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We study Γ-convergence of nonconvex integrals of the calculus of variations in strongly connected sets when the integrands have not polynomial growth and can take infinite values. Application to homogenization of unbounded integrals in strongly perforated sets is also developed.

Introduction

Asymptotic analysis for boundary value problems in perforated sets was studied for the first time by Cioranescu and Saint Jean Paulin (see [START_REF] Cioranescu | Homogenization of reticulated structures[END_REF] and the reference therein) and Khruslov and Marchenko (see [START_REF] Marchenko | Homogenization of partial differential equations[END_REF] and the reference therein). The approach of Cioranescu and Saint Jean Paulin is based upon multiscale methods like formal two-scale asymptotic expansions, compensated compactness and oscillating test functions and twoscale convergence (see [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF][START_REF] Cioranescu | An introduction to homogenization[END_REF][START_REF] Chechkin | Homogenization[END_REF]) while the one of Khruslov and Marchenko uses variational analysis like Γ-convergence (see [START_REF] Dal | An introduction to Γ-convergence[END_REF][START_REF] Braides | Homogenization of multiple integrals[END_REF]). The common point of the two approaches is the use of extension theorems for passing from perforated to non-perforated sets (see [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF][START_REF] Acerbi | An extension theorem from connected sets, and homogenization in general periodic domains[END_REF]). In this paper we consider the variational approach which consists of computing the Γ-limit as ε 0 of integral functionals of type ż O W ε px, ∇upxqq1 Oε pxqdx,

(1.1)

where u P W 1,p pO; R m q with p ą 1 and, for each ε ą 0, W ε : O ˆM r0, 8s is a not necessarily convex Borel measurable function with M denoting the space of m ˆN matrices and OzO ε represents the holes at the scale ε in the bounded open set O Ă R N . Following Khruslov and Marchenko, the Γ-convergence is taken with respect to the L p pO ε , Oqconvergence, i.e. }u ε ´u} L p pOε;R m q " 0, and our object is to deal with the problem of finding a ΓpL p pO ε , Oqq-limit of type ż

O W lim px, ∇upxqqdx (1.2) 
with W lim : O ˆM r0, 8s an integrand for which we wish to give a formula depending on W ε . When W ε has p-growth, i.e. there exist α, β ą 0, which does not depend on ε, such that for every px, ξq P O ˆM, α|ξ| p 1 Oε pxq ď W ε px, ξq1 Oε pxq ď βp1 `|ξ| p q1 Oε pxq, the problem was treated (for general periodic perforated sets) by Acerbi, Chiadò Piat, Dal Maso and Percivale in the scalar case (see [START_REF] Acerbi | An extension theorem from connected sets, and homogenization in general periodic domains[END_REF]) and by Braides and Chiadò Piat in the vector-valued case (see [START_REF] Braides | Remarks on the homogenization of connected media[END_REF]). In the present paper we consider the case where p ą N and W ε has G-growth, i.e. there exists a Borel measurable and p-coercive function G : M r0, 8s and there exist α, β ą 0, which does not depend on ε, such that for every px, ξq P O ˆM, αGpξq1 Oε pxq ď W ε px, ξq1 Oε pxq ď βp1 `Gpξqq1 Oε pxq, which allows to W ε to take infinite values. Note that, as in the p-growth case, since G is pcoercive, there exists C ą 0, which does not depend on ε, such that for every px, ξq P O ˆM, W ε px, ξq1 Oε pxq ě C|ξ| p 1 Oε pxq.

(1.3) Such a unbounded case is of interest in nonlinear elasticity where a fundamental open problem is to develop variational techniques to deal with energy densities that can take infinite values and verify the two basic conditions of nonlinear elasticity, namely the noninterpenetration of the matter and the neccessity of an infinite amount of energy to compress a finite volume into zero volume. The results of this paper give some improvments in this direction in the framework of perforated nonlinear elastic materials.

The plan of the paper is as follows. In §2.1 we recall the definition of L p pO ε , Oq-convergence (see Definition 2.1) and the one of strongly connected set (see Definition 2.3). Note that a weaker notion of connected set exists (see [START_REF] Cioranescu | Homogenization of reticulated structures[END_REF] Chapter 1, §2.5 pp. 40] and [BD98, Chapter 19 pp. 167] for more details). This weak notion allows to consider more general perforated sets but it is not considered here due to the fact that our Γ-convergence method does not apply in such a situation. In fact, the Γ-convergence of unbounded integrals in weakly connected sets is an open problem. When O ε is strongly connected, bounded sequences in W 1,p pO ε ; R m q are relatively compact with respect to the L p pO ε , Oq-convergence (see Theorem 2.4). This makes that ΓpL p pO ε , Oqq-convergence (see Definition 2.5 in §2.2) is well adapted to deal with variational problems involving integral functionals of type (1.1) satisfying (1.3) (see Proposition 2.7 in §2.2). Our main result, which establishes the ΓpL p pO ε , Oqq-convergence of (1.1) to (1.2), is stated in §3.1 and proved in §5.3, see Theorem 3.6 and also Proposition 3.7 which makes more precise the formula of the limit integrand W lim in (1.2). Classically, its proof is a consequence of Proposition 3.4 (the lower bound) and Proposition 3.5 (the upper bound). The proofs of Propositions 3.4 and 3.5 are given in §5.1 and §5.2 respectively. In §2.3 we recall the concept of (family of) ru-usc 1 integrand(s) and its main properties which are used in the proof of both Propositions 3.4 and 3.5 (and in Proposition 3.7). The proof of Proposition 3.5 also needs the use of the Vitali envelope of a set function which is recalled in §4.1. Finally, application to homogenization of unbounded integrals in strongly perforated sets is developed in §3.2, see Theorem 3.11. This homogenization theorem is proved in §5.4 by using an extension theorem (see Theorem 3.8) and a subadditive theorem (see Theorem 4.4 in §4.2).

Notation. Let M be the space of m ˆN matrices, for A Ă M we denote the interior and the closure of A by intpAq and A respectively. The symbol ş stands for the mean-value integral with respect to the Lebesgue measure L N on R N , i.e. şQ " 1 L N pQq şQ .

Preliminaries

In what follows, m, N ě 1 are two integers and p ą 1 is a real number. L N pOzO ε q " 0;

1 The abbreviation ru-usc means radially uniformly upper semicontinuous.

(C 2 ) there exists C ą 0 such that for all tu ε u εą0 Ă W 1,p pO; R m q there exists tp u ε u εą0 Ă W 1,p pO; R m q such that for all ε ą 0,

$ & % p u ε " u ε on O ε }p u ε } L p pO;R m q ď C}u ε } L p pOε;R m q }∇p u ε } L p pO;R m q ď C}∇u ε } L p pOε;R m q .
The following two definitions are due to Khruslov and Marchenko (see [MK06, Chapter 4, Definition 4.5 pp. 114 and Definition 4.7 pp. 116]).

Definition 2.1. We say that tu ε u εą0 Ă L p pO; R m q is L p pO ε , Oq-convergent if there exists u P L p pO; R m q such that lim

ε 0 }u ε ´u} L p pOε;R m q " 0, i.e. lim ε 0 ż Oε |u ε ´u| p dx " 0.
We then write u ε L p pOε,Oq u.

Remark 2.2. Under (C 1 ) if tu ε u εą0 Ă L p pO; R m q is L p pO ε , Oq-convergent then its limit is unique.

Definition 2.3. When (C 1 )-(C 2 ) hold we say that tO ε u εą0 is p-strongly connected.

Khruslov and Marchenko have also proved the following compactness result (see [MK06, Chapter 4, Theorem 4.8 pp. 116]).

Theorem 2.4. Assume that tO ε u εą0 is p-strongly connected. If tu ε u εą0 Ă W 1,p pO; R m q and if sup εą0 }u ε } W 1,p pOε;R m q ă 8 then, up to a subsequence, there exists u P W 1,p pO; R m q such that u ε L p pOε,Oq u.

2.2. ΓpL p pO ε , Oqq-convergence. We begin with the definition of ΓpL p pO ε , Oqq-convergence.

(For more details on the theory of Γ-convergence we refer to [START_REF] Dal | An introduction to Γ-convergence[END_REF].)

Definition 2.5. By the ΓpL p pO ε , Oqq-limit of I ε : W 1,p pO; R m q r0, 8s as ε 0 we mean a functional I lim : W 1,p pO; R m q r0, 8s such that: Γ-lim: for every u P W 1,p pO; R m q, ΓpL p pO ε , Oqq-lim ε 0 I ε puq ě I lim puq with ΓpL p pO ε , Oqq-lim

ε 0 I ε puq :" inf " lim ε 0 I ε pu ε q : u ε L p pOε,Oq - u * ,
or equivalently, for every u P W 1,p pO; R m q and every tu

ε u εą0 Ă W 1,p pO; R m q such that u ε L p pOε,Oq - u, lim ε 0 I ε pu ε q ě I lim puq;
Γ-lim: for every u P W 1,p pO; R m q, ΓpL p pO ε , Oqq-lim ε 0 I ε puq ď I lim puq with ΓpL p pO ε , Oqq-lim

ε 0 I ε puq :" inf ! lim ε 0 I ε pu ε q : u ε L p pOε,Oq - u ) ,
or equivalently, for every u P W 1,p pO; R m q there exists tu ε u εą0 Ă W 1,p pO; R m q such that u ε L p pOε,Oq u and lim ε 0

I ε pu ε q ď I lim puq.
We then write I lim " ΓpL p pO ε , Oqq-lim

ε 0 I ε .
Remark 2.6. It is easy to see that ΓpL p pO ε , Oqq-lim ε 0 I ε and ΓpL p pO ε , Oqq-lim ε 0 I ε are lsc 2 with respect to the L p pO; R m q-convergence.

