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Structured Dictionary Learning of Rating Migration Matrices

for Credit Risk Modeling∗

Michaël Allouche† Emmanuel Gobet‡ Clara Lage§ Edwin Mangin¶

July 7, 2022

Abstract

Rating Migration Matrix is a crux to assess credit risks.
Modeling and predicting these matrices are then an issue
of great importance for risk managers in any financial
institution. As a challenger to usual parametric model-
ing approaches, we propose a new structured dictionary
learning model with auto-regressive regularization that
is able to meet key expectations and constraints: small
amount of data, fast evolution in time of these matrices,
economic interpretability of the calibrated model. To
show the model applicability, we present a numerical
test with real data. The source code and the data are
available at https://github.com/michael-allouche/

dictionary-learning-RMM.git for the sake of repro-
ducibility of our research.

Keywords: Rating Migration Matrix, Dictionary learning,
auto-regressive modeling, interpretability

1 Introduction

1.1 Banking context

Credit risk refers to the risk of incurring losses due to un-
expected changes in the credit quality of the counterparty.
Such a risk is summarized in a structured rating migra-
tion matrix which captures all possible transition proba-
bilities that an obligor will migrate from a credit state to
another over a given time period (see Figure 1). Accord-
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ing to the financial regulation guidelines (Basel II and III),
banks can use internal ratings and risk exposure estimations
in order to assess regulatory capital requirement and credit
risk measures (VaR, ES, ...). See [1, 7, 21, 2] for extensive
references on risk measures and credit risk. Rating migra-
tion matrices (RMM) are key indicators to assess credit risk
portfolio through the estimation of the credit quality of the
obligors. Rating allocation process includes models and ex-
pert systems taking into account obligors idiosyncratic fea-
tures evolving over time given the economic situation. Ob-
served migration frequencies are displayed into RMM that
are the cornerstone of rating migration models upon which
credit risk portfolio simulation relies. The most widely used
method for modeling RMM is the one factor Gaussian cop-
ula model [13] which assumes that a single factor represents
the underlying systemic credit quality in the economy and
defines a stationary economic cycle. See [3] among others for
estimating risk measures on the loss distribution of a large
credit risk portfolio under this model. The popularity of the
Gaussian copula model is due to the ease of use but it also
suffers from too simple underlying hypothesis. These weak
assumptions lead to miscapture the dependence structure in
tails. However, and despite post subprime crisis criticisms
[14], the one factor Gaussian copula model remains very
popular in the banking industry because of its parsimony
and of its ability to generate intuitive and interpretable re-
sults. The aim of this work is to derive from the data a
non parametric representation of RMM, as an alternative
and a challenger to the parametric Gaussian copula model.
This work is devoted to the design of a new methodology
with thorough tests. Full comparison with Gaussian copula
model will be handled in a subsequent work.

1.2 Matrix Factorization for RMM

Let us start from the data. In practice, we observe at time
t a one-year rating migration matrix Pt ∈ RR−1 ⊗ RR,
which encodes the probability of migrating from rating
i = 1, . . . , R − 1 to rating j = 1, . . . , R within one year
period starting at time t − 1; in Figure 1 we have R = 11.
The reconstruction of this matrix is made empirically by
evaluating the frequencies of obligors going from the rating
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Figure 1: Representation of an idealized rating migration
matrix of size 10 × 11. All values are in percentage. The
credit quality goes from the highest (rating 1) to the lowest
(rating 10), the default is 11.

i to rating j between times t − 1 and t. It is important for
risk management purposes to model the evolution of Pt, by
finding a representation of the type

Pt ≈
K∑
k=1

αtkdk, ∀t ≥ 1, (1)

for some so-called (deterministic) basis vectors dk and for
some scalar random coefficients αtk which we should model
the evolution. In a matrix form (using the vec () operator
to simplify, see Section 1.5), we say that the collection of
vectorized matrices P = {vec (Pt) ∈ Rd}Tt=1 ∈ Rd ⊗ RT ,
with

d := (R− 1)R

for all t = 1, . . . , T , admits a matrix factorization over
a dictionary D ∈ Rd ⊗ RK composed by K elements
(called atoms), if there exists a linear combination of
atoms weighted by coefficients (called codings) A = {αt ∈
RK}Tt=1 ∈ RK ⊗ RT such that

P ≈ DA. (2)

1.3 Objective

In this work, the objective is to achieve (2) while requiring

• D to satisfy some linear constraints (see Section 1.5) in
order to represent economically interpretable RMM,

• the time series of elements αt of A to be smooth enough
in order to perform predictions through a time series
modeling,

• consider a dimensionality reduction framework K �
d in order to work in a lower dimensional space with
extracted meaningful information.

