

Influence of ZnF2 and ZnCl2 on luminescence investigations and crystal field calculation of Eu3+ doped zinc oxide-phosphate glasses

Samah Amrouch, Rekia Belhoucif, Mohand Chalal, Matias Velázquez,

Yannick Guyot, Omar Lamrous

▶ To cite this version:

Samah Amrouch, Rekia Belhoucif, Mohand Chalal, Matias Velázquez, Yannick Guyot, et al.. Influence of ZnF2 and ZnCl2 on luminescence investigations and crystal field calculation of Eu3+ doped zinc oxide-phosphate glasses. Optical Materials, 2022, 128, pp.112387. 10.1016/j.optmat.2022.112387 . hal-03715988

HAL Id: hal-03715988 https://hal.science/hal-03715988

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Influence of ZnF₂ and ZnCl₂ on Luminescence investigations and crystal field calculation of Eu³⁺ doped zinc oxide-phosphate glasses

Samah Amrouch ^{*,A,B}, Rekia Belhoucif ^{C, D,E}, Mohand Chalal ^{C,F}, Matias Velázquez^B, Yannick Guyot ^G, Omar Lamrous ^A

^A Laboratoire de Physique et Chimie Quantique (LPCQ), Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou, Algeria

^B Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 38000, Grenoble, France

^CFaculté de Physique, Laboratoire d'Électronique Quantique, USTHB, BP 32 El alia, 16111 Bab Ezzouar, Alger, Algeria

^DFaculté des Sciences, Département de Physique, UMBB, Route de la Gare Ferroviaire, 35000, Boumerdes, Algeria

^ELaboratoire Revêtement, Matériaux et Environnement, UMBB, Boumerdes, Algeria

^FLaboratoire CSPBAT, CNRS (UMR 7244), Université Sorbonne Paris Nord, UFR SMBH, 74 rue Marcel Cachin, 93017[´]Bobigny, France

^G Institut Lumière matière (ILM), UMR-CNRS 5306, Université Lyon1, F-69622 Villeurbanne Cedex, France

E-mail: *amrouch.samah@ummto.dz

Abstract: A series of Eu³⁺-doped 70NaPO₃-20ZnO-10(ZnF₂ / ZnCl₂) glasses were prepared by conventional melting quenching method. The samples were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), electron probe microanalysis (EDS/WDS) and optical spectroscopy. Using the emission spectra a set of Judd-Ofelt (JO) intensity parameters (Ω_2 , Ω_4 , Ω_6) was refined, which in turn permitted to calculate transition probabilities (A_{ED}, A_{MD}), branching ratios (β), radiative lifetimes (τ_{rad}) and stimulated emission cross-sections for the ⁵D₀-⁷F_J transitions. The relative luminescence intensity ratio of ⁵D₀-⁷F₂-⁵D₀-⁷F₁ transitions has been evaluated to estimate the local site symmetry around the Eu³⁺ ions. Second and fourth rank crystal-field (CF) parameters together with the CF strength parameter have been reported for the first time for such study by assuming the C_{2v} symmetry for the Eu³⁺ ions in both the phosphate glasses. Large stimulated emission cross-section, high branching ratios and quantum efficiencies (~80%), also, intense red luminescence at 616 nm confirm that these present glasses suggesting for visible red lasers materials and optical devices.

Keywords: Eu³⁺ ion spectroscopy, phosphate Glasses, Judd-Ofelt theory, Second and fourth rank crystal-field.

1. Introduction

Rare-earth doped materials have a wide range of practical uses, which encourages the development of novel materials. Eu³⁺-doped crystals or glasses are promising materials for photonic devices and optoelectronics as optical amplifiers, optical communications, laser materials, sensors, high density and optical memory devices **[1-7]**. The choice for Eu³⁺ cations to dope materials is due to their narrow emission band, longer excited-state lifetimes, almost monochromatic light with excellent red emission efficiency, due to its hypersensitive ${}^{5}D_{0}{}^{-7}F_{2}$ radiative emission transition at 612 nm, and purely MD emission transition at 593 nm corresponding to the ${}^{5}D_{0}{}^{-7}F_{1}$ transition **[8-9]**.

The chemical composition of the glass host plays a very important role in the determination of the spectroscopic characteristics of Eu^{3+} ions. Among various glasses, phosphate glasses have attracted much attention due to their low melting points, high transparency, and their ability to dissolve rather high concentrations of rare earth ions before the quenching effect comes into play [10-12]. However, these hosts are chemically unstable, and their hygroscopic behavior constitutes a disadvantage for their long-term use under normal atmospheric conditions [10-14]. Addition of alkaline oxide such as (ZnO, BaO, SrO..) in phosphate glasses increases the thermal stability and the transparency in the UV- Visible spectral ranges, also helps to distribute Ln^{3+} ions throughout the matrix, preventing non-radiative relaxations which increasing fluorescence emission [15-16]. Additives such as fluorides (ZnF₂,BaF₂,PbF₂...) and chlorides (ZnCl₂,PbCl₂...) in phosphate

host are used to tailor their chemical composition, which also increases the radiative emission of the fluorescent level[9-12].

Combinations of the zinc oxide-chlorid ZnO-ZnCl₂ and zinc oxide-fluoride ZnO-ZnF₂ constituents, result exellent changes of optical and spectral performance of phosphate glasses .In this work, our contribution focuses on the effect of the additives ZnCl₂ and ZnF₂, in Eu³⁺ doped NaPO₃-ZnO glasses composition, on the optical and spectroscopic properties. A series of experimental measurements were performed, which include absorption spectra in the UV-Visible and IR spectral ranges, chemical analysis by electron probe microanalysis with wavelength dispersion spectroscopy (EPMA/WDS), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and emission spectroscopy. Finally, from the emission spectra, the Judd-Ofelt intensity parameters $\Omega_{k=2,4,6}$ and the "laser" spectroscopic parameters (β , τ_{rad} , A_{ED}, A_{MD}) were estimated. The luminescence decay of the ⁵D₀ \rightarrow ⁷F₂ transition was also analyzed.

