 ( 𝑡 ) ) 𝑑𝜏

|
|
|
|
|
|

(4)

here 𝜑 𝑦 ( 𝑡 ) and 𝜑 𝑥 ( 𝑡 ) are the instantaneous phases of signals y(t) and
(t), respectively derived from the Hilbert transform. 

The choice of temporal window length was based on ( Lachaux et al.,
000 ), where it is recommended to consider at least 6 cycles at the fre-
uency band of interest as a compromise between temporal and spatial
ccuracy. In this study, we conducted our analysis separately in both
he beta [12-25 Hz] (central frequency: Cf = 18.5 Hz) and gamma bands
30-45 Hz] (central frequency: Cf = 37.5 Hz). Thus, we chose the small-
st window length equals to 6/Cf, that is 320 ms for the beta band and
60 ms for the gamma band. We considered a 90% overlap between
onsecutive windows to track fast neural activity. Therefore, the total
umber of windows over the whole trial duration was 𝑛𝑊 𝑖𝑛𝑑𝑠 = 49 win-
ows for the beta band, and nWinds = 109 windows for the gamma
and, and the output dimension of the dynamic functional connectivity
dFC) matrix was nROIS x nROIS x nWinds for each subject trial. Since
he choice of the number of cycles and window length remains sub-
ective, we tested how the networks estimated from one dataset were
imilar with varying number of cycles (4, 6 or 8) and overlap between
indows (70, 80 or 90%). We extracted the networks following the steps
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Fig. 2. Dynamic FC pipeline used in our study. First, HD-EEG data was recorded during the Simon task (only correct incongruent trials were considered). After 
preprocessing, cortical-level sources were reconstructed using the weighted Minimum Norm Estimate (wMNE) and the Destrieux atlas (148 Regions of Interests, 
ROIs). Then, dynamic functional connectivity (dFC) was estimated for each subject and trial using a sliding window. Phase Locking Value (PLV) was used to quantify 
the statistical coupling between ROIs. Finally, the temporal Independent Component Analysis (tICA) was applied on the dFC tensor to extract dynamic brain network 
states, including spatial network maps and temporal activity. A null distribution was generated to assess the temporal moments of significant modulation for each of 
the extracted states (as highlighted in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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escribed below, and correlated FC matrices between the different anal-
ses with varying number of cycles and overlap. This analysis showed
hat networks highly correlated with each other when varying overlap,
ut keeping the same number of cycles (see Supplementary Figure 1),
owever correlation decreased when changing the number of cycles.
onsidering those results, we chose to follow the recommendation of
achaux et al. (2000) and kept the number of 6 cycles for analyses, and
he value of 90% for overlap. 

.5. Dynamic brain network states (dBNS) 

. Temporal Independent Component Analysis (tICA): JADE 

For each subject’s correct incongruent trial, the dFC tensor can be un-
olded into a 2D matrix of dimension [nROIS(nROIS – 1)/2 x nWinds]
ue to symmetry. Then, the resultant dFC matrices of all trials and sub-
ects of both groups were concatenated along the temporal dimension
o generate a dFC matrix denoted M. 
5 
Since we aimed to summarize and extract the most relevant time-
arying connectivity patterns in M, this problem can be formulated as
ollows: 

 = 𝐴 × 𝐵 (5)

here A is the mixing matrix that represents the ‘k’ spatial maps of
ominant brain network states, and B describes their temporal evolu-
ion. Among the existing decomposition and clustering techniques, we
erived the dynamic Brain Network States (dBNS) using temporal Inde-
endent Component Analysis (tICA) adopted by several previous stud-
es ( O’Neill et al., 2017 ; Yaesoubi et al., 2015 ). This technique assumes
aximal independence between the time courses of the extracted dBNS.
ere, tICA was performed using the JADE algorithm (Joint Approximate
iagonalization of Eigen-matrices) ( Cardoso and Souloumiac, 1993 ;
utledge and Jouan-Rimbaud Bouveresse, 2013 ). Briefly, JADE applies

he Jacobi technique to optimize contrast functions based on high sta-
istical order (Fourth Order: FO) cumulants of the data. One advantage
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f JADE compared to other ICA methods (FastICA, infomax, ...), in our
ituation, is its high robustness for small sample sizes: Tabbal et al.,
021 showed that group-subject similarity was above 90% when there
ere only 5 subjects, and 100% with as few as 7 subjects. Here, the JADE

unction in Matlab was used (The Mathworks, USA, version 2019a). 

i. Number of states selection 

Determining the optimal number of states to be extracted by tICA
s a crucial issue for most decomposition and dimensionality reduction
ethods ( Cong et al., 2013 ; Mørup and Hansen, 2009 ). Here, we used

he DIFFIT (difference in data fitting) method based on the goodness-
f-fit approach ( Timmerman and Kiers, 2000 ; Wang et al., 2018 ), previ-
usly used by recent studies ( Tabbal et al., 2021 ; Tewarie et al., 2019 ;
hu et al., 2020 ). DIFFIT is calculated based on the following equations:

 𝑖𝑡 ( 𝐽 ) = − 

|
|𝑀 − 𝑀 

′( 𝐽 ) ||𝐿 𝐹 

|𝑀 |𝐹 
(6)

𝐼𝐹 𝐹 𝐼𝑇 ( 𝐽 ) = 

𝐹 𝑖𝑡 ( 𝐽 ) − 𝐹 𝑖𝑡 ( 𝐽 − 1) 
𝐹 𝑖𝑡 ( 𝐽 + 1) − 𝐹 𝑖𝑡 ( 𝐽 ) 

