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1  |  INTRODUC TION

Human- induced environmental changes overlay natural environ-
mental clines and can induce irreversible changes to habitats and 
ecosystems, either locally (e.g., through the destruction of natural 
habitats; Gonçalves- Souza et al., 2020) or on a global scale (e.g., by 
crossing natural biogeographic barriers through human- driven trans-
port of species; Capinha et al., 2015). The impacts of urban areas on 

land have been well studied and have paved the way for the devel-
opment of a fertile scientific field, named “urban science,” mostly 
targeting cities (e.g., Miles et al., 2021; Szulkin et al., 2020). In ter-
restrial urban evolution, global efforts are underway to understand 
adaptive responses to human- altered environments by leveraging 
the repeated experiments offered by cities (Santangelo et al., 2020, 
2022). However, little is known about the evolutionary effects of 
urbanization in coastal marine ecosystems (Alter et al., 2021).
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Abstract
Humans have built ports on all the coasts of the world, allowing people to travel, 
exploit the sea, and develop trade. The proliferation of these artificial habitats and 
the associated maritime traffic is not predicted to fade in the coming decades. Ports 
share common characteristics: Species find themselves in novel singular environ-
ments, with particular abiotic properties— e.g., pollutants, shading, protection from 
wave action— within novel communities in a melting pot of invasive and native taxa. 
Here, we discuss how this drives evolution, including setting up of new connectivity 
hubs and gateways, adaptive responses to exposure to new chemicals or new biotic 
communities, and hybridization between lineages that would have never come into 
contact naturally. There are still important knowledge gaps, however, such as the lack 
of experimental tests to distinguish adaptation from acclimation processes, the lack 
of studies to understand the putative threats of port lineages to natural populations 
or to better understand the outcomes and fitness effects of anthropogenic hybridiza-
tion. We thus call for further research examining “biological portuarization,” defined 
as the repeated evolution of marine species in port ecosystems under human- altered 
selective pressures. Furthermore, we argue that ports act as giant mesocosms often 
isolated from the open sea by seawalls and locks and so provide replicated life- size 
evolutionary experiments essential to support predictive evolutionary sciences.
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While discussion of marine urban sciences is not new (see 
Bulleri, 2006), research on marine urban sciences is still in its in-
fancy (Todd et al., 2019). It is well- established that the impacts of 
human activities are numerous at sea (Halpern et al., 2019; Jouffray 
et al., 2020), notably in relation to habitat alterations due to sewage, 
aquaculture, coastal hardening, shipping activities, or wind farms. 
Bugnot et al. (2021) estimated that marine built constructions had 
direct (e.g., destruction of natural habitats) and indirect (e.g., noise 
or light pollution) impacts on 1.5% of the world's exclusive eco-
nomic zones, a number that they found comparable to the global 
extent of urbanized land. The fast and global expansion of human- 
made structures in the marine environment (i.e., the Ocean Sprawl, 
as originally coined by Duarte et al., 2013) has substantial conse-
quences on marine ecosystems (for reviews see Bishop et al., 2017; 
Firth et al., 2016; Todd et al., 2019). Habitat alterations resulting 
from marine constructions act as urban stressors that modify the 
shape, structure, and substrate of the habitat, and exert specific abi-
otic selective pressures on the resident species (Airoldi et al., 2021; 
Alter et al., 2021; Bulleri & Chapman, 2010; Mineur et al., 2012). 
Consequently, marine urbanization has substantial evolutionary 
consequences, as recently reviewed by Alter et al. (2021). Despite 
considerable progress in recent years, more research is needed to 
understand the role of harbors in shaping contemporary evolution.

The impacts of marine urbanization are most pronounced in 
coastal areas where artificial constructions are numerous, mostly re-
placing natural shorelines and fragmenting natural habitats (Aguilera 
et al., 2020). This is well- illustrated by a large number of commercial 
harbors and marinas (hereafter collectively referred to as “ports”) 
present in the coastal regions of many countries. For example, the 
French metropolitan coastline has 473 maritime ports, hosting 
186,000 berths (Mission Plaisance, 2015). Ports are characterized 
by specific abiotic properties rarely found in natural habitats, or in 
other types of artificial habitats, and display particular species as-
semblages (Bulleri & Chapman, 2010; Connell, 2000). They are sin-
gular habitats (Box 1), with particular biotic and abiotic environment 
that resident species (i.e., native and nonindigenous) must cope with, 
resulting in evolutionary unique responses.

Studying evolutionary processes in ports has advantages. First, 
the size of ports far exceeds that of experimental laboratory infra-
structures. Port containment is often strong, with basins closed by 
locks, which limits exchanges with the outside open sea. While envi-
ronmental variables (e.g., temperature, salinity, pollutants) cannot be 
controlled as in the laboratory, they are buffered over large volumes. 
Second, port habitats are broadly similar to each other, sharing similar 
anthropogenic stressors (Table 1). Each port thus provides a replicate 
experiment. Third, because ports are singular habitats, marine organ-
isms encounter artificial substrates that do not exist in nature and are 
exposed to new chemicals— or at least at unprecedentedly higher con-
centrations (McKenzie et al., 2012)— and they encounter new assem-
blages of species, the so- called biotic environment, often dominated 
by nonindigenous species (Leclerc et al., 2020). Fourth, the evolution-
ary processes taking place in ports are occurring over longer times 
than laboratory experiments but are usually shorter than evolution in 

natural habitats. Finally, ports constitute a dense network. They are 
linked to each other through shipping activities across diverse spatial 
scales (regional with leisure boating up to transoceanic with commer-
cial shipping trade). As shipping activities are diversified (trade, lei-
sure activities, fishing) and ever- increasing, connectivity among these 
novel habitats also increases. Ports disrupt previously connected nat-
ural habitats but, conversely, promote novel connectivity pathways, 
resulting in movements of species in and out of their natural range 
(Aguilera et al., 2020; Bishop et al., 2017; Firth et al., 2016; Henry 
et al., 2018). These movements are well- illustrated by nonindigenous 
species, for which ports are points of entry and facilitate their spread 
(Dafforn, 2017; Johnston et al., 2017). Ports are nodes of a human- 
made network that represents an opportunity for a rendezvous of 
species, lineages, and genotypes that would not have come into con-
tact naturally, resulting in various scenarios of genetic admixture and 
adaptation (Geburzi & McCarthy, 2018; Viard et al., 2020).

Embracing a population and evolutionary genetics framework, 
we here examine the singularities of ports and their interplay with 
evolutionary processes. We aim to complement Alter et al. (2021) 
who extensively synthesized adaptive responses and changes in ge-
netic diversity of marine organisms in marine urban environments in 
general. Here we focus on three interlinked drivers of evolutionary 
changes related to port characteristics. We first discuss how local 
and global connectivity reshuffle standing genetic variation within 
and between ports. We then ask how local adaptation can act in 
this context and show why it constitutes particularly interesting 
large- scale experiments. Lastly, we detail important questions when 
it comes to anthropogenic hybridization in ports and how they also 
serve as laboratories for evolutionary studies. From this review 
documenting evolutionary processes occurring in ports, we finally 
advocate for establishing ports as model systems for studying evo-
lutionary processes in the Anthropocene.