2. Experimental

Phosphates glasses samples with chemical composition: 70NaPO₃+20ZnO+10ZnF₂+0.5Eu₂O₃ and 70NaPO₃-20ZnO-10ZnCl₂+0.5Eu₂O₃ (in mol%) (hereafter, named PNZFEu_{0.5} and as PNZClEu_{0.5} respectively [17]), have been obtained by melt quenching method. High purity powders were used: NaPO₃ (>99%), ZnO (>99.9%), ZnF₂(>98%), ZnCl₂(>98%), Eu₂O₃ (99.9%). Each chemical composition batch amounts were calculated to yield 4g-glasses. The homogeneously mixed powders were melted in a covered platinum crucible at 950-1100°C, depending on the composition, by means of an electric furnace at ambient atmosphere for about 30 min to 1h.The obtained glass samples were immediately introduced into an annealing furnace, preheated just below the glass transition temperature T_g -20 °C, and annealed for 2 h, in order to reduce the thermal and mechanical strains. The glasses thus obtained were polished to measure their structural, optical and spectroscopic properties.

The room temperature absorption spectra were obtained for all samples in the 200-2500 nm spectral range, with a Perkin Elmer UV-VIS-NIR spectrophotometer. The density of the prepared glasses was measured using Archimedes principle, with distilled water as immersion liquid. The Eu³⁺ contents were determined by EPMA/WDS and EDS. In the remainder of this paper, we shall use an average concentration of 1.763×10^{20} Eu³⁺.cm⁻³ for PNZFEu_{0.5} and 1.689×10^{20} Eu³⁺.cm⁻³ for PNZClEu_{0.5}.

The differential scanning calorimetry analyses of the glasses were performed by means of a differential thermal analyser DSC Mettler Toledo, with a heating rate of 10 °C /min. The samples were heated using stainless steel crucibles in a temperature range of 25 °C to 750 °C under N₂ atmosphere with a (60 ml/min) flow. The X-ray diffraction was carried out in a powder diffractometer (MPD PANalytical X'pert Pro), in the 2 θ range 8-100° with Cu K_a radiation (λ =1.54056 Å), operating at (40 kV and 30 mA). Emission spectra at room temperature (RT) and low temperature (LT, 77 *K*) were recorded in the visible under pulsed excitation at 465, 525 and 575 nm from an OPO laser (EKSPLA NT342, 10 *Hz*, 7 *ns*) associated with an ANDOR ICCD camera. The emission spectra are not corrected for spectral and amplitude sensitivity. Luminescence decay curves were recorded at RT and LT with the help of either a R928 AsGa (Research Inc.) photomultiplier tubes coupled with a Wave Runner 64Xi Lecroy digital oscilloscope, in the visible spectral ranges, corresponding to the ⁵D₀ \rightarrow ⁷F₂ emission transition at 612 nm and by exciting the sample at 465 nm using the same pulsed tuneable OPO laser. Using the Fresnel's expression relating optical transmission coefficient and linear refractive index (T=2n/ (n²+1)), an estimate of the linear refractive index was performed. The average linear refractive index obtained is 1.60 for the two glasses.

3. Results and discussions 3.1. Thermal stability of PNZFEu_{0.5} and PNZCIEu_{0.5} glasses

Figure 1 displays the DSC curve of PNZFEu_{0.5} and PNZClEu_{0.5} glass hosts. The measured characteristic temperatures were the transition temperature T_g , the starting point of crystallization temperature T_x , the crystallization temperature T_c of glass hosts, and they are listed in **Table 1**.In order to evaluate thermal stability against *devitrification*, a temperature difference is usually employed as follows: $\Delta T=T_x-T_g[18-19]$. We found that these glasses are thermally stable ($\Delta T > 120^{\circ}C$, see **Table 1**).By comparison between the two samples, it can be seen that the addition of ZnF₂ in the phosphate structure allows to have Tg and T_x much higher than those obtained with the addition of ZnCl₂. This result allows us to conclude that the addition of ZnF₂ increases the thermal stability of phosphate glasses.

Figure 1 DSC curves of (a) PNZClEu_{0.5} and, (b) PNZFEu_{0.5} glass samples.

Table 1 Thermal properties of PNZFEu_{0.5} and PNZClEu_{0.5} glass samples. T_g , T_x and T_c represent the glass transition temperature, the starting point of crystallization temperature, the crystallization temperature, respectively, and $\Delta T = T_x - T_g$.

Glass	Τ _g (° C)	$T_x(^{\circ}C)$	T _c (°C)	$\Delta \mathbf{T}(^{\circ}\mathbf{C})$
PNZClEu _{0.5}	286	427	488	141
PNZFEu _{0.5}	302	464	506	162

3.2. X-ray diffraction (XRD) glasses

Fig. 2 shows the X-ray diffraction patterns (XRDs), of the $PNZFEu_{0.5}$ and $PNZCIEu_{0.5}$ glass samples prepared. The absence of any sharp peak, and a broad diffusion at low angles, is typical of long-range structural disorder, can assess the amorphous nature of the glasses [20-21]. While the thermal annealing at 380 °C for 1 hour shows some diffraction peaks indicating its tendency towards crystallinity (**Fig.2**). The research of the glass ceramic is in progress by a thermal treatment refinement.