However, the RMM evolution may vary quickly over time
and a limited data history is available (usually 10-20 years
≈ 200 observations) which is close to the dimension of the
problem (usually R = 11 and d = 110). Thus, modeling con-
strained RMM in a data-based non-parametric way presents
an important challenge, which has not been addressed so far
to the best of our knowledge.

1.4 State of the art

Over the last years, a new paradigm of data-based mod-
els have emerged in the Machine Learning (ML) commu-
nity in order to extract structured information from high-
dimensional objects. A classical approach in ML is to use
Matrix Factorization techniques in order to project the data
in some relevant basis. It is well known that the optimal
basis that minimizes the linear approximation error is the
Karhunen-Loève basis [20, Theorem 9.8], also known as the
principal components in the principal component analysis
(PCA).

Introduced in [24], dictionary learning (DL), see [9] for an
overview and [12] for theoretical results, is another matrix
representation technique where the basis, called dictionary,
is learned from the observations. Unlike in the PCA decom-
position, neither the orthogonality nor the representation
constraints of the basis vectors (atoms) are imposed, allow-
ing more flexibility to adapt the desired representation to
the data. Moreover, compared with a predefined dictionary
like Gabor functions, wavelets or local cosine vectors [20],
learning a dictionary adapted to the observations has shown
better results in practice [10, 17].

In DL, the linear approximation (2) is usually coupled
with a regularization criterion R(A) applied to the codings
and yields to the general optimization problem

min
D,A
‖P−DA‖2F + λR(A), λ ≥ 0, (3)

where the regularization term shall reflect the expected cod-
ings representation, see [9, Chapter 4]. The most widely
studied regularization is R(A) = ‖A‖1 referring to the so-
called sparse coding (see [15] for an overview), where the
optimization with respect to A is known as basis pursuit [6]
or the Lasso [29]. DL with sparse representation was notably
studied in image and video processing [16, 18, 19], in graph
learning [30] and in clustering [28]. In the case of spatial
data, and more precisely in image processing, Total Vari-
ation (TV) plays an important role. In one dimension we

have RTV (A) =
∑T−1
t=1

∑K
k=1

∣∣αt+1
k − αtk

∣∣, which is the inte-
gral of the absolute value of the gradient [26]. The intuition
of this type of regularization in images is to allow a smooth
transition between close codings and can be understood as
a prior in a Bayesian model, see [5].

Here, we rather focus on DL with a temporal structure.
This application has been mainly studied in video denoising
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[19, 25] where the temporal structure is exploited through
an operator extracting patches of a fixed size in the ob-
jective function representing an energy minimization proce-
dure. Another approach is to deal with an auto-regressive
(AR) representation modeled either in the dictionary [8] or
in the codings [32]. In the former, a mixed audio signal
is decomposed into its constituent temporal sources (atoms
of the dictionary) in order to detect the presence of a spe-
cific sound. In the latter, the authors present a framework
which supports data-driven temporal learning and forecast-
ing through an AR modelization of the codings represented
as a regularization term. Our model described in Section 2
is inspired from this problem formulation.

Our main and original contributions are to

• propose a new RMM modelization technique using DL
approach

• derive a DL solution with linear constraints and a tem-
poral regularization term for both interpretable cluster-
ing and prediction of RMM

• retrieve an economic health indicator on real data.

The paper is organized as follows. We introduce our pro-
posed model and the associated optimization procedure in
Section 2. Then we provide a numerical study on real data
in Section 3 with two applications: prediction and clustering
of RMM with economic interpretations.

1.5 Notations and data constraints

Notations.

Let M ∈ Rd1⊗Rd2 be a matrix with d1 rows and d2 columns.
We use the notation for the i-th row Mi,: , for the j-th
column M:,j := mj and for the sum column-wise

Mi,≥j := Mi,j + · · ·+Mi,d2 .