2  |  PORTS ARE OPENING NE W 
CORRIDORS FAVORING GENETIC 
RESHUFFLING

Human- driven spread and long- distance dispersal has been quite 
well- documented in artificial habitats including ports. For exam-
ple, Coolen et al. (2020) showed that the blue mussel Mytilus edu-
lis has colonized offshore platforms in the North Sea, beyond the 
maximum dispersal distance of mussel larvae. Similar stepping- stone 
effects have been proposed for explaining the rapid spread of non-
indigenous species along the coast, by migration from port to port 
(Bishop et al., 2017), and to other marine hard infrastructures along 
the coastline (Airoldi et al., 2015). Such effects are expected to be 
of particular importance for species with weak natural dispersal 
abilities, like direct developers or benthopelagic species with a short 
pelagic phase (<1 day), both expected to have natural dispersal dis-
tances below 1 km (Shanks, 2009). One such example is the non- 
native tunicate species Asterocarpa humilis that brood its larvae up 
to a late stage. The dense network of marinas along the coast of 
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562  |    TOUCHARD eT Al.

Southern England might explain the rapid spread (within a 4- year 
time frame) of this short disperser via biofouling of adults on leisure 
boats (Bishop et al., 2015). Ports can facilitate the spread of their 
resident species, through a stepping- stone process and a mixture 
of short-  and long- distance dispersal driven by shipping activities in 
those habitats (Figure 1a,b). Such pathways and processes are ex-
pected to have consequences on gene flow, and thus on the distribu-
tion of genetic diversity, as shown below.

2.1  |  Ports constitute nodes of an artificial network 
that is responsible for migration shortcuts

Besides facilitating short- distance dispersal, shipping also promotes 
long- distance migration events that are far exceeding the natu-
ral dispersal ability of marine species, as illustrated by the spread 
of nonindigenous species, with ports forming invasion corridors 
(Airoldi et al., 2015; Bax et al., 2002; Mineur et al., 2012). These 

BOX 1 Ports are a singular habitat for marine species

Ports are not uniform as they vary, for instance, in time since construction, size, level of containment (e.g., some being opened to 
the sea and others enclosed by gates), and by the types of moored vessels and associated activities (e.g., fishing vs. leisure boats). 
However, they share common properties (Dafforn, 2017; Firth et al., 2016; Johnston et al., 2017; Todd et al., 2019), which are not 
found in natural habitats or other marine built infrastructures such as wind farms (e.g., little or no wave protection) or aquaculture 
sites (e.g., one dominant cultivated species).

Ports are notably characterized by the accumulation of contaminants (e.g., plastics, pollutants) and specific physical properties 
(e.g., protection from storms and waves, shading under floating pontoons etc.). They are also often unstable environments (e.g., due 
to maintenance of the infrastructure). These abiotic features constitute a set of stressors (Table 1) favoring species that can cope with 
disturbed environment or are tolerant to contaminants (Airoldi et al., 2021; Airoldi & Bulleri, 2011; Figueroa et al., 2021; McKenzie 
et al., 2012; Rivero et al., 2013). At the landscape level, these hard structures are mostly built- up on and replace soft- sediment hab-
itats, thus contributing to composing a mosaic of distinct habitats. Thus, although ports can have locally unique features, they share 
properties defining a particular type of habitat, characterized by particular species assemblages and forming corridors and networks.
Photo credit: Top right: Ph. Saget— other pictures: F. Viard
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long- distance dispersals can occur across biogeographic and ocean-
ographic barriers. For example, Bouchemousse et al. (2016) reported 
the absence of any genetic structure between populations of Ciona 
robusta introduced in Chile and located on both sides of a major and 
well- documented biogeographic break at 30– 33°S along the coast 
of Chile. The genetic patterns observed in the introduced range 
of marine non- native species are often hard to interpret, because 
of repeated introductions, high propagule pressure, and second-
ary human- driven transports within the introduction range (Viard 
et al., 2016). These processes are ultimately shuffling the genetic 
diversity over large scales.

Recently, Hudson et al. (2022) obtained evidence that the timing 
and the position at which marine invaders enter the world maritime 
traffic network can make a difference in the resulting genetic struc-
ture and diversity observed nowadays. The Asian sea- squirt C. ro-
busta has likely been introduced successively out of its range at least 
three times, and the introduced populations had time to differenti-
ate and to admix secondarily at some places. Conversely, another 
tunicate species of Australian origin, Microcosmus squamiger, likely 

entered the worldwide traffic network from a port developed later 
in the history of maritime trade (i.e., a secondary node). For this spe-
cies, a uniquely sourced genetic cluster invaded ports worldwide, 
probably spreading by a stepping- stone process from port to port.

Regardless of the introduced or native status of the species in-
habiting ports, organisms can be transported with no relation to their 
natural dispersal ability or to hydrodynamic features. Thus for sessile 
species inhabiting ports, isolation- by- distance, or isolation- by- currents 
patterns can be erased. In their study, Lacoursière- Roussel et al. (2012) 
showed that the number of trips recorded between pairs of marinas 
better explained the genetic similarity among populations of the co-
lonial tunicate Botryllus schlosseri than did geographic distance. This 
finding is consistent with the study of Ulman et al. (2019) who exam-
ined the nonindigenous species present on the hulls of 600 boats in 25 
marinas along the northern Mediterranean coast. They concluded that 
a large proportion of boats carry nonindigenous species that are often 
absent in their home port. It is interesting to note that these boats vis-
ited on average 7 to 8 ports per year, and some of them sailed from the 
Eastern Mediterranean to the Western Mediterranean.

TA B L E  1  Examples of abiotic stressors in ports and of their biological effects

Abiotic stressor Effects References (examples)

Novel habitat (pontoons, pilings) made of 
artificial substrates (e.g., steel, concrete) 
and with particular shape and size

Epibiotic assemblages different from 
adjacent natural hard substrates (such as 
stones and rocky reefs); shading effects 
facilitating the settlement of invertebrate 
species, such as ascidians, showing a 
preference for downward surfaces

Connell, 2000; Bax et al., 2002; Rius 
et al., 2010; Tait et al., 2018

Chemical pollutants (e.g., heavy metals, 
organic pollutants, polycyclic aromatic 
hydrocarbons)

Selection for resistance to pollutants; 
e.g., tolerance to copper enhancing 
recruitment of the bryozoan Watersipora 
subtorquata; decrease in native 
species diversity, and dominance by 
nonindigenous species tolerant to 
antifouling paints

McKenzie et al., 2012; Piola & 
Johnston, 2007; Floerl & Inglis, 2005; Tait 
et al., 2018, and references therein

Artificial light at night (ALAN) Modification of fish assemblages with 
night lighting, with an increase in large 
predatory fish

Becker et al., 2013

Noise pollution Change in behavior and physiology of 
invertebrates (e.g., increase oxygen 
consumption) sensitive to harbors 
ambient- noise

Wale et al., 2013

Frequent disturbances due to infrastructure 
maintenance

High turn- over of the community (sessile 
species); Massive die- off followed by 
rapid (re)colonization by opportunistic and 
short- lived sessile species

Airoldi & Bulleri, 2011; Figueroa et al., 2021; 
Pineda, Turon, et al., 2016a; Rivero 
et al., 2013; Ruiz & Hewitt, 2002

Reduced wave actions and tidal currents 
(physical barriers such as seawalls, 
breakwater, and jetties)

Reduce currents and flow, favorable to wave 
action intolerant species; e.g., higher 
abundance of the seaweed Codium fragile 
on the sheltered side of breakwalls; 
increased abundance of invertebrates 
with short- lived larvae possibly due to 
larval retention

Bishop et al., 2017 and references therein; 
Bulleri et al., 2006; Rivero et al., 2013

Ships in abundance Favor introduction and establishment 
of nonindigenous species; stowaway 
pathways for transporting resident port 
species

Bax et al., 2002; Bishop et al., 2017; Dafforn 
et al., 2012; Dafforn et al., 2009; Glasby 
et al., 2007
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564  |    TOUCHARD eT Al.