Theorem 2.4 makes that ΓpL p pO ε , Oqq-convergence is well adapted to deal with variational problems involving integral functionals of type (1.1) satisfying (1.3). This is summarized in the following proposition whose proof is left to the reader.

Proposition 2.7. Assume that tO ε u εą0 is p-strongly connected, ΓpL p pO ε , Oqq-lim ε 0 I ε " I lim and there exists C ą 0 such that for every ε ą 0 and u P W 1,p pO; R m q,

I ε puq ě C ż Oε |∇upxq| p dx.
Let f P L q pO; R m q with 1 p `1 q " 1 and, for each ε ą 0, set

θ ε :" inf " I ε puq ´żOε f pxqupxqdx : u P W 1,p pO; R m q * .
Then, every minimizing sequence tu ε u εą0 for the variational problems θ ε is relatively compact with respect to the L p pO ε , Oq-convergence, and every L p pO ε , Oq-cluster point u of tu ε u εą0 is such that

lim ε 0 θ ε " I lim puq ´żO f pxqupxqdx " inf " I lim puq ´żO f pxqupxqdx : u P W 1,p pO; R m q * .
2.3. Ru-usc property. We begin by recalling the concept of ru-usc function which was introduced in [AH10] (see also [START_REF] Anza | Radial representation of lower semicontinuous envelope[END_REF] and [AHM11, §3.1]). Definition 2.10. For each ε ą 0, let L ε : O ˆM r0, 8s be a Borel measurable function. We say that the family tL ε u εą0 is ru-usc if there exist ta ε u εą0 Ă L 1 pO; s0, 8sq and a 0 P L 1 pO; s0, 8sq such that:

2.

lim ε 0 ż A a ε pxqdx " ż A a 0 pxqdx for all A P OpOq; lim t 1 ´sup εą0 ∆ aε
Lε ptq ď 0.

The following lemma will be useful for dealing with ΓpL p pO ε , Oqq-convergence. (For a proof we refer to [AHM21, Lemma 2.21].)

Lemma 2.11. For each ε ą 0, let L ε : O ˆM r0, 8s be a Borel measurable function and, for each ρ ą 0, let H ρ rL ε s : O ˆM r0, 8s be defined by

H ρ rL ε spx, ξq :" inf # ż Qρpxq L ε py, ξ `∇vpyqqdy : v P W 1,p 0 pQ ρ pxq; R m q + (2.4)
with Q ρ pxq :" x`s ´ρ 2 , ρ 2 r N . If tL ε u εą0 is ru-usc with ta ε u εą0 Ă L 1 pO; s0, 8sq and a 0 P L 8 pO; s0, 8sq then L 8 :" lim

ρ 0 lim ε 0 H ρ rL ε s : O ˆM r0, 8s
is ru-usc with the constant function }a 0 } L 8 .

For application to homogenization (see §3.2) we will need the following result. (For a proof we refer to [AHM21, Lemma 2.24].)

Lemma 2.12. Let L : R N ˆM r0, 8s be Borel measurable function such that Lp¨, ξq is 1-periodic for all ξ P M, i.e. for every px, zq P R N ˆZN , Lpx `z, ξq " Lpx, ξq, and, for each ε ą 0, let L ε : O ˆM r0, 8s be defined by

L ε px, ξq :" L ´x ε , ξ ¯.
Let a P L 1 loc pR N ; s0, 8sq be a 1-periodic function and, for each ε ą 0, let a ε P L 1 loc pR N ; s0, 8sq be defined by

a ε pxq :" a ´x ε ¯.
If L is ru-usc with the function a then tL ε u εą0 is ru-usc with the family of functions ta ε u εą0 and the constant function xay :" ş s0,1r N apyqdy. 

Main results

3

Q Ă O, if L N pO ε X Qq ą 0 then H N ´1pO ε X BQq ą 0;
Let M denote the space of m ˆN matrices and let G : M r0, 8s be a Borel measurable function satisfying the following conditions: (A 0 ) 0 P intpGq, where G denotes the effective domain of G, i.e. G :" tξ P M : Gpξq ă 8u; (A 1 ) there exists γ ą 0 such that for every ξ, ζ P M and every t Ps0, 1r, Gptξ `p1 ´tqζq ď γp1 `Gpξq `Gpζqq;

(A 2 ) G is p-coercive, i.e. there exists c ą 0 such that for every ξ P M, Gpξq ě c|ξ| p . Remark 3.1. If (A 1 ) is satisfied then G is convex, but G is not necessarily convex (see [AHMZ15, Sect. 9]). So, if moreover (A 0 ) holds then tG Ă intpGq for all t Ps0, 1r, and there exists r ą 0 such that sup

|ξ|ďr Gpξq ă 8, see [AHM12, Lemma 4.1].
Let G 8 : O ˆM r0, 8s be defined by

G 8 px, ξq :" lim ρ 0 lim ε 0 H ρ rG1 Oε spx, ξq (3.1) 
with H ρ rG1 Oε s given by (2.4) with L ε " G1 Oε where G1 Oε : O ˆM r0, 8s is defined by G1 Oε px, ξq " Gpξq1 Oε pxq. Denote the effective domain of G 8 px, ¨q by G 8,x . We further suppose that:

(A 3 ) for every u P W 1,p pO; R m q, if ş O G 8 px, ∇upxqqdx ă 8 and if ∇upxq P intpG 8,x q for L N -a.a. x P O, then ş O Gp∇upxqqdx ă 8; (A 4 ) for every x P O, G 8 px, ¨q is lsc on intpG 8,x q.
Remark 3.2.

(i) For every px, ξq P O ˆM, G 8 px, ξq ď Gpξq, and so G Ă G 8,x for all x P O.

(ii) Defining G, G 8 : W 1,p pO; R m q r0, 8s by Gpuq :" ş O Gp∇upxqqdx and G 8 puq :" ş O G 8 px, ∇upxqqdx and denoting their effective domains by dompGq and dompG 8 q, we see that (A 3 ) means that ! u P dompG 8 q : ∇upxq P intpG 8,x q for L N -a.a. x P O ) Ă dompGq.

(iii) If either dompG 8 q " dompGq or Gpuq ă 8 for all u P W 1,p pO; R m q such that ∇upxq P intpG 8,x q for L N -a.a. x P O, then (A 3 ) can be dropped. (iv) If G satisfies (A 1 ) then G 8 verifies the same condition, i.e. for every x P O, every ξ, ζ P M and every t Ps0, 1r,

G 8 px, tξ `p1 ´tqζq ď γp1 `G8 px, ξq `G8 px, ζqq,
and so G 8,x is convex for all x P O. Hence, under (A 0 )-(A 1 ), for every x P O, tG 8,x Ă intpG 8,x q for all t Ps0, 1r.

(v) If G is convex then G 8 px, ¨q is convex for all x P O, and so (A 4 ) can be dropped. More Generally, if for every x P O, G 8 px, ¨q is quasiconvex, i.e. for every ξ P M,

G 8 px, ξq " inf ! ş s0,1r N G 8 px, ξ `∇ϕpyqqdy : ϕ P W 1,8 0 ps0, 1r N ; R m q )
, then (A 4 ) can be dropped (see [START_REF] Fonseca | The lower quasiconvex envelope of the stored energy function for an elastic crystal[END_REF]).

For each ε ą 0, let W ε : O ˆM r0, 8s be a Borel measurable function with the following G-growth condition:

(A 5 ) there exist α, β ą 0 such that for every ε ą 0 and every px, ξq P O ˆM, αGpξq1 Oε pxq ď W ε px, ξq1 Oε pxq ď βp1 `Gpξqq1 Oε pxq.

We further assume that (A 6 ) tW ε 1 Oε u εą0 is ru-usc with ta ε u εą0 Ă L 1 pO; s0, 8sq and a 0 P L 8 pO; s0, 8sq, where W ε 1 Oε : O ˆM r0, 8s is defined by pW ε 1 Oε qpx, ξq :" W ε px, ξq1 Oε pxq.

Remark 3.3. As ∆ aε Wε1 Oε ptq ď maxt0, ∆ aε Wε ptqu for all ε ą 0 and all t P r0, 1s, if tW ε u εą0 is ru-usc with ta ε u εą0 Ă L 1 pO; s0, 8sq and a 0 P L 8 pO; s0, 8sq, then also is tW ε 1 Oε u εą0 .

