
Non-invasive prenatal diagnostic of genetic diseases induced by triplet
repeats expansion by linked reads haplotyping and Bayesian approach

Supplementary materials 2: methodology

June 14, 2022

Liautard-Haag C.1, Durif G.2, Van Goethem C.1,3, Baux D.1,4, Louis A.1,
Cayrefourcq L.5, Lamairia M.1, Willems M.6, Zordan C.7, Dorian V.7, Rooryck
C.7, Goizet C.8, Chaussenot A.8, Monteil L.9, Calvas P.9, Miry C.10, Favre
R.10, Le Boette E.11, Fradin M.11, Roux AF.1,4, Cossée M.1,3, Koenig M.1,3,
Panabière C.3, Guissart C.1, Vincent MC.1,3
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chondriales, Hôpital de l’Archet 2, Nice, France;
9 Service de Génétique Médicale, CHU de Toulouse, Toulouse, France;
10 Department of Maternal Fetal Medicine, Strasbourg University Hospital,
Strasbourg, France;
11 Service de Génétique Médicale, Centre Hospitalier de Saint Brieuc, Saint-
Brieuc, France.

1



Contents

S2.1 Computational Tools 3
S2.1.1 Pipeline implementation and software . . . . . . . . . 3
S2.1.2 Genotype and haplotype . . . . . . . . . . . . . . . . 4
S2.1.3 cfDNA genotype correction and filtering . . . . . . . 5
S2.1.4 Bayesian approach for noninvasive fetal allele origin

inference . . . . . . . . . . . . . . . . . . . . . . . . . 5
S2.1.4.1 Fetal fraction estimation . . . . . . . . . . . 6
S2.1.4.2 Fetal genotype model . . . . . . . . . . . . . 6
S2.1.4.3 Fetal allele origin inference . . . . . . . . . . 8

S2.A1 Fetal fraction estimation 11
S2.A1.1 Local fetal fraction . . . . . . . . . . . . . . . . . . . 12
S2.A1.2 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 16

S2.A2 Fetal genotype model 16
S2.A2.1 Fetal genotype prior . . . . . . . . . . . . . . . . . . . 16
S2.A2.2 Data likelihood . . . . . . . . . . . . . . . . . . . . . 16

S2.A3 Fetal allele origin inference 19
S2.A3.1 Reminder about Gibbs sampling . . . . . . . . . . . . 23

2



S2.1 Computational Tools

Here is a presentation of the computational tools used in our work, and
especially a description of our Bayesian approach for noninvasive fetal al-
lele origin inference, as well as specific data preprocessing. Our pipeline is
based on different steps, including fetal fraction estimation, fetal genotype
inference, and eventually our main contribution: an innovative method to
infer the fetal allele origin from parental phased haplotypes.

Our approach requires a genotyping of both parents DNA, and a genotyp-
ing of the circulating free DNA (cfDNA) from the maternal plasma, which
is a combination of both cell-free maternal DNA and cell-free fetal DNA
(cffDNA). Thus, the cfDNA genotype is a combination of both the maternal
and the fetal genotype.

See section S2.1.1 for more details about our method implementation and
availability. Section S2.1.2 introduces some notations about genotypes and
haplotypes. Section S2.1.3 details data preprocessing. Eventually, sec-
tion S2.1.4 presents our Bayesian approach.

Additional informations are attached in a specific appendix for this docu-
ment (referenced wherever needed in the different sections).

S2.1.1 Pipeline implementation and software

The source code for our method is available in this repository https://

github.com/gdurif/nipd as a Python package (called prediag), along with
a command line interface (CLI).
Here is an outline of the pipeline implemented in our software:

1. Fetal fraction estimation

2. Fetal genotype Bayesian inference

3. Initialize fetal allele origin with the following heuristic

– use inferred fetal genotype to infer fetal allele origin at parental
heterozygous (not ambiguous) locus

– use previously inferred fetal allele (at parental heterozygous lo-
cus) to infer fetal allele origin at parental homozygous (ambigu-
ous) locus by a vote in the locus neighborhood
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4. Bayesian inference of fetal allele origin in fetus with Gibbs sampling

See the following for more details about each step.