Organisms can be transported on ship hulls at various stages of 
their life cycle, including microscopic stages, such as postlarval/ju-
venile stages for invertebrates or gametophytes in seaweeds. This 
connectivity driver can create a mosaic genetic structure. This is 
exemplified by the Pacific kelp Undaria pinnatifida, which has lim-
ited natural dispersal ability but can be easily transported on an-
chors, ropes, and hulls (Figure 2). In Brittany, where this seaweed 
is largely distributed, and particularly conspicuous in marinas, a 
SNP- based study revealed a patchy genetic structure most likely 
explained by anthropogenic transport in and out of ports (here ma-
rinas), inducing low levels of differentiation either between distant 
or close locations (Guzinski et al., 2018). Similar patterns of mosaic 
genetic structure unrelated to distance, and including long- distance 
dispersal events related to boating, have been reported for other 
species with short- lived larvae, such as the sea- squirt Ciona intesti-
nalis in its native range in the English Channel (Hudson et al., 2016), 
the cosmopolitan and cryptogenic tunicate B. schlosseri in Canada 

(Lacoursière- Roussel et al., 2012) or the colonial invasive tunicate 
Didemnum vexillum (Prentice et al., 2021). We note that excep-
tions to this observation exist, such as the spread of the ascidian 
Styela plicata in harbors along the Spanish coasts (Pineda, Lorente, 
et al., 2016b). However, altogether, human- mediated pathways lead 
to connection shortcuts between distant populations and facilitate 
the shuffling of genetic diversity and the mixing between genetic 
lineages of species inhabiting ports.

2.2  |  Gene flow spillover from ports to 
natural habitats

Most of the genetic studies comparing populations from natural 
and port habitats have been carried out on nonindigenous species 
(but see Fauvelot et al., 2009, described below), to examine their 
expansion and risk of spread into natural habitats. These studies 

F I G U R E  1  Anthropogenic 
translocations open new pathways and 
connect habitats at different scales. 
(a– c) represent processes happening at a 
regional scale. (a) Artificial and offshore 
structures can act as stepping stones 
and become springboards for organisms 
to disperse and colonize other locations. 
(b) Natural dispersal (in green) depends 
on the species’ dispersal abilities and is 
mostly done between close locations. 
Thus, the further two populations are 
from each other, the more differentiated 
they will be. Meanwhile, shipping (in 
red) sustains both short-  and long- 
distance translocations. Dispersal by 
human action breaks the isolation- by- 
distance patterns and can bring down 
the genetic structure of populations or 
make it more complex. (c) Shipping can 
be responsible for spillovers from ports 
to wild populations and help organisms 
colonize locations where they are not yet 
established. (d) Transoceanic shipping 
translocates organisms on a global scale, 
potentially bringing them into contact 
with geographically distant lineages; some 
of them might have evolved in complete 
allopatry.

 17524571, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13443 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [03/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  565TOUCHARD eT Al.

have most often documented gene flow between the port and 
natural habitats (Figure 1c). Spillover effects, which is the seed-
ing of natural habitats by dispersers from populations established 
in ports, have been for instance shown for the introduced Pacific 
kelp U. pinnatifida (Guzinski et al., 2018). This spillover process 
is similar to escapees of cultivated marine species from aquacul-
ture farms, leading to deviations from natural dispersal patterns 
(e.g., goldsinny wrasse fish; Jansson et al., 2017) and population 
reinforcement at species edge range (e.g., corkwing wrasse; Faust 
et al., 2021). Similarly, in the case of the Pacific kelp, ports have 
been shown to promote the establishment of this introduced sea-
weed in the wild (Epstein & Smale, 2018a,b; Guzinski et al., 2018). 
Interestingly, spillback events, i.e., the colonization of novel 
ports by individuals coming from the wild, have also been docu-
mented in U. pinnatifida (Salamon et al., 2020), suggesting regu-
lar bi- directional gene flow between wild and artificial habitats. 
Likewise, for the ascidian species Microcosmus squamiger, Ordóñez 
et al. (2013) found no differences between populations on natural 
and artificial substrates, suggesting regular exchanges between 
the two populations categories.

Ports may influence the genetic diversity of populations in natu-
ral habitats because of sustained immigration from port populations 
to neighboring wild populations. Using a paired replicated sampling 
design, a microsatellite- based genetic analysis of the limpet Patella 
caerulea showed that populations established in artificial habi-
tats, breakwaters, have lower genetic diversity than populations 

established in nearby natural habitats, reefs, while not being genet-
ically differentiated (Fauvelot et al., 2009). Based on these results, 
the authors suggested that the expanding populations from artifi-
cial habitats might lead to a decrease in the overall genetic diversity 
of the study species on a regional scale. Studies are still too scarce 
for assessing the true importance and consequences of the influ-
ence of port- to- wild gene flow. However, ports are without doubt 
opening novel pathways, and they may act as sources for unstable 
or endangered natural populations or conversely be sinks due to 
propagule retention in ports. These outcomes are likely dependent 
on specific properties, such as local population density, reproduc-
tive outputs, biofouling abilities, or pelagic larval duration. There 
is thus a dire need for more studies of species inhabiting the two 
types of habitats in the same region, to provide a comprehensive 
understanding of the impact of these novel habitats on the eco- 
evolutionary dynamics of the biota in natural habitats, notably in 
terms of the spread of advantageous alleles or, conversely, migra-
tion load and “genetic pollution” as discussed below.

