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Unquantified uncertainty about probabilistic model assumptions tends to inflate claims of statistical significance, potentially leading to reported results that cannot be replicated. The same bias occurs at a higher level when Bayesian inference or frequentist inference is chosen to achieve significance in the absence of a way to propagate the uncertainty about which statistical paradigm to select.

The objective of this article is to correct that bias at both levels on the basis of evidentiary first principles for statistical inference. It is found that just as Bayesian inference is warranted when a prior distribution is considered alongside the data as evidence, frequentist inference in the form of confidence intervals and their generalization to confidence distributions is warranted when a hypothesis testing procedure is considered as a piece of evidence. Hierarchical evidence in the same framework enables reporting results reflecting uncertainty about which of those pieces of evidence to admit as well as uncertainty about model assumptions. That is illustrated by a method of averaging Bayesian hypothesis testing with frequentist hypothesis testing and by a method of averaging confidence intervals and/or credible intervals.

Figure 1: Each of the first two flowcharts is a different possibility of the body of total evidence admitted for reporting scientific results. The third flowchart is a higher-level body of total evidence for propagating uncertainty about the first two bodies of total evidence to the results. Each rectangle at the top of a flowchart abbreviates a different possibility for background evidence. The other pieces of evidence are less preliminary within the flowchart.

Why unify statistical inference?

The war between the Bayesian and frequentist camps of statistical inference continues [START_REF] Mayo | Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars[END_REF]. The current cease-fire hides unresolved controversies that inflict unintended damage on the sciences. For example, in the special issue of The American Statistician on the replication crisis in science [START_REF] Wasserstein | Moving to a world beyond "p < 0.05[END_REF], the proposed solutions depend on various stances toward the Bayesian and frequentist positions. At two extremes of the associated debate on hypothesis testing, some Bayesians argue for calibrating p-values using posterior probabilities or related quantities, whereas some frequentists argue for the continued use of uncalibrated p-values.

The lack of a consensus among statisticians leaves scientists without clear guidance. Meanwhile, science must carry on. Results and conclusions must be reported, ideally with their uncertainty quantified. But Bayesian and frequentist methods of uncertainty quantification can yield very different results. One approach is to use the statistical paradigm and model that make the conclusions appear the most certain or statistically significant. That is practiced in molecular evolution whenever a Bayesian method is chosen over a frequentist method in order to report a more certain phylogenetic tree [15, p. 431]. The general form of that practice, selecting models and methods of inference to maximize statistical significance, has been condemned as p-hacking and blamed for the inability to replicate research results [START_REF] Andrade | HARKing, cherry-picking, P-hacking, fishing expeditions, and data dredging and mining as questionable research practices[END_REF]. This article proposes a solution in the form of evidentiary first principles for statistical inference; the main special cases are summarized in Figure 1. That results in generally applicable methods of propagating uncertainty about Bayesian and/or frequentist models. 1 2 General theory: Proof distributions from pieces of evidence Let Pr be the joint probability distribution of an observable data set denoted by Data and an unknown quantity or vector of scientific interest denoted by U . The body of total evidence is a sequence of K pieces of evidence, where each piece of evidence is a proposition about Pr. Each piece of evidence is considered more preliminary than the ones after it in the sequence. For example, if a Bayesian prior distribution B is considered more preliminary than an observed data set denoted by data, then the body of total evidence is this sequence of two pieces of evidence:

1. The marginal distribution of U is B , a known prior distribution.

2. The probability that Data = data is 100%.

As a proposition about Pr, each piece of evidence may be represented as a subset of the set of all possible joint probability distributions of Data and U . Then let Ev k be the set representing the k th piece of evidence for k = 1, . . . , K .

Ev 1 , being the most preliminary piece of evidence, is called the background evidence. Each member of the background evidence may be interpreted as practical information encoded in a language [45, chapter 9]. In terms of measure theory, Ev 1 is a set of measures that are not necessarily probability measures. For example, if the marginal distribution of U is uniform on the real line, then it does not integrate to 1. By contrast, Ev k must be a set of probability measures for each k = 2, . . . , K . All measures have the same domain (measure space) for a given application.