S2.1.2 Genotype and haplotype

Here we introduce some notations for genotypes and haplotypes that will
be used later. We focus on a diploid model, i.e. with a pair of homologous
copies for each chromosome, excluding X-Y chromosomes (for the moment)
and all chromosomal abnormality in karyotype

Genotype. At a given locus presenting a Single Nucleotide Polymorphism
(or SNP), the genotype refers to the combination of alleles carried by ho-
mologous chromosomes. In diploid species as humans, the genotype for a
given locus will be noted

x/y ∈ { 0/0, 0/1 1/1 },

where x, y ∈ {0, 1} identify the two alleles present at the locus. Generally, 0
refers to the ancestral allele, and 1 refers to the derived or alternative allele.
Locus with genotype 0/0 or 1/1 are called homozygous. For heterozygous
locus, i.e. with alleles 0 and 1, the genotype is noted (by convention) 0/1
(which is equivalent to 1/0, but the former notation is not used).

We also removed all the remaining positions with three or more alleles,
which were generally genotyping errors left, i.e. we consider SNPs with two
possible alleles at most (0 or 1). Considering the size of the human genome
and the mutation rate, the probability of two mutations arising at the exact
same locus at different moment of the human evolution is very small. Thus,
the proportion of SNPs with more than two possible alleles is considered
negligible.

Haplotype. On contrary to genotypes, phased haplotypes (i.e. haploid
genotypes) allow to decipher which allele is carried by which chromosome
(in a pair of homologous chromosomes) at a given locus. Deriving the hap-
lotypes from a given genotype is called phasing or haplotype estimation (see
Huang, Tu, and Lu, 2017 or Choi et al., 2018 for a review).

Phased haplotypes for a given locus are noted

a|b ∈ { 0|0, 0|1, 1|0, 1|1 },
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where a ∈ {0, 1} corresponds to the allele carried by the 1st haplotype/
chromosome (noted 1) and b ∈ {0, 1} corresponds to the allele carried by
the 2nd haplotype/chromosome (noted 2) among the pair of homologous
chromosomes. It should be noted that, in diploid species as humans, the pair
of homologous haplotypes noted a|b for a given locus is generally referred to
as the haplotype (singular) for this given locus .

S2.1.3 cfDNA genotype correction and filtering

cfDNA genotypes were corrected after the variant calling analysis, based on
the allelic depth. At each locus, we only considered alleles for which the
corresponding allelic depth (i.e. the number of reads mapped on the locus
carrying the considered allele) was higher than both an absolute threshold
(2 reads) and a relative threshold (1% of the coverage at the locus).

cfDNA locus were filtered based on a minimum coverage criterion of 50
mapped reads.

S2.1.4 Bayesian approach for noninvasive fetal allele origin
inference

We propose a Bayesian approach (see Bolstad and Curran, 2016, for an in-
troduction about Bayesian statistics) to infer the fetal allele origin in the
parental phased haplotypes at the locus scale. In particular, at each locus,
we aim not only to infer the fetal genotype using both parental genotypes
and the cfDNA genotype, like in the Hoobari approach (Rabinowitz et al.,
2019), but also to determine which allele from which chromosome was given
by each parent to the fetus.

Extending Hoobari model to infer fetal genotype using parental genotypes
and cfDNA genotype (Rabinowitz et al., 2019), our method is able to infer
which allele was given by each parent to the fetus at each locus in a target re-
gion. To do so, we use a Markov chain Monte Carlo (MCMC) algorithm (see
Andrieu et al., 2003, for an introduction), and specifically a Gibbs sampler
(S. Geman and D. Geman, 1984), to account for the dependency between
consecutive locus regarding parental allele inheritance.

To implement our approach, an estimation of the fetal fraction in the cfDNA
sample is required (c.f. section S2.1.4.1). Then, we integrate a specific model
on the fetal genotype (c.f. section S2.1.4.2) to infer the fetal allele origin
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(c.f. section S2.1.4.3).