Figure 2 X-ray diffraction patterns of PNZFEu_{0.5} and PNZClEu_{0.5} glasses (at left) and PNZClEu_{0.5} glass annealing at 380 °C for 1h (at right).

3.3. Band gap and Urbach energy

The absorption due to the band-to-band transition of amorphous materials can be analyzed using optical band gap [22]. From absorption spectra, we can estimate the optical band gap (E_{opt}) for the glasses, using Davis and Mott rule [23]:

$$\alpha(\nu) = \frac{A(h\nu - E_{opt})^n}{h\nu} \tag{1}$$

where A is a proportionality constant, E_{opt} is the optical energy gap, hu is the incident photon energy and n is an index which depends on the nature of the transition : indirect when n=2, or direct for n=1/2. The plots of $(\alpha hu)^{1/2}$ and $(\alpha hu)^2$ as a function of photon energy (hu) of the glasses are shown in Fig. 3. The E_{opt} of PNZFEu_{0.5} and PNZFEu_{0.5} glasses, can be calculated from the linear portion of the curves by extrapolating them to cross the hu axis at $(\alpha hu)^{1/2} = 0$ and $(\alpha hu)^2 = 0$, respectively. The optical band gaps are shown in Table 2. For a fixed molar proportion of ZnO (20 %), the substitution of ZnCl₂ or ZnF₂ for NaPO₃ leads to the direct gap variation from 4.48 to 4.52 eV and from 4.30 to 4.37 eV for indirect gap, respectively. These glasses. The higher value of the optical band gap confirms the insulating nature of the PNZFEu_{0.5} and PNZClEu_{0.5} glass systems [21]. In many crystalline and amorphous materials, the $\alpha(\nu)$ depends exponentially on hu, and this exponential dependence is expressed by Urbach's equation [22] :

$$\alpha(\nu) = \alpha_0 \exp\left(\frac{h\nu}{E_U}\right) \tag{2}$$

where α_0 is a constant and E_U is the Urbach energy. The E_U can be obtained from the curve ln (α) versus hu shown in the inset of Fig. 3. The Urbach energy values are found to be 0.34 eV for PNZFEu_{0.5} and 0.35 eV for PNZClEu_{0.5}, respectively. These values are similar to EuSr10ZnPbP [**21**] system, and higher than TBLFE [**22**] glass. The increase of E_U indicates a higher number of defects in the glass systems [**21**].

Table 2 The direct (n=1/2), and indirect (n=2) band gap and Urbach energy of PNZFEu_{0.5} and PNZClEu_{0.5} glasses.

Samples	Direct Band gap (eV)	Indirect band gap (eV)	Urbach energy (eV)	Ref
PNZFEu _{0.5}	4.52	4.37	0.34	[Present work]
PNZClEu _{0.5}	4.48	4.30	0.35	[Present work]
EuSr10ZnPbP	4.45	4.04	0.37	[21]
TBLFE	2.69	2.62	0.24	[22]

Figure 3 Variation of the optical band gap for direct and indirect transition in the $PNZFEu_{0.5}$ and $PNZCIEu_{0.5}$ glasses. The inset is the Urbach energy of $PNZFEu_{0.5}$ and $PNZCIEu_{0.5}$ Glasses.

4. Absorption spectra

The absorption spectra of 0.5Eu₂O₃ doped PNZF, PNZCl glasses for UV-VIS and NIR regions are shown in Fig 4.The absorption spectrum presents five absorption bands that are attributed to the absorption transitions from the ground state ⁷F₀ to the excited states ⁵G₂ ⁵D₂, ⁵D₁, ⁵L₆, and ⁷F₆, respectively. The ⁷F₀→⁵D_J absorption bands are weak due to spin-forbidden rule. In contrast, the ⁷F₀, $_1 \rightarrow ^7$ F₆ levels lying in the IR region are stronger and are well resolved owing to spin-allowed rule. The absorption band assigned as ⁷F₀-⁵L₆ is found to be more intense than the other transitions, though it is forbidden by the Δ S and Δ L selection rules but allowed by the Δ J selection rule. The intensity of ⁷F₀-⁵D₁ magnetic dipole allowed transition is relatively weaker than that of ⁷F₀-⁵D₂ (hypersensitive transition) induced electric dipole allowed transition for all compositions.

The absorption bands correspond to the f-f optical excitation from ground ${}^{7}F_{0}$ and thermally populated ${}^{7}F_{1}$ levels at the excited states of the Eu³⁺ ion, and they practically overlap. Indeed, the first excited ${}^{7}F_{1}$ free-ion level of Eu⁺³ is only about 380 cm⁻¹ above the ground state ${}^{7}F_{0}$. At room temperature, the fractional thermal population of the ${}^{7}F_{1}$ level cannot be neglected: about 66 % of the ions populate the ${}^{7}F_{0}$ level, 32 % the ${}^{7}F_{1}$ level and also about 2 % the ${}^{7}F_{2}$ level. The absorption cross-section at 393.5 nm was determined to be 7.6×10⁻²¹ cm² for both PNZFEu_{0.5} and PNZCIEu_{0.5} glasses.

Figure 4 Absorption cross section spectra of Eu³⁺ doped phosphate glasses at room temperature.