Putting the example in the subset representation, the body of total evidence is the ordered pair (Ev 1 , Ev 2 ), where Ev 1 is the set of all joint distributions such that the marginal distribution of U is B , and Ev 2 is the set of all joint distributions such that the probability that Data = data is 100%.

In short,

Ev 1 = {Pr : Pr (U ∈ •) = B } ;
(1)

Ev 2 = {Pr : Pr (Data = data) = 1} . (2) 
Two or more pieces of evidence are inconsistent with each other if their intersection is the empty set. For the sake of enough generality to recover frequentist inference as a special case in Section 3, it is not required that the pieces of evidence be consistent with each other. What is required is that each piece of evidence influence the marginal distribution of U to be used for scientific inference as much as possible while respecting which pieces of evidence are more preliminary than others. That requirement is made precise as follows.

The goal for moving from Ev 1 , the most preliminary piece of evidence, to Ev 2 , the next most preliminary piece of evidence, is to identify the distributions in Ev 2 that would not attribute more certainty than warranted by the evidence (Ev 

S (Pr 2 || Pr 1 ) =        -ρ 1,2 (u, data) log ρ 1,2 (u, data) d Pr 1 (u, data) if Pr 1 Pr 2 -∞ if Pr 1 Pr 2 , (3) 
which is short for

Ev 1 Ev 2 = Pr 2 ∈ Ev 2 : sup S Pr 2 || Pr 1 : Pr 1 ∈ Ev 1 = sup {S (Pr 2 || Pr 1 ) : Pr 2 ∈ Ev 2 , Pr 1 ∈ Ev 1 } ,
where sup is the least upper bound.

Similarly, the goal for moving from Ev 1 Ev 2 , the set of the distributions of proof given (Ev 1 , Ev 2 ), to Ev 3 , the next piece of evidence, is to identify Ev 1 Ev 2 Ev 3 , the set of the distributions of proof given (Ev 1 , Ev 2 , Ev 3 ). In analogy with equation ( 4), that is

Ev 1 Ev 2 Ev 3 = arg sup Pr3∈Ev3 sup Pr1,2∈Ev1 Ev2 S (Pr 3 || Pr 1,2 ) .
The process continues in the same way with each successive piece of evidence until achieving

Ev 1 • • • Ev K , the
set of the distributions of proof given the body of total evidence:

Ev 1 • • • Ev K = arg sup PrK ∈EvK sup Pr1,...,K -1∈Ev1••• EvK -1 S (Pr K || Pr 1,...,K -1 ) .
Distributions of proof combine these previous generalizations of the principle of maximum en-tropy [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Jaynes | Where do we stand on maximum entropy?[END_REF][START_REF] Jaynes | On the rationale of maximum-entropy methods[END_REF][START_REF] Jaynes | Probability Theory: The Logic of Science[END_REF]:

• Maximizing differential entropy over a sequence of linear constraints that need not be mutually consistent [START_REF] Giffin | Updating probabilities with data and moments[END_REF][START_REF] Giffin | Application of the maximum relative entropy method to the physics of ferromagnetic materials[END_REF] • Maximizing over both arguments of S (•||•) rather than only over the first argument [START_REF] Csiszár | An extended maximum entropy principle and a Bayesian justification[END_REF][START_REF] Bickel | Maximum entropy derived and generalized under idempotent probability to address Bayes-frequentist uncertainty and model revision uncertainty: An information-theoretic semantics for possibility theory[END_REF] 3 Bayesian and frequentist special cases

Posterior distributions from prior distributions

With the general framework of Section 2 in place, Bayesian inference will now be derived from the definition of differential entropy (3) and from the example of equations ( 1) and [START_REF] Balch | Mathematical foundations for a theory of confidence structures[END_REF]. By substitution into equation ( 4), the set of the distributions of proof given the body of total evidence is