The vectorization operator vec (·) and its inverse vec−1 (·)
are defined as column-major order, i.e.

vec−1vec (M) := vec−1
(
[M1,1,M2,1, . . . ,Md1,d2 ]> ∈ Rd1d2

)
= M.

The Frobenius norm is defined by:

‖M‖F =
√

Tr(MM>) =

√ ∑
i∈[d1],j∈[d2]

M2
i,j ,

where [di] := {1, ..., di, } for i ∈ {1, 2}. The orthogonal linear
projection of a vector u ∈ Ru onto the space generated by
the columns of a matrix V ∈ Rv1 ⊗ Rv2 , with u = v1, is
denoted by ProjV (u) . For a matrix U ∈ Ru1 ⊗ Ru2 , (u1 =
v1) with columns {U:,1, ...,U:,u2

}, the projection is defined
by

ProjV (U) ∈ Rv2 ⊗ Ru2 ,

with columns {ProjV (U:,1) , ...,ProjV (U:,u2
)}.

Data constraints

A rating migration matrix M must satisfy some constraints
for both mathematical and economical reasons.
Mathematical constraints. Each row of M is a discrete prob-
ability, hence M is a stochastic matrix. The set of Stochastic
Matrices is denoted by

MS :=

{
M ∈ R(R−1) ⊗ RR :

∑
j∈[R]

Mi,j = 1,∀i ∈ [R− 1],

Mi,j ≥ 0, ∀(i, j) ∈ [R− 1]× [R]

}
.

Economic constraints. Depending on their expertise, some
risk managers may consider important to put additional con-
straints that are meaningful from economic point-of-view.
For instance, the likelihood of default for higher-rated coun-
terparties is lower than for the lower-quality ones. Then, the
collection of rating matrices satisfying so-called economic
constraints is denoted by

ME :=

{
M ∈ R(R−1) ⊗ RR :Mi,≥j ≤Mi′,≥j ,

∀j ∈ [R], 1 ≤ i < i′ ≤ R− 1

}
.

A matrix satisfying such constraints is called an idealized
matrix and is illustrated in Figure 1.

2 Dictionary learning: modeling
and solving

2.1 Defining the regularization term

In the case of time-series DL, the expected time dependency
can be encoded in the regularization part. We propose a
regularization term with an extra parameter w that will be
used to infer the behavior of the codings as a time-series.

Defining

ᾱk :=
1

T

T∑
t=1

αtk,

the proposed DL problem is:

min
D,A,w

D∈Ω, αt
k≥0, t∈[T ], k∈[K]

‖P−DA‖2F + λRAR(A,w) (4)

with regularization:

RAR(A,w) :=

K∑
k=1

T−1∑
t=1

(
αt+1
k − ᾱk − wk(αtk − ᾱk)

)2

, (5)

where the extra parameter w allows us to estimate the AR
parameters of the time-series αk for each k ∈ [K], as it will

3



be detailed below. The available set Ω is the convex set of
dictionaries verifying the idealized constraints (see Section
1.5)

Ω :=
{
D ∈ Rd ⊗ RK : vec−1 (dk) ∈ME ∩MS , ∀k ∈ [K]

}
.

Heuristics for the regularization strategy The AR
model is an important time-series structure, largely applied
in finance and other contexts (see [22]). For a fixed k ∈ [K],
we say that the time-series αk is auto-regressive of order 1,
if

αt+1
k = µk + wkα

t
k + εtk, for all t > 1, (6)

where µk is a constant called drift, wk is the AR coeffi-
cient and (εtk)Tt=1 are independent centered Gaussian vari-
ables with some variance parameter σ2

k.
Starting from the DL model (3), we encourage the codings

A to have an AR structure (6) through the regularization
term. Thus, assuming an AR structure of αk for each k ∈
[K], the log-likelihood with respect to parameters µk, wk,
and σk, up to a constant term, is:

`(αk, µk, wk, σk) :=− 1

2σ2
k

T−1∑
t=1

(
αt+1
k − µk − wkαtk

)2

− (T − 1) log(σk)

(see [27, Chapter 3.6]), with solutions:

µ̃k, w̃k, σ̃k = arg max
µk,wk,σk

`(αk, µk, wk, σk).