S2.1.4.1 Fetal fraction estimation

The fetal fraction (see Hui and Bianchi, 2020, for a review) is the proportion
of genetic material (i.e. reads) that originate from the fetus in the cfDNA
sample. It is a crucial parameter in our model and should be estimated
carefully (c.f. Peng and Jiang, 2017). In our approach, fetal fraction is first
estimated at a locus resolution (i.e. for each SNP where it is possible) and
then smoothed along the genome by averaging the local estimates on sliding
windows (of 100kb width).

At the locus scale, the fetal fraction was estimated based on both parents
and cfDNA genotype, and corresponding allelic depths (Lo et al., 2010;
Chan and Jiang, 2015). In particular, for certain combinations of parental
genotypes, it is possible to quantify the theoretical contributions of mater-
nal and fetal genotypes to the cfDNA allelic depth, and then estimate the
corresponding fetal fraction.

The per-locus fetal fraction estimation accuracy depends on the per-locus
coverage (the higher coverage the better estimation). To correct for this
coverage effect (and get an estimate for the locus where the parental and
cfDNA genotypes are not informative to determine the fetal fraction), a
smoothing is done based on a weighted averaging of fetal fraction estima-
tions in a sliding window of size 100kb centered in each locus. The average
weights are proportional to the locus coverage to reduce the effect of the low
coverage locus where the accuracy of the fetal fraction estimation is lower.

More details regarding the fetal fraction estimation can be found in appendix
section S2.A1.

S2.1.4.2 Fetal genotype model

The fetal genotype model in our approach is based on Hoobari fetal genotype
model (Rabinowitz et al., 2019) with a slight modification allowing to infer
the fetal genotype and from which parent (i.e. the mother or the father)
fetus inherited the derived allele for heterozygous locus.

More details regarding the fetal genotype model can be found in appendix
section S2.A2.
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Fetal genotype posterior. For a given locus, the posterior on the fetal
genotype G is given by:

P (G|data) =
P (data|G)P (G)∑
g P (data|Gg)P (Gg)

(S2.1)

where {Gg}g are all possible fetal genotypes.

Then, we introduce a modification to the genotype standard notation: a
fetal genotype will be encoded a/b where a ∈ {0, 1, . . .} and b ∈ {0, 1, . . .}
identify the maternal and paternal alleles respectively (i.e. the allele in-
herited from the mother and from the father respectively). The interest of
this notation is to account for the mutated allele origin (from the mother
or the father) when the fetus is heterozygous at a locus. For instance, with
the standard encoding, an heterozygous locus will be encoded 0/1 and the
parental origin of both alleles cannot be identified. Here, with our notation,
an heterozygous locus can be encoded 1/0 or 0/1 depending if the derived
allele was inherited from the mother or the father respectively.

It should be noted that this notation convention is only useful to derive the
posterior in the model, and was solely introduced for this purpose. We stress
out that altough it seems quite similar to fetal haplotype phasing, since we
process each locus independently (which is not suitable for haplotype phas-
ing), we prefer to use this non standard genotype notation instead of the
haplotype notation.

Computing the posterior requires computing the data likelihood P (data|G)
and the genotype prior P (G) which are explicit (c.f. below). Thus, the
posterior can be computed at the locus scale, and the fetal genotype can be
inferred with a maximum a posteriori (MAP) procedure.

Fetal genotype prior. In this context, the prior on fetal genotype P (G)
can be simply determined by Mendelian law based on genotypes of both
parents (see appendix section S2.A2.1 for more details).

Data likelihood. At a given locus, the data likelihood P (data|G) from
Hoobari framework can be extended to our setting:

P (data|G) =
n∏

j=1

P (rj |G,GM , f) (S2.2)
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where rj ∈ {0, 1} is the allele carried by read j, and j = 1, . . . , n in-
dexes all reads covering the considered locus in the cfDNA sample, G ∈
{ 0/0, 0/1, 1/0, 1/1 } is the fetal genotype (with our specific fetal genotype
encoding convention, i.e. 0/1 6= 1/0) and GM ∈ { 0/0, 0/1, 1/1 } is the
maternal genotype (with the standard genotype encoding convention, i.e.
0/1 = 1/0), and f the fetal fraction.