Ev 1 Ev 2 = arg sup Pr2∈{Pr:Pr(Data=data)=1} sup Pr1∈{Pr:Pr(U ∈•)=B} -ρ 1,2 (u, data) log ρ 1,2 (u, data) d Pr 1 (u, data) = arg sup Pr2:Pr2(Data=data)=1 sup Pr1:Pr1(U ∈•)=B -ρ 1,2 (u, data) log ρ 1,2 (u, data) d Pr 1 (u, data) = arg sup Pr2:Pr2(Data=data)=1 -ρ 1,2 (u, data) log ρ 1,2 (u, data) d Pr 1 (u, data) ,
where ρ 2 is the probability density function of Pr 2 with respect to a dominating measure Pr 1 such that Pr 1 (U ∈ •) = B . Then Ev 1 Ev 2 = {Pr data }; the unique distribution of proof is Pr data , which is the joint probability measure of U and Data such that Pr data (Data = data) = 1 and such that B data , the marginal distribution of U from Pr data , satisfies

B data (•) = Pr data (U ∈ •) = Pr 1 (U ∈ •| Data = data) (5) 
[ [START_REF] Williams | Bayesian conditionalisation and the principle of minimum information[END_REF][START_REF] Giffin | Application of the maximum relative entropy method to the physics of ferromagnetic materials[END_REF].

From the right-hand side, it can be seen that B data is the posterior distribution of U indicated by Bayes's theorem. All of the usual Bayesian results can then be derived from B data , including credible intervals, expected-utility-maximizing decisions, expected-loss-minimizing estimates, and the posterior probabilities of hypotheses about U .

Approximate confidence distributions from p-values

Just as Section 3.1 formalizes what evidence is needed to use Bayesian inference to draw scientific conclusions, this subsection clarifies what evidence would be needed to accept or reject scientific hypotheses at various levels of proof using frequentist inference. Instead of admitting a prior distribution as evidence, this section admits a method of generating p-values and confidence intervals.

This frequentist special case of the general framework of Section 2 starts with a p-value testing the null hypothesis that U is equal to a particular scalar or vector u on the basis of data, the observed data set. Such a p-value is written as p data (u) and has the defining property that the conditional distribution of p Data (u) is uniform between 0 and 1 (p Data (u) ∼ Uniform 0,1 ) given

U = u.
Recall that data, typically a vector or matrix of measurements, is a realization of Data, a random data set. An observed 95% confidence set (a confidence interval for scalar u) u data (95%)

is the set of all possible values of U that are not rejected at the 100% -95% significance level, that is,

u data (95%) = {u : p data (u) ≥ 0.05} , (6) 
and similarly for confidence levels other than 95%. The frequentist probability that the random confidence set u Data (95%) covers the true value of u is 95%.

For example, if U is the difference between the mean blood pressure of a treatment group and a control group, then the typical null hypothesis to test on the basis of a record data of clinical measurements would be that U = 0, and the p-value testing that hypothesis would be denoted by p data (0). If there were no difference between the treatment and control groups and if the study were repeated enough times, the histogram of such p-values would be roughly flat between 0 and 1, with about 5% of them below 0.05. There is a 95% probability that the 95% confidence interval u Data (95%) includes the true mean difference.

The body of total evidence that recovers much of frequentist inference is this sequence of three pieces of evidence:

1. The background evidence includes every joint measure such that the distribution of p Data (u)

dominates Uniform 0,1 for every value u of the unknown quantity of interest, and such that the marginal distribution of Data is a measure that dominates D, where D is defined in the next piece of evidence in this numbered list. That background evidence is broad enough to represent very little information in itself.

2. In addition to p Data (u) ∼ Uniform 0,1 for every u, the marginal distribution of Data is D, an unknown prior predictive distribution.