For each ε ą 0 and each ρ ą 0, let H ρ rW ε 1 Oε s : O ˆM r0, 8s be defined by (2.4) with

L ε " W ε 1 Oε , i.e. H ρ rW ε 1 Oε spx, ξq :" inf # ż Qρpxq W ε py, ξ `∇vpyqq1 Oε pyqdy : v P W 1,p 0 pQ ρ pxq; R m q + (3.2)
and consider the following assumption: (A 7 ) for every x P O and every ξ P intpG 8,x q,

lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, ξq ě lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, ξq.
For each ε ą 0, let I ε : W 1,p pO; R m q r0, 8s be defined by

I ε puq :" ż Oε W ε px, ∇upxqqdx " ż O W ε px, ∇upxqq1 Oε pxqdx.
Here are the main results of the paper.

Proposition 3.4. Assume that p ą N . Under (C 1 )-(C 2 ) and (A 0 )-(A 6 ) we have

ΓpL p pO ε , Oqq-lim ε 0 I ε puq ě ż O lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, t∇upxqqdx
for all u P W 1,p pO; R m q.

Proposition 3.5. Assume that p ą N . Under (C 0 )-(C 2 ) and (A 0 )-(A 6 ) we have

ΓpL p pO ε , Oqq-lim ε 0 I ε puq ď ż O lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, t∇upxqqdx for all u P W 1,p pO; R m q.
As a consequence of Propositions 3.4 and 3.5 we have Theorem 3.6. Assume that p ą N . Under (C 0 )-(C 2 ) and (A 0 )-(A 7 ) we have

ΓpL p pO ε , Oqq-lim ε 0 I ε puq " ż O W lim px, ∇upxqqdx
for all u P W 1,p pO; R m q with W lim : O ˆM r0, 8s given by

W lim px, ξq :" lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, tξq.
Let W 8 : O ˆM r0, 8s be defined by

W 8 px, ξq :" lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, ξq.
Let x W 8 : O ˆM r0, 8s be given by x W 8 px, ξq :" lim t 1

´W8 px, tξq and, for each x P O, let W 8 px, ¨q denotes the lsc envelope of W 8 px, ¨q. The following proposition makes more precise the formula of the limit integrand W lim in Theorem 3.6. Proposition 3.7. Assume that (A 0 )-(A 1 ) and (A 5 )-(A 6 ) hold.

(i) For every x P O,

x W 8 px, ξq " lim t 1 ´W8 px, tξq " # lim t 1 ´W8 px, tξq if ξ P G 8,x 8 otherwise.
So, in Theorem 3.6 we have W lim " x W 8 . (ii) Suppose furthermore that for each x P O, W 8 px, ¨q is lsc on intpG 8,x q. Then x W 8 px, ξq " W 8 px, ξq "

$ & % W 8 px, ξq if ξ P intpG 8,x q lim t 1 ´W8 px, tξq if ξ P BG 8,x 8 
otherwise.

(3.3)

In such a case, in Theorem 3.6, W lim is given by (3.3).

Proof of Proposition 3.7. From (A 6 ) and Lemma 2.11, we can assert that W 8 is ru-usc. Moreover, by (A 5 ) it is easily seen that for every x P O, the effective domain of W 8 px, ¨q is equal to G 8,x . So, taking (A 0 )-(A 1 ) (see Remark 3.2(iii)) into account, Proposition 3.7 follows from Theorem 2.9. 

! x P R N : x ε P E ) ,
and we set O ε :" O X E ε . (Note that E is 1-periodic, i.e. for every px, zq P R N ˆZN , 1 E px `zq " 1 E pxq.) We further assume that (H 1 ) for every ε ą 0, pR N zE ε q X BO " H, i.e. the holes do not intersect the boundary BO. In this framework, it is clear that (C 1 ) in §2.1 and (C 0 ) in §3.1 are satisfied. Moreover, we have the following extension result due to Cioranescu and Saint Jean Paulin [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF] (see also [CSJP99, §2.3 pp. 25]).

Theorem 3.8. If (H 0 )-(H 1 ) hold then (C 2 ) in §2.1 holds.
Let M denote the space of m ˆN matrices and let G : M r0, 8s be a p-coercive convex function and let G 8 : O ˆM r0, 8s be defined by (3.1). We suppose that: (H 2 ) for every x P O, intpG 8,x q Ă G; (H 3 ) for every u P W 1,p pO; R m q, if ş O G 8 px, ∇upxqqdx ă 8 and if ∇upxq P intpGq for L N -a.a. x P O, then ş O Gp∇upxqqdx ă 8. Remark 3.9. Under (H 2 ) we have intpG 8,x q " intpGq and G 8,x " G for all x P O.

Let W : R N ˆM r0, 8s be a Borel measurable function satisfying the following conditions: (H 4 ) there exist α, β ą 0 such that for every px, ξq P R N ˆM,

αGpξq1 E pxq ď W px, ξq1 E pxq ď βp1 `Gpξqq1 E pxq;
(H 5 ) for every ξ P M, W p¨, ξq is 1-periodic, i.e. for every px, zq P R N ˆZN , W px `z, ξq " W px, ξq;

(H 6 ) W 1 E is ru-usc with a 1-periodic function a P L 1 loc pR N ; s0, 8sq, where W 1 E : R N M r0, 8s is defined by pW 1 E qpx, ξq :" W px, ξq1 E pxq.

Remark 3.10. As for a family of functions (see Remark 3.3), if W is ru-usc with a 1-periodic function a P L 1 loc pR N ; s0, 8sq, then also is W 1 E .

For each ε ą 0, let J ε : W 1,p pO; R m q r0, 8s be defined by

J ε puq :" ż Oε W ´x ε , ∇upxq ¯dx " ż O W ´x ε , ∇upxq ¯1Oε pxqdx.
As a consequence of Theorem 3.6 and Proposition 3.7(i) we have the following homogenization result.

Theorem 3.11. Assume that p ą N . Under (H 0 )-(H 6 ) we have

ΓpL p pO ε , Oqq-lim ε 0 J ε puq " ż O x W hom p∇upxqqdx
for all u P W 1,p pO; R m q with x W hom : M r0, 8s given by x W hom pξq "

# lim t 1 ´Whom ptξq if ξ P G 8 otherwise,
where W hom : M r0, 8s is defined by 

W hom pξq :" inf kPN ˚1 k N inf "ż s0,kr N XE W py, ξ `∇ϕpyqqdy : ϕ P W 1,p 0 ps0, kr N ; R m q * .

Auxiliary results

Integral representation of the

i " Q ρ i px i q :" x i `s ´ρi 2 , ρ i 2 r N u iPI of disjoint
open cubes of A with x i P A and ρ i Ps0, δr and such that L N pAz Y iPI Q i q " 0 by V δ pAq. Let CubpR N q be the class of all open cubes in R N . The following theorem is due to Akcoglu and Krengel (see [START_REF] Akcoglu | Ergodic theorems for superadditive processes[END_REF] and also [START_REF] Licht | Global-local subadditive ergodic theorems and application to homogenization in elasticity[END_REF] and [AHM11, Theorem 3.11]).

Theorem 4.4. Let S : O b pR N q r0, 8s be a subadditive and Z N -invariant set function for which there exists C Ps0, 8r such that for every A P O b pR N q, SpAq ď CL N pAq.

Then, for every

Q P CubpR N q, lim ε 0 S `1 ε Q LN `1 ε Q ˘" inf kě1 Sps0, kr N q k N .

Proofs

5.1. Proof of the lower bound. Here we prove Proposition 3.4.

Proof of Proposition 3.4. Let u P W 1,p pO; R m q and let tu ε u εą0 Ă W 1,p pO; R m q be such that u ε L p pOε,Oq u, i.e. lim ε 0 }u ε ´u} L p pOε;R m q " 0.

(5.1)

We have to prove that lim ε 0

I ε pu ε q ě ż O lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, t∇upxqqdx.
(5.2)

Without loss of generality we can assume that lim ε 0 I ε pu ε q " lim ε 0 I ε pu ε q ă 8, and so sup εą0 I ε pu ε q ă 8.