(7)

here M is the original concatenated dFC matrix to be decomposed, and
’ is the reconstructed matrix after tICA decomposition at the number

f states J , and ‖𝐹 is the Frobenius norm. We varied J from 3 to 10
tates, then chose the number of states J resulting in the largest DIFFIT
alue. We applied the DIFFIT method on the dFC matrix of each subject
eparately, then averaged the obtained DIFFIT values across subjects to
btain an average of 6 dynamic brain network states (dBNS) for the beta
and (mean = 5.6) and 5 for the gamma band (mean = 5). We did not
pply a subject-specific choice of the number of components, since ICA
earches for ICs on the concatenated data of all participants. Further-
ore, subject-specific ICA with subject-specific number of components
ould lead to challenging comparisons since all participants would not
ave the same number of networks to compare. 

ii. Significant task-modulated states 

An additional step was followed to automatically select, from all ex-
racted dBNS, those that were significantly modulated by the task. First,
e built an empirical null distribution through the generation of a sur-

ogate time course based on a sign-flipping permutation following the
rocedure detailed in previous studies ( Hunt et al., 2012 ; O’Neill et al.,
017 ; Tabbal et al., 2021 ; Winkler et al., 2014 ). Briefly, at each per-
utation (n = 10000), a random number of subjects had the sign of

heir contributions to the ICs flipped. The null hypothesis here is that if
he IC is not task-related, sign-flipping will not affect the magnitude of
C’s time courses. However, if the IC is modulated by the task (stimu-
us onset) robustly across subjects, then trial-averaged ICs time courses
hanges in connectivity would be maintained while this would not be
he case for the null distribution. 

A dBNS was considered as significant if its corresponding time course
ell outside the null distribution at any time point of the trial-averaged
C time course. 2-tailed distribution was allowed, followed by a Bonfer-
oni correction accounting for multiple comparisons across the extracted
BNS (see ( O’Neill et al., 2018 , 2017 ) for details). Consequently, a set
f 𝑁𝑆 significant states were obtained. 

.6. Between-group statistical differences 

Finally, we intended to quantify the statistical differences between
C and PD groups regarding the dBNS defined by tICA. To achieve this,
e used a back-fitting approach applied to EEG microstates, previously
sed at the sensor-level ( Khanna et al., 2015 ; Michel and Koenig, 2018 ),
s described below and illustrated in Fig. 3 . 

. Back-Fitting 

First, all selected 𝑁𝑆 states were assigned separately to all partici-
ants (HC and PD patients) and to every temporal window of all indi-
idual dFC, using the approach proposed by ( Ville et al., 2010 ) in the
6 
ontext of classical scalp-level ‘microstates’. The spatial similarity (cor-
elation) was calculated between the dFC map at every temporal win-
ow and each of the dBNS. Then, using a ‘winner-takes-all’ approach,
ach temporal window was labeled with the best-fitting dBNS: only the
BNS with the highest correlation with the dFC was kept. Therefore, we
btained a temporal dBNS sequence for each individual dFC for both
roups. 

i. Network States Metrics 

Several features of the various dBNS, originally coming from the mi-
rostate literature, can be computed separately for each HC and PD sub-
ects ( Lehmann et al., 2005 ). These metrics will be referred to as net-
ork states metrics for the rest of the paper in order to avoid potential

onfusions in interpretation. Our features of interest were: 

• Average lifespan (or mean duration; in seconds). The lifespan of a
dBNS was calculated as the average time during which a given dBNS
remains stable for successive segments ( Lehmann et al., 1987 ). 

• Fraction coverage time (in percentage between 0 and 1). The cover-
age is defined as the ratio of the time frames for which a given dBNS
is dominant relative to the total recording duration ( Lehmann et al.,
1987 ). 

• Frequency of occurrence (in Hz). The frequency of occurrence rep-
resents the number of unique appearances of the dBNS per second,
independently of its duration ( Lehmann et al., 1987 ). 

• Global Explained Variance (GEV; in percentage between 0 and 1).
The GEV of a dBNS is the percentage of the total variance explained
by this dBNS ( Brodbeck et al., 2012 ). 

• Transition probabilities . The transition probabilities are defined, for
each pair of states, by the probability of occurrence of the considered
transition given all transitions. ( Lehmann et al., 2005 ). 

.7. Statistical analysis 

All statistical analyses were performed using R version 4.0.2 ( R Core
eam, 2020 ) implemented with the lme4 package for mixed model anal-
ses ( Bates et al., 2015 ). 

. Behavior 

RT and accuracy are the variables measured during the Simon task.
omparing congruent and incongruent RT of correct responses provides
n estimate of the congruence effect that informs about the additional
ime needed to solve conflict. Incongruent trials are typically associated
ith increased RT and decreased accuracy. In addition to the analysis
f the congruence effect, behavioral data were also analyzed in light of
he activation-suppression model ( Ridderinkhof, 2002 ), which informs
bout the temporal characteristics of cognitive action control. These are
ased on distributional analyses that measure impulsive action selection
incongruent accuracy for the fastest trials) and suppression (slope value
f the congruence effect for the slowest trials). A complete description
f the model and analysis steps can be found in van den Wildenberg
t al. (2010) and in Duprez et al. (2017) . Briefly, RT are increasingly
rdered and divided into 7 bins. Accuracy and congruence effect (in-
ongruent RT - congruent RT) are then calculated for those 7 bins re-
ulting in two different representations : conditional accuracy functions
nd delta plots, respectively. The activation-suppression model postu-
ates that incongruent accuracy of the first bin (fastest trials) informs
bout impulsive action selection, while the slope between the two last
ins of the delta plots informs about selective suppression of such im-
ulsive actions. 