3. The probability that Data = data is 100%.

In the mathematical notation, the body of total evidence is an ordered triple (Ev 1 , Ev 2 , Ev 3 ) satisfying these equations: By substitution into equation ( 4), the set of the distributions of proof given the first two pieces of evidence is

Ev 1 Ev 2 = arg sup Pr2:Pr2(Data∈•)=D,Pr2(p Data (u)∈•)=Uniform0,1 for all u sup Pr1:Pr1(Data∈•) D,Pr1(p Data (u)∈•) Uniform0,1 for all u -ρ 1,2 (u, data) log ρ 1,2 (u, data) d Pr 1 (u, data) = arg sup Pr2:Pr2(Data∈•)=D,Pr2(p Data (U )∈•)=Uniform0,1 -ρ 1,2 (u, data) log ρ 1,2 (u, data) d Pr 1 (u, data) , (7) 
where ρ 1,2 is the probability density function of Pr 2 with respect to any Pr 1 such that Pr sup

Pr ⊥ ∈Ev ⊥ -ρ ⊥,3 (u, data) log ρ ⊥,3 (u, data) d Pr ⊥ (u, data) ,
where ρ ⊥,3 is the probability density function of Pr 3 with respect to Pr ⊥ . By reasoning analogous to that behind equation [START_REF] Bickel | Confidence intervals, significance values, maximum likelihood estimates, etc. sharpened into Occam's razors[END_REF], that results in Pr ⊥,data as a distribution of proof, where

Pr ⊥,data (•) = Pr ⊥ (•| Data = data)
for a Pr ⊥ ∈ Ev ⊥ . Then C data , the marginal distribution of U from Pr ⊥,data , satisfies

C data (•) = Pr ⊥,data (U ∈ •) = Pr ⊥ (U ∈ •| Data = data) . (8) 
Since p Data (U ) ∼ Uniform 0,1 and since p Data (U ) and Data are independent under every Pr ⊥ ∈ Ev ⊥ , it follows that p data (U ) ∼ Uniform 0,1 for U ∼ C data . Finally, the probability that U is in the observed 95% confidence set u data (95%) of equation ( 6) is

C data (U ∈ u data (95%)) = C data (U ∈ {u : p data (u) ≥ 0.05}) = C data (p data (U ) ≥ 0.05) = Uniform 0,1 ([0.05, 1]) = 95%.
Since data is fixed rather than random, that probability is a degree of proof, not a frequentist probability.

Since, analogously, the degree of proof that U is in the observed confidence set of any level other than 95% is equal to that level, C data meets the conditions of an approximate confidence distribution [START_REF] Bickel | Confidence intervals, significance values, maximum likelihood estimates, etc. sharpened into Occam's razors[END_REF][START_REF] Bickel | Confidence distributions and empirical Bayes posterior distributions unified as distributions of evidential support[END_REF] such as, in the case of scalar U , an asymptotic confidence distribution [START_REF] Singh | Combining information from independent sources through confidence distributions[END_REF][START_REF] Singh | Confidence distribution (CD) -distribution estimator of a parameter[END_REF]. An advantage of an approximate confidence distribution as opposed to an exact confidence distribution [e.g., [START_REF] Schweder | Confidence and likelihood[END_REF][START_REF] Polansky | Observed Confidence Levels: Theory and Application[END_REF][START_REF] Tian | The highest confidence density region and its usage for joint inferences about constrained parameters[END_REF][START_REF] Bityukov | Confidence distributions in statistical inference[END_REF][START_REF] Kim | Using confidence distribution sampling to visualize confidence sets[END_REF][START_REF] Schweder | Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions[END_REF][START_REF] Taraldsen | Conditional fiducial models[END_REF] is that the former applies not only to continuous data but also to discrete data. For discrete data would require p Data (u) to be only approximately uniform, and thus the 95% frequentist probability of coverage by the confidence set would also be approximate [START_REF] Bickel | Self-consistent confidence sets and tests of composite hypotheses applicable to restricted parameters[END_REF].

For example, suppose u is a scalar and that the function p data is strictly monotonic increasing.

In that case, for any values u 1 and u 2 such that u 1 < u 2 , equation ( 8) then gives

C data (u 1 ≤ U ≤ u 2 ) = C data (p data (u 1 ) ≤ p data (U ) ≤ p data (u 2 )) . = p data (u 2 ) -p data (u 1 ) ,
indicating that p data is the cumulative distribution function of C data . For that reason, p data is called a "confidence distribution" or a "significance function" [START_REF] Singh | Combining information from independent sources through confidence distributions[END_REF][START_REF] Singh | Confidence distribution (CD) -distribution estimator of a parameter[END_REF]. The "confidence" terminology comes from the fact that whenever u 1 and u 2 are the limits of a 95% confidence interval interval,

C data (u 1 ≤ U ≤ u 2 ) = 95%
, and similarly for any level of confidence other than 95%.