(5.3)

From (5.3) it follows that sup εą0 ż O W ε px, ∇u ε pxqq1 Oε pxqdx ă 8.
(5.4) From (5.1) and (5.4) together with (A 2 ) and the left inequality in (A 3 ), we have

$ & % sup εą0 }u ε } L p pOε;R m q ă 8 sup εą0 }∇u ε } L p pOε;R m q ă 8.
(5.5) By (C 2 ) there exist C ą 0 and tp u ε u εą0 Ă W 1,p pO; R m q such that for every ε ą 0,

p u ε " u ε on O ε (5.6) and " }p u ε } L p pO;R m q ď C}u ε } L p pOε;R m q }∇p u ε } L p pO;R m q ď C}∇u ε } L p pOε;R m q .
(5.7) From (5.5) and (5.7) we deduce that sup εą0 }p u ε } W 1,p pO;R m q ă 8, and so, up to a subsequence, there exists p u P W 1,p pO; R m q such that: lim ε 0 }p u ε ´p u} L p pO;R m q " 0;

(5.8)

∇p u ε á ∇p u in L p pO; R m q.
But (5.1), (5.6) and (5.8) implies that p u " u, and consequently lim ε 0 }p u ε ´u} L p pO;R m q " 0;

(5.9)

∇p u ε á ∇u in L p pO; R m q.
(5.10)

As p ą N , from (5.9) and (5.10) we can assert that, up to a subsequence,

lim ε 0 }p u ε ´u} L 8 pO;R m q " 0.
On the other hand, taking (5.6) into account, from the left inequality in (A 3 ) we deduce that (5.12)

Step 1: localization. For every ε ą 0, we define the (positive) radon measure µ ε on O by

µ ε :" W ε p¨, ∇p u ε p¨qq1 Oε p¨qL N .
(5.13) From (5.4) we see that sup εą0 µ ε pOq ă 8, and so there exists a (positive) Radon measure µ on O such that, up to a subsequence, µ ε á µ weakly. By Lebesgue's decomposition theorem, we have µ " µ a `µs where µ a and µ s are (positive) Radon measures on O such that µ a ! L N and µ s K L N . Thus, to prove (5.2) it suffices to show that

µ a ě lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε sp¨, t∇up¨qqL N .
(5.14)

From Radon-Nikodym's theorem we have µ a " f p¨qL N with f p¨q :" lim ρ 0 µpQ ρ p¨qq L N pQ ρ p¨qq P L 1 pO; r0, 8rq, (5.15) and so to prove (5.14) it is sufficient to establish that for L N -a.e. x 0 P O,

f px 0 q " lim ρ 0 µpQ ρ px 0 qq L N pQ ρ px 0 qq ě lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx 0 , t∇upx 0 qq.
(5.16) Fix x 0 P OzN where N Ă O is a suitable set such that L N pN q " 0. As µpOq ă 8, without loss of generality we can assume that µpBQ ρ px 0 qq " 0 for all ρ ą 0, which implies, by Alexandrov's theorem, that µpQ ρ px 0 qq " lim ε 0 µ ε pQ ρ px 0 qq. Consequently, to prove (5.16) it suffices to show that lim ρ 0

lim ε 0 ż Qρpx 0 q W ε px, ∇p u ε pxqq1 Oε pxqdx ě lim t 1 ´lim ρ 0 lim ε 0
H ρ rW ε 1 Oε spx 0 , t∇upx 0 qq. (5.17)

On the other hand, as G is convex, see (A 1 ) and Remark 3.1, and 0 P intpGq, see (A 0 ), from (5.11) we can assert for every t Ps0, 1r, t∇p u ε pxq1 Oε pxq P G for all ε ą 0 and for L N -a.a. x P O.

Hence, given any t Ps0, 1r, we see that for every ε ą 0 and every ρ ą 0,

ż Qρpx 0 q W ε px, t∇p u ε pxqq1 Oε pxqdx ď `1 `∆ptq ˘ż Qρpx 0 q W ε px, ∇p u ε pxqq1 Oε pxqdx `∆ptqż
Qρpx 0 q a ε pxqdx with ∆ptq :" sup εą0 ∆ aε Wε1 Oε ptq, where ∆ aε Wε1 Oε ptq is given by (2.1) with Lpx, ξq " W ε px, ξq1 Oεpxq and a " a ε . Letting ε 0 and ρ 0 we obtain

lim ρ 0 lim ε 0 ż Qρpx 0 q W ε px, t∇p u ε pxqq1 Oε pxqdx ď `1 `∆ptq ˘lim ρ 0 lim ε 0 ż Qρpx 0 q W ε px, ∇p u ε pxqq1 Oε pxqdx `lim ρ 0 lim ε 0 ∆ptqż Qρpx 0 q a ε pxqdx.
But, from (A 6 ) (see also Definition 2.10) we have: lim ρ 0 lim ε 0 ż Qρpx 0 q a ε pxqdx " lim ρ 0 ż Qρpx 0 q a 0 pxqdx " a 0 px 0 q P r0, 8r;

lim t 1 ´∆ptq ď 0, hence lim t 1 ´lim ρ 0 lim ε 0 ∆ptqż Qρpx 0 q a ε pxqdx ď 0, and consequently lim t 1 ´lim ρ 0 lim ε 0 ż Qρpx 0 q W ε px, t∇p u ε pxqq1 Oε pxqdx ď lim ρ 0 lim ε 0 ż Qρpx 0 q W ε px, ∇p u ε pxqq1 Oε pxqdx.
Thus, to prove (5.17) it is sufficient to show that lim

t 1 ´lim ρ 0 lim ε 0 ż Qρpx 0 q W ε px, t∇p u ε pxqq1 Oε pxqdx ě lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx 0 , t∇upx 0 qq. (5.18)
Step 2: cut-off method. Fix any ε ą 0, any t Ps0, 1r, any σ Pst, 1r, any λ Ps0, 1r and any ρ ą 0. Let ϕ P C 8 pOq be a cut-off function for the pair pOzQ ρ px 0 q, Q λρ px 0 qq, i.e. ϕpxq P r0, 1s for all x P O, ϕpxq " 0 for all x P OzQ ρ px 0 q and ϕpxq " 1 for all x P Q λρ px 0 q, such that }∇ϕ} L 8 ď θ ρp1´λq for some θ ą 0 (which does not depend on ρ and λ). Define v ε P W 1,p pO; R m q by v ε :" ϕp u ε `p1 ´ϕqu x 0 " ϕpp u ε ´ux 0 q `ux 0 with u x 0 p¨q :" upx 0 q `∇upx 0 qp¨´x 0 q. Then tv ε ´tu x 0 P W 1,p 0 pQ ρ px 0 q; R m q (5.19) and t∇v ε "

" t∇p u ε in Q λρ px 0 q t σ `ϕσ∇p u ε `p1 ´ϕqσ∇upx 0 q ˘``1 ´t σ ˘Ψε,ρ in Q ρ px 0 qzQ λρ px 0 q (5.20)
with Ψ ε,ρ :" t 1´t σ ∇ϕ b pp u ε ´ux 0 q. Using the right inequality in (A 5 ) it follows that

ż Qρpx 0 q W ε px, t∇v ε q1 Oε dx " 1 L N pQ ρ px 0 qq ż Q λρ px 0 q W ε px, t∇p u ε q1 Oε dx `1 L N pQ ρ px 0 qq ż Qρpx 0 qzQ λρ px 0 q W ε px, t∇v ε q1 Oε dx ď ż Qρpx 0 q W ε px, t∇p u ε q1 Oε dx `βp1 ´λN q `β L N pQ ρ px 0 qq ż Qρpx 0 qzQ λρ px 0 q
Gpt∇v ε q1 Oε dx.

(5.21)

On the other hand, taking (5.20) into account and using (C 1 ) and the left inequality in (A 5 ), we have

Gpt∇v ε q1 Oε ď c 1 p1 `Gpσ∇p u ε q `Gpσ∇upx 0 qq `GpΨ ε,ρ qq 1 Oε ď c 1 ˆ1 `1 α W ε px, σ∇p u ε q1 Oε `Gpσ∇upx 0 qq `GpΨ ε,ρ q ˙(5.22)
with c 1 :" 2pγ `γ2 q ą 0. Note that from (A 0 ) and (5.12) we can assert that σ∇upx 0 q P G, and so Gpσ∇upx 0 qq ă 8. Moreover, it is easy to see that

}Ψ ε,ρ } L 8 pQρpx 0 q;Mq ď θt p1 ´t σ qp1 ´λq 1 ρ }u ´ux 0 } L 8 pQρpx 0 q;R m q `θt ρp1 ´t σ qp1 ´λq }p u ε ´u} L 8 pO;R m q ,
where lim ρ 0 θt p1 ´t σ qp1 ´λq 1 ρ }u ´ux 0 } L 8 pQρpx 0 q;R m q " 0 (5.23) because lim ρ 0 1 ρ }u ´ux 0 } L 8 pQρpx 0 q;R m q " 0 since p ą N , and lim ε 0 θt ρp1 ´t σ qp1 ´λq }p u ε ´u} L 8 pO;R m q " 0 (5.24) by (5.9). From (A 0 ) and (A 1 ) there exists r ą 0 such that c 2 :" sup |ξ|ďr Gpξq ă 8

(see Remark 3.1). By (5.23) there exists ρ ą 0 such that θt p1´t σ qp1´λq 1 ρ }u´u x 0 } L 8 pQρpx 0 q;R m q ă r 2 for all ρ Ps0, ρr. Fix any ρ Ps0, ρr. Taking (5.24) into account we can assert that there exists ε ρ ą 0 such that GpΨ ε,ρ q ď c 2 for all ε Ps0, ε ρ r.