It readily follows that the optimal parameter µk is

µ̃k =
1

T − 1

T−1∑
t=1

(αt+1
k − w̃kαtk) ≈ (1− w̃k)ᾱk =: µ̂k

where the approximation holds for large values of T . Thus,
the optimization of wk boils down to (up to a small error)

ŵk = arg min
wk

T−1∑
t=1

(
αt+1
k − ᾱk − wk(αtk − ᾱk)

)2

. (7)

Doing so, we obtain the regularization term of (5).

Later (in the hyper-parameter selection step in Section
3.1), we will need also to retrieve all AR coefficients from
observations. Obtaining the optimal wk is straightforward
from (7):

ŵk =

∑T−1
t=1 (αt+1

k − ᾱk)(αtk − ᾱk)∑T
t=1(αtk − ᾱk)2

. (8)

Regarding σk, we proceed similarly and we get that σ̃k is
close to

σ̂2
k =

∑T−1
t=1

(
αt+1
k − µ̂k − ŵkαtk

)2

T − 1
.

We observe that, replacing ŵk in (7) (and then in (4))
would result in a non-convex function in terms of αk, which
would increase the difficulty of the optimization problem (4).
Therefore, optimize this parameter wk as an extra variable
is the best choice regarding convexity purposes.

Remark 1. The model presented in this work can be easily
generalized to an AR model of order p ∈ N. The choice to
introduce it in order 1 simplifies our notation and is ade-
quate to our case of application, see Section 3.1.1. The DL
optimization strategy, Section 2.2, applies likewise to an AR
model of order p ∈ N.

The importance of the parameter µk A similar AR
regularization, inspired in graph theory, is proposed in [32].
The difference between the latter and our model is that their
µk is considered to be zero. We discuss in this paragraph
why in our case of application this choice would not work.

Indeed, because of Equation (1) and the fact that Ω is a
convex set, we expect {αtk}Kk=1 to be coefficients of a linear
combination of {dk}Kk=1 that approximates Pt ∈ MS for
each t fixed, as explained in Equation (1). Then:

K∑
k=1

αtk ≈ 1, for all t ∈ [T ]. (9)

On the other hand, if µk = 0, and αk are AR time-series of
order 1 with coefficients µk and wk , the estimator µ̂k gives
that:

0 ≈ µ̂k = (1− wk)ᾱk.

Either wk = 1, which restricts a lot the possible time-
modeling of αk. Or, if wk 6= 1 for all k ∈ [K], then
1
T

∑T
t=1 α

t
k ≈ 0 and summing in k, we get

∑K
k=1

∑T
t=1 α

t
k ≈

0, which contradicts (9). This contradiction shows the diffi-
culty of fitting an AR model with drift 0 in the case where
dictionaries lie in a convex set and where the codings are
expected to be a convex combination.

2.2 Dictionary learning optimization strat-
egy

Problem (4) is not a convex optimization problem, as it is
usually the case in DL problems. Nevertheless, the problem
is convex in variables D, A and w, as we can observe in (4).
This property encourages the use of a policy that consists in
alternating the minimization in A, D and w. This largely
applied strategy does not ensure a global solution of problem
(4), but it is a straightforward way of finding a local minima
of problem.

The quadratic problems presented in this section are
solved by a Interior Point Method, see ([23, Section
16.8],[31]). Interior point methods (IPMs) are very well-
suited to solving quadratic optimization problems, particu-
larly when sizes of problems grow large, see [11].
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2.2.1 Dictionary update.

We opt for a sequential update of each atom of the dictio-
nary: dk for k ∈ [K]. This choice is guided by two advan-
tages: 1. The problem is strictly convex for each atom dk
(as stated in Proposition 2.1 below) which is not necessar-
ily true for the whole matrix D. 2. This strategy breaks
the problem in smaller problems making the resolution less
dependent on the amount of atoms K. Updating atoms sep-
arately is also the strategy of the widely used K-SVD (see [9,
Section 3.5]), however, the purpose in that case is to find a
closed form for the optimization problem, which is not true
in our case of study because of the form of constraints.

Proposition 2.1. Assume that {αtk}Tt=1 is non zero. The
minimization of (4) over dk ∈ vec

(
ME ∩MS

)
is equiva-

lent to minimizing a strictly convex quadratic problem with
linear constraints

min
dk

∥∥∥vec
(
P̃k

)
− Ãkdk

∥∥∥2

F
, s.t. vec−1 (dk) ∈ME ∩MS ,

(10)

where P̃k and Ãk are explicitly defined in (12).