The material in this section can be generalized from p-values to what statisticians call "pivots" and "pivotal quantities," which extend Gauss's concept of an error. Steps analogous to those above then lead to the independence of the pivotal quantity and Data. That independence implies that the proof distribution of U is a fiducial distribution [START_REF] Dempster | On direct probabilities[END_REF], thereby establishing an extended principle of maximum entropy as what Evans [20, p. 91] called the lacking "new principle" needed to justify fiducial inference. This century has experienced the development of many fiducial-type distributions, many of which are approximate confidence distributions [25, 24, 

4 Evidentiary model averaging and applications to p-hacking

Evidentiary model averaging

Typically, there is uncertainty not only about U , the random variable or random vector of interest, but also about the model assumptions behind the pieces of evidence. In the Bayesian case of Section 3.1, the body of total evidence depends on a prior distribution, whereas in the frequentist case of Section 3.2, the body of total evidence depends on a statistical testing procedure.

In both cases, there is also dependence on the family, the set of possible distributions of Data.

Each value u of the unknown quantity of interest may correspond to multiple distributions in the family. In parametric statistics, u is is a vector of finite dimension and is called the parameter of interest, and the distribution in the family is in general indexed not only by the parameter of interest but also by a nuisance parameter. The nuisance parameter is not explicitly represented in Section 3 since it is integrated out with respect to a prior distribution in the Bayesian case and since the p-values in the frequentist case are valid for all values of the nuisance parameter. In nonparametric statistics, the parameter values are functions rather than finite-dimensional vectors.

In addition to uncertainty about the family of possible data distributions and uncertainty about the prior distribution in the Bayesian case or the testing method in the frequentist case, there is often also uncertainty about whether to use Bayesian inference or frequentist inference. To concisely capture all of the potentially uncertain assumptions, each body of total evidence that is uncertain is called a model of total evidence and is indexed by a possible value of a random variable M . The number of models of total evidence is denoted by N .

That uncertainty about M can be propagated to statements about U by considering a body of total evidence at a hierarchical level above those of the models of total evidence. That is accomplished by applying the framework of Section 2 except with M in place of U and with a higher-level body of total evidence, which is called the body of total evidence about the model. The resulting proof distribution is then equivalent to a probability mass function written as pmf. Then an average proof distribution of U is

Pr {1,...,N } (•) = Prob (U ∈ •) = m=1,...,N Prob (M = m) Prob (U ∈ •| M = m) = m=1,...,N pmf (m) Pr (m) (•) , (9) 
where Pr (m) is a distribution of proof from the mth model of total evidence for each m = 1, . . . , N .

If the body of total evidence about the model is itself uncertain enough to matter, then the hierarchy can be analogously extended by adding a yet higher-level body of total evidence. The process may be repeated until the unquantified uncertainty is considered negligible, as is done with hierarchical Bayesian modeling.

In the simplest case, the body of total evidence about the model, not involving Data, is this sequence of pieces of evidence:

1. The only member of the background evidence is the counting measure Pr # on subsets of {1, . . . , N }. That has the effect of putting equal weight on each model of total evidence.

2. This piece of evidence is vacuous in the sense that it is the set Ev * of all distributions on subsets of {1, . . . , N }.