(5.25) Thus, from (5.21), (5.22) and (5.25) we deduce that

ż Qρpx 0 q W ε px, t∇v ε q1 Oε dx ď ż Qρpx 0 q W ε px, t∇p u ε q1 Oε dx `c3 pσqp1 ´λN q `βc 1 α Γ ε,ρ,λ,σ
for all t Ps0, t ρ r with:

c 3 pσq :" βc 1 ˆ1 `1 c 1 `Gpσ∇upx 0 qq `c2 ˙Ps0, 8r ; Γ ε,ρ,λ,σ :" 1 L N pQ ρ px 0 qq ż Qρpx 0 qzQ λρ px 0 qq W ε px, σ∇p u ε q1 Oε dx.
But, taking (5.19) into account, we see that

H ρ rW ε 1 Oε spx 0 , t∇upx 0 qq ď ż Qρpx 0 q W ε px, t∇v ε q1 Oε dx,
hence, for every ρ ą 0, every ε Ps0, ε ρ r, every λ Ps0, 1r, every t Ps0, 1r and every σ Pst, 1r, we have

H ρ rW ε 1 Oε spx 0 , t∇upx 0 qq ď ż Qρpx 0 q W ε px, t∇p u ε q1 Oε dx `c3 pσqp1 ´λN q `βc 1 α Γ ε,ρ,λ,σ .
(5.26)

Step 3: passing to the limit. Letting ε 0, ρ 0, λ 1 ´, σ 1 ´and t 1 ´in (5.26), we obtain lim

t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx 0 , t∇upx 0 qq ď lim t 1 ´lim ρ 0 lim ε 0 ż Qρpx 0 q W ε px, t∇p u ε q1 Oε dx `βc 1 α lim σ 1 ´lim λ 1 ´lim ρ 0 lim ε 0 Γ ε,ρ,λ,σ .
(5.27)

Substep 3-1: proving that lim σ 1 ´lim λ 1 ´lim ρ 0 lim ε 0 Γ ε,ρ,λ,σ " 0 lim σ 1 ´lim λ 1 ´lim ρ 0 lim ε 0 Γ ε,ρ,λ,σ " 0 lim σ 1 ´lim λ 1 ´lim ρ 0 lim ε 0 Γ ε,ρ,λ,σ " 0. For every ε Ps0, ε ρ r, we have Γ ε,ρ,λ,σ ď `1 `∆pσq ˘µε `Qρ px 0 qzQ λρ px 0 qq LN pQ ρ px 0 qq `∆pσq 1 L N pQ ρ px 0 qq ż Qρpx 0 qzQ λρ px 0 q a ε pxqdx.
(5.28) But from (A 6 ) (see also Definition 2.10) we have lim σ 1 ´∆pσq ď 0 and lim

λ 1 ´lim ρ 0 lim ε 0 1 L N pQ ρ px 0 qq ż Qρpx 0 qzQ λρ px 0 q a ε pxqdx ď lim ρ 0 lim ε 0 ż Qρpx 0 q a ε pxqdx
" lim ρ 0 ż Qρpx 0 q a 0 pxqdx " a 0 px 0 q P r0, 8r

with 1 L N pQρpx 0 qq ş Qρpx 0 qzQ λρ px 0 q a ε pxqdx ě 0, hence lim σ 1 ´lim λ 1 ´lim ρ 0 lim ε 0 ∆pσq 1 L N pQ ρ px 0 qq ż Qρpx 0 qzQ λρ px 0 q a ε pxqdx ď 0.
(5.29)

As µ ε á µ weakly and Q ρ px 0 qzQ λρ px 0 q is compact, by Alexandrov's theorem, we have lim ε 0 µ ε `Qρ px 0 qzQ λρ px 0 q ˘ď µ `Qρ px 0 qzQ λρ px 0 q ˘, hence lim ε 0 µ ε `Qρ px 0 qzQ λρ px 0 q ˘ď µ `Qρ px 0 q ˘´µ pQ λρ px 0 qq , and consequently lim ε 0 µ ε `Qρ px 0 qzQ λρ px 0 q LN pQ ρ px 0 qq ď µ `Qρ px 0 q LN pQ ρ px 0 qq ´λN µ pQ λρ px 0 qq L N pQ λρ px 0 qq .

It follows that lim

ρ 0 lim ε 0 µ ε `Qρ px 0 qzQ λρ px 0 q LN pQ ρ px 0 qq ď `1 ´λN ˘f px 0 q with f P L 1 pO; r0, 8rq given by (5.15), and so m ε u pAq. with, for each ε ą 0, m ε u : OpOq r0, 8s given by

lim λ 1 ´lim ρ 0 lim ε 0 µ ε `Qρ px 0 qzQ λρ px 0 q LN pQ ρ px 0 qq " 0.
m ε u pAq " inf "ż OεXA W ε px, ∇vpxqqdx : v ´u P W 1,p 0 pA; R m q * " inf "ż A W ε px, ∇vpxqq1 Oε pxqdx : v ´u P W 1,p 0 pA; R m q * .
(5.32)

For each δ ą 0 and each A P OpOq, we denote the class of countable families tQ i :"

Q ρ i px i qu iPI of disjoint
open cubes of A with x i P A and ρ i Ps0, δr such that L N pAzY iPI Q i q " 0 by V δ pAq, and we consider m δ u : OpOq r0, 8s given by m δ u pAq :" inf

# ÿ iPI m u pB i q : tB i u iPI P V δ pAq + ,
and we define m ů : OpOq r0, 8s by

m ůpAq :" sup δą0 m δ u pAq " lim δ 0 m δ u pAq.
The set function m ů is called the Vitali envelope of m u (see §4.1).

Step 1: link between Γ-lim Γ-lim Γ-lim and Vitali envelope. Let u P W 1,p pO; R m q. We are going to prove that ΓpL p pO ε , Oqq-lim ε 0 I ε puq ď m ůpOq.

(5.33)

Without loss of generality we can assume that m ůpOq ă 8. Fix any δ ą 0. By definition of m δ u pOq there exists tQ i u iPI P V δ pOq such that ÿ iPI m u pQ i q ď m δ u pOq `δ 2 .

(5.34)

Fix any ε ą 0. For each i P I, by definition of m ε u pQ i q there exists v i ε P W 1,p pO; R m q such that v i ε ´u P W 1,p 0 pQ i ; R m q and ż

OεXQ i W ε `x, ∇v i ε pxq ˘dx ď m ε u pQ i q `δL N pQ i q 2L N pOq . (5.35) Define u δ ε : O R m by u δ ε :" # u in Oz Y iPI Q i v i ε in Q i . Then u δ ε ´u P W 1,p 0 pO; R m q.
Moreover, we have ∇u δ ε pxq " ∇v i ε pxq for L N -a.a. x P Q i . From (5.35) we see that

I ε pu δ ε q ď ÿ iPI m ε u pQ i q `δ 2 ,
hence lim ε 0 I ε pu δ ε q ď m δ u pOq `δ by using (5.34), and consequently lim

δ 0 lim ε 0 I ε pu δ ε q ď m ůpOq.
(5.36)

On the other hand, we have

}u δ ε ´u} p L p pOε;R m q " ż Oε ˇˇu δ ε ´uˇˇp dx " ÿ iPI ż OεXQ i ˇˇv i ε ´uˇˇp dx.
Taking (C 0 ) into account and since ρ i Ps0, δr for all i P I, by Poincaré's inequality (see [DD12, Exercise 2.9 pp. 106]) we have

ÿ iPI ż OεXQ i ˇˇv i ε ´uˇˇp dx ď Cδ p ÿ iPI ż OεXQ i ˇˇ∇v i ε ´∇u ˇˇp dx
with C ą 0 (which only depends on p) and so

}u δ ε ´u} p L p pOε;R m q ď 2 p´1 Cδ p ˜ÿ iPI ż OεXQ i |∇v i ε | p dx `żOεXQ i |∇u| p dx ¸.
(5.37)

Taking the left inequality in (A 3 ), (5.35) and (5.34) into account, from (5.37) we deduce that lim

ε 0 }u δ ε ´u} p L p pO;R m q ď 2 p´1 Cδ p ˆ1 α `mδ u pOq `δ˘`ż O |∇u| p dx ẇith α ą 0 given by (A 3 ), which gives lim δ 0 lim ε 0 }u δ ε ´u} p L p pOε;R m q " 0 (5.38)
because lim δ 0 m δ u pOq " m ůpOq ă 8 and u P W 1,p pO; R m q. According to (5.36) and (5.38), by diagonalization there exists a mapping ε δ ε , with δ ε 0 as ε 0, such that: lim ε 0 }w ε ´u} p L p pOε;R m q " 0;

(5.39) lim ε 0

I ε pw ε q ď m ůpOq (5.40)
with w ε :" u δε ε . By (5.39) we have ΓpL p pO ε , Oqq-lim ε 0 I ε puq ď lim ε 0 I ε pw ε q, and (5.33) follows from (5.40).