More details about read data likelihood computations are given in appendix
section S2.A2.2.

S2.1.4.3 Fetal allele origin inference

We introduce an innovative approach to infer which allele was given to the
fetus by each parent at the locus scale. The purpose is to identify, for a
given genomic region, from which parental chromosome (among the pair
of corresponding homologous chromosomes) originates the genetic material
inherited by the fetus without a proband.

Notations. We introduce the following notation: for a given locus with
fetal genotype A/B, the fetal allele origin will be noted X–Y where

X =

{
mat1 if A is the 1st maternal haplotype

mat2 if A is the 2nd maternal haplotype
(S2.3)

Y =

{
pat1 if B is the 1st paternal haplotype

pat2 if B is the 2nd paternal haplotype
(S2.4)

Then, the objective is to infer

X–Y ∈ { mat1–pat1, mat1–pat2, mat2–pat1, mat2–pat2 } (S2.5)

for all locus of a genomic region (on a given chromosome). On contrary to
the fetal genotype inference, we cannot consider each locus independently.
Indeed, for a given parent, the inherited alleles for all locus in a contiguous
region are likely to come from the same chromosome. Only a recombination
event (unlikely between closed locus) or a phasing error (whose risk can be
estimated) would make it possible for two consecutive SNPs to originate
from different haplotypes. Hence, unless there was a recombination event or
a phasing error between two consecutive SNPs (whose probability depends
on their genetic distance and can be accounted for in the model), the fetal
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allele origin will be the same for the two consecutive SNPs.

Working with multiple SNPs in a chromosomic region, the fetal allele origin
at SNP/locus ` is noted

O` = X–Y ∈ { mat1–pat1, mat1–pat2, mat2–pat1, mat2–pat2 } (S2.6)

Then, the fetal allele origin over the complete region of multiple SNPs/locus
is noted

O = {O1, . . . , OL} = {O`}`=1,...,L (S2.7)

where L is the number of detected SNPs in the targeted region.

Inference. The full posterior

P (O |data) = P (O1, . . . , O`, . . . , OL |data) (S2.8)

gives the most probable fetal allele origin over all SNPs/locus in the con-
sidered region. Since consecutive SNPs are not independent, O` is not inde-
pendent from O`−1, and we cannot directly compute the full posterior as the
product of marginal posteriors at the locus scale (like we did for the fetal
genotype inference), i.e.

P (O1, . . . , O`, . . . , OL |data) 6=
L∏

`=1

P (O` |data).

Because of the combinatorial cost, computing the full posterior would be
prohibitive, thus we need a workaround to infer it. To do so, we use a Gibbs
sampler (S. Geman and D. Geman, 1984). In particular, we can use

P (O`|data, O`−1) ∼ P (data at locus `|O`)× P (O`|O`−1) (S2.9)

to simulate data under the full posterior (S2.8), which is discrete with a
finite size state space. Then, by sampling enough points, we can estimate
the locus posterior P (O`|data) and the fetal allele origin over the targeted
region.

It can be noted that the data likelihood P (data at locus `|O`) can be ex-
plicitly derived as in the fetal genotype model (c.f. section S2.1.4.2) and the
transition probability P (O`|O`−1) between locus ` and `−1 can be computed
depending on the probability of a recombination event between locus ` and
` − 1 in each parent (which depends on the genetic distance between the
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consecutive locus), and the probability of a phasing error at locus ` (which
is estimated by the phasing software).

More details regarding Gibbs sampling and our Bayesian approach can be
found in appendix section S2.A3.
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Appendix

S2.A1 Fetal fraction estimation

Here is a detailed explanation of the approach from Lo et al. (2010) and
Chan and Jiang (2015) to estimate the fetal fraction at locus level using the
number of reads that map to a SNP locus in the cfDNA sample.