The effect of congruence and group on RT and accuracy were first
roadly analyzed by using linear and non-linear mixed models, respec-
ively. In both cases, congruence and group were added as fixed fac-
ors, while a random slope and intercept was allowed for each subject.
T were log-transformed for increased compliance with the model’s as-
umptions in that case. The formulas used for the models were the fol-
owing: 
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Fig. 3. A. Temporal ICA applied to the concatenation of the HC and PD groups. B. Back-Fitting approach assigns PLV network at each temporal window with one 
of all the ICA networks (microstate) having the highest spatial similarity value (strongest correlation). This was applied on all HC and PD subjects, followed by a 
calculation of the main network states metrics as shown in C. 
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(  
• RT model 

Model = lmer(log(RT) ∼ condition x group + (condition|subject),
data = data) (8)

• Accuracy model : 

Model = glmer(accuracy ∼ condition x group + (condition|subject),
amily = binomial, glmerControl(optimizer = "bobyqa ”), data = data) (9)

Fixed effects significance were computed through the Anova function
f the {car} package ( Fox and Weisberg, 2019 ) that calculates type II
ald chi-square tests. Marginal ( m R 

2 ) and conditional ( c R 

2 ) R 

2 were
alculated using the {MuMin} package ( Barton, 2009 ). 

Average first bin incongruent accuracy and last slope values of con-
itional accuracy and delta plots were directly extracted from subjects
n both groups and compared using Welch’s t test and are reported with
ffect size (Cohen’s d). 

i. Network states metrics 

To quantify the differences between HC and PD groups in terms of
etwork states parameters (mean duration, fraction coverage time, fre-
7 
uency of occurrence, GEV, and transition probabilities), statistical tests
ere performed 

.8. Code availability 

All the Matlab and R codes used for source reconstruction, dFC,
ICA, backfitting and microstate metrics, as well as all subsequent sta-
istical analyses are publicly available at https://github.com/jduprez/
EGcog-control _ dynFC _ PD . 

. Results 

This section first presents the behavioral results. Then, the EEG net-
ork results are divided in group-level results, presenting the significant
BNS derived from tICA, and subject-level results, relative to each sub-
ects’ network states metrics of significant dBNS. 

.1. Behavioral results 

The typical congruence effect was found, showing increased RT
 X 

2 = 119, p < 0.0001; m R 

2 = 0.1; c R 

2 = 0.5) and decreased accuracy

https://github.com/jduprez/EEGcog-control_dynFC_PD
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Fig. 4. Average RT (A) and accuracy (B) as a function of congruence in both groups. Error bars represent standard error of the mean. Impulsive action selection 
is denoted by group-specific violin plots showing accuracy of the first incongruent bin (C) of conditional accuracy function. The strength of selective inhibition is 
represented by group-specific violin plots showing the last slope value (D) of delta plots. 
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 X 

2 = 51.6, p < 0.0001; m R 

2 = 0.18; c R 

2 = 0.32) in the incongruent
ondition ( Fig. 4 A and B). Although PD patients seemed slower than
C regardless of congruence, this effect was not significant ( X 

2 = 2.9,
 = 0.09). PD patients were also overall similarly accurate as compared
o HC ( X 

2 = 0.04 p = 0.8). The congruence effect was not significantly
ifferent between groups, both for RT ( X 

2 = 0.4, p = 0.5) and accu-
acy ( X 

2 = 1.5, p = 0.2). Conditional accuracy functions revealed the
lassic pattern of increased accuracy with RT (see supplementary figure
F2A-B). Accuracy of the first bin in the incongruent condition reflects
mpulsive action selection ( Fig. 4 C), and did not significantly differ be-
ween PD patients and HC (t = -0.23, p = 0.51). Inspection of delta plots
see supplementary Figure SF2C) also exhibited the typical decreasing
attern of the congruence effect associated with the Simon task. The
ast slope of delta plots informs on the strength of selective inhibition of
nappropriate responses ( Fig. 4 D). In line with our hypothesis, PD pa-
ients had a significantly flatter slope, indicative of reduced proficiency
n inhibiting automatic responses (t = -2.61, p = 0.02; Cohens’ d = 1.2).

.2. Group-level results – Significant task-modulated dBNS 

In this section, we focus on the dynamics of the brain networks de-
ived at the group-level from tICA. In the following, Bi denotes the dB-
Si extracted in the beta band, and Gj the dBNSj extracted in the gamma
and. Only the dBNS that were significant following permutation testing
re presented here. However, all tICA-derived dBNS (significant or not)
nd their dynamic modulation (along with the null distribution) can be
8 
ound in Supplementary Figures SF3-4. All dBNS are presented in the
rder in which they were derived by tICA (e.g. dBNS B1 will be the first
ignificant dBNS found by tICA in the beta band). Our results show that,
n the beta band, three significant dBNS were identified. In the gamma
and, five significant dBNS were derived. The spatiotemporal dynamics
f beta and gamma dBNS are illustrated in Figs. 5 and 6 , respectively.
ince we aimed at tracking the evolution of the task-related compo-
ents, we have plotted on the same time axis each group-specific dBNS
nd marked the corresponding duration for which they had a signifi-
ant modulation. For the sake of visualization, we plotted the top 0.5%
dges relative to the total number of unique possible connections, i.e.,
he top 55 edges per network. Using this threshold, in order to globally
escribe the integrated brain regions and characterize functional net-
orks, we calculated the percentage of nodes with respect to the total
umber of ROIs, for each of the five macroscopic regions (F: Frontal,
: Temporal, P: Parietal, O: Occipital, and C: Cingulate/insula). In the
escription of the networks, only some of the nodes involved in the
etworks are discussed for clarity and are summarized based on larger
egions they belong to. However, the reader can refer to Supplemen-
ary Table ST1 for a complete description of the Destrieux atlas regions
nvolved in the networks, following the thresholding we previously
escribed. 