Step 2: differentiation with respect to L N L N L N . Let u P W 1,p pO; R m q be such that Gpuq :" ş O Gp∇upxqqdx ă 8. We are going to prove that

m ůpOq " ż O lim ρ 0 m u pQ ρ pxqq L N pQ ρ pxqq dx.
(5.41)

According to Theorem 4.2, to prove (5.41) it suffices to establish that m u is subadditive and there exists a finite Radon measure ν on O which is absolutely continuous with respect to L N such that m u pAq ď νpAq (5.42) for all A P OpOq. For each ε ą 0, from the definition of m ε u in (5.32), it is easy to see that for every A, B, C P OpOq with B, C Ă A, B X C " H and L N pAzpB Y Cqq " 0, one has m ε u pAq ď m ε u pBq `mε u pCq, and so lim

ε 0 m ε u pAq ď lim ε 0 m ε u pBq `lim ε 0 m ε u pCq, i.e.
m u pAq ď m u pBq `mu pCq, which shows the subadditivity of m u . On the other hand, given any ε ą 0, by using the right inequality in (A 5 ) we have

m ε u pAq ď ż A βp1 `Gp∇upxqqqdx
for all A P OpOq. Thus (5.42) holds with the Radon measure ν :" βp1 `Gp∇up¨qqqL N which is necessarily finite since Gpuq ă 8.

Step 3: cut-off method. Let t Ps0, 1r, let σ Pst, 1r and let u P W 1,p pO; R m q be such that Gpσuq ă 8. We are going to prove that for L N -a.e. Fix any ε ą 0, any λ Ps0, 1r, any ρ ą 0 and any δ ą 0. By definition of m ε tux pQ λρ pxqq in (5.32), there exists w P W 1,p pO; R m q such that tw ´tu x P W 1,p 0 pQ λρ pxq; R m q (5.44) and ż

Q λρ pxq
W ε py, t∇wpyqqdy ď m ε tux pQ λρ pxqq `δL N pQ λρ pxqq.

(5.45)

Let ϕ P C 8 pOq be a cut-off function for the pair pOzQ ρ pxq, Q λρ pxqq, i.e. ϕpyq P r0, 1s for all y P O, ϕpyq " 0 for all y P OzQ ρ pxq and ϕpyq " 1 for all y P Q λρ pxq, such that }∇ϕ} L 8 ď θ ρp1 ´λq for some θ ą 0 (which does not depend on ρ and λ). Define v P W 1,p pO; R m q by v :" ϕu x `p1 ´ϕqu " ϕpu x ´uq `u.

Then

tv ´tu P W 1,p 0 pQ ρ pxq; R m q (5.46) and t∇v " " t∇upxq in Q λρ px 0 q t σ `ϕσ∇upxq `p1 ´ϕqσ∇u ˘``1 ´t σ ˘Ψρ in Q ρ px 0 qzQ λρ px 0 q (5.47) with Ψ ρ :" t 1´τ σ ∇ϕ b pu x ´uq. From (5.44) and (5.46) we have tv `ptw ´tu x q ´tu P W 1,p 0 pQ ρ pxq; R m q, and so, noticing that ∇ptw ´tu x qpyq " t∇w ´t∇u x " 0 for L N -a.a. y P Q ρ pxqzQ λρ pxq, Gpt∇vqdy.

m ε tu pQ ρ pxqq L N pQ λρ pxqq ď 1 L N pQ λρ pxqq ż Qρpxq W ε py, t∇v `t∇w ´t∇u x q 1 Oε pyqdy " 1 L N pQ λρ pxqq ż Q λρ pxq W ε py, t∇upxq `t∇w ´t∇upxqq 1 Oε pyqdy `1 L N pQ λρ pxqq ż QρpxqzQ λρ pxq W ε py, t∇vq1 Oε pyqdy " 1 L N pQ λρ pxqq ż Q λρ pxq
(5.48)

On the other hand, taking (5.47) into account and using (A 1 ), we have Gpt∇vq ď c 1 p1 `Gpσ∇upxqq `Gpσ∇uq `GpΨ ρ qq (5.49) with c 1 :" 2pγ `γ2 q ą 0. Moreover, it is easy to see that

}Ψ ρ } L 8 pQρpxq;Mq ď θt p1 ´t σ qp1 ´λq 1 ρ }u ´ux } L 8 pQρpxq;R m q with lim ρ 0 θt p1 ´t σ qp1 ´λq 1 ρ
}u ´ux } L 8 pQρpxq;R m q " 0 (5.50) because lim ρ 0 1 ρ }u ´ux } L 8 pQρpxq;R m q " 0 since p ą N . From (A 0 ) and (A 1 ) there exists r ą 0 such that c 2 :" sup |ξ|ďr Gpξq ă 8

(see Remark 3.1). By (5.50) there exists ρ ą 0 such that θt p1´t σ qp1´λq 1 ρ }u ´ux } L 8 pQρpxq;R m q ă r for all ρ Ps0, ρr. Fix any ρ Ps0, ρr. We then have GpΨ ρ q ď c 2 .

( Conclusion of the steps 1, 2 and 3. As a direct consequence of (5.33), (5.41) and (5.43) together with Remarks 5.1 and 5.2, we have the following lemma.

Lemma 5.3. For every t Ps0, 1r and every u P W 1,p pO; R m q such that Gptuq ă 8 and Gpσuq ă 8 for some σ Pst, 1r, one has

ΓpL p pO ε , Oqq-lim ε 0 I ε ptuq ď ż O lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, t∇upxqqdx.
Step 4: end of the proof. Let u P W 1,p pO; R m q. We have to prove that ΓpL p pO ε , Oqq-lim

ε 0 I ε puq ď ż O lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, t∇upxqqdx.
(5.58)

Without loss of generality we can assume that (5.61)

Substep 4-1: proving (5.58) under the constraint ∇upxq P intpG 8,x q ∇upxq P intpG 8,x q ∇upxq P intpG 8,x q for L N L N L N -a.a. 

H ρ rW ε 1 Oε spx, t∇upxqqdx " ż O lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, t∇upxqqdx.
From (5.65) we conclude that lim

t 1 ´ΓpL p pO ε , Oqq-lim ε 0 I ε ptuq ď ż O lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, t∇upxqqdx,
and (5.58) follows because ΓpL p pO ε , Oqq-lim t 8 I ε is lsc with respect to the L p pO; R m qconvergence and tu u in L p pO; R m q as t 1

´.

Substep 4-2: proof of (5.58). First of all, from (A 6 ) and Lemma 2.11 we can assert that W 8 :" lim ρ 0 lim ε 0 H ρ rW ε 1 Oε s is ru-usc with the constant function }a 0 } L 8 . Moreover, by I ε ptuq ď I lim puq, and (5.58) follows because ΓpL p pO ε , Oqq-lim ε 0 I ε is lsc with respect to the L p pO; R m qconvergence and tu u in L p pO; R m q as t 1 ´. where dom `lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, ¨q˘a nd dom `lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, ¨q˘d enotes the effective domain of lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, ¨q and lim ρ 0 lim ε 0 H ρ rW ε 1 Oε spx, ¨q respectively. Let px, ξq P O ˆM. If ξ R G 8,x then there exists t ξ Ps0, 1r such that tξ R G 8,x for all t P rt ξ , 1r. Hence: From (H 4 ) we can assert that for every ε ą 0 and every px, ξq P R N ˆM,

Proof of the

' if ξ R G 8,
αGpξq1 E ´x ε ¯ď W ´x ε , ξ ¯1E ´x ε ¯ď βp1 `Gpξqq1 E ´x ε ¯,
i.e. αGpξq1 Eε pxq ď W ε px, ξq1 Eε pxq ď βp1 `Gpξqq1 Eε pxq, and so (A 5 ) is verified. By (H 5 ) we see that for each ξ P M, x W px, ξq1 E pxq is 1-periodic because, by assumption, 1 E is 1-periodic. Hence, taking (H 6 ) into account, from Lemma 2.12 we deduce that (A 6 ) holds. So, it remains to prove that (A 7 ) is satisfied, i.e. according to (H 2 ), for every x P O and every ξ P intpGq, First of all, it is clear that S ξ is subadditive. Then, by using (H 5 ) and the fact that 1 E is 1-periodic, it easy to see that S ξ is Z N -invariant. Finally, from the right inequality in (H 4 ) we deduce that for every A P O b pR N q, S ξ pAq ď C ξ L N pAq with C ξ :" βp1 `Gpξqq ă 8 because ξ P intpGq. From Theorem 4.4 it follows that for every ρ ą 0, lim

lim ρ 0 lim ε 0 S ξ `1 ε Q ρ pxq LN `1 ε Q ρ pxq ˘ě lim ρ 0 lim ε 0 S ξ `1 ε Q ρ pxq LN `1 ε Q ρ pxq ˘(5.
ε 0 S ξ `1 ε Q ρ pxq LN `1 ε Q ρ pxq ˘" inf kě1
S ξ ps0, kr N q k N , which implies (5.72). Thus (C 0 )-(C 2 ) and (A 0 )-(A 7 ) are satisfied, and the theorem follows from Theorem 3.6 and Proposition 3.7(i) (with Remark 3.9) in noticing that inf kě1 S ξ ps0,kr N q k N " W hom pξq.

2. 1 .

 1 L p pO ε , Oq-convergence and strong connectedness. Let O Ă R N be a bounded open set and, for each ε ą 0, let O ε Ă O be an open set. In what follows we consider the following two conditions: (C 1 ) lim ε 0

. 1 .