5. Emission spectra and Judd Ofelt analysis

Emission spectrum at room and low temperature of PNZFEu_{0.5} and PNZCIEu_{0.5} glass measured under a 465 nm laser excitation is shown in Fig. 5. Only emission from the ${}^{5}D_{0}$ level was occurring, owing to the efficient multiphonon relaxation from the higher ${}^{5}D_{J}$ levels to the ${}^{5}D_{0}$ level. The spectra consists of the wellknown ${}^{5}D_{0}{}^{-7}F_{J}$ (J= 0, 1, 2, 3, 4, 5 and 6) transitions namely ${}^{5}D_{0}{}^{-7}F_{0}$ (579 nm), ${}^{5}D_{0}{}^{-7}F_{1}$ (592 nm), ${}^{5}D_{0}{}^{-7}F_{2}$ (616 nm), ${}^{5}D_{0}{}^{-7}F_{3}$ (655 nm) and ${}^{5}D_{0}{}^{-7}F_{4}$ (699 nm), ${}^{5}D_{0}{}^{-7}F_{5}$ (750 nm), ${}^{5}D_{0}{}^{-7}F_{6}$ (814 nm). Generally, the orange emission due to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition dominates when Eu³⁺ ions prefer to occupy the inversion symmetry sites, whereas the red emission originating from ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition is predominant when these ions reside in a highly asymmetric environment [24]. Thus, intensity of these transitions is a measure of the local environment of Eu³⁺ ions. In addition, the hypersensitive transition ${}^{5}D_{0}{}^{-7}F_{2}$ is induced electric dipole allowed and depends strongly on the local symmetry around Eu³⁺ ion, this transition is extremely sensitive to ligand symmetry and bond covalence [25], and tends to be much more intense in non-symmetric sites and high bond covalence. In contrast, the transition ${}^{5}D_{0}{}^{-7}F_{1}$ is magnetic dipole allowed and is independent on ligand symmetry and bond covalence. In the present work, the strongest emission intensity is for ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition, corresponding to 616 nm intense red emission of the phosphor material. This observation indicates that local symmetry around Eu^{3+} ions in the PNZFEu_{0.5} and PNZFEu_{0.5} matrix is low, and thus the majority of Eu³⁺ ions are located in an asymmetric environment. The transitions from ${}^{5}D_{0}$ to ${}^{7}F_{0,3,5}$ are very weak because violate the selection rules, and hence are forbidden both in magnetic and induced electric dipoles schemes. It should be noted that the emission intensities of glasses are pronounced at room temperature, the annealed glass at 380 °C at 1 hour exhibit a large intensity compared to those at low temperature which may be due to the nanocrystallite phase formed in the annealed glass. The superposition of several emission spectra of samples excited at room and low temperature (Fig.5) and also at different wavelengths (Fig. 6) indicates that for the ${}^{5}D_{0}{}^{-7}F_{0}$ transition we observe only one peak, which explains the one dimensional site, while the magnetic dipole ${}^{5}D_{0}{}^{-7}F_{1}$ transition splits into three components, indicating that the crystallographic site of the Eu^{3+} ions in the present glasses is as low as orthorhombic, monoclinic or triclinic in a crystalline lattice [26, 27]. A very small shift is observed in stark level of these bands according to the change of wavelength. The energy level diagram for the emission mechanism of Eu^{3+} in the studied glasses is shown in Fig. 7.

Figure 5 Luminescence spectra of PNZFEu_{0.5}, PNZClEu_{0.5} glasses and PNZClEu_{0.5} annealed glass at 380 °C for 1 hour at low and room temperature.

Figure 6 Emission spectra of PNZFEu_{0.5} at low temperature excited at different wavelengths, The inset is a zoom in the 575-605 nm spectral range, showing wavelength dependence of the $^{7}F_{0.1}$ bands degeneracies.

Figure 7 Emission mechanism of Eu³⁺-doped PNZFEu_{0.5} or PNZClEu_{0.5} glasses.

J-O intensity parameters Ω_t (t = 2, 4, 6) are important indicators to predict some radiative properties such as oscillator strengths, luminescence branching ratios, energy-transfer probabilities, and excited-state radiative lifetime [28], which are usually derived from absorption spectrum. Nevertheless, they were calculated from the emission spectrum due to the special energy level structure of Eu³⁺ in present work. The J-O analysis described in detail elsewhere [29-32], and the results are gathered in Table 3. The intensity parameter Ω_2 has been identified to be associated with the asymmetry and the covalence between RE ions and ligand anions, and $\Omega_{4,6}$ parameters are related to the bulk property and rigidity of the samples, respectively. In both PNZFEu_{0.5} and PNZClEu_{0.5} glasses, the trend is as follows: $\Omega_2 > \Omega_4 > \Omega_6$. The larger value Ω_2 for glasses systems indicates stronger covalency of Eu–O bonds. The integrated fluorescence intensity ratio of ${}^5D_0 \rightarrow {}^7F_2/{}^5D_0 \rightarrow {}^7F_1$, the asymmetry ratio R, can be viewed as the spectroscopic key parameter to estimate the site asymmetry and the chemical bond covalency of Eu³⁺ ions [33]. The value of this asymmetry ratio is 3.5-4 in glasses, which is high and reveals a high local asymmetry and the formation of the strong Eu-O bond in the glasses, confirmed the line of reasoning above. Fig. 8 shows the glasses emission spectra, calibrated in cross section unit by the Fuchtbauer-Ladenburg (FL) method, at low and room temperature after excitation at 465 nm.

Figure 8 Stimulated emission cross-sections of PNZFEu_{0.5} and PNZClEu_{0.5} glasses calibrated by the Fuchtbauer-Ladenburg method, at room and low temperature. The inset is a zoom of the $^7F_{5,6}$ transitions cross sections.

Table 3 Results of the Judd-Ofelt analysis carried out in the PNZFEu _{0.5} , PNZCIEu _{0.5} and annealed PNZCIEu _{0.5} glasses: JO parameters
$(\Omega_{2,4,6})$, electric and magnetic dipole oscillator strength (f), radiative transition rates (A _R), branching ratios (β_R), asymmetry ratio (R),
radiative lifetimes (τ_R) and quantum efficiency (η).