.2.1. Beta band 

In the beta band, B1 ( Fig. 5 A) was significantly modulated by the
ask during two different periods, before and after the both groups av-
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Fig. 5. Spatiotemporal dynamics of the significant 
task-modulated dBNS in the beta band. Time 0 corre- 
sponds to stimulus onset. Each significant dBNS is il- 
lustrated as a brain network with a specific color. All 
brain networks were thresholded (only the top 0.5% 

edges are shown) for visualization. Node size is pro- 
portional to the degree (number of edges incident to 
a node). A color code is attributed for all nodes be- 
longing to the same brain lobe (yellow for frontal, blue 
for temporal, light blue for parietal, green for occipi- 
tal, and red for cingulate and insula). For each dBNS, 
we indicated the temporal duration during which it is 
significantly modulated by the task (positively modu- 
lated are plotted above the time axis, negatively mod- 
ulated are plotted below the time axis). Overlaid data 
point corresponds to the average correct incongruent 
RT ± sd of all trials (blue corresponds to HC, and or- 
ange to PD patients). Below, the percentages of nodes 
relative to each brain lobe are illustrated on the col- 
ored bars for each state. The reader can refer to Sup- 
plementary Figure SF3 for a detailed representation of 
the networks (top, left, and right views) with the corre- 
sponding averaged-trial temporal signals plotted over 
the whole temporal duration along with the null dis- 
tribution to reveal the temporal significance. In sup- 
plementary table ST1, the labels of the activated De- 
strieux ROIs are highlighted. (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. Spatiotemporal dynamics of the significant 
task-modulated dBNS in the gamma band. The time 
0 s corresponds to the stimulus offset. Each significant 
dBNS is illustrated as a brain network with a specific 
color. All brain networks were thresholded for visu- 
alization. Spheres of different sizes proportional to 
their strength represent the activated brain nodes. A 

color code is attributed for all nodes belonging to the 
same brain lobe (yellow for frontal, blue for temporal, 
light blue for parietal, green for occipital, and red for 
cingulate and insula). For each state, we indicated the 
temporal duration on which it is significantly mod- 
ulated by the task (positively modulated are plotted 
above the time axis, negatively modulated are plotted 
below the time axis). Overlaid data point in black 
corresponds to the average correct incongruent RT ± 
sd of all trials (blue corresponds to HC, and orange to 
PD patients). Below, the percentages of nodes relative 
to each brain lobe are illustrated on the colored bars 
for each state. The reader can refer to Supplementary 
Figure SF3 for a detailed view representation of the 
network (top, left, and right) with the corresponding 
averaged-trial temporal signals plotted over the whole 
temporal duration along with the null distribution to 
reveal the temporal significance. In supplementary 
table ST1, the labels of the activated Destrieux ROIs 
are highlighted. (For interpretation of the references 
to color in this figure legend, the reader is referred to 

the web version of this article.) 
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raged RT (HC : 544 ms, sd = 64; PD : 606 ms, sd = 95), ranging
rom 170 to 420 ms, with a decrease in connectivity; then from 680 to
70 ms showing increased connectivity. This network mainly involved
onnections in the cingulate and insular regions (40%), including left
nd right posterior cingulate, right inferior insula and pericallosal ar-
as. B1 also included right temporal lobe nodes (35%), with inferior
emporal, parahippocampal and fusiform regions. Finally the parietal
obe was involved (15%) bilaterally around the parieto-occipital sulcus,
s well as the occipital lobe (10%) with inferior occipital regions. No
rontal regions were found in B1. 
9 
A second dBNS B2 was significantly modulated by the task with
n increase in connectivity after the average RT, ranging from 740 to
70 ms. B2 involved essentially connections in the frontal lobe (74%),
epresented by inferior frontal, frontopolar and orbitofrontal nodes bi-
aterally, and in the cingulate and insular regions (26%), with left and
ight anterior cingulate and anterior insula nodes. No nodes were found
n other lobes. 

Finally, a third dBNS B3 was significantly modulated by the task,
aving greater connectivity before averaged RT, from 260 to 490 ms.
his dBNS involved interhemispheric connections between the frontal
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t  
obe (61%), with left inferior frontal and bilateral orbitofrontal and fron-
opolar regions, and the temporal lobe (28%), represented by right-sided
uperior and inferior temporal as well as parahippocampal regions. B3
lso involved the cingulate lobe (11%), with left anterior cingulate and
ight subcallosal nodes. No parietal or occipital nodes were found in B3.

.2.2. Gamma band 

In the gamma band, five dBNS were identified ( Fig. 6 ) with an over-
ll more overlapping pattern than within the beta band. First, G1 was
ignificantly modulated by the task with increased connectivity before
from 390 to 420 ms)and after (from 740 to 770 ms) the average RT.
1 consisted mostly in frontal nodes (57%), predominantly in the left
emisphere, including inferior frontal, frontopolar, frontomarginal and
rbital regions. Frontal nodes were highly connected with right tempo-
al areas (29%) represented by superior and inferior temporal areas, as
ell as fusiform and parahippocampal regions. G1 also included deeper
odes (14%), including the left anterior cingulate and right subcallosal
nd anterior insula regions. 

A second dBNS, G2, was significantly modulated by the task and
ad increased connectivity from 130 to 160 ms and decreased con-
ectivity from 360 to 390 ms. G2 was characterized mostly by long
ange left-sided connections involving the frontal lobe (22%), with fron-
omarginal, frontopolar and orbitofrontal regions, and the occipital lobe,
ith middle and inferior occipital regions. The temporal lobe was the
ost represented (48%) with bilateral nodes involving superior tempo-

al, fusiform and parahippocampal nodes. Finally, cingulate and insular
egions were found in G2 (13%), with anterior cingulate and inferior
nsula nodes. 

A third dBNS G3 showed a significant increase in connectivity from
10 to 280 ms and a decrease in connectivity after the average RT from
60 to 800 ms. G3 was essentially left-sided and involved the frontal
obe (57%) with inferior frontal, frontopolar, frontomarginal and or-
itofrontal regions. G3 was also represented by nodes in the cingulate
nd insular areas (24%) with the anterior cingulate and anterior, cen-
ral, and inferior insula. Temporal nodes were also found in G3 (19%)
ith superior and middle temporal regions. 