Observe that the condition on αk is expected to be sys-
tematically satisfied since each element αtk is non-negative.

Proof. Start from the reconstruction error in (4) and write

‖P−DA‖2F =

∥∥∥∥∥∥P−
K∑
j 6=k

djAj,: − dkAk,:

∥∥∥∥∥∥
2

F

. (11)

From this, it is obvious that the function dk 7→ ‖P−DA‖2F
to minimize is quadratic and convex. However, under this
form, it is not yet clear it is strictly convex. To establish
this property, define

P̃k := P−
K∑
j 6=k

djAj,:,

Ãk :=



Ak,1 0 . . . 0
0 Ak,1 . . . 0
...

...
. . . 0

0 0 . . . Ak,1
...

...
...

...
Ak,T 0 . . . 0

0 Ak,T . . . 0
...

...
. . . 0

0 0 . . . Ak,T


∈ RdT ⊗ Rd.

(12)

The quantity in (11) is thus equal to∥∥∥vec
(
P̃k

)
− Ãkdk

∥∥∥2

F
.

Note that Ã>k Ãk is diagonal matrix equal to
∑T
t=1(αtk)2IRd .

2.2.2 Codings update

Similarly to the dictionary update, we adopt a strategy
based on the update of each Ak,: for k ∈ [K]. The rea-
sons are the same: it is preferable to solve a smaller and
strictly convex optimization problem. The fact that the op-
timization for each k is a strongly convex problem is not
straightforward and is argued in the proposition below.

Proposition 2.2. Let k ∈ [K] be fixed. Consider the mini-
mization of (4)-(5) over one coding Ak,:, i.e.

min
Ak,:, Ak,t≥0

‖P−DA‖2F

+ λ

K∑
k=1

T−1∑
t=1

(
Ak,t+1 − Āk,: − wk(Ak,t − Āk,:)

)2

.
(13)

For any λ ≥ 0, the above problem is a strongly convex
quadratic optimization problem with linear constraints.

Proof. First, there is a symmetric non-negative matrix
Hwk ∈ RT ⊗ RT such that

RkAR(Ak,:, wk) =

T−1∑
t=1

(
Ak,t+1 − Āk,: − wk(Ak,t − Āk,:)

)2

= 〈A>k,:,HwkA>k,:〉

since for wk fixed, RkAR(·, wk) is a quadratic problem with-
out linear term that can be represented by a symmetric ma-
trix. Obviously, it is non-negative.

Similarly to the proof for the dictionary update, we define
a matrix D̃k :

D̃k :=



D1,k 0 . . . . . . 0
...

...
. . .

. . .
...

Dd,k 0 . . . . . . 0
0 D1,k 0 . . . 0
...

...
...

. . . 0
0 Dd,k 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . 0 D1,k

...
. . .

. . .
...

...
0 . . . . . . 0 Dd,k



∈ RdT ⊗ RT ;

note that the minimization problem (13) is equivalent to

min
Ak,:, Ak,t≥0

∥∥∥vec
(
P̃k

)
− D̃kA

>
k,:

∥∥∥2

F
+ λ〈A>k,:,HwkA>k,:〉,

(14)

which is a quadratic constrained optimization problem with
quadratic term given by the matrix:

Ck := D̃>k D̃k + λHwk .
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Since D̃>k D̃k = ‖dk‖22IRT and that ‖dk‖2 is uniformly
bounded from below on vec

(
ME ∩MS

)
, and since Hwk

is symmetric non-negative, the matrix Ck is symmetric pos-
itive definite with a uniform lower bound for its eigenvalues.
The announced statement is proved.

2.3 Coefficient update

We note that, for each k ∈ [K], the optimization prob-
lem with respect to wk in equation (4) is a 1-dimensional
quadratic problem with explicit solution given by Equation
(8).

Remark 2. For each k ∈ [K], the solution of problem (10)
and (13) decreases the objective value of the respective opti-
mization problems. However, it is an open question to justify
that this strategy provides a solution to problems (4) with re-
spect to D, A and w.