3  |  PORTS A S NATUR AL E XPERIMENTS 
OF ADAPTIVE E VOLUTION IN A PATCHY 
ENVIRONMENT

Ports are singular habitats that can select for particular geno-
types (Box 1, Table 1). The network of urbanized islands (i.e., ports) 

F I G U R E  2  Illustration of the biofouling pathways for spreading the Pacific kelp Undaria pinnatifida from port to port. This seaweed 
native to Asia has been introduced in New Zealand and Europe during the 1970s– 1980s. It is a short- lived species, with a life- cycle 
alternating macroscopic diploid sporophytes (left and central picture) and microscopic haploid gametophytes (right picture) that can both 
be found attached to boat hulls, anchoring systems, or ropes. While natural dispersal by spores or gametes occurs at a very short distance 
(<10– 100 m; Forrest et al., 2000), it can be easily spread over long distance (>100 km) through shipping trade and leisure boating, as 
evidenced by both field and genetic studies (Epstein & Smale, 2017; Guzinski et al., 2018; South et al., 2017). Ports, and associated shipping 
and boating, provide major expansion pathways and are responsible for long- distance dispersal events of this introduced seaweed.
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566  |    TOUCHARD eT Al.

connected by anthropogenic gateways (i.e., maritime traffic), inter-
twined in a sea of wild habitats (Figure 1b,c) is the ideal place for 
convergent evolutionary changes (Alter et al., 2021; Santangelo 
et al., 2022). We will first examine how adaptation originates and 
propagates. At the gene level, locally adapted alleles can (i) have mul-
tiple independent mutational origins, (ii) be ancestrally shared, or (iii) 
spread throughout subpopulations via gene flow, or a combination 
of these three scenarios (Bierne et al., 2013; Welch & Jiggins, 2014). 
We then discuss possible outcomes of local adaptation in ports once 
they have evolved. Importantly, can such adaptive changes resist 
gene swamping (i.e., can locally advantageous alleles persist in the 
population)? Or conversely can they be exported into the wild? Or 
finally, can the coupling between new port adaptation and a nonin-
digenous genetic lineage favors the establishment and spread of this 
nonindigenous lineage that otherwise would be trapped in its native 
range by natural barriers? We address these two issues in turn.

3.1  |  Parallel adaptation in a patchy environment: 
Mutation, migration, or shared ancestral variation?

A population faced with a new human- induced selective pressure 
can only adapt if the appropriate genetic variation is available. 
This genetic variation might (i) stem from new mutations, or (ii) al-
ready segregate in the population as a standing genetic variation, 
or (iii) come from gene exchange with other populations or species. 
Understanding the relative importance of these sources of adaptive 
variation has practical implications for conservation, biological con-
trol, and infectious disease prevention (Harpak et al., 2021; North 
et al., 2021; Pennings, 2012). We only have a few examples of con-
vergent adaptation to ports, but the most compelling example, in 
killifish (Fundulus sp.), illustrates very well that all three sources of 
genetic variation can be observed in a single study system, and often 
in combination.

Killifishes are small fish living on the East coast of North America. 
These fishes provide us with a beautiful example of adaptation to 
lethal levels of industrial pollutants in ports. To adapt, different 
populations and species have followed different evolutionary paths 
but most often target the same or similar genes, suggesting strong 
adaptive constraints or low genetic redundancy. Reid et al. (2016) 
studied populations of the Atlantic killifish, Fundulus heteroclitus. 
They sequenced 384 whole genomes from four pairs of pollutant- 
tolerant and pollutant- sensitive populations along the US Atlantic 
coast (Figure 3). The general genome- wide pattern confirmed two 
lineages across a phylogeographic break centered in New Jersey 
(Duvernell et al., 2008). They identified candidate genomic regions 
for pollution resistance with a window- based FST- outlier approach. 
Although most candidates were specific to a single tolerant popu-
lation, the top- ranked outliers were shared among some popula-
tions and contained genes of the aryl hydrocarbon receptor (AHR) 
pathway involved in the protection from hydrocarbon toxicity. The 
aryl hydrocarbon receptor- interacting protein (AIP) gene showed 
the highest levels of differentiation among all four pairs of tolerant/

sensitive populations. However, a different haplotype has swept in 
the northern and the southern lineages of the species. These results 
support repeated adaptation from de novo variants targeting the 
same genes, as expected for a truly new environment never encoun-
tered by other populations of the species before (contrary to, e.g., 
freshwater in sticklebacks (Jones et al., 2012), wave action, and crab 
predation in Littorina (Johannesson et al., 2017) or coastal habitat in 
bottlenose dolphins (Louis et al., 2021)), and for a highly constrained 
trait with little genetic redundancy. However, at a local scale within 
a lineage, adaptive variants were shared. Lee and Coop (2017) re-
analyzed the data by fitting alternative adaptive scenarios. They 
confirmed independent sweeps in the two lineages at the AIP gene 
and found support for the three northern populations sharing the 
same beneficial allele, either via migration or selection on a young 
standing variant. The latter two scenarios are incredibly difficult 
to discriminate as they produce very similar footprints (Bierne 
et al., 2013) and even sophisticated methods, such as the one of Lee 
and Coop (2019), struggle when populations are highly related. The 
study of another species, F. grandis, provided a new look at the issue. 
Oziolor et al. (2019) searched for signatures of selection that co- vary 
with a pollution gradient in the extremely polluted Houston harbor, 
well known for its petrochemical industry and dedicated seaport. 
They again found that genomic regions showing the strongest sig-
natures of selection contain genes of the AHR pathway. A region 
containing an AHR deletion was surprisingly more similar to F. het-
eroclitus haplotypes than to other F. grandis haplotypes. Using the 
Lee and Coop method, Oziolor et al. (2019) demonstrated that in-
trogression of the deletion- bearing haplotype was much more likely 
than a shared ancestral polymorphism. Given that F. heteroclitus 
does not live in the Gulf of Mexico, introgression was likely mediated 
by recent human- assisted transport. This is one of the best examples 
of adaptive introgression mediated by human activities to date.

3.2  |  Migration load, gene pollution, or new 
lineage escape

Although rarely examined, several studies have documented gene 
flow between natural and port populations (see Section 2). Looking 
for adaptive responses specific to ports thus also requires consider-
ing neighboring wild populations and the possible threat that port 
populations can impose on them. There are three broad possible 
outcomes:

1. Given that ports are small pockets of urbanized habitats and 
many marine species have high dispersal potential, gene swamp-
ing may prevent local adaptation from evolving in ports if the 
selection is not strong enough (Lenormand, 2002), or if genomic 
architecture (i.e., the genomic location of alleles contributing 
to the adaptive trait) does not evolve in concert to protect 
locally adapted gene regions from swamping (Schaal et al., 2022; 
Yeaman, 2013, 2015). Although the killifish study suggested 
adaptation to the port could be fast- paced, some other works 
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have failed to confirm evidence for local adaptation. For example, 
Guzinski et al. (2018) did not find evidence of local adaptation 
between ports and natural rocky habitats colonized by the 
brown nonindigenous alga U. pinnatifida, which may be due to 
high gene flow (see Section 2.2; Figure 1c). One alternative 
explanation for gene swamping is that the density of molecular 
markers was too low to pinpoint selection targets. To date, 
only very few studies have used whole- genome sequencing to 
study adaptation to ports. The open nature of small ports like 
marinas and fishing ports could favor local gene swamping. While, 
available evidence suggests limited connectivity between large 
ports and the local seaside because of the presence of docks 
and locks in these large ports. Controlling this connectivity 
could be an unconsidered management option for ports to 
limit the establishment of locally adapted genotypes or species. 
Usually, ports develop by increasingly enclosing water masses 
with new docks and locks, especially in the most enclosed part 
of the port. Deliberate opening up of ports could favor the 
entrance of seaside waters and propagules of native genotypes 
or species in ports, which could result in such a swamping of 

locally adapted port lineages. This evolution- aware transient 
open- port strategy could be worthy of consideration in port 
management plans for biodiversity.