G4 was significantly modulated by the task during two time peri-
ds with a decrease in connectivity observed from 20 to 70 ms and
n increase in connectivity from 440 to 710 ms overlapping with both
roups’ average RT. G4 involved bilateral frontal nodes (58%) including
nferior frontal, frontomarginal, frontopolar and orbitofrontal regions.
he temporal lobe was also involved in G4 (21%), mostly in the left
emisphere, with superior temporal, fusiform and parahippocampal re-
ions. The cingulate and insular regions were also found in G4 (21%)
nd included only left-sided regions with anterior cingulate, and ante-
ior, central, and inferior insular nodes. 

Finally, a fifth dBNS G5 was significantly modulated by the task with
ecreased connectivity observed from 500 to 600 ms, overlapping with
4. G5 involved bilateral frontal nodes including frontopolar and or-
itofrontal regions. Bilateral temporal regions (29%) were also found in
5 with superior, inferior and middle temporal areas. G5 was also rep-

esented by cingulate and insular nodes (21%) including anterior and
osterior cingulate regions as well as anterior and inferior insular areas.

.3. Subject-level results - network states metrics analyses 

As described in the Materials and Methods section, several network
tates metrics were computed for all subjects in both the beta and
amma bands, before performing the statistical analysis to quantify po-
ential significant differences between groups. These are based on cor-
elation between the dFC matrices with the dBNS, to determine, at any
iven time, which dBNS corresponds the most (has the highest correla-
ion value) to the current network. Correlations between all dBNS were
erformed with the dFC matrices of all subjects. The metrics computed
hereafter included (i) average lifespan, (ii) frequency of occurrence,
10 
iii) fraction coverage time, (iv) global explained variance, and (v) tran-
ition probabilities. These results are presented in Fig. 7 for the beta
and, and in Fig. 8 for the gamma band. 

First, in the beta band, it can be noticed that the most represented
etwork at the subject level for both groups was B2 ( Fig. 7 ). This was
vident for all the computed metrics. However, we found no difference
n either metrics between PD patients and HC (all p-values > 0.05). It is
orth noting that, overall, the dBNS that were significantly modulated
y the task for the longest periods at the group-level (see section 3.2.1 )
ere the least represented at the subject-level. Regarding transition
robability, although it seemed that PD patients showed a greater prob-
bility of transition between B2 and B4, the effect wasn’t significant
p = 0.037). As a whole, these results suggest that all the networks de-
ived from tICA were equally represented in both groups. 

Regarding the gamma band, results of the comparison of network
tates metrics are displayed in Fig. 8 . The dBNS G1 was the most rep-
esented at the subject-level in terms of microstates metrics. We found
o differences between groups relative to G1 metrics (all p > 0.05). Al-
hough Fig. 8 suggests that G5 was mostly found in PD patients and
ot in HC, this was not supported by statistical testing (all p-values >
.05). No differences were found either between groups regarding tran-
ition probability. Similarly to the case of the beta band, the dBNS that
ere significantly modulated by the task during the longest period at the
roup-level (G3, G4), were not the most represented at the subject-level.
lobally, these results suggest that gamma networks were also equally

epresented in both groups. 

.4. Correlation with behavioral/clinical data 

Finally, we conducted correlations between behavioral data and EEG
esults (all scatterplots available in supplementary Figures SF5 to SF9).
he only significant correlation between behavioral EEG results was a
ositive correlation between fast response accuracy and the global ex-
lained variance of the B1 dBNS (R = 0.47, p = 0.036). This correlation
uggests that an increase in B1 global explained variance was associated
ith an increase in fast response accuracy. However, this correlation

hould be interpreted with caution since this was the only significant
ne between network metrics and behavioral results. We also conducted
orrelations with age, education level, and MoCA scores. We found sig-
ificant correlations between MoCA and G1 average lifespan (R = 0.59,
 = 0.006), with G1 fraction coverage time (R = 0.58, p = 0.007), with
1 frequency of occurrence (R = -0.59, p = 0.006), and with G1 global
xplained variance (R = 0.59, p = 0.006). G1 was also associated with
ducation level regarding average lifespan (R = 0.51, p = 0.02), fraction
overage time (R = 0.51, p = 0.02) and frequency of occurrence (R = -
.5, p = 0.03). These correlations suggest that prolonged presence of
1 was associated with better MoCA scores and higher education level.
ther correlations with gamma dBNS metrics were significant, but most
robably spurious due to the occurrence of excessive 0 values (see SF5-
). Regarding the beta band, we found significant correlations between
ducation level and B2 average lifespan (R = 0.61, p = 0.005) and B2
raction coverage time (R = 0.59, p = 0.006), suggesting that increased
resence of B2 was associated with higher education level. Similarly
o the gamma band, other significant correlations were found but were
nly driven by a dominance of 0 values (see SF8). All other correlations
ere not significant. 

. Discussion 

In this study, we aimed to explore i) how cognitive action control is
ssociated with dynamically reconfiguring functional connectivity net-
orks, and ii) how these dynamic structures are linked to PD-related
lterations in CAC, as compared to healthy subjects. We used scalp HD-
EG recorded from 10 HC and 10 PD patients during a Simon task,
nd estimated source-reconstructed cortical functional networks within
wo frequency bands (beta and gamma). We applied a combination of
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Fig. 7. Network states parameters and statistical analysis between HC and PD groups in the beta band. The average lifespan, frequency of occurrence, fraction 
coverage time, and global explained variance results are represented by colored boxplots (blue for HC group and orange for PD group) in A, B, C, and D. The 
transition probabilities between all dBNS are also shown in E. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

11 
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Fig. 8. Network states parameters and statistical analysis between HC and PD groups in the gamma band. The average lifespan, frequency of occurrence, fraction 
coverage time, and global explained variance results are represented by colored boxplots (blue for HC group and orange for PD group) in A, B, C, and D. The transition 
probabilities between all dBNS are also shown in E. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

12 
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MNE with PLV (estimated through a sliding window approach) to track
he dynamics of FC networks. To summarize dFC into a set of relevant
onnectivity patterns and to characterize their dynamics, a variant of
emporal independent component analysis (tICA) was applied, provid-
ng a set of group-specific dynamic brain network (dBNS) states. The
ime-varying alterations in these states at the subject level were investi-
ated using network states metrics. In both frequency bands (beta and
amma), dBNS with specific spatial and temporal characteristics were
odulated by the task. However, microstate metrics analysis revealed
o differences between PD patients and HC. 