Algorithm 1: Dictionary Learning (DL)

Input: matrix of vectorized RMM: P ∈ Rd ⊗ RT ,
number of atoms: K ∈ {1, 2, ...},
regularization parameter: λ > 0
number of iterations: N ∈ {1, 2, ...}

Output: optimized dictionary, codings and drift:
D,A,w

1 initialize D ∈ Rd ⊗ RK and A ∈ RK ⊗ RT
2 for i = 1 : N do
3 # Dictionary update
4 for k = 1 : K do

update dk with QP s.t. vec−1 (dk) ∈ME ∩MS

5 # Codings update
6 for k = 1 : K do

update αk with QP s.t. αtk ≥ 0, t ∈ [T ]

7 # Coefficient update
8 for k = 1 : K do

update wk with Equation (8)

3 Experiments

Our proposed DL method with temporal AR regularization
will be evaluated on real RMM provided by BNP Paribas.
The dataset contains T = 192 one-year observed transition
frequency matrices with shape R = 11 issued monthly from
52 sectors composed by large European capitalization com-
panies between January 2004 and December 2019. This pe-
riod contains in particular the subprime crisis but not the
COVID-19 pandemic.

3.1 Experimental design

Ideally, we should apply our DL method on each sector.
However given the dataset, the observed matrices are very
sparse which refers to another problem formulation (miss-
ing data). To overcome this issue we computed a (confiden-
tial) weighted sum among the 52 sectors to form a share-
able (on git) set of matrices P = {vec (Pt) ∈ Rd}Tt=1 with
d = 110 and T = 192. Those matrices are still noisy and
so they might not respect the economic constraints, i.e.
Pt ∈ MS ,∀t ∈ [192]. Based on this dataset, we performed
a classical 80/20 non-random train-test split in time, stored

respectively in PTrain ∈ Rd⊗RTTrain

and PTest ∈ Rd⊗RTTest

.
In all the following experiments we use K = 3 for ease of
interpretation since we want to represent the RMM as a
combination of three regimes, assuming that each one repre-
sents an economic state. Larger values of K perform similar
results but lead to a more sophisticated economic analysis.

3.1.1 AR lag estimation

First let us check the relevance of the AR(1) model in (5).
Starting from the optimization problem (4) with λ = 0, we
trained the DL model on PTrain and applied the well-known
partial autocorrelation function (PACF) [4, Section 3.2.5]
on the codings ATrain

k,: , for all k ∈ [3]. For each series, we
identified just one statistically significant lag, suggesting a
possible AR(1) model adapted to the data. See Figure 2 for
k = 1, while the others behave similarly.

Figure 2: PACF of ATrain
1,: for the first 10 lags. The shaded

region represents the 95% confidence interval.

3.1.2 Hyper-parameter selection

The best hyperparmeter λ is chosen automatically through
the procedure described in Algorithm 2. The latter allows to
evaluate both the prediction and the reconstruction capacity
of the model. We applied iteratively Algorithm 2 for λ ∈
{0.01, 0.1, 1, 3, 5, 6, 7, 10} and stored the results in Table 1
which highlights the benefit of our proposed regularization
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in the RMM predictions. The parameter associated with
the smallest reconstruction error is λ = 6.

Algorithm 2: Hyper-parameter selection

Input: data train: PTrain ∈ Rd ⊗ RTTrain

,
data test: PTest ∈ Rd ⊗ RTTest

,
number of atoms: K ∈ {1, 2, ...},
lambda: λ > 0

Output: reconstruction error: E
1 DTrain,ATrain,wTrain ← DL(PTrain,K, λ, 500),

where the function DL refers to Algorithm 1
2 ATest ← ProjDTrain

(
PTest

)
3 ASim

k,t ← µ̂k +ATest
k,t w

Train
k + εtk with

µ̂k = ᾱTrain
k (1− wTrain

k ),

εtk ∼ N
(
0, σ̂2

k

)
,

σ̂2
k ← V̂ar[αTrain

k ]
(
1− (wTrain

k )2
)
,

for all k ∈ [K] and t ∈ [TTest − 1]
4 PReco ← DTrainATrain

5 PSim ← DTrainASim

6 E ← 0.8
∥∥PTest

:,1: −PSim
∥∥2

F
+ 0.2

∥∥PTrain −PReco
∥∥2

F
# without the first test value

λ 0.01 0.1 1 3 5 6 7 10
error 6.1 5.1 4.7 4.6 4.5848 4.5846 4.5847 4.593

Table 1: Reconstruction error from Algorithm 2 associated
with various λ. The best result is emphasized in bold.