Samples	Transitions	$\overline{v}(cm^{-1})$	$\frac{\Omega_2(\times 10^{20})}{\mathrm{cm}^2}$	$\frac{\Omega_4(\times 10^{20})}{\mathrm{cm}^2}$	$\Omega_6(\times 10^{20} \mathrm{cm}^2)$	f×10 ⁻⁶	A _R (s ⁻¹)	β (%)	R	τ _R (ms)	η (%)
PNZFEu _{0.5} -RT at 465 nm		17280 16900 16230 15271 14308 13336 12280	5.96	2.80	1.41	0.0030 0.12 0.47 0.017 0.14 0.0022 0.0052	1.40 54.08 196.85 6.44 45.55 0.61 1.26	0.45 17.66 64.29 2.11 14.88 0.20 0.41	3.64	3.27	83.80
PNZFEu _{0.5} -LT at 465 nm	$ {}^{5}D_{0} \rightarrow {}^{7}F_{0} $ $ \rightarrow {}^{7}F_{1} $ $ \rightarrow {}^{7}F_{2} $ $ \rightarrow {}^{7}F_{3} $ $ \rightarrow {}^{7}F_{4} $ $ \rightarrow {}^{7}F_{5} $ $ \rightarrow {}^{7}F_{6} $	17282 16899 16230 15258 14302 	5.80	2.78		0.003 0.12 0.45 0.02 0.14 	1.41 54.07 191.74 7.10 45.23 	0.47 18.05 64.01 2.37 15.01 	3.54	3.34	77.84
PNZCIEu _{0.5} . RT at 465 nm	$ {}^{5}D_{0} \rightarrow {}^{7}F_{0} $ $ \rightarrow {}^{7}F_{1} $ $ \rightarrow {}^{7}F_{2} $ $ \rightarrow {}^{7}F_{3} $ $ \rightarrow {}^{7}F_{4} $ $ \rightarrow {}^{7}F_{5} $ $ \rightarrow {}^{7}F_{6} $	17276 16894 16222 15266 14309 13307 12283	6.49	2.74	1.65	0.002 0.12 0.51 0.018 0.14 0.0022 0.006	1.06 54.03 214.13 6.57 44.63 0.64 1.48	0.33 16.75 66.39 2.04 13.84 0.20 0.46	3.96	3.10	80.32
PNZCIEu _{0.5} -LT at 465 nm	$ {}^{5}D_{0} \rightarrow {}^{7}F_{0} $ $ \rightarrow {}^{7}F_{1} $ $ \rightarrow {}^{7}F_{2} $ $ \rightarrow {}^{7}F_{3} $ $ \rightarrow {}^{7}F_{4} $ $ \rightarrow {}^{7}F_{5} $ $ \rightarrow {}^{7}F_{6} $	17286 16899 16233 15259 14302 	5.92	2.41		0.003 0.12 0.46 0.02 0.14 	1.42 54.08 195.46 7.40 45.71 	0.47 17.79 64.28 2.43 15.03 	3.61	3.29	77.20
Annealed PNZClEu _{0.5} -LT- at 465 nm	$ {}^{5}D_{0} \rightarrow {}^{7}F_{0} \\ \rightarrow {}^{7}F_{1} \\ \rightarrow {}^{7}F_{2} \\ \rightarrow {}^{7}F_{3} \\ \rightarrow {}^{7}F_{4} \\ \rightarrow {}^{7}F_{5} \\ \rightarrow {}^{7}F_{6} $	17284 16899 16231 15255 14303 	5.97	2.97		0.003 0.12 0.47 0.02 0.15 	1.30 54.07 197.23 7.57 48.21 	0.42 17.53 63.95 2.46 15.63 	3.64	3.24	

6. Crystal field analysis

Using phenomenological free-ion Hamiltonian (HFI) model [34], energy level analysis has been carried out. The second and fourth rank crystal-field (CF) parameters have been evaluated by assuming a C_{2v} orthorhombic symmetry for the local environment of Eu^{3+} ions to estimate the CF strength parameter experienced by Eu^{3+} ions [35-40]. This approximation is made since a subgroup of almost all the higher order point groups which allow optical activity from the 5D_0 level to 7F_J Stark levels and is the highest order noncentrosymmetric point group that removes complete degeneracy of the 7F_J levels. Only 10 components 5D_0 and ${}^7F_{0,1,2}$ multiplets of 3003| *SLMJ* Stark sublevels of the 4f⁶ configuration which constitute the truncation of the wave function is taken account. The restricted set of wave functions has in most cases been found sufficient to describe in an adequate way the effect of the neighboring atoms on the electronic structure of the Eu^{3+} ion. The energies of the Stark levels of the ${}^{7}F_{1}$ and ${}^{7}F_{2}$ multiplets were obtained from the experimental emission spectrum recorded at 77 K by Gaussian deconvolution of the respective bands presented in fig 9. The energy difference between the extreme Stark levels for the ${}^{7}F_{1}$ and ${}^{7}F_{2}$ levels are comparable in both glasses. From the Stark level positions of the ${}^{7}F_{1}$ and ${}^{7}F_{2}$ multiplets, CF analysis has been carried out, to know the variation of CF strength acting on the Eu³⁺ ions in glasses. The CF analysis was carried out using Wybourne's formalism [41]. The relevant CF parameters Bkq were obtained by giving the best fitting between the experimental and calculated splittings of the ${}^{7}F_{1}$ and ${}^{7}F_{2}$ multiplets of Eu³⁺ ions (see table 4). To estimate the quality of the fit, the root-mean-square (r.m.s.) deviation referred as standard deviation (σ) has been determined and found to be ± 3.35 , 2.40 cm⁻¹ for PNZFEu_{0.5} and PNZClEu_{0.5}, respectively which reveals that good fit between observed and calculated energies [42]. The CF parameters B_q^k and their ratios B_2^2/B_0^2 and B_4^4/B_0^4 for the present glasses, are presented in Table 5 along with similar parameters for the PKBAFEu10, PKBAEu10 and PKSAEu10 glasses for comparison[2-3, 40]. The ratios B_2^2/B_0^2 and B_4^4/B_0^4 change dramatically and care should be taken when comparing with other results. We can notice that the CF parameters are comparable with those reported Eu³⁺ phosphates glass systems [2-3,40]. In order to compare the crystal field strength exerted around the Eu³⁺ 4f electrons in the PNZFEu_{0.5} and PNZClEu_{0.5} glasses, with similar phosphate materials [2-3,40], we calculated the scalar CF strength parameter S [43], as follows:

$$s = \left\{ \frac{1}{3} \sum_{k} \frac{1}{2k+1} \left(\left| B_{0}^{k} \right|^{2} + 2 \sum_{q \ge 0} \left| \operatorname{Re} B_{q}^{k} \right|^{2} + \left| \operatorname{Im} B_{q}^{k} \right|^{2} \right) \right\}^{1/2}$$
(3)

We found that $S=296 \text{ cm}^{-1}$ in the PNZFEu_{0.5} glass and $S=287 \text{ cm}^{-1}$ in the PNZCIEu_{0.5} glass. These values are slightly less than phosphate glasses reported in [2-3, 40] works. The higher crystal field strength is due to the larger charge density and/or smaller Eu-O distance [2, 44] while low S value can be attributed to the reduction in charge density and/or increase in the Eu–O distance [45].

Figure 9 ${}^{5}D_{0} \rightarrow {}^{7}F_{0,1,2}$ Stark level splittings of PNZFEu_{0.5} and PNZClEu_{0.5} glasses.

^{2S+1} Lj	PNZFEu0.5		PNZClEu _{0.5}			
Crystal field levels	Eexp	Ecal	Eexp	Ecal		
${}^{7}F_{0}$	0.0	0.1	0.0	0.8		
${}^{7}F_{1}$	274.3	279.1	284.4	287.1		
	380.7	379.8	391.7	392.3		
	499.5	495.6	493.8	490.8		
${}^{7}F_{2}$	904.5	900.0	903.4	899.3		
	940	944.4	935.5	938.3		
	984.1	980.6	977.3	974.4		
	1047.2	1046.6	1035.9	1036.5		
	1161.0	1165.4	1149.7	1152.9		
${}^{5}D_{0}$	17280	17280.0	17277.0	17277.0		
$\sigma(N)^{(a)}$		3.35(10)	2.40(10)			

Table 4 Comparison of experimental and calculated crystal-field levels for Eu³⁺ ions in PNZF and PNZCI glasses. All numbers are in cm⁻¹.

(a): "o" indicates root mean-square deviation between experimental and calculated values; "N" indicates number of levels used in the fitting.

Table 5 Calculated sets of crystal-field B_q^k parameters and CF strength parameter (S) for the C_{2v}-point group symmetry in the samples PNZFEu_{0.5} and PNZCIEu_{0.5}, compared with those of some known host. All numbers are in cm⁻¹.

$\mathbf{B}^{\mathbf{k}}{}_{\mathbf{q}}$	PNZFEu _{0.5}	PNZCIEu0.5	PKBAEu10 [2]	PKBAFEu10 [3]	PKSAEu10[41]
B_{0}^{2}	-550.825	-537.992	-314	-306	-479
B_{2}^{2}	-230.285	-196.010	-168	-215	-119
B_{0}^{4}	576.100	546.194	865	990	1321
B_2^4	12.199	37.344	358	292	275
$B_4^{\overline{4}}$	-807.250	-793.882	-1073	-1100	-731
B_2^2/B_0^2	0.418	0.36	0.54	0.70	0.24
B_{4}^{4}/B_{0}^{4}	-1.40	-1.45	-1.24	-1.11	-0.55
S	296	287	364	380	396

7. Fluorescence decays

The luminescence decays of the ${}^{5}D_{0}\rightarrow{}^{7}F_{2}$ transition at low and room temperature in PNZFEu_{0.5} and PNZClEu_{0.5} excited state to its lower lying energy levels have been recorded monitoring the excitation and emission wavelengths at 465 nm and 612 nm, respectively. Due to the large energy gap between the ${}^{5}D_{0}$ and ${}^{7}F_{6}$ (~12000 cm⁻¹) as shown in **Figure 7**, the lifetime of ${}^{5}D_{0}$, usually on the order of milliseconds, does not vary significantly below room temperature (300 K). The fluorescence decay from ${}^{5}D_{0}$ of Eu³⁺ ions at normal sites is generally single exponential with an initial buildup time varying from μs to ms in different hosts due to nonradiative relaxation from ${}^{5}D_{1}$ and upper states[**46**]. As seen from **Figure 10**, it is clear that the decay profiles are almost single exponential and are very similar for both systems. Mostly, the fluorescence intensity emitted by rare earth ions doped glasses varies with the composition of the glass host [**47**] and the concentration of the rare earth ions. Indeed, some authors reported that if Eu³⁺ ion concentration increases beyond 1.0 mol% [**48-50**], or 2 mol% [**51**] then the decrease in luminescence intensity (concentration quenching) is observed.