More succinctly, that body of total evidence about the model is the ordered pair (Ev # , Ev * ),

where Ev # = {Pr # }. By substitution into equation ( 4), the set of the distributions of proof given

(Ev # , Ev * ) is Ev # Ev * = arg sup Pr2∈Ev * sup Pr1∈Ev # -ρ 1,2 (m) log ρ 1,2 (m) d Pr 1 (m) = arg sup Pr2∈Ev * -ρ #,2 (m) log ρ #,2 (m) d Pr # (m) ,
where ρ #,2 , as the probability density of Pr 2 with respect to Pr # , is the probability mass function according to Pr 2 . The equation simplifies to

Ev # Ev * = arg sup Pr2∈Ev * - ρ #,2 (m) log ρ #,2 (m) , (10) 
which is just maximum Shannon entropy. As is well known, the probability mass function on {1, . . . , N } that maximizes the Shannon entropy is pmf = , the probability mass function assigning equal probability to each member of the set, in this case each model of total evidence. Equation [START_REF] Bickel | Phylogenetic Trees and Molecular Evolution: A Hands-on Introduction with Uncertainty Quantification Corrected[END_REF] then reduces to Ev # Ev * = {pmf = }, which says pmf = is the unique distribution of proof given (Ev # , Ev * ). By equation ( 9),

Pr {1,...,N } (•) = m=1,...,N pmf = (m) Pr (m) (•) = 1 N m=1,...,N Pr (m) (•) , (11) 
which means the average proof distribution of U is the equal-weight mixture of the proof distributions of the models of total evidence.

Applications to p-hacking

Equation [START_REF] Bickel | Propagating clade and model uncertainty to confidence intervals of divergence times and branch lengths[END_REF] suggests taking the mean of p-values and/or posterior probabilities over different methods and assumptions instead of p-hacking, the practice of selecting those achieving the most statistical significance. For example, Figure 2 displays probabilities of making a sign error averaged over Bayesian and frequentist methods weighted equally. The more general equation ( 9) can be used to weight the mean as required by the body of total evidence about the model.

Since 95% confidence intervals and 95% credible intervals are special cases of intervals having a 95% degree of proof, they can also be combined using equation [START_REF] Bickel | Maximum entropy derived and generalized under idempotent probability to address Bayes-frequentist uncertainty and model revision uncertainty: An information-theoretic semantics for possibility theory[END_REF]. It can be used to average the approximate confidence distributions behind confidence intervals and/or the posterior distributions behind credible intervals. The result is a 95% proof interval such that there is a 95% degree of proof that the quantity of interest is in that interval, and similarly for degrees of proof higher or lower than 95%. For example, the special case of equation ( 11) is used in Figure 3 to propagate uncertainty about which Bayesian model of molecular evolution to use. Another example, lacking the above evidentiary foundation, was supported by other arguments [START_REF] Bickel | Propagating uncertainty about molecular evolution models and prior distributions to phylogenetic trees URL[END_REF].

Figure 2: Probabilities that either u > u 0 when U ≤ u 0 or u < u 0 when U ≥ u 0 , where u is the observed estimate of U , and u 0 is the value that U would have if the null hypothesis were true, as functions of a two-sided p-value. The frequentist line is the probability of a sign error according to an approximate confidence distribution [START_REF] Bickel | Null hypothesis significance testing interpreted and calibrated by estimating probabilities of sign errors: A Bayes-frequentist continuum[END_REF]. With that distribution as an approximate posterior distribution conditional on U = u 0 [START_REF] Bickel | Null hypothesis significance testing interpreted and calibrated by estimating probabilities of sign errors: A Bayes-frequentist continuum[END_REF], the Bayesian curve is the posterior probability of a sign error using a Bayes factor calibration [START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF] and a 50% (left) or 90.9% [START_REF] Benjamin | Redefine statistical significance[END_REF] (right) prior probability that U = u 0 . Since both probabilities are degrees of proof given their respective pieces of evidence (Section 3) and since there is considerable uncertainty about those pieces of evidence, the Bayesian and frequentist probabilities are "averaged" by taking their mean to obtain the overall degree of proof that there is a sign error (Section 4.1). ; the intervals do not overlap [START_REF] Bromham | Six impossible things before breakfast: Assumptions, models, and belief in molecular dating[END_REF], indicating that neither interval in itself adequately quantifies the uncertainty. The plot on the right displays the corresponding 50% credible intervals assuming the posterior distributions are approximately normal. Under that approximation, the averaged equal-tail 95% and 50% proof intervals from equation ( 11) are also displayed. While the limits of the averaged 95% proof interval are very close to the maximum of the two upper limits and the minimum of the two lower limits, in agreement with a conservative method of uncertainty propagation [START_REF] Bickel | Phylogenetic Trees and Molecular Evolution: A Hands-on Introduction with Uncertainty Quantification Corrected[END_REF], the averaged 50% proof interval is less conservative. By contrast, the method of taking the union of the credible intervals [START_REF] Bickel | Propagating clade and model uncertainty to confidence intervals of divergence times and branch lengths[END_REF] results in sets that are not intervals when the credible intervals do not overlap.