We introduce the following notations to decompose the number of reads that
map at a given locus in the cfDNA sample:

– Ntotal = total number of reads

– Nfetus = number of reads from the fetus

– Nmother = number of reads from the mother

– f = fetal fraction (or F with percentage notation, i.e. F = (100×f) %)

By definition of the fetal fraction, we have the following link between Nfetus

and Nmother:
Nfetus = f ×Ntotal (S2.A10)

Nmother = (1− f)×Ntotal (S2.A11)

f =
Nfetus

Ntotal
(S2.A12)

The genotypes will be noted as follow (for any given alleles1 “A” and ”C”):
“A/A” or “C/C” for homozygous locus, and “A/C” or “C/A” for heterozy-
gous locus.

In the following, we will use these notations for the allelic depths at a given
locus in the cfDNA sample:

– NA = number of reads with allele “A”

– NC = number of reads with allele “C”

The total number of reads at the considered locus is then:

Ntotal = NA +NC (S2.A13)
1Here “A” and “C” are just blind notations for the different alleles carried by a given

locus, among “0” for the ancestral allele, and “1” for the derived/mutated allele. They
are not referring to sequenced DNA nucleotids.
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S2.A1.1 Local fetal fraction

The Table S2.A1 recapitulates the different cases for the expected allelic
depth at a given locus, depending on the maternal and paternal genotypes,
the cfDNA sample genotype and the corresponding unknown fetal genotype.

Based on relations defined in Table S2.A1, the Table S2.A2 details the cor-
responding estimate (noted f̂) for the fetal fraction at the given locus.
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Mother Father cfDNA Fetusa Expected proportions for allelic depthb

A/A A/A A/A A/A 100% of reads “A”

A/A C/C A/C A/C (100−F) % of reads “A” and F % of reads “C” (I)

A/A A/C
A/C A/C (100−0.5F) % of reads “A” and (0.5F) % of reads “C”c

(II)
A/A A/A 100% of reads “A”

A/C A/A A/C
A/C 50% of reads “A” and 50% of reads “C”

(III)
A/A (50 + 0.5F) % “A” and (50− 0.5F) % “C”d

A/C A/C A/C

A/C 50% of reads “A” and 50% of reads “C”

(IV)
A/C 50% of reads “A” and 50% of reads “C”

A/A (50 + F) % of reads “A” and (50−F) % of reads “C”e

C/C (50−F) % of reads “A” and (50 + F) % of reads “C”f

Table S2.A1: Expected allele proportions at a given locus depending on maternal, paternal, cfDNA and (unknown)
fetal genotypes (Lo et al., 2010; Chan and Jiang, 2015), where F = (100× f) % is the percentage notation for the
fetal fraction f .

aunobserved
bin the cfDNA sample at the considered locus
ci.e. Ntotal = (1 − 0.5 f)NA + 0.5 f NC
di.e. Ntotal = (0.5 + 0.5 f)NA + (0.5 − 0.5 f)NC
ei.e. Ntotal = (0.5 + f)NA + (0.5 − f)NC
fi.e. Ntotal = (0.5 − f)NA + (0.5 + f)NC
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Mother Father cfDNA Fetusa Estimated fetal fractionb

A/A A/A A/A A/A ×

A/A C/C A/C A/C f̂ = 2×NC/Ntotal (I)

A/A A/C
A/C A/C f̂ = 2×NC/Ntotal (II)
A/A A/A ×

A/C A/A A/C
A/C ×

(III)
A/A f̂ = (NA −NC)/Ntotal

A/C A/C A/C

A/C ×

(IV)
A/C ×
A/A f̂ = (NA −NC)/Ntotal

C/C f̂ = (NC −NA)/Ntotal

Table S2.A2: Estimated local fetal fraction at a given locus depending on maternal, paternal, cfDNA and (un-
known) fetal genotypes (Lo et al., 2010; Chan and Jiang, 2015), where f̂ is the estimated fetal fraction. × identifies
cases where the fetal fraction cannot be estimated.

aunobserved
bin the cfDNA sample at the considered locus
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From Tables S2.A1 and S2.A2, when the cfDNA genotype is “A/C” or
“C/A” (i.e. when the mother is heterozygous and the father is either ho-
mozygous or heterozygous, corresponding to cases III and IV respectively),
to be able to estimate the local fetal fraction, we need to discriminate be-
tween different scenarios, corresponding to uninformative situations regard-
ing the fetal fraction (where the allelic depths are expected to exactly be
50% of allele A and 50% of allele C independently from the fetal fraction,
i.e. NA = NC) versus other informative situations where the fetal fraction
can be estimated2. This discrimination depends on the fetal genotype which
is unknown. Therefore, the only condition that we can check to discriminate
between informative and uninformative situations is whether NA = NC or
not.