2. Once a locally adapted genotype or lineage is established in a 
port, one may fear gene flow toward surrounding natural popula-
tions (uncontrolled flow of detrimental, locally adapted alleles, or 
genetic incompatibilities into wild populations). Species that man-
age to colonize ports often make dense luxuriant populations. 
Therefore, the potential spillover pressure of port- ecosystems to-
ward surrounding populations, as shown for U. pinnatifida (Epstein 
& Smale, 2018a,b; Guzinski et al., 2018; see Section 2.2) should 
be examined. This is of concern because ports are sometimes 
considered as a putative refuge for species coping with global 
change and anthropogenic pressure. They are even proposed as 
a solution for mitigating environmental impacts and contribut-
ing to the management and protection of marine coastal ecosys-
tems, notably through eco- engineering approaches (Mayer- Pinto 
et al., 2017). Given adaptive trade- offs are common, it is likely 
that port adaptations should be costly in the wild. Gene knock-
down alleles found in killifish populations of the pollution gradient 

F I G U R E  3  Adaptation in a patchy environment. In this schematic scenario, two lineages of one species (species 1) are separated by a 
barrier to gene flow. In each location, one population is found in a port habitat (filled circle), another one in a wild habitat (empty circle). 
Two independent convergent mutations (μ1 and μ2) related to adaptation to the port environment appear in one population of each lineage 
(adaptation by de novo mutations). These mutations then propagate to close populations found in the same port habitat by gene flow 
through wild populations (thanks to migration- selection balance that maintains a low frequency of port- adapted alleles in wild populations, 
aka transporter hypothesis) or helped by maritime traffic. This latter anthropogenic pathway may introduce individuals with the mutation to 
an area where a second species (species 2) is found in port habitats. Introgression from the introduced species to the second species occurs, 
as this mutation is advantageous in the port environment. This process is called adaptive introgression. On the right of the figure, the upper 
tree shows the genetic relationships at neutral markers between the different populations involved, while the second tree is obtained with 
the selected locus.
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in Houston harbor are an informative example of this trade- off 
(Oziolor et al., 2019). We also suspect that, although luxuriant, 
port populations are nonetheless small pocket populations that 
might accumulate deleterious mutations faster than wild popu-
lations that, although less dense, are broadly and continuously 
distributed. While there is little experimental and theoretical evi-
dence to confirm or refute the hypothesis that maladaptive gene 
flow from portuarized to wild populations is a real concern for 
conservation, there is no doubt that this hypothesis deserves fur-
ther empirical evidence, and as such is an important direction for 
future research.

3. Finally, the last threat could be the escape of new portuarized 
lineages out of the port, where entire genomes instead of some 
alleles would spread into the wild. This scenario implies that the 
portuarized population is a differentiated (semi- )isolated line-
age. It should thus likely require either long- term evolution, or 
admixture and (un)coupling with pre- existing semi- isolated line-
ages introduced in ports by the shipping traffic (see below). If the 
conditions are met, human- altered evolution in port- ecosystems 
can result in super lineages (i.e., intrinsically fitter) that can ben-
efit from genetic (heterosis) and demographic (density gradient) 
boosters favoring escape and spread outside of ports. Despite a 
lot of evidence of invasive marine species entering through ports 
and spreading from their entrance point, there is little evidence 
of the same thing occurring for a lineage (but see a dock mus-
sel ecotype that escaped from the port of Brest to the neighbor-
ing estuary in Simon et al., 2020, as detailed in Section 4 below). 
However, we expect forthcoming genome- wide surveys will un-
mask such hidden invading lineages in the near future.

4  |  PORTS A S IDE AL ARENA S FOR 
THE STUDY OF ANTHROPOGENIC 
HYBRIDIZ ATION

Maritime traffic associated with ports has opened secondary 
contact of species across biogeographic boundaries (Figure 1d; 
Sardain et al., 2019). Admixture— the genetic mixing of differenti-
ated taxa— is considered as one possible way by which introduced 
species may adapt to their novel environment, i.e., through recom-
bination processes leading to evolutionary novelties (for reviews 
see, Bock et al., 2015; Rius & Darling, 2014; Rius et al., 2015). 
Admixture can happen along the genetic gradient of differen-
tiation of the speciation continuum (Roux et al., 2016). The term 
admixture can be used to describe both intra-  and interspecific 
genetic mixtures. The term hybridization is exclusively used to 
characterize the process of interbreeding between partially repro-
ductively isolated lineages and leading to admixture. Besides ad-
mixture between different populations of a given species, another 
evolutionary consequence of transports of species by shipping 
is anthropogenic hybridization— hybridization driven by human- 
mediated changes through environment alterations or species dis-
placement (Viard et al., 2020).

We focus in this section on interspecific hybridization and ex-
clude the discussion of the introduction and admixture of multi-
ple sources of the same species. The role of human disturbance in 
hybridization has been well studied in plants and numerous works 
have shown that the contribution of nonindigenous species is non- 
negligible in the production of hybrids (Abbott, 1992; Anderson & 
Stebbins, 1954; Guo, 2014; Preston & Pearman, 2015). It is thus ex-
pected that the marine realm, and ports more specifically, should 
set the scene for rampant anthropogenic hybridization. Despite this 
expectation, the low amount of observed and studied examples 
represents a paradox. In this section, after considering the potential 
causes of this paradox and how to overcome it, we discuss the popu-
lation genetic outcomes of anthropogenic hybridization in ports and 
how ports can serve as study systems for speciation research.

4.1  |  Detection and study of anthropogenic 
hybridization in and around ports

While anthropogenic hybridization in ports can be thought to be 
frequent given the recurrent introduction of diverse nonindigenous 
species, studied examples remain particularly scarce (Le Moan 
et al., 2021; Popovic et al., 2020; Simon et al., 2020). It is currently 
difficult to evaluate if the low number of anthropogenic hybridiza-
tion examples in ports have a biological basis, or whether it is simply 
a by- product of a blind spot of research pertaining to the field of 
marine urban evolution. Two main issues might hinder the detection 
of anthropogenic hybridization in ports, explained below.

The easiest cases of hybridization to notice are those where 
two species have easily identifiable morphological traits. However, 
cryptic species— evolutionary divergent lineages that are indistin-
guishable based on conspicuous morphological characters— are par-
ticularly abundant in the marine environment (Appeltans et al., 2012; 
Chenuil et al., 2019). Therefore, the exclusive use of morpholog-
ical classification in the search for nonindigenous species in ports 
might bias our perceived landscape of species in contact. Chenuil 
et al. (2019) proposed two nonexclusive causes for the amount of 
marine cryptic species: (i) Around half of the cryptic species still re-
quire taxonomic revision, and (ii) life- history traits of marine spe-
cies could explain their propensity to have cryptic species (e.g., large 
population sizes or high within- species morphological variation). 
Overall, as described by Pante et al. (2015), the failure to describe 
and recognize evolutionary- relevant lineages can create erroneous 
starting hypotheses on which downstream analyses are based (in 
their case, connectivity).