.1. PD is associated with changes in cognitive action control 

Among the various cognitive changes that have been associated
ith PD, cognitive action control (CAC) alterations are robustly re-
orted. Some studies reported an increased global congruence effect
 Praamstra et al., 1999 , 1998 ; Schmiedt-Fehr et al., 2007 ; Wylie et al.,
005 ), others, which investigated the temporality of CAC, found changes
n the dynamic expression of the process regarding impulsive action
election ( Duprez et al., 2017 ; Wylie et al., 2009a ) or suppression
 van Wouwe et al., 2014 ; Wylie et al., 2010 , 2009a , 2009b ). In the
resent study, we found a diminished strength of impulsive action sup-
ression in PD patients as compared to HC. Thus, our results are in line
ith the established description of CAC alterations in PD. It is impor-

ant to note that we interpret the results according to the activation-
uppression model ( Ridderinkhof, 2002 ), and that other accounts of dy-
amic changes in accuracy and congruence effect have been proposed
for review, see Cespón et al., 2020 ). It is also worth noting that PD pa-
ients were not significantly slower than HC. However, this is probably
ue to the limited sample size and strong variability in RT. 

.2. CAC is associated with several dynamically rearranging functional 

etworks 

There has been a growing interest in the concept of functional brain
tates, which are characterized by a limited number of functional pat-
erns with a temporarily stable activity followed by a fast transition
o another state ( Baker et al., 2014 ; Khanna et al., 2015 ; Michel and
oenig, 2018 ; O’Neill et al., 2018 ). Investigating functional brain states
nd their dynamic rearrangement implies the use of dimensionality re-
uction methods. Although K-means clustering has been commonly used
n most aforementioned studies, other clustering/decomposition algo-
ithms can also be applied to estimate dynamic brain states. Among
hese methods, we focused on temporal Independent Component Anal-
sis (tICA), since it has proven its ability to track fast temporal vari-
tions in brain connectivity ( O’Neill et al., 2017 ; Tabbal et al., 2021 ;
aesoubi et al., 2015 ). tICA has also been applied for clinical pur-
oses to characterize the spatiotemporal alterations induced in sev-
ral brain disorders, as in Alzheimer’s Disease ( Koelewijn et al., 2017 ),
pilepsy ( Koelewijn et al., 2015 ), and depression ( Knyazev et al., 2016 ;
ugent et al., 2015 ) using EEG/MEG data during rest and task. Since
AC is a dynamic process, this approach could contribute to character-

zing the functional networks associated and the PD-related alterations
f CAC. 

Our results show that CAC can be globally described by three dom-
nant beta networks: (i) a first one that was right-sided and mostly
nvolved superior and inferior temporal regions, as well as cingulate
nd insular cortex, and inferior occipital areas; (ii) a second one that
as mostly frontal; and (iii) a third one with interhemispheric fronto-

emporal connections. Since we used a network-based approach, and
ecause of the relatively high number of areas (nodes) involved in these
etworks, it is challenging to envision a localizationist interpretation
f those results. Nevertheless, it is worth noting that these networks in-
olve areas commonly associated with conflict resolution and inhibition
ound using fMRI, such as the inferior frontal gyrus, the anterior cingu-
ate cortex, as well as orbitofrontal cortex ( Aron et al., 2004 ; Eagle et al.,
13 
008 ; Forstmann et al., 2008 ; Forstmann et al., 2008 ; Widge et al.,
019 ; Yeung et al., 2007 ). Furthermore, prefrontal beta activity has
een associated with cognitive control and attention ( Friedman and
obbins, 2021 ; Schmidt et al., 2019 ; Swann et al., 2009 ; for review, see
ngel and Fries, 2010 ; Wang, 2010 ). In addition, these beta networks
lso involved temporal regions, including the fusiform area, which has
een recently shown to be modulated by attentional demand in both hu-
ans and macaques ( Kim et al., 2012 ; Sani et al., 2021 ; Wittfoth et al.,
006 ). 

In addition to the nodes involved in this network, one could won-
er about the general role of beta oscillations in such networks. In that
espect, our results could be explained by a stimulus-induced desyn-
hronization effect, followed by a beta rebound during the decision-
aking (as considered in event-related (de)synchronization studies) or

s a spontaneous effect of the inhibition/activation process related to the
onflict task ( Panagiotaropoulos et al., 2013 ; Wu et al., 2019 ). This inter-
retation could be applied to the fronto-temporal network that we iden-
ified, which involved areas previously associated with decision mak-
ng. However, data regarding the temporo-cingulate network showed
hat increased synchronization occured after the correct response, which
xcludes a decision-making interpretation. Another interesting account
as proposed by Engel and Fries with the “Status Quo’’ hypothesis
 Engel and Fries, 2010 ), which proposed that beta activity would be
nvolved in sustaining a cognitive set when dealing with a task requir-
ng a strong top-down component. The overall role of beta oscillations
n top-down information propagation has also been supported in recent
ork ( Miller et al., 2018 ). This hypothesis could also be applied to the

ronto-temporal network. Indeed, the period between incongruent stim-
lus onset and the correct response requires a strong top-down compo-
ent. In light of Engel and Fries’ hypothesis and according to the role
f beta oscillations in top-down processing, one would expect beta syn-
hronization to be stronger in this period. However, this hypothesis is
ard to reconcile with the temporo-cingulate network, given that it had
ecreased connectivity before the correct response, and increased con-
ectivity after. That being said, cortical beta oscillations unlikely have
 monolithic role, let alone in a task such as the Simon task. Indeed, the
imon task measures CAC, which in itself involves several other over-
apping cognitive processes such as attention and working memory, or
nhibition, and which involve strong response monitoring mechanisms.
n that respect, beta oscillations were also associated with several other
oles, such as activation of a cognitive set ( Spitzer and Haegens, 2017 ),
ime estimation ( Kulashekhar et al., 2016 ), default state of working
emory ( Lundqvist et al., 2016 ), or a clear-out of working memory after