In practice, the situation of perfectly balanced allelic depths, i.e. NA = NC ,
is very unlikely to happen, because of sequencing technical variability. Thus,
at a given locus with genotype “A/C” in the cfDNA sample, if we have
NA ≈ NC , it is difficult to determine whether it corresponds to the uninfor-
mative (regarding the fetal fraction estimation) situation where NA = NC ,
or to one of the other informative situations when the fetal fraction f is very
small (i.e. |NA −NC | close to 0).

In practice, we use the following convention. Cases I and II are not am-
biguous and can always be used. Cases III and IV are ambiguous (because
the fetal genotype is unknown), thus locus where NA ≈ NC are discarded
because it is not possible to discriminate between the two case: “NA = NC”
or “very small fetal fraction”. To do so, we check the following conditions

|NA −NC |
Ntotal

> tol

at any given locus, for a given tolerance threshold tol (we used 5%). One
limit is that it is not possible to estimate the fetal fraction when it is very
small with this approach.

In addition the conditions NA > NC or NC > NA is used to infer which
scenario should be used in case IV.

2i.e. f̂ = NA−NC
Ntotal

or NC−NA
Ntotal

, c.f. Table S2.A2.
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pat 0/0 0/1 1/1

mat

0/0 P(0/0) = 1
P(0/0) = 0.5

P(0/1) = 0.5
P(0/1) = 1

0/1
P(0/0) = 0.5

P(1/0) = 0.5

P(0/0) = 0.25

P(0/1) = 0.25

P(1/0) = 0.25

P(1/1) = 0.25

P(0/1) = 0.5

P(1/1) = 0.5

1/1 P(1/0) = 1
P(1/0) = 0.5

P(1/1) = 0.5
P(1/1) = 1

Table S2.A3: Prior proababilities on fetal genotype depending on maternal
(noted “mat”) and paternal (“pat”) genotypes for a given locus according
to Mendelian inheritance law.

S2.A1.2 Smoothing

To smooth the local estimations, and to get an estimation of the fetal frac-
tion at locus where it was not possible to derive an estimate (c.f. previous
section), we use a window-based averaging of local fetal fraction estimations,
with a 100kb-wide window around each SNP. It should be noted that when
not enough local estimates can be found in the window, a chromosome-wide
averaging is used.

S2.A2 Fetal genotype model

S2.A2.1 Fetal genotype prior

The Table S2.A3 summarizes the Mendelian law of genotype inheritance
(c.f. Bateson and Mendel, 2009) for a given locus using the specific fetal
genotype notation introduced earlier.

S2.A2.2 Data likelihood

The data likelihood, i.e. the likelihood for all reads covering the consid-
ered locus in the cfDNA sample, can be explicitly computed. Assum-
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ing3 GM ∈ { 0/0, 0/1, 1/1 } is the observed maternal genotype, and G ∈
{ 0/0, 0/1, 1/0, 1/1 } is a fetal genotype compatible with the observed data
(i.e. compatible with the maternal genotype), the likelihood for read rj can
be written (Rabinowitz et al., 2019):

P (rj = x |G = fet,GM , f)

= P (rj = x |G)P (G | f) + P (rj = x |GM )P (GM | f)
(S2.A14)

where x is the allele carried by read j, and f the fetal fraction.

It should be noted that Equation (S2.A14) is a notation simplification not
strictly rigorous, where the dependence between G and GM is implicit and
hidden.

Based on Equation (S2.A14), it is possible to compute P (rj = x |G =
fet,GM , f) for x = 0 and x = 1, see Tables S2.A4 and S2.A5 respectively.