The quantum efficiency η for 5D_0 level can be calculated using the fluorescent lifetime τ_{exp} and the radiative transition rate τ_{rad} through the relation

$$\eta = \frac{\tau_{mes}}{\tau_{rad}} \tag{4}$$

For both glasses the quantum efficiencies are less than unity, which is clearly due to manifestation of the non-radiative process. On the other hand, the glasses present high quantum efficiencies (**nearly 80** %) which are a consequence of the absence of major non-radiative channels such as multi phonon relaxation, cross-relaxation and the expected lower phonon energies. This value is higher than (~48%) reported in $Li_2B_4O_7$:0.5Eu and

 $CaB_4O_7:0.5Eu$ glasses [52], and very close to commercial Y_2O_3 phosphor (~95%) [53]. The energy storage $(G=\sigma_{em}\times\tau_{exp})$ is critical parameter used to predict probable lasing emission transition of Eu⁺³ ions. The stimulated cross section describes maximum spatial optical amplification which can be an important parameter in development of high gain and low threshold laser applications, while the optical gain design highly efficient and stable laser active materials. The optical gain parameter for the red emission (${}^5D_0 \rightarrow {}^7F_2$) is equal to 3.66×10^{-24} cm².s which is practically identical with RLTB [54]. It worth to mention that red emissions exhibit good laser parameters that make the glasses host matrix as a good laser candidate for these visible emission.

Figure 10 Fluorescence decays measured in the PNZFEu_{0.5} and PNZCIEu_{0.5} glasses at low and room temperature.

8. Conclusions

Oxyfluoro-phosphate and oxychloro-phosphate glasses containing Eu³⁺-ions have successfully developed and shown good optical quality, moisture resistant and more stable.

The electronic structure of Eu^{3+} ions in phosphate glasses has been analyzed from absorption and emission spectra by means of a model Hamiltonian. Stark splittings of ${}^{5}D_{0}$ - ${}^{7}F_{1,2}$ transitions have been used to estimate the *Bkq* parameters. The number of Stark levels suggests that the Eu^{3+} ion site in the title glasses can be described by a local C_{2v} symmetry. The crystal- field strength has been calculated and found that it varies with host composition.

The JO parameters have been derived by analyzing emission spectrum for glasses measured at low and room temperature and are found to be relatively more reliable, which are used to predict radiative properties for ${}^{5}D_{0}$ level of Eu³⁺ ions. A relatively higher value of the intensity parameter Ω_{2} indicates higher covalence and/or higher asymmetry around Eu³⁺ ions in the present host. The decay profiles of the ${}^{5}D_{0}$ level of Eu³⁺ ions in the studied glasses are found to be single exponential indicating the almost absence of energy transfer between Eu³⁺ ions in the present glass host.

Relatively large stimulated emission cross-section, high branching ratios and quantum efficiencies confirm that the present glasses with Eu³⁺ ions emits intense red luminescence at 616 nm by suggesting PNZFEu_{0.5} and PNZClEu_{0.5} glasses are the good materials for optical devices.

Acknowledgments

Samah Amrouch is the owner of a PNE program fellowship of the Algerian Ministry of Higher Education and Research. She also thanks the French CMDO⁺ network of the MITI-CNRS for an ITC mobility fellowship. We thank Thierry Encinas, Rachel Martin and Florence Robaut for technical assistance in XRD, SEM-EDX and EPMA-EDS analysis.

References

- [1] C. Gorller-Walrand, K. Binnemans, in: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 25, North-Holland, Amsterdam, 1998 (Chapter 167).
- [2] S. Surendra Babu, P. Babu, C.K. Jayasankar, W. Sievers, Th. Troster, G. Wortmann, J. Lumin. 126 (2007) 109.
- [3] R. Balakrishnaiah, R. Vijaya, P. Babu, C.K. Jayasankar, M.L.P. Reddy, J. Non- Cryst. Solids 353 (2007) 1397.
- [4] A.Y. Hamad, J.P. Wicksted, Appl. Opt. 40 (2001) 1822–1826.
- [5] Ch.S. Rao, K.Upendra U. Kumar, C.K. Jayasankar, Solid State Sci. 13 (2011) 1309–1314.
- [6] J. Anjaiah, C. Laxmikanth, N. Veeraiah, Physica B 454 (2014) 148–156.
- [7] V. Hegde, A. Wagh, H. Hegde, C.S.D. Vishwanath, S.D. Kamath, Appl. Phys. A 302 (2017) 1–13.
- [8] M. De, S. Sharma, S. Jana, Physica B 556 (2019) 131–135.
- [9] G.H. Silva, V. Anjos, M.J.V. Bell, A.P. Carmo, A.S. Pinheiro, N.O. Dantas, J. Lumin. 154 (2014) 294– 297.
- [10] P.Y.Shih, S.W.Yung, C.Y.Chen, H.S.Liu, T.S.Chin, Mater .Chem. Phys. 50 (1997) 63-69.
- [11] R.K.Brow, J.Non-cryst.Solids 263 (2000) 1-28.
- [12] P.A.Tick, Phys .chem.Glasses 25(1984) 149.
- [13] S.S.Das, B.P.Baranwal, C.P.Gupta, Punita Singh, J.Power Sources 114 (2003) 346-351.
- [14] P.Y.Shih, S.W.Yung , C.Y.Chen , H.S.Liu, T.S.Chin, Mater .Chem. Phys .50 (1997) 63-69.
- [15] J. Anjaiah, C. Laxmikanth, N. Veeraiah, Physica B 454 (2014) 148–156.
- [16] V. Hegde, A. Wagh, H. Hegde, C.S.D. Vishwanath, S.D. Kamath, Appl. Phys. A 302 (2017) 1–13.
- [17] V. Chandrappa, Ch. Basavapoornima, C.R. Kesavulu, A. Mohan Babu, Shobha Rani Depuru, C.K. Jayasankar J.Non-Cryst.Solids 583 (2022) 121466.
- [18] D.R. Uhlmann, J.Non-Cryst.Solids 25 (1977) 42.
- [19] S.Chaguetmi, A.Boutarfaia, M.Poulain; J. optoelectronics advanced materials, 15 (7-8), (2013) , 605-609.
- [20] S.H. Bindu, D.S Raju, V.V Krishna, T.R Rao, K. Veerabrahmam, Ch.L. Raju, Opt. Mater. 62 (2016) 655–665.
- [21] A.Maity, S.Jana, S.Ghosh, S.Sharma, J.Non-Cryst. Solids 550 (2020) 120322.
- [22] S. Selvi, K. Marimuthu, G. Muralidharan, J. Mol. Struct. 1144 (2017) 290-299.
- [23] E.A. Davis, N.F. Mott, Philos. Mag. 22 (1970) 0903-0922.
- [24]G. Seeta Rama Raju, H.C. Jung, J.Y. Park, B.K. Moon, R. Balakrishnaiah, J.H. Jeong, J.H. Kim, Sens. Actuators B Chem. 146 (2010) 395–402.
- [25] G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, J. Lumin. 139, (2013) 132–142.
- [26] J. Fernandez, R. Balda, J.L. Adam, J. Phys.: Condens. Matter 10 (1998) 4985.
- [27] C. Görller-Walrand, K. Binnemans, in: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 23, North-Holland, Amsterdam, 1996 (Chapter 155).
- [28] M. P. Hehlen, M. G. Brik, and K. W. Krämer, J. Lumin. 136, (2013) 221–239.
- [29] R. Belhoucif, M. Velazquez, Y. Petit, O. Plantevin, M.A. Couto dos Santos, F. Adamietz, V. Rodriguez, M. Couzi, O. P_erez, O. Viraphong, P. Veber, D. Denux, R. Decourt, D. Ouadjaout, Opt. Mater. Express. 4 (10) (2014) 2042-2065.
- [30] P.Veber, M.Velazquez, P.A.Douissard, T.Martin, O. Plantevin, and R.Belhoucif, Opt. Mater. Express. 6 (1) (2016) 207-219.
- [31] R.Belhoucif, M.Velázquez, O.Plantevin, P.Aschehoug, P.Goldner, G.Christian, Opt. Mater. 73 (2017), 658-665.
- [32] R.Belhoucif, M.Velazquez, O.Plantevin, P.Aschehoug, P.Goldner, G.Christian, AIP Conf. Proc. 1994, (ICRA-2017) 030002-1–030002-6.