Current DNA- based methods used for describing communities 
and detecting nonindigenous species are not equipped to detect hy-
bridization. Revealing hybridization is a difficult task that requires 
the use of specific DNA- based methods (Payseur & Rieseberg, 2016; 
Viard & Comtet, 2015). While metabarcoding studies are important 
for the discovery of invasions, they suffer from a lack of power to 
investigate hybridization, which typically requires multilocus anal-
ysis (e.g., Le Moan et al., 2021; Simon et al., 2020). Two cases can 
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be considered where hybridization cannot be demonstrated in the 
data when using a limited number (usually one or two) of barcoding 
markers: (i) The locus used for barcoding is introgressed from the 
native species into the nonindigenous species population used as a 
reference and/or the hybrids; (ii) the locus used is not discriminant 
enough at the species complex scale. Both examples could easily 
happen for species still in the gray zone of speciation. For instance, 
Mytilus trossulus was initially spuriously identified in an eDNA study 
in an area with natural M. edulis, using a mitochondrial marker. This 
was due to the fact that the reference samples of M. trossulus in the 
database come from the Baltic sea, where the M. edulis female mi-
tochondrion has introgressed (Couton et al., 2022). We nonetheless 
expect that progress will allow us in the near future to better and 
more systematically identify cryptic hybridization, with specimen 
sampling first but also with dedicated eDNA sample analyses as a 
second step.

Finally, when introductions can be properly identified, determin-
ing the hybridization status of nonindigenous species and follow- up 
detailed studies require the use of genomic or at least multi- marker 
methods. Le Moan et al. (2021) provided a compelling example of 
introgression that could have been missed by only looking at a few 
markers along the genome. By using a genome- wide method (ddRAD 
sequencing), they uncovered an introgression breakthrough from 
C. robusta into C. intestinalis in a specific genomic hotspot, which 
was observed in multiple zones of contact in ports between the 
two species. This recent introgression was previously missed even 
with the use of a large ancestry informative SNP panel, due to its 
very localized position in the genome (Bouchemousse et al., 2016; 
Le Moan et al., 2021). The analysis of whole- genome sequences 
provided support that this introgression breakthrough is adaptive 
(Fraïsse et al., 2022).

4.2  |  Port characteristics provide suitable 
conditions to study reproductive isolation

Evolutionary biologists are still far from understanding all the sub-
tle nuts and bolts controlling the outcomes of hybridization, both 
theoretically and empirically (but see Abbott et al., 2013; Abbott 
et al., 2016, for reviews on the subject). On par with natural second-
ary contacts, anthropogenic hybridizations provide “laboratories for 
evolutionary studies” (Grabenstein & Taylor, 2018; Harrison, 1990; 
Hewitt, 1988; McFarlane & Pemberton, 2019). Recent second-
ary contacts in ports provide evolutionary biologists with in situ 
laboratories that are quite different from postglacial hybrid zones. 
Contrary to postglacial contacts, anthropogenic contacts are more 
recent, with fewer generations of admixture, and in nonequilibrium 
situations (spreading waves). Additionally, the demography is differ-
ent, with more asymmetry between the two lineages in contact, and, 
above all, contacts are often replicated at several places while post-
glacial hybrid zones have little replication. Viard et al. (2020) already 
pinpointed several evolutionary questions related to anthropogenic 
hybridization in marine environments. We are particularly interested 

here in how the study of such contacts in ports could advance re-
search in evolutionary biology.

The outcome of anthropogenic hybridization, similarly to natu-
ral secondary contacts, is dependent on various factors including 
reproductive isolation mechanisms in place between the species in 
contact, the environment where the contact takes place, and the de-
mographic context (Abbott et al., 2013; Viard et al., 2020). Factors 
influencing hybridization that are specific to ports include, for exam-
ple, changes in reproductive barriers, new environments, variability 
in propagule pressure (Viard et al., 2016), or enclosed spaces (see 
Section 3).

Anthropogenic displacement potentially brings together geo-
graphically distant lineages that might have evolved in complete 
allopatry. In such cases, given a similar divergence, species are ex-
pected to show reduced prezygotic reproductive isolation com-
pared with species evolving in sympatry (Coyne & Orr, 1997; Matute 
& Cooper, 2021). Conversely, species evolving in parapatry or with 
a history of recurrent secondary contacts might present increased 
prezygotic isolation due to reinforcement processes (Servedio 
& Noor, 2003). While reinforcement has been shown in multiple 
groups, evidence of this process is still rare among marine taxa 
(Palumbi, 1994). Incidentally, hybridization is expected to be eas-
ier between species naturally separated by biogeographic barriers 
forced into contact by human- mediated displacement. Geographic 
barriers are the first reproductive barrier to be broken down by 
ports and associated anthropogenic activities (Figure 1d).

Ports can secondarily provide environments disrupting pre-  
and postzygotic barriers to gene flow. For instance, turbidity 
caused by eutrophication or increased suspended sediment is 
known to impact mate choice in aquatic environments. While 
the consequences have mainly been studied in freshwater fishes 
(Candolin et al., 2007; Seehausen et al., 1997, 2008), marine fishes 
could be exposed to the same constraints in ports (Järvenpää & 
Lindström, 2004; Todd et al., 2019). Additionally, chemical cues 
for sexual recognition, which exist in marine organisms in diverse 
phyla (Evans et al., 2012; Hay, 2009), could also be disrupted in 
port environments due to xenobiotic molecules. Finally, urban 
environments create new habitats and postzygotic selection 
pressures (Alter et al., 2021; Todd et al., 2019), thereby opening 
selective potentials for hybrids that might display intermediate 
or transgressive phenotypes (Anderson & Stebbins, 1954; Bell & 
Travis, 2005; Rieseberg et al., 1999, 2007). In other words, natural 
fitness landscapes that previously restricted gene flow between 
two species could be modified by urban stressors.

In addition to environmental conditions, demography is influenc-
ing the outcome of anthropogenic hybridization. In ports continu-
ously connected to other areas of the planet, the propagule pressure 
might be substantial and steady (Viard et al., 2016). We thus expect 
that increased propagule pressure will reduce the founder effect 
that small introduced populations usually endure. Combined with a 
general preponderance of nonindigenous species in ports, it is likely 
that the population size of the nonindigenous species equals or sur-
passes the native one locally. During the invasion, introgression is 
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predicted to occur from the native to the introduced species due 
to asymmetric population size in favor of the native in the invasion 
front wave (Currat et al., 2008). If large populations of nonindig-
enous species are established in ports, the prediction could shift, 
with introgression occurring from the nonindigenous species to the 
native species (Viard et al., 2020), as shown with the introgression 
of the tunicate Ciona intestinalis by its introduced congener C. ro-
busta (Le Moan et al., 2021). Estimation of the impact of propagule 
pressure variation on the outcome of anthropogenic hybridization is 
lacking, as might be expected due to the complexity of accounting 
for all the interacting parameters of such scenarios. Advancing our 
understanding of this issue will require the integration of knowledge 
in speciation research and invasion science.