 1 The ΓpL p pO ε , Oqq-convergence result. Let O Ă R N be a bounded open set and, for each ε ą 0, let O ε Ă O be an open set and consider the following condition: (C 0 ) for all ε ą 0 and all open cube

  Vitali envelope of a set function. Let O Ă R N be a bounded open set and let OpOq be the class of open subsets of O. For each δ ą 0 and each A P OpOq, we denote the class of countable families tQ

lim ρ 0

 0 Definition 4.1. Given S : OpOq r0, 8s, for each δ ą 0 we define S δ : OpOq r0, 8s by S δ pAq :" inf # ÿ iPI SpQ i q : tQ i u iPI P V δ pAq + . By the Vitali envelope of S we call the set function S ˚: OpOq r´8, 8s defined by S ˚pAq :" sup δą0 S δ pAq " lim δ 0 S δ pAq. The interest of Definition 4.1 comes from the following integral representation result. (For a proof we refer to [AHM18, §3.3] or [AHCM17, §A.4].) Theorem 4.2. Let S : OpOq r0, 8s be a set function satisfying the following two conditions: (i) there exists a finite Radon measure ν on O which is absolutely continuous with respect to L N such that SpAq ď νpAq for all A P OpOq; (ii) S is subadditive, i.e. SpAq ď SpBq `SpCq for all A, B, C P OpOq with B, C Ă A, B X C " H and L N pAzpB Y Cqq " 0. Then lim ρ 0 SpQρp¨qq ρ N P L 1 pOq and for every A P OpOq, one has S ˚pAq " ż A SpQ ρ pxqq ρ N dx. 4.2. A subadditive theorem. Let O b pR N q be the class of all bounded open subsets of R N . We begin with the following definition. Definition 4.3. Let S : O b pR N q r0, 8s be a set function. (i) We say that S is subadditive if SpAq ď SpBq `SpCq for all A, B, C P O b pR N q with B, C Ă A, B X C " H and L N pAzpB Y Cqq " 0. (ii) We say that S is Z N -invariant if SpA `zq " SpAq for all A P O b pR N q and all z P Z N .

sup εą0 ż O

 ż Gp∇p u ε pxqq1 Oε pxqdx ă 8, hence Gp∇p u ε pxqq1 Oε pxq ă 8 for all ε ą 0 and L N -a.a. x P O, and so, taking (A 0 ) into account, ∇p u ε pxq1 Oε pxq P G for all ε ą 0 and L N -a.a. x P O.(5.11) As G is convex, see (A 1 ) and Remark 3.1, from (C 1 ), (5.10) and (5.11) it follows that ∇upxq P G for L N -a.a. x P O.

with µεpQρpx 0 Γ

 0 qzQ λρ px 0 qq L N pQρpx 0 qq ě 0. Consequently, by using (A 6 ), ˘µε `Qρ px 0 qzQ λρ px 0 q LN pQ ρ px 0 qq ď ε,ρ,λ,σ " 0.(5.31)Substep 3-3: end of the proof. Combining (5.31) with (5.27) we obtain (5.18), and the proof of the lower bound is complete.5.2. Proof of the upper bound.Here we prove Proposition 3.5.Proof of Proposition 3.5. In what follows, OpOq denotes the class of all open subsets of O. For each u P W 1,p pO; R m q, let m u : OpOq r0, 8s be defined by m u pAq :" lim ε 0

x P O, lim ρ 0 m 0 m tux pQ ρ pxqq L N pQ ρ pxqq " lim ρ 0 lim ε 0 H ρ rW ε 1 0 m tu pQ ρ pxqq L N pQ ρ pxqq " lim ρ 0 m tu pQ ρ pxqq L N pQ ρ pxqq and lim ρ 0 m tux pQ ρ pxqq L N pQ ρ pxqq " lim ρ 0 m

 00010000 tu pQ ρ pxqq L N pQ ρ pxqq ď lim ρ 0 m tux pQ ρ pxqq L N pQ ρ pxqq (5.43) with u x p¨q :" upxq `∇upxqp¨´xq. Remark 5.1. For L N -a.e. x P O, one has lim ρ Oε spx, t∇upxqq.Remark 5.2. If Gptuq ă 8 then Gptu x q ă 8 for L N -a.a. x P O, and so, by the step 2, lim ρ tux pQ ρ pxqq L N pQ ρ pxqq .

W

  ε py, t∇wq 1 Oε pyqdy `1 L N pQ λρ pxqq ż QρpxqzQ λρ pxq W ε py, t∇vq1 Oε pyqdy. From (5.45) and the right inequality in (A 5 ) it follows that m ε tu pQ ρ pxqq L N pQ ρ pxqq ď m ε tu pQ ρ pxqq L N pQ λρ pxqq ď m ε tux pQ λρ pxqq L N pQ λρ pxqq `δ `βp1 ´λN q λ N `β L N pQ λρ pxqq ż QρpxqzQ λρ pxq

H ρ rW ε 1 H ρ rW ε 1 H ρ rW ε 1

 111 Oε spx, t∇upxqqdx ": I lim puq ă 8.(5.59) Then, by Proposition 3.7(i) we have ∇upxq P G 8,x for L N -a.a. x P O (5.60) and, for L N -a.e. x P O, Oε spx, t∇upxqq " lim Oε spx, t∇upxqq.

0 lim ε 0 H ρ rW ε 1 0 lim ε 0 H ρ rW ε 1 ˆlim ρ 0 lim ε 0 H ρ rW ε 1 H ρ rW ε 1

 0101011 ΓpL p pO ε , Oqq-convergence theorem. Here we prove Theorem 3.6. Proof of Theorem 3.6. By (A 5 ) we see that αG 8 px, ξq ď lim ρ Oε spx, ξq ď lim ρ Oε spx, ξq ď β `1 `G8 px, ξq for all px, ξq P O ˆM. So, for every x P O, one has dom Oε spx, Oε spx, ¨q˙" G 8,x , (5.71)

  72)with S ξ : O b pR N q r0, 8s defined byS ξ pAq :" inf "ż A W px, ξ `∇ϕpxqq1 E pxqdx : ϕ P W 1,p 0 pA; R m q * ,where O b pR N q denotes the class of all bounded open subsets of R N . Fix x P O and ξ P intpGq.

where M denotes the space of m ˆN matrices. For each x P O, we denote the effective domain 3 of Lpx, ¨q by L x and, for each

  X r0, 8s, by the effective domain of f we mean the set of z P X such that f pzq ă 8.

	Theorem 2.9. If L : O ˆM	r0, 8s is ru-usc and if for every x P O,
				tL x Ă intpL x q for all t Ps0, 1r,	(2.3)
	then:				
	(a) p L is ru-usc;			
	(b) p Lpx, ξq " lim t 1 ´Lpx, tξq for all px, ξq P O ˆM.
	If moreover, for every x P O, Lpx, ¨q is lsc on intpL x q then:
	(c) p Lpx, ξq "	$ &	Lpx, ξq lim t 1 ´Lpx, tξq if ξ P BL x if ξ P intpL x q
		%	8	otherwise;
	(d) for every x P O, p Lpx, ¨q is the lsc envelope of Lpx, ¨q.
	2.3.2. Family of ru-usc functions. The following definition generalizes Definition 2.8 to the
	case of a family of functions.		
	3.1. Ru-usc function. Let O Ă R N be an open set and L : O ˆM	r0, 8s be a Borel
	measurable function, a P L 1 loc pO; s0, 8sq, we consider ∆ a L : r0, 1s s ´8, 8s defined by
			∆ a L ptq :" sup xPO	sup ξPLx	Lpx, tξq ´Lpx, ξq apxq `Lpx, ξq	.	(2.1)
	Definition 2.8. We say that L : O ˆM	r0, 8s is ru-usc if there exists a P L 1 loc pO; s0, 8sq
	such that				
				lim t 1 ´∆a L ptq ď 0.	(2.2)
	The interest of Definition 2.8 comes from the following theorem. (For a proof we refer to
	[AHM11, Theorem 3.5] and also [AHM12, §4.2]) Let p L : O ˆM	r0, 8s be defined by
				p Lpx, ξq :" lim t 1 ´Lpx, tξq.

2 

The abbreviation lsc means lower semicontinuous.

3 Given a set X and a function f :

  3.2. Homogenization of unbounded integrals in strongly perforated sets. Let Y :" r0, 1r N , let H Ă Y be an open set with Lipschitz boundary, which represents the holes in Y , such that (H 0 ) H XBY " H, i.e. the holes do not intersect the boundary BY , and Y zH is connected. Let E :" Y zH `ZN and, for each ε ą 0, we denote the ε-homothetic set of E by E ε , i.e.