In the next section we illustrate the results of our DL
model and propose two ML applications. First a time-series
prediction of the RMM and second their unsupervised clus-
tering in order to infer an estimation of the global economic
sentiment.

3.2 Results

Computational aspects The numerical experiments
have been conducted on a Macbook Pro (13-inch, M1, 2020),
512 Go SSD, 16 Go RAM. All the code was implemented in
Python 3.10. It takes less than a minute to train the model
with K = 3 during 500 iterations. Clearly from Algorithm 1
the training time is linear with respect to K.

3.2.1 Dictionary representation

Once learned, it appears that the dictionary managed to ex-
tract three candidates (atoms) to be good representatives
for all RMM included in our dataset. In Figure 3 are rep-
resented these atoms in a matrix form generating a stable
(strong diagonal, see Figure 3a), an upgrade (strong lower

diagonal, see Figure 3b) and a downgrade (strong upper
diagonal, see Figure 3c) risk configuration. Although au-
tomatically obtained by our algorithm, observe that these
representatives make fully sense in terms of economic inter-
pretation, and should reveal the underlying characteristics
of RMM in our data set.

(a) vec−1 (d1)

(b) vec−1 (d2)

(c) vec−1 (d3)

Figure 3: Matrix representation of the atoms in a trained
dictionary with K = 3, λ = 6.

3.2.2 Codings.

The AR regularization (5) enforces an AR behavior of the
codings making them more regular. The choice of the best
prediction and analysis will then be a trade-off between the
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reconstruction and the regularity of the time evolution of the
codings. Figure 4 depicts this evolution. Note that for larger

200
4

200
6

200
8

201
0

201
2

201
4

201
6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lambda
0.1 1 6 10

Figure 4: Time evolution of ATrain
3,: for λ ∈ {0.1, 1, 6, 10}.

values of λ the evolution in time of the coding is smoother.
This property tends to advantage the prediction of future
matrices.

3.2.3 Clustering

Let study now the benefit of our proposed regularized DL
model in order to obtain an interpretable classification of
the RMM. We fit a KMeans algorithm on the standard-
ized ATrain in 3 clusters and predict the classes of the stan-
dardized ATrain. Assuming that the atoms and the clusters
represent different economic states, we obtain in Figure 5
a classification in time of the observed RMM. Additionally
to the historical financial context, we present how to infer
an economic sentiment indicator based on both the cod-
ings’ classification and the dictionary. To do so, we store in
Table 2 the weights of the atoms assigned to each cluster.
Thus, combining with Figure 3, we can easily deduce that
the labels associated to the clusters green, yellow, red are
respectively a good, a stable and a bad economic sentiment
indicator. Such an allocation can be confirmed graphically
in Figure 5 which captures effectively the financial bubble
between 2006-2008, as well as the subrprime crisis.

cluster
k

1 2 3

green 81.7 11.7 6.6
yellow 60.3 23.6 16.2

red 57.0 6.6 36.4

Table 2: Centroid of ATrain in each cluster: green, yellow,
red. The values are adjusted in percentage.

4 Conclusion

Modeling RMM is a challenging problem because it is neces-
sary to find an interpretable representation, satisfying eco-

200
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8
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201
2

201
4

201
6

−1

0

1

Figure 5: Unsupervised classification
of the codings ATrain in 3 clusters:
{−1 (red cross), 0 (yellow square), 1 (green dot)}.

nomic constraints, while the data are involving in time, not
numerous and in a dimension close to the number of observa-
tions. We propose a new data-based method using a dictio-
nary learning approach, which implementation boils down to
solve small-dimension quadratic optimization problems with
linear constraints, leading to a fast algorithm. On the mod-
eling size, we overcome the challenge of a constrained dictio-
nary learning problem and progress in temporal comprehen-
sion of the data through the AR regularization. When tested
on a real data-set, the method enjoys good accuracy for re-
construction and includes the classification with respect to
economic sentiment indicator.

As perspectives for further works, the clustering analysis
suggests that it is possible to connect the temporal evolu-
tion of the codings with important macro-economical vari-
ables such as GDP or financial indices. The integration of
these real indicators in the DL model, as well as its compar-
ison with the Gaussian copula model are next steps for the
consolidation of the model.
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