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Construction and Application of Transition Prediction
Databased Method for 2nd Mack Mode on Sharp Cone

Xavier Chanteux ∗ and Guillaume Bégou †

DAAA, ONERA, Université Paris Saclay, F-92190 Meudon - France

Hugues Deniau‡ and Olivier Vermeersch§
ONERA-The French Aerospace Lab, Toulouse, France

This study investigates the development of a Reynolds-averaged Navier–Stokes (RANS)
model for natural laminar-turbulent transition based on local linear stability theory (LST),
and its ability to predict growth rate evolution of Mack’s second mode. Unstable growth rates
for a given frequency are derived from analytical relations for which coefficients are stored
in a database. The beginning of the transitional region is then obtained from the eN-method
which consists in integrating the disturbance growth rates along its path of amplification. This
approach is an expansion of ONERA’s parabolas method to hypersonic laminar-turbulent
natural transition and is applied here on a 7° half-angle sharp cone at Mach 8.

Nomenclature
δ = Boundary layer thickness
δ1 = Boundary layer displacement thickness
θ = Boundary mayer momentum thickness
Reδ1 = Reynolds number based on δ1
Reθ = Reynolds number based on θ
Me = Mach number at boundary layer edge
k = Wavenumber vector
α = Longitudinal wavenumber
αr = Real part of α
αi = Imaginary part of α
β = Transversal wavenumber
βr = Real part of β
ω = Angular frequency
f = Physical frequency
q̃ = Amplitude of perturbations q
F = Reduced frequency
N = Amplification factor
M∞ = Free-stream Mach number
Re∞ = Free-stream Reynolds number
Ti∞ = Free-stream stagnation temperature
T∞ = Free-stream static temperature
Pi∞ = Free-stream stagnation pressure
s = Cone arclength

Introduction

Boundary-layer laminar to turbulent transition is a
critical factor in the design of hypersonic vehicles,

such as reusable launch vehicles, high-speed interceptor
missiles, hypersonic cruise or reentry vehicles: it affects
all at once heat transfer, skin friction and boundary-layer
properties [1]. Thus, it is of practical interest to use
already available experiments and theory to evaluate
transitional regions.

In this introduction, the term local refers to quantities
accessible in each cell of the mesh, whereas non-local
refers to quantities that need integration and/or searching
algorithms. From an engineering point of view, Direct
Numerical Simulations (DNS) and Large-Eddy Simu-
lations (LES) can provide high-precision results and
detailed flow field structures for transitional flows, yet
are computationally expensive. With that inmind, efforts
have been made to include transition phenomena in mod-
ern Reynolds-averaged Navier-Stokes (RANS) solvers
via various methods that can roughly be sorted into two
categories. On one hand, nonlocal methods based on the
Linear Stability Theory (LST) , or Parabolized Stability
Equations (PSE), combined with either meta-models
[3] or databases [4] for physics-based applications, or
coupled with RANS solvers. The transition onset then is
determined by using the eN-method ([5] and [6]). On the
other hand, empirical transition criteria (C1 [7], AHD
[8], Drela and Giles’ [9] ...) used as is or as a basis
for correlation-based transition models such as γ − Reθ
[10] model. This latter solution, originally designed by
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Menter and Langtry for turbomachine applications at
low speed, uses local variables and transport equation for
both intermittency and transition onset criteria, in order
to evaluate a transition criteria from Reθ , but includes
no relevant physical phenomena. It has been extended
to supersonic flows for scramjets by Frauholz et al. [11]
and later to hypersonic flows by Wang et al. [12] using
compressible similarity solutions.

Another local approach designed for turbomachine
applications, using transport equations, is the kL−kT −ω
model developed by Walters and Leylek [13] for bypass
and natural transition, where kL and kT respectively
describe the laminar and turbulent kinetic energy. On
the other hand, Warren and Hassan [14] developed a
nonlocal method based on LST results, using the time
scale of instabilities and taking the contribution of the
nonturbulent fluctuations into account. In 2016, in-
spired by the work of Walter and Leylek, Xu et al. [15]
established a fully local transition closure model by
combining all together Warren and Hassan’s modeling
idea, incorporating the transport equations for laminar
and transitional solutions of Papp and Dash [16], with
Menter and Langtry’s model for intermittency. It was
extended to hypersonic transitional flows dominated by
the first and second mode, and laminar separation in
2017 [17]. Wang and Fu [18] and Wang and Fu [19]
also combined these models between 2009 and 2012
to design their k − ω − γ local model for hypersonic
transitional flows, which was improved recently by Zhou
et al. ([20], [21], [22]).