	E ε :"

  QρpxqzQ λρ pxqGpσ∇upyqqdy ď L N pQ ρ pxqqż

	Letting ε	0, ρ			0 and λ			1 ´in (5.53) and using (5.54), (5.55), (5.56) and (5.57) we
	conclude that								
							lim ρ 0	m tu pQ ρ pxqq L N pQ ρ pxqq	ď lim ρ 0	m tux pQ ρ pxqq L N pQ ρ pxqq	`δ,	5.51)
	From (5.49) and (5.51) it follows that and (5.43) follows by letting δ 0.
	β L N pQ λρ pxqq	ż	QρpxqzQ λρ pxq	Gpt∇vqdy ď βc 1 `1 `Gpσ∇upxqq `c2	˘1 ´λN λ N
											ż
											`βc 1 L N pQ λρ pxqq	QρpxqzQ λρ pxq	Gpσ∇upyqqdy.
	But									
	ż									
											|Gpσ∇upyqq ´Gpσ∇upxqq|dy
											Qρpxq
											`LN pQ ρ pxqzQ λρ pxqqGpσ∇upxqq,
	hence									
	β L N pQ λρ pxqq	ż	QρpxqzQ λρ pxq Gpt∇vqdy ď βc 1 `1 `2Gpσ∇upxqq `c2	˘1 ´λN λ N
											`βc 1 λ N	ż Qρpxq |Gpσ∇upyqq ´Gpσ∇upxqq|dy. (5.52)
	From (5.48) and (5.52) we deduce that
		m ε tu pQ ρ pxqq L N pQ ρ pxqq	ď	m ε tux pQ λρ pxqq L N pQ λρ pxqq	`δ
										`βc 1 ˆ1	`1 c 1	`2Gpσ∇upxqq `c2	˙1 ´λN λ N
										`βc 1 λ N	ż Qρpxq	|Gpσ∇upyqq ´Gpσ∇upxqq|dy.	(5.53)
	As Gpσuq ă 8, i.e. Gpσ∇up¨qq P L 1 pOq, we can assert that:
							Gpσ∇upxqq ă 8;	(5.54)
							lim ρ 0 ż Qρpxq	|Gpσ∇upyqq ´Gpσ∇upxqq|dy " 0.	(5.55)
	Moreover, we have:						
		lim ρ 0	lim ε 0	m ε tu pQ ρ pxqq L N pQ ρ pxqq	" lim ρ 0	m tu pQ ρ pxqq L N pQ ρ pxqq	;	(5.56)
		lim ρ 0	lim ε 0	m ε tux pQ λρ pxqq L N pQ λρ pxqq	ď lim ρ 0	lim ε 0	m ε tux pQ ρ pxqq L N pQ ρ pxqq	" lim ρ 0	m tux pQ ρ pxqq L N pQ ρ pxqq	.	(5.57)

  ) we see that for every t Ps0, 1r, Gptuq ď γL N pOqp1 `Gp0qq `γGpuq, hence, by (A 0 ) and (5.64), Gptuq ă 8 for all t Ps0, 1r, and so, by Lemma 5.3 we have ΓpL p pO ε , Oqq-lim Oε spx, t∇up¨qq ď β `1 `Gp0q `Gp∇up¨q ˘:" f p¨q for all t Ps0, 1r with f P L 1 pOq by (A 0 ) and (5.64).

	But, by (A 1 ε 0	I ε ptuq ď	ż O	lim ρ 0	lim ε 0	H ρ rW ε 1 Oε spx, t∇upxqqdx for all t Ps0, 1r. (5.65)
	On the other hand, from the right inequality in (A 5 ) we see that for every t Ps0, 1r,
						lim ρ 0	lim ε 0	H ρ rW ε 1 Oε spx, t∇up¨qq ď β `1 `G8 px, t∇up¨qq	ď
							β `1 `Gpt∇up¨qq ˘,
	and consequently, by using (A 1 ),
	lim ρ 0	lim ε 0	H ρ rW ε 1 Taking (5.61) into account, from Lebesgue's dominated
	convergence theorem we deduce that
	lim t 1 ´żO	lim ρ 0	lim ε 0
	x P O x P O x P O. Assume that
							∇upxq P intpG 8,x q for L N -a.a. x P O.	(5.62)
	Then, since (A 0 )-(A 1 ) (see Remark 3.2(iii)) implies that t∇upxq P intpG 8,x q for all t Ps0, 1r
	and for L N -a.a. x P O, by (A 4 ) we have
						lim	(5.63)
						t 1
	Using (5.63) and the left inequality in (A 5 ) we see that
			α 1	I lim puq ě	O ż	lim t 1 ´G8 px, t∇upxqqdx ě	ż
							Gpuq ă 8.	(5.64)

´G8 px, t∇upxqq ě G 8 px, ∇upxqq for L N -a.a. x P O. O G 8 px, ∇upxqqdx ": G 8 puq, hence, by (5.59), G 8 puq ă 8, and so taking (A 3 ) into account, from (5.62) it follows that

  Oε s is ru-usc with the constant function }a 0 } L 8 .On the other hand, from (5.60) and (A 0 )-(A 1 ) (see Remark 3.2(iii)) we deduce that ∇ptuqpxq P intpG 8,x q for all t Ps0, 1r and L N -a.a. x P O. Ps0, 1r. Moreover, by (5.66) we have lim t 1

								(5.69)
	According to (5.69) and (5.68), from the substep 4-1 we can assert that
								ΓpL p pO ε , Oqq-lim ε 0	I ε ptuq ď I lim ptuq
	for all t Ps0, 1r, and so, taking (5.67) into account,
	ΓpL p pO ε , Oqq-lim ε 0	I ε ptuq ď `1	`∆}a 0 } L 8 x W8	ptq ˘Ilim puq	`∆}a 0 } L 8 x W8	ptq}a 0 } L 8 L N pOq	(5.70)
	for all t ´∆}a 0 } L 8 x W8	ptq ď 0. Hence, letting t	1 ín
	(5.70) we conclude that
								lim
								t 1
			t 1	´lim ρ 0	lim ε 0	H (5.66)
	From (5.59) we see that ∇upxq P x W 8,x for L N -a.a. x P O, where x W 8,x denotes the effective
	domain of x W 8 px, ¨q. Hence, for every t Ps0, 1r,
			ż			
				O	x W 8 px, t∇upxqqdx ď `1	`∆}a 0 } L 8 x W8	ptq	˘żO	x W 8 px, ∇upxqqdx
								`∆}a 0 } L 8 x W8	ptq}a 0 } L 8 L N pOq
	with ∆	}a 0 } L 8 x W8	ptq :" sup xPO sup ξP x W8,x	x W8px,tξq´x W8px,ξq }a 0 } L 8 `x W8px,ξq , i.e.
				I lim ptuq ď `1	`∆}a 0 } L 8 x W8	ptq ˘Ilim puq	`∆}a 0 } L 8 x W8	ptq}a 0 } L 8 L N pOq	(5.67)
	for all t Ps0, 1r. Using (5.59) we see that
								I lim ptuq ă 8 for all t Ps0, 1r.	(5.68)

(A 5 ) we see that for every x P O, the effective domain of W 8 px, ¨q is equal to G 8,x . Taking (A 0 )-(A 1 ) (see Remark 3.2(iii)) into account, from Theorem 2.9(ii) it follows that x W 8 :" lim ρ rW ε 1 ´ΓpL p pO ε , Oqq-lim ε 0

  x then, by (5.71), H ρ rW ε 1 Oε spx, tξq " lim H ρ rW ε 1 Oε spx, tξq " 8 for all t P rt ξ , 1r; ' if ξ P G 8,x then, from (A 0 )-(A 1 ) (see Remark 3.2(iv)), we have tξ P intpG 8,x q for all t Ps0, 1r, and so, by (A 7 ),H ρ rW ε 1 Oε spx, tξq ě lim H ρ rW ε 1 Oε spx,tξq for all t Ps0, 1r. Oε spx, tξq for all px, ξq P O ˆM. From Propositions 3.4 and 3.5 we deduce that ΓpL p pO ε , Oqq-lim H ρ rW ε 1 Oε spx, t∇upxqqdx H ρ rW ε 1 Oε spx, t∇upxqqdx ě ΓpL p pO ε , Oqq-lim ε 0I ε puq.for all u P W 1,p pO; R m q. Hence ΓpL p pO ε , Oqq-lim lim px, ∇upxqqdx for all u P W 1,p pO; R m q.5.4. Proof of the homogenization theorem. Here we prove Theorem 3.11. Proof of Theorem 3.11. Taking (H 0 )-(H 1 ) and Theorem 3.8 into account, we see that (C 0 )-(C 2 ) hold. Since G is p-coercive convex function satisfying (H 2 )-(H 3 ), it is clear that (A 0 )-(A 4 ) hold. For each ε ą 0, let W

			ż	
	lim ρ 0 lim lim ε 0 ρ 0 lim ε 0 It follows that lim t 1 ´lim ρ 0	ε 0 lim H ε 0	ρ 0 ρ 0 lim ε 0 lim ε 0 I ε puq ě O lim t 1 ´lim ρ 0 ě ż O lim t 1 ´lim ρ 0 ε 0 I ε puq " ż	lim ε 0 lim ε 0

ρ rW ε 1 Oε spx, tξq ě lim t 1 ´lim ρ 0 lim ε 0 H ρ rW ε 1 O W ε : O ˆM r0, 8s be defined by W ε px, ξq :" W ´x ε , ξ ¯.