3using standard genotype notation for the mother, and our specific genotype convention
for the fetus.
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fet 0/0 0/1 1/0 1/1

mat

0/0 1 0.5× f + (1− f) × ×

0/1 f + 0.5×
(1− f)

0.5× f + 0.5× (1− f) 0.5× f + 0.5× (1− f) 0.5× (1− f)

1/1 × × 0.5× f + (1− f) 0

Table S2.A4: Detailed computation of P (rj = 0 |G = “fet”, GM = “mat”, f) for observed maternal genotype
“mat” and compatible fetal genotype. × identifies impossible cases (conflicting maternal and fetal genotypes).

fet 0/0 0/1 1/0 1/1

mat

0/0 0 0.5 × f × ×

0/1 0.5 × (1 − f) 0.5 × f + 0.5 × (1 − f) 0.5 × f + 0.5 × (1 − f) 0.5 × (1 − f)

1/1 × × 0.5 × f + (1 − f) 1

Table S2.A5: Detailed computation of P (rj = 1 |G = “fet”, GM = “mat”, f) for observed maternal genotype
“mat” and compatible fetal genotype. × identifies impossible cases (conflicting maternal and fetal genotypes).
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S2.A3 Fetal allele origin inference

Recalling that the fetal allele origin at SNP/locus ` is noted

O` = X–Y ∈ { mat1–pat1, mat1–pat2, mat2–pat1, mat2–pat2 },

the fetal allele origin over the complete region of multiple SNPs/locus is
noted

O = {O1, . . . , OL} = {O`}`=1,...,L

where L is the number of detected SNPs in the targeted region.

Gibbs sampler. Because of dependency between consecutive locus, we
have

P (O | data) = P (O1, . . . , O`, . . . , OL | data) 6=
L∏

`=1

P (O` | data), (S2.A15)

and in particular since the data likelihood cannot be factorized:

P (data |O) = P (data |O1, . . . , O`, . . . , OL) 6=
L∏

`=1

P (data |O`). (S2.A16)

Thanks to a Gibbs sampling procedure (c.f. appendix section S2.A3.1),
successive samplings under conditional posterior

P (O`|data, O1, . . . , O`−1, O`+1, . . . , OL) (S2.A17)

can be used to approximate a sampling under the joint posterior

P (O1, . . . , O`, . . . , OL|data)

In our specific context, the conditional posterior (S2.A17) can be simplified
as

P (O`|data, O1, . . . , O`−1, O`+1, . . . , OL) = P (O`|data, O`−1) (S2.A18)

because the allele origin O` at locus ` does only depend on the allele origin
O`−1 at locus ` − 1 (c.f. Ghahramani, 2001). The simplified conditional
posterior (S2.A18) is then explicit:

P (O`|data, O`−1) ∼ P (data at locus `|O`)× P (O`|O`−1) (S2.A19)

Decomposing the simplified conditional posterior (S2.A19), we have:
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– the data likelihood

P (data at locus `|O`, O`−1) =
∏
j

P (rj |O`)

with rj = allele of read j where j indexes all reads covering locus `.

– the transition probability P (O`|O`−1) depending on the recombination
probability between locus `− 1 and ` and the phasing error likelihood
at locus `

Data likelihood. The data likelihood is decomposed as follows∏
j

P (rj |O`) =
∏
j

∑
g∈GF

P (rj |G = g,HM , f)× P (G = g|HM , HF , f, O`)

(S2.A20)
where

– rj ∈ {0, 1} is the allele carried by read j at locus `

– GF = { 0/0, 0/1, 1/0, 1/1 } is the set of possible fetal genotypes at
locus ` (using our our specific fetal genotype encoding convention)

– G ∈ GF is the unknown fetal genotype at locus `

– HM ∈ { 0|0, 0|1, 1|0, 1|1 } is the mother haplotype at locus `

– HF ∈ { 0|0, 0|1, 1|0, 1|1 } is the father haplotype at locus `

– f is the fetal fraction fetal fraction

The read likelihood P (rj |G,HM , f) can be computed as previously in the
fetal genotype model, c.f. equation (S2.A14) in appendix section S2.A2.2,
and the prior P (G|GM , GF , f, O`) can be deduced from the Mendelian law
(c.f. appendix section S2.A2.1).