Although all these methods give sufficient results
very quickly, they are usually not reliable over a wide
range of flow conditions because of the significant num-
ber of parameters influencing transition, and give no
insight into its mechanism [23]. Comprehensive physics-
based methods are therefore required in RANS solvers,
and this means that, at some point, flow stability must
be considered either with LST for slightly nonparallel
flows, or PSE to account for nonparallel effects. These
two methods consider perturbation amplitudes to grow
linearly, and estimate the amplification rate for a given
base flow, at a specified frequency. However, they do not
acount for nonlinear interactions. Amplification rates are
usually stored in some database, and the transition onset
is evaluated using the eN-method developed in 1956 in-
dependently by Van Ingen [5] and Smith and Gamberoni
[6]: it consists, for a given mode (frequency and ampli-
fication direction), in integrating the growth rate along
its path of amplification. Later, Van Ingen [24] built a
database containing stability diagrams. Drela [25] also
built one from stability results of self-similar profiles
in order to take account for the varying incompressible
shape factor Hi. In 1989, Arnal [4] used analytical
relations to evaluate amplification rates evolution of

self-similar profiles with respect to Reynolds number.
The different coefficients are then tabulated with respect
to some relevant flow parameters (integral thicknesses
and Me). This method is referred to as the parabolas
method. It was first developed for two-dimensional in-
compressible flows over adiabatic walls Arnal [7], and
extended to supersonic flows in 1995 by Arnal.

Databases can also be used to train metamodels.
Fuller et al. [3] were the first ones to implement a neural
network to predict growth rate in non reacting jet flows
from frequency, wavenumber and momentum thickness.
A few years later, Crouch et al. [26] developed a similar
approach to predict Orr-Sommerfeld results for subsonic
and transonic 3D swept-wing boundary layers. This
model has been recently improved by Danvin et al. [27]
for hypersonic flow.

These physics-based methods are often disparaged in
the state of art because of the need to search and integrate
non-local flow variables at the edge of boundary layers.
In order to tackle this critic, Bégou et al. [28] recast the
integration over a streamline into an advection equation
with a source term. This solution allows to evaluate the
amplification factor of the eN-method by easily solving
an additional transport equation. Combined with the
parabolas method up to supersonic flows, this solution
allows to evaluate the beginning of the transitional region.
This new solution is called the NSP (N-σP) model.

This study focuses on extending the domain of ap-
plication of the parabolas method to hypersonic flows
by taking the evolution of the Mack mode into account.

I. Local Linear Stability Theory and
Parabolas Method

A. Local Linear Stability Theory and eN-Method
The linear stability theory, exposed in details by

Mack [2], describes perturbations as normal modes
propagating in a parallel (or slightly nonparallel) mean
flow. The complete unsteady Navier-Stokes equations
are linearized about the mean flow by writing each flow
variable into a steady mean-flow term and an unsteady
small disturbance term. Then the mean-flow solution is
dropped from this set of equations, and cross products of
disturbances are neglected (linear hypothesis) to obtain
the disturbance equations. Mean-flow quantities are
supposed to vary slowly in the longitudinal direction,
allowing perturbations to be rewritten as normal modes

q = q̃(y) ei(αx+βz−ωt) + C.C. (1)

"C.C" denotes the complex conjugate that is needed for
the disturbance field to remain real. In the most general
case α, β, and ω are complex, but in this study β and ω
are supposed real: the amplitude of the wave changes
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as it propagates downstream in the x direction, which
is called spatial amplification theory. The associated
wavenumber k is defined by its amplitude k =

√
α2
r + β

2
r

and angular direction relative to the streamwise direction
Ψ = tan−1 (βr/αr ). With the formulation of equation
1, the wave is amplified when αi is negative. α can be
extracted from the complete set of disturbance equations
in order to write

Ã q̃ = αB̃ q̃, (2)

where q̃ =
(
ũ, ṽ, w̃, p̃, T̃, α ũ, α ṽ, α w̃, α T̃

)T , and Ã
and B̃ are two (9N × 9N) matrices (where N is the total
number of point of the discretization) containing the
mean-flow quantities, and both their first and second
derivatives with respect to the normal coordinate.