In terrestrial urban evolution studies, different cities are effi-
ciently used as repeated experiments of local adaptation (Santangelo 
et al., 2020, 2022). The presence of multiple interconnected ports is 
also a powerful replicated testing ground, as in the example of dock 
mussels (Simon et al., 2020). Hybridization was observed in French 
ports on the Atlantic Ocean and the English Channel, where the in-
troduced Mediterranean Mytilus galloprovincialis hybridized with na-
tive M. edulis (Simon et al., 2020). Dock mussels form homogeneous 
admixed populations established in different ports of the English 
Channel and Atlantic Ocean, providing large- scale mesocosm- like 
replicates for the future outcome of this anthropogenic hybridization. 
The similarity in admixture suggests the two species got admixed in 
one location and then dispersed to other ports by human- mediated 
transport. Additionally, as biotic and abiotic environments slightly 
vary between ports, it could open the possibility to disentangle the 
different factors important for the maintenance of those hybrid 
swarms. For instance, dock mussel populations are confronted with 
different native genetic backgrounds. One striking pattern emerging 
from dock mussels is the sharp clines in allele frequencies present at 
the entry of ports between dock mussels and native mussels, which 
constitute repeated small- scale hybrid zones. The hybrid zones that 
can be maintained at the entry of ports are interesting marine case 
studies for urban evolutionary biology. Two factors could play major 
roles in the maintenance of the created population structure: (i) In 
a classic tension zone model where clines are maintained by post-
zygotic selection on hybrids, the decrease in gene flow at the entry 
could be enough to trap a hybrid zone (Barton & Hewitt, 1985), and 
(ii) the environmental difference between ports and the natural hab-
itat could create coupling between local adaptation loci and the rest 
of the genome (see Section 4.3 below).

4.3  |  Diverse outcomes

Outcomes of hybridizations have been described extensively 
both in natural (e.g., Abbott et al., 2013; Edelman & Mallet, 2021; 
Moran et al., 2021) and anthropogenic settings (e.g., Grabenstein & 
Taylor, 2018; McFarlane & Pemberton, 2019; Ottenburghs, 2021). 
The transient and final result of hybridization between two lineages 

is strongly dependent on the divergence between them and existing 
reproductive isolation, and on the demographic context of the second-
ary contact. The processes of pre-  and postzygotic isolation and re-
combination shape the genomic patterns of ancestry that can be found 
in hybrid zones (either naturally produced or anthropogenic). As a sim-
plified overview, if hybridization is limited to the production of first- 
generation hybrids (F1), this represents an evolutionary dead end and 
results in a waste of reproductive outputs for parental lineages. When 
F1s are fertile, hybridization can lead to scenarios going from a com-
plete mixture of the two parental genomes, more or less homogeneous 
along the genome, to highly restricted introgression only impacting a 
small part of the genome (e.g., Le Moan et al., 2021). Just as it is done 
for natural hybrid zones, genome- scale studies are required to under-
stand the architecture of reproductive isolation in port hybrid zones.

Anthropogenic hybridization in ports can lead to the emer-
gence of new portuarized lineages or what could sometimes be 
called hybrid species (Mallet, 2007; Schumer et al., 2014). Hybrid 
speciation can happen either through allopolyploidization or by a 
stable ploidy recombinatorial process (homoploid hybrid speciation; 
Mallet, 2007). As highlighted in the previous section, new genomic 
combinations can produce transgressive phenotypes that might be 
readily suited to the port environment (Mallet, 2007). The case of 
dock mussels (see Section 4.2), being a homogeneously admixed lin-
eage stably conserved between different ports, raises the question 
of its status. While the hybrid character of this portuarized Mytilus 
lineage has been demonstrated, the reproductive hybridization- 
derived isolation is still to be determined according to Schumer 
et al. (2014) criteria, including reproductive isolation between dock 
mussels and the Meditteranean M. galloprovincialis parental lineage.

We postulate that coupling between local adaptation clines and 
intrinsic isolation clines could be a powerful process limiting the 
spread of an invasive genomic background outside ports (Box 2). 
This scenario may be readily happening in dock mussels at the entry 
of ports. The hybrid swarms formed by dock mussels are thought 
to have reshuffled reproductive incompatibility loci that could still 
maintain the separation with native mussels (Simon et al., 2020, 
2021). This process might explain the lack of invasion of natural 
habitats by dock mussels, in contrast with examples of rapid in-
vasion by M. galloprovincialis in areas without much hybridization 
(Saarman & Pogson, 2015) or without native Mytilus congeners 
(Branch & Steffani, 2004). Interestingly, dock mussels are known to 
have escaped the port environment in the instance of the Bay of 
Brest (Simon et al., 2020). It is difficult at this point to conclude if 
this outcome is due to the specific environment (e.g., the presence 
of an estuary close to a port environment), a reduced reproductive 
isolation with the local M. galloprovincialis inducing weaker coupling, 
or a phase reversal of the coupling between exogenous and endoge-
nous backgrounds (Bierne et al., 2011). In this latter case, one might 
predict that M. galloprovincialis, if it is confirmed to really be intrin-
sically fitter than other species/lineages (as hypothesized in Bierne 
et al., 2006), can take advantage of ports as gateways for colonizing 
new areas that would be unattainable otherwise.
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5  |  PORTS A S ME ANINGFUL URBAN 
PL AYGROUNDS FOR E VOLUTION STUDIES

Ports constitute meaningful urban evolutionary playgrounds where 
anthropogenic pressures and their effects on species lead to what 
we propose to call and define “biological portuarization” (Box 3). 
Anthropogenic activities drive evolutionary changes in response to 
disturbed and changing environments, and this is well- exemplified 
in ports. In previous sections, we documented a series of evolution-
ary outcomes linked to port singularities, as summarized in Figure 4. 
We have shown that the connectivity provided by human activities 
in ports— both at regional and global scales— combined with urban 
stressors, provide fertile ground for evolutionary processes. Indeed, 
both the reshuffling of genetic diversity and the selection of port 
environments can be the source of local adaptations. Additionally, 
anthropogenic hybridization is expected to be an important phe-
nomenon in ports and provide a new avenue for the study of 
reproductive isolation and the outcome of hybridization. Other evo-
lutionary consequences also start to be documented, such as patho-
gens transmission and host- pathogen co- evolution, as illustrated by 
transmissible cancer in Mytilus spp., which spread from the Northern 
to the Southern hemisphere most likely through biofouling on boats 
(Yonemitsu et al., 2019).

In addition to the intrinsic value of studying evolutionary 
processes in ports for its fundamental understanding, we also 
highlighted potential applications for nonindigenous species man-
agement and conservation, and putative threat that port populations 

could impose on wild populations. For instance, we pointed out that 
enhanced controls of the opening between the port and seaside 
waters could promote gene swamping in portuarized populations, 
and that the coupling between local adaptation clines and intrin-
sic isolation clines could slow down the spread of invasive species. 
Altogether, we argue that evolutionary processes in ports can play a 
major role regarding conservation issues and should be better taken 
into account in management decisions.