ompletion of a trial ( Schmidt et al., 2019 ) . 
Regarding the gamma band, we found five significant, spatially dis-

inct dBNS. The temporal organization of presence of these networks
as considerably more complex than what we found in the beta band,
nd some of these networks overlapped during the task, thereby chal-
enging interpretations. Overall, the most represented regions in these
etworks were frontal. Long-range connections were found within a
ostly fronto-temporal network, a network with fronto-occipital con-
ections, and networks that were mostly fronto-cingular/insular. These
etworks included CAC-related frontal areas, including inferior frontal,
nterior cingulate and orbitofrontal regions. It is interesting to note that
he prefrontal-temporal network that included most CAC-related regions
n the gamma band was spatially identical to the prefrontal-temporal
ne in the beta band. 

Similarly to beta oscillations, gamma oscillations have been associ-
ted with several cognitive functions (see ( Herrmann et al., 2010 ) for
 review). Unfortunately, studies reporting gamma effects on cognitive
ction control are scarce. However, some found increased gamma ac-
ivity in a multi-source interference task in somato-sensory and occipi-
al regions ( Wiesman et al., 2020 ; Wiesman and Wilson, 2020 ). Among
he various roles attributed to gamma oscillations, binding has probably
een the most discussed. The binding theory hypothesizes that differ-
nt stimulus features (color, spatial location, shape, etc.) are ultimately
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inded into a single representation by the means of gamma synchro-
ization ( Engel et al., 2001 ; Singer, 1999 ). Synchronization would then
e necessary for attention, sensori-motor integration and response se-
ection. In that respect, long-range gamma connectivity, as we observed
n our various brain network states, would reflect the binding of sen-
ory and cognitive information used to perform the task. It is also possi-
le to interpret these networks as a means of propagation of bottom-up
ensory information ( Miller et al., 2018 ). Assigning a cognitive role to
amma oscillations is nonetheless debated, and some researchers argue
hat gamma activity (and long-range gamma synchrony) do not neces-
arily have a functional role in cognition, but rather reflect local states
f activation ( Merker, 2016 ; Ray and Maunsell, 2015 ). Regarding PD
ffect on gamma oscillations, motor and frontal gamma typically show
oherent activity with subcortical structures (such as the subthalamic
ucleus) and might modulate the vigor of a motor response ( Oswal et al.,
013 ). However, the gamma activity usually described in PD studies
pans higher and larger gamma bands (60-90 Hz) than the one we used
ere (30-45 Hz). Also, although we found prefrontal gamma in our brain
etwork states, no motor nodes were present. 

.3. Network presence did not differ between PD and HC at the 

ubject-level 

The use of typical microstate metrics allowed us to investigate the
resence of all dBNS at the subject-level. Several metrics were used that
nform on the lifespan, frequency of occurrence, coverage time, and
xplained variance of dBNS, as well as transition probability between
tates. An important point to bear in mind is that the computation of
hese metrics is based on the similarity between the dFC matrices of a
ubject, and the dBNS. At each time, one dBNS is deemed the most sim-
lar to the dFC matrix based on a spatial correlation: the dBNS with the
ighest correlation is considered the most similar. Consequently, for all
FC matrices, only one dBNS is set to be the most similar, although other
BNS can be present. This explains why some dBNS significantly present
t the group-level had 0 values at the subject-level for the network states
etrics. 

Contrary to our hypothesis, we found no differences between PD pa-
ients and HC, whether examining dBNS microstates metrics in the beta
r the gamma band. This absence of difference is probably explained by
he fact that patients were younger and had a less severe disease than
n previous behavioral studies ( Cagigas et al., 2007 ; Duprez et al., 2017 ;
alkenstein et al., 2006 ; Wylie et al., 2010 , 2005 ). Furthermore, the be-
avioral effects of PD were limited to the decrease in late inhibition as
videnced by the last slope of the delta plots, which was not associated
ith any microstates metrics. The only significant correlation that we

ound was between the first beta dBNS global explained variance and
ast response accuracy, which would be hazardous to interpret since all
ther metrics of that dBNS were not correlated with behavior. It is also
mportant to keep in mind that the sample size in this study is limited,
hus preventing a generalizable conclusion. However, the present data
onetheless suggest that, in the case of subtle behavioral changes, there
re no detectable associated differences in dynamic functional brain net-
orks. 

.4. Methodological considerations and limitations 

First, we focused our EEG analyses on correct incongruent trials only.
t the behavioral level, CAC effects are traditionally obtained by con-

rasting the congruent and incongruent situations. Regarding dynamic
unctional brain states, it is not possible to simply subtract signals be-
ween congruent and incongruent trials to obtain networks that reflect
his behavioral difference. We chose to focus on correct incongruent
rials, since they reflect the implementation of CAC in the situation of
ighest conflict during the task. Our interpretations are thus limited to
AC in the incongruent situation, and do not reflect the traditional con-
ruence effect observed in the behavioral data. 
14 
In this study, we used source-reconstruction methods to be able to
ake into account, at least partly, spatial leakage due to volume conduc-
ion, and also to make inferences at the cortical level. It is important to
ote that the head model used for source reconstruction was based on a
tandard anatomy (ICBM template) and that individual anatomy, which
nfortunately was not available, would be more suited. Indeed, although
t has been shown that template-based source reconstruction is reliable
nd yielded consistent functional networks when compared to individ-
al anatomy ( Douw et al., 2018 ), subject-specific changes in anatomy
ight impact the centroid positions of the cortical atlas which defined

he nodes of our networks. Another point of caution is that source recon-
truction does not completely remove all possible leakage, and the FC
easure used here (PLV), is known to be sensitive to leakage. However,
e chose to use this measure in order to keep true zero-lag connectiv-

ty ( Finger et al., 2016 ; Viriyopase et al., 2012 ) in our data, therefore
otential spurious connections might have persisted in the identified
etworks. 