Ev 1 ⊂

 1 {Pr : Pr (Data ∈ •) D, Pr (p Data (u) ∈ •) Uniform 0,1 for all u} ; Ev 2 = {Pr : Pr (Data ∈ •) = D, Pr (p Data (u) ∈ •) = Uniform 0,1 for all u} ; Ev 3 = {Pr : Pr (Data = data) = 1} .

1 Since Ev 1 Ev 1

 111 1 (p Data (u) ∈ •) Uniform 0,1 for all u and such that Pr 1 (Data ∈ •) D. Equation (7) says Ev 1 Ev 2 is the set of joint distributions maximizing the differential entropy while holding the marginal distributions fixed at Uniform 0,1 and D. Since the joint distribution maximizing the entropy while holding the marginal distributions of two random variables fixed is the product distribution corresponding to the independence of those random variables [17, pp. 309-310], it follows that for every Pr ⊥ in Ev Ev 2 , the joint distribution of p Data (U ) and Data is such that p Data (U ) and Data are independent, Pr ⊥ (p Data (U ) ∈ •) = Uniform 0,1 , and Pr ⊥ (Data ∈ •) = D. The set of those distributions is denoted by Ev ⊥ . Ev 2 = Ev ⊥ , it follows that the set of proof distributions given the body of total evidence is Ev 2 Ev 3 = Ev ⊥ Ev 3

Figure 3 :

 3 Figure 3: Intervals of cyanobacteria divergence times in billions of years ago as estimated from molecular and fossil data. The first two intervals on the left are the 95% credible intervals under a Cauchy 50% prior distribution under uncorrelated and autocorrelated models as reported in Betts et al. [4, Fig.1]; the intervals do not overlap[START_REF] Bromham | Six impossible things before breakfast: Assumptions, models, and belief in molecular dating[END_REF], indicating that neither interval in itself adequately quantifies the uncertainty. The plot on the right displays the corresponding 50% credible intervals assuming the posterior distributions are approximately normal. Under that approximation, the averaged equal-tail 95% and 50% proof intervals from equation (11) are also displayed. While the limits of the averaged 95% proof interval are very close to the maximum of the two upper limits and the minimum of the two lower limits, in agreement with a conservative method of uncertainty propagation[START_REF] Bickel | Phylogenetic Trees and Molecular Evolution: A Hands-on Introduction with Uncertainty Quantification Corrected[END_REF], the averaged 50% proof interval is less conservative. By contrast, the method of taking the union of the credible intervals[START_REF] Bickel | Propagating clade and model uncertainty to confidence intervals of divergence times and branch lengths[END_REF] results in sets that are not intervals when the credible intervals do not overlap.

  1 , Ev 2 ). That is accomplished by finding the distributions Pr 2 in Ev 2 and Pr 1 in Ev 1 that maximize the differential entropy of ρ 1,2 , the probability density function of Pr 2 with respect to Pr 1 , assuming that the density exists. The density exists if Pr 1 Pr 2 , which means Pr 1 dominates Pr 2 . That differential entropy is

  which is the additive inverse of the relative entropy or Kullback-Leibler divergence between Pr 2 and Pr 1 . The set of those entropy-maximizing distributions in Ev 2 is symbolized by Ev 1 Ev 2 . They are called the distributions of proof since their probabilities may be interpreted as degrees of proof on the basis of the evidence (Ev 1 , Ev 2 ). More concisely,Ev 1 Ev 2 = arg sup

Pr2∈Ev2 sup Pr1∈Ev1 S (Pr 2 || Pr 1 ) ,
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