Transition probabilities. The transition probability P (O`|O`−1) between
locus ` and locus `− 1 depends on:

� the recombination probability between locus `−1 and ` in each parent:

r` = dist× ρ

where dist is the distance (in bp) between locus ` and `− 1, and ρ is
the recombination rate
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� the phasing error probability at locus ` in each parent, noted eM` for
the mother and eF` for the father (c.f. PQ and JQ fields in 10x VCF
files)

Thus, the switch probability for the mother corresponds to the probability
that locus ` was not inherited from the same haplotype as locus `−1, i.e. the
probability of the following events between locus ` and `−1: “recombination
AND no phasing error” OR “no recombination AND phasing error”:

pM` = P (O` = X1–Y1|O`−1 = X2–Y2 and X1 6= X2)
= r` (1− eM` ) + (1− r`) eM`

(S2.A21)

where X1–Y1, X2–Y2 ∈ { mat1–pat1, mat1–pat2, mat2–pat1, mat2–pat2 }.
Similarly, the switch probability for the father is

pF` = r` (1− eF` ) + (1− r`) eF` (S2.A22)

By combining equations (S2.A21) and (S2.A22), we can compute the tran-
sition probability P (O`|O`−1) as detailed in Figure S2.A1.
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mat1− pat1

mat1− pat2 mat2− pat1

mat2− pat2

pM (1− pF )(1− pM ) pF

pM (1− pF ) (1− pM ) pF

(1− pM ) (1− pF )

(1− pM ) (1− pF )

(1− pM ) (1− pF ) (1− pM ) (1− pF )

pM pF

pM pF

Figure S2.A1: Computing P (O`|O`−1). The arrow indicates the transition from O`−1 to O` with the corresponding
probabilities. Here, pM refers to the switch probability pM` for the mother at locus `, c.f. equation (S2.A21), and
pF refers to the switch probability pF` for the father at locus `, c.f. equation (S2.A22).
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Pipeline. The pipeline to infer the fetal allele origin can be summarized
as follow:

1. Initialize fetal allele origins {O1, . . . , O`, . . . , OL} (thanks to a heuristic
based on non-ambiguous locus)

2. Parallel sampling under posterior P (O1, . . . , O`, . . . , OL|data) with the
Gibbs sampler

3. From the previous samples, estimation of the marginal posterior P (O`|data)

4. Infer O` = X–Y ∈ { mat1–pat1, mat1–pat2, mat2–pat1, mat2–pat2 }
with marginal MAP

S2.A3.1 Reminder about Gibbs sampling

See Yildirim (2012) for an introduction about Gibbs sampling for Bayesian
inference.

Assuming we are working with X1, . . . , Xn a set of n random variables of un-
known joint distribution P (X1, . . . , Xn), we construct a sequence {X(t)}t≥1
of simulated values where X(t) =

(
x
(t)
1 , . . . , x

(t)
n

)
with the algorithm 1.

Algorithm 1: Gibbs sampler algorithm

Initialization with some given values X(0) =
(
x
(0)
1 , . . . , x

(0)
n

)
;

for t← 1, 2 to l do
for i← 1 to n do

Sample a value x
(t+1)
i from the conditional distribution

P
(
Xi

∣∣∣X1 = x
(t+1)
1 , . . . , Xi−1 = x

(t+1)
i−1 , Xi+1 = x

(t)
i+1, Xn = x(t)n

)
end

end

It can be shown that, after enough iterations over t,
(
x
(t)
1 , . . . , x

(t)
n

)
is sam-

pled under unknown joint distribution P (X1, . . . , Xn). In practice, to get
numerous samples under P (X1, . . . , Xn), it is recommended to run a burn-in
period until t > T , an then to keep the sample X(t) every τ iterations. The
lag τ is used to avoid correlations between the samples, it can be calibrated
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based on auto-correlation. In our computations, we used T = 2000 for the
burn-in period, τ = 100 for the lag, and we computed 5000 samples.
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