Our estimation of dynamic brain network states depended on sev-
ral parameters that can be discussed, and must be kept in mind for
nterpreting the results. 

For instance, the choice of the number of cycles and size of window
verlap to compute dynamic FC is arbitrary, although we followed the
ecommendation of 6 cycles described in ( Lachaux et al., 2000 ). Con-
rol analyses showed that, for the same number of cycles, changing the
ercentage of overlap between windows did not affect the results (see
F1). However, changing the number of cycles did. As a consequence, it
as to be kept in mind that such FC results are, at least to some degree,
ependent on the number of cycles. 

Another important consideration is the determination of the opti-
al number of derived components, which is still a challenging ques-

ion for most decomposition algorithms, including tICA. In this study,
he selection of the number of states was performed in two consecutive
teps: (1) a primary number of components was selected using the dif-
erence in data fitting (DIFFIT) technique adopted by previous studies
 Timmerman and Kiers, 2000 ; Wang et al., 2018 ). Then, (2) given that
ll brain states are not necessarily associated with the task, we searched
or components that were significantly modulated by the task. We used
ermutation testing by building a non-parametric null distribution gen-
rated using a ‘sign-flipping’ approach ( Hunt et al., 2012 ; O’Neill et al.,
017 ; Winkler et al., 2014 ). This approach highlighted the components
ith trial-averaged time courses that exceeded a specific threshold. The
se of the null distribution may be deemed as too conservative, since
 Bonferroni correction for multiple comparisons was carried out. For
xample, we obtained only three significant components out of six calcu-
ated by tICA in the beta band. It could be argued that such a restrictive
umber of components might miss additional information. However,
e did not have any a priori hypothesis on the number of brain states

n PD or HC, nor on their duration. Therefore, a conservative approach
ppeared more appropriate. 

We used a backfitting approach to estimate typical microstate met-
ics for subject-level analyses. Although this method is practical to es-
imate the presence of brain states at the subject-level, it suffers from
 drawback which consists in assuming that only one global functional
tate occurs at a given moment in time. Thus, estimation of these met-
ics is based on the determination of one dominant dBNS at each time.
his completely ignores the assumption of temporal ICA, which consid-
rs overlapping and independent brain network states with proportional
eights to summarize brain activity. As a consequence, our interpreta-

ions of subject-level analyses are limited by the fact that we focused on
ominant dBNS. Future studies could explore further other back-fitting
pproaches that rely on the notion of proportional, rather than binary,
tting. 

To estimate the spatial similarity between the dBNS and dFC matri-
es, we used a simple correlation measure at the back-fitting step. We
hose this measure since we aimed to assign to each functional network
he nearest (spatially) dBNS, rather than evaluating the precision of
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he exact similarity value by itself. Nevertheless, other spatial similarity
etrics could be used in this context, such as those taking into account

he spatial locations of the compared networks nodes ( Mheich et al.,
018 ; Pineda-Pardo et al., 2015 ), or distance-based metrics ( Cao et al.,
013 ; Gao et al., 2010 ). 

Following the two previous considerations, an interesting point
aised by our results is that the task-modulated networks that were sig-
ificant for the longest periods were never the dominant networks at
he subject-level. Rather, the dominant networks in both groups were
lways the networks with short-lived significant task modulation. This
nding is puzzling, and a definitive interpretation is hard to reach with-
ut further investigation. However, we can propose a signal-to-noise ra-
io interpretation of that aspect. Indeed, long-lived task-modulated net-
orks might have been found because of the group-level analysis based
n the concatenation of all the dFC matrices of all trials and all subjects.
ICA would be particularly efficient at finding these networks given the
mount of data. At the subject-level, these networks might be too subtly
resent and are dominated by other networks that are less task-related,
t least less specifically to the appearance of stimulus eliciting conflict.
 possible way to investigate this would be to focus on prestimulus ac-

ivity or on resting-state activity. In any case, this suggests that the tICA
ethod presented in this paper is useful and robust for group-level anal-

sis of task-related networks, but also that the use of microstates metrics
ight not be ideal in that context to isolate these networks at the single

ubject-level. 
Finally, it is worth noting that investigation of dynamic functional

onnectivity using the methods reported here drastically constrain the
nalyses to relatively high frequencies. Indeed, performing the same
nalyses in frequencies lower than beta would have been challenging,
iven the limited number of cycles available in the duration of the
rial. This is a key point, since most CAC-related results in the litera-
ure involve theta frequencies and report increased midfrontal theta ac-
ivity during conflict ( Cohen, 2014 ). One interesting perspective would
e to investigate if the dynamic presence of certain beta brain states
n PD depend on fronto-central theta activity, since midfrontal theta-
arietal beta cross-frequency coupling has been shown during CAC
 Duprez et al., 2020 ) and PD appears to be associated with decreased
idfrontal theta ( Singh et al., 2018 ). 

. Conclusion 

In this study, we reported brain functional connectivity states at the
ource level that were modulated by CAC during a Simon task. At the
roup-level, we showed that fronto-temporal, temporo-cingulate and
ronto-frontal beta and gamma networks were significantly modulated
y the task. We used microstates metrics to investigate the presence of
hese networks at the subject-level, which revealed no differences be-
ween PD patients and HC. Our results also evidenced that the domi-
ant network at the subject-level was never the network more durably
odulated by the task at the group-level. Although tICA allowed for an

stimation of task-related dynamic brain states, the use of microstates
etrics might not be appropriate in the evaluation of these networks

t the subject-level. Nevertheless, we believe that this study highlights
he relevance of task-based dynamic connectivity measures which could
elp in the understanding of cognitive dysfunctions observed in PD, and
n other neurological diseases. 
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