- [33] K. Upendra Kumar, S. Surendra Babu, Ch. Srinivasa Rao and C.K. Jayasankar, Opt. Commun., 2011, 284, 2909–2914.
- [34] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, J. Chem. Phys. 90 (1989) 3443–3457.
- [35] C. Brecher, J. Chem. Phys. 61 (1974) 2297.
- [36] C. Brecher, L.A. Riseberg, Phys. Rev. B 21 (1980) 2607.
- [37] C. Brecher, L.A. Riseberg, Phys. Rev. B 13 (1976) 81.
- [38] C. K. Jayasankar, K. Ramanjaneya Setty, P. Babu, Phys Rev B 69 (21), 214108 (2004)
- [39] V. Venkatramu , D. Navarro-Urrios , P. Babu,C.K. Jayasankar, V. Lavin, J.Non-Cryst.Solids 351 (10-11), 929-935 (2005).
- [40] K.Linganna, C.K. Jayasankar, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 97 (2012) 788–797.
- [41] B.G. Wybourne, Wiley-Interscience, New York, 1965.
- [42] C.A. Morrison, R.P. Leavitt, in: K.A. Gschneidner, L. Eyring (Eds.), Handbook on Physics and Chemistry of Rare Earths, vol. 5, North-Holland Publishing Co., Amsterdam, 1982, pp. 461–692.
- [43] N.C. Chang, J.B. Gruber, R.P. Leavitt, C.A. Morrison, J. Chem. Phys. 76 (1982) 3877.
- [44] Ch. Srinivasa Rao, K. Upendra Kumar, C.K. Jayasankar, Solid State Sciences 13 (2011) 1309-1314.
- [45] V. Lavin, P. Babu, C. K. Jayasankar, I. R. Martin, and V. D. Rodriguez, J. Chem. Phys. 115, 10935 (2001).
- [46] X.Y. Chen, G.K. Liu, J. Solid State Chemistry 178 (2005) 419-428.
- [47] W.A. Pisarski, J. Pisarska, G. Dominiak-Dzik, M. Maczka, W. Ryba-Romanowski, J. Phys. Chem. Solids 67 (2006) 2452–2457.
- [48] N. Sooraj Hussain, Y. Prabhakara Reddy, S. Buddhudu, Mater. Res. Bull. 36 (2001) 1813–1821.
- [49] A.Kumar, D.K. Rai, S.B. Rai, Spectrochim. Acta A 58 (2002) 2115–2125.
- [50] K.K. Mahato, S.B. Rai, A. Rai, Spectrochim. Acta A 60 (2004) 979–985.
- [51] B.C. Jamalaiah, J. Suresh Kumar, A. Mohan Babu, L. Rama Moorthy, J. Alloys Compd. 478 (2009) 63– 67.
- [52] I.I. Kindrat , B.V. Padlyak , Opt. Mater. (2018) 77, 93-103
- [53] W.D.A.M. de Boer, C. McGonigle, T. Gregorkiewicz, Y. Fujiwara, S. Tanabe, P. Stallinga, Sci. Rep. (2014) 4, 5235.
- [54] S.A. Saleem, B.C. Jamalaiah, A. Mohan Babu, K. Pavani, L. Rama Moorthy, J. Of Rare Earths, Vol. 28, No. 2, (2010), p. 189.