There are considerable opportunities to fill several knowledge 
gaps. First, to date, only a few evolutionary studies have been ded-
icated to marine urban environments in general (Alter et al., 2021), 
and ports in particular. Indeed, marine population genetics has long 
been mainly interested in natural populations, and sampling is gen-
erally carried out outside urbanized environments. Consequently, 
there is an urgent need for increased screening of ports in popu-
lation genetic studies to uncover shifts in connectivity (Section 2), 
mechanisms sustaining local adaptations (Section 3), and/or cases 
of anthropogenic hybridization (Section 4). Second, ports are most 
often considered as homogenous entities, while they are more 
likely to be equally environmentally heterogeneous as the urban 
mosaic itself. This has been readily documented by ecological 
studies that showed specific communities associated with partic-
ular port microhabitats (e.g., floating pontoons vs. pilings, Leclerc 
et al., 2020), and should therefore be taken into account in the con-
text of evolutionary hypothesis testing. Experimental set- ups will 
have to be carefully designed to account for port properties. Third, 
experimental approaches to describe particular port phenotypes 

BOX 2 Ports and the (un)coupling hypothesis

The coupling hypothesis postulates that genetic barriers between pre- existing semi- isolated lineages can sometimes couple with 
new environmental heterogeneities (Abbott et al., 2013; Bierne et al., 2011). Under this hypothesis, the distribution of lineages 
according to the environmental landscape can be new, although the genetic barriers that maintain genetic divergence between 
lineages are old. Under this model, genotype- environment associations are better explained by pre- existing intrinsic reproductive 
barriers that became trapped by an ecotone, just like it could easily be trapped by local dispersal barriers or density troughs (Barton 
& Hewitt, 1985; Bierne et al., 2011).

We can hypothesize that port entries might act as environmental and/or dispersal barriers capable of trapping pre- existing 
reproductive barriers (Figure step 3). In contrast with their preponderant role in the influx of alien species, ports could also act as 
retention basins allowing to slow the spread of an invasive background if endogenous barrier loci can stay coupled with exogenous 
barriers at the entry of the port. This hypothesis will require the acquisition of evidence of both environmental data, and examples of 
anthropogenic hybridizations trapped in ports (Simon et al., 2020). We hope future studies of anthropogenic hybridization in ports 
will be vigilant to not neglect the coupling hypothesis when detecting genotype- environment associations at the entry of ports. 
Indeed, local adaptation to port environments might explain the position of genetic clines, but endogenous barrier loci might be the 
main factor that maintains them.

Conversely, however, ports can also promote the spread of introduced semi- isolated lineages if connectivity, environmental 
heterogeneity, and population densities favor new associations between local adaptation genes and intrinsic barriers. Once a semi- 
isolated lineage has managed to colonize a port, the concomitant roles of high propagule pressure, low population density of the local 
lineage in the port, and local selection can result in the escape of such lineage from the port environment. As a result, a recombinant 
genotype that associates the fittest lineage with wild- adapted alleles reaches a sufficient frequency to initiate a new wave of advance 
in the natural environment (Figure step 4).
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F I G U R E  4  Biological portuarization 
and its evolutionary outcomes. Ports are 
singular habitats due to their particular 
abiotic and biotic properties, at local and 
global (seascape) levels. They are the 
port- of- entry of non- native lineages and 
species and the nodes of a vast and dense 
network. Evolutionary outcomes already 
documented are diverse, including genetic 
diversity shuffling, rapid adaptation, 
putative risks associated with gene 
flow in natural habitats, admixture, and 
hybridization among others.

BOX 3 “Biological portuarization”: Life- sized evolutionary experiments for the marine environment

We here define “biological portuarization” as the evolution of marine species in port- ecosystems under human- altered selective pres-
sures, by analogy with the urbanization process on land that creates novel selective pressures for resident species (Szulkin et al., 2020), 
with domestication in agro- ecosystems (Larson & Fuller, 2014), or with pestification (Saleh et al., 2014), the co- evolution of pathogens in 
relation to the selection of crop or animal lineages during domestication. Portuarization is a word that does not yet exist in English but 
does exist in French (“portuarization”) and means “to give a port characteristic to”. We believe it is useful to introduce new terminology 
to describe each type of human- induced evolution in order to better delineate it, study it, and communicate about it, if, as we suspect, it 
proves to be a threat to biodiversity. The study of biological portuarization is a stimulating way to investigate fast evolutionary responses 
to human- altered environments, in particular facing increasing coastal hardening associated with boating and shipping (Floerl et al., 2021).

Experimental evolution provides a precious lens on evolutionary processes, but this only applies to short life- cycle organisms, in a 
simplistic environment, and during very short adaptive pulses (Kawecki et al., 2012). Alternatively, the study of domestication is also 
a fruitful area of investigation, providing evolutionary experiments that unfold over longer periods (Larson & Fuller, 2014). For similar 
reasons, urban evolution has recently become a fertile area of research, providing replicates of adaptation to urbanized environments 
(Santangelo et al., 2022; Szulkin et al., 2020). Fisheries- induced evolution, which typically results in smaller fishes with a younger age at 
maturity due to size- selected catches by fishing gears (Ernande et al., 2004), is also a nice example of human- induced evolution providing 
useful information and allowing to calibrate evolutionary models. However marine evolutionary sciences have to date little followed this 
idea of identifying and investigating life- size experiments derived from human activities. Ports provide such life- sized experiments to 
better examine ongoing evolutionary processes, and thus better calibrate theoretical models and fine- tune our projections. We argue 
that ports are (understudied) Darwinian arenas that provide replicates of life- sized evolutionary experiments.

Ports can be compared with “giant mesocosms” where species develop, survive, and reproduce in novel and singular environments, 
within uniquely new species assemblages with invasive and native taxa coexisting. Humans have built ports on all the coasts of the world, 
allowing people to travel and to develop trade. Since the second half of the 20th century, maritime traffic has strongly intensified and 
ports have become larger and more numerous. These are trends that are not expected to fade (Bugnot et al., 2021; Jouffray et al., 2020; 
Sardain et al., 2019), while also providing replicated evolutionary playgrounds across the world (Santangelo et al., 2020). We are advocat-
ing for the development of research dedicated to examining biological portuarization.
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are currently lacking. This is fertile ground for future research. 
Demonstrating the availability of distinct port phenotypes (or phe-
notypes pertaining to distinct microhabitats of the port environ-
ment, see Cheptou & Lambrecht, 2020, for a terrestrial example) 
may indeed be key to test adaptive or acclimation processes, and 
to better understand the outcomes of anthropogenic hybridiza-
tion. Fourth, the putative threats due to escapees of portuarized 
genotypes in natural populations also deserve dedicated studies, 
including joint investigation of adjacent natural and port habitats, 
both contributing to an ever- changing coastal network.

To conclude, the spatially repeated port singularities make these 
marine urban habitats perfect arenas for evolutionary studies, in-
cluding large- scale in situ experiments, which can be compared with 
“giant mesocosms”. The use of ports as field labs for evolutionary 
studies will be strongly dependent on (i) knowledge of the environ-
mental conditions within and between ports, (ii) the ability to com-
pare these conditions with those pertaining to the native ranges of 
the species under study, and (iii) the need to properly quantify propa-
gule pressure. Large- scale and time- detailed ecological conditions are 
accessible through remote sensing (temperature, salinity, chlorophyll, 
etc.; Lecours et al., 2021), but their availability at the scale of ports 
appears to be limited. Additionally, propagule pressure is a difficult 
parameter to estimate and relies on surveys, proxies, and model esti-
mations (e.g., Drake et al., 2015). Therefore, interdisciplinary research 
that integrates port ecology, transport networks, and evolution will 
be necessary to tackle the questions we have developed in this paper.
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