Solving this equation requires boundary conditions,
which, for boundary layer flows, are defined as no-slip
condition at wall surface q̃(0) = 0, and no perturbation
in the free-steam q̃ (y →∞) = 0. The set of boundary
conditions and equation 2 define a general eigenvalue
problem where α is the eigenvalue and q̃ the eigenvector.

The linear local analyses are performed with an
in-house stability code for ideal gas. Inspired by the
work of Orszag [29], derivations are performed with a
spectral method using Chebyshev polynomials, on the
Gauss-Lobatto collocation points yj = cos (π j/N) (with
N being the total number of points in the collocation)
recast such that half of the total number of points de-
scribe the boundary layer as suggested in Schmid and
Henningson [30] (see Appendix A.5 on chebyshev dis-
cretization). Then, the eigenvalue problem is solved
using geev function of LAPACK library.

In order to locate the beginning of the transitional
region from LST, the eN-method is commonly used. It
computes the amplification factor N of an instability, for
a given reduced frequency F (see eq. 4 ), expressed as

N(s, F) = ln
A
A0
=

∫ s

scr

σ(F, s)ds (3)

where s is the path of amplification of σ(F, s), and scr
the abscissa of the initial amplitude A0 of the instability
at the frequency F under consideration. This ampli-
fication factor can be regarded as a gain of energy of
the disturbance as it propagates, and the transition is
expected to occur for a critical value Ntr .

B. Parabolas Method for 1st Mode
In this section, all quantities are made dimensionless

using ue and δ1.
When investigating the stability of (self-similar) pro-

files, stability diagrams are often plotted in the ( F, Reδ1 )
coordinates, where F and Reδ1 are defined by

F =
2π fνe

ue2 =
ω

Reδ1

, Reδ1 =
ρe ueδ1
µe

(4)

Thus F evolves linearly with Reδ1 : iso-values of F
are lines with constant slope passing through the origin
in the

(
ω, Reδ1

)
plan (see Fig. 2 ).

Arnal [4] observed that the evolution of the growth
rate σ = −αi , for a given reduced frequency and plotted
versus Reδ1 , can be approximated by two half-parabolas
for low speed flows. The equation yields, with Figure 1

σ

σM
= 1 −

[
Reδ1 − RM

Rek − RM

]2
(5)

where

Rek =

{
R0 Reδ1 < RM

R1 Reδ1 > RM

(6)

R0 RM R1

σM

Reδ1

σ

LST
Parabolas

Figure 1: Qualitative comparison of LST and ap-
proximate growth rates (iso–F)

The parabolas parameters are then expressed as a
function of the reduced frequency F

σM = AM

(
1 − F

FM

)
, (7)

RM = KM FEM , (8)

R0 = RM

[
1 − A0

(
1 − F

F0

)]
, (9)

R1 = RM

[
1 − A1

(
1 − F

F1

)]
. (10)

These new coefficients AM , FM , KM , EM , A0, F0,
A1 and F1 are stored in a database indexed on the incom-
pressible shape factor Hi and Mach number at boundary
layer edge Me. Each point of the database corresponds
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to the stability characteristics of the self-similar pro-
file at specified (Hi, Me), namely Falkner-Skan-Hartree
profiles (which reduces to Blasius profiles in the abs-
cence of pressure gradient) for incompressible flows,
and Levy-Lees profiles for compressible ones.

This first model is called the viscous model and is
designed for low-speed transitional flows in order to
describe instabilities originating from viscous phenom-
ena. Several corrections were added to this model to
better describe new phenomena arising at higher veloc-
ities: instabilities may come from the presence of an
inflection point in the mean profiles [31], which is taken
into account through an additional dedicated set of two
half-parabolas. A description of the complete parabolas
method for the first mode is given in Bégou et al. [28].

II. Extension of Parabolas Method to 2nd
Mode

In the following of previous studies on the parabo-
las method, the stability characteristics of Levy-Lees
profiles are studied for the prediction of 2nd mode evo-
lutions in unstable domains. To illustrate the con-
struction method, an example for a baseflow (mean
velocity and mean temperature profiles) at Mach num-
ber Me=4.5 without any pressure gradient is shown
here. The wall is set to adiabatic condition and Suther-
land’s viscosity law is used with a reference stagna-
tion temperature at boundary-layer edge set to 300K.

0 10 20 30 40 50
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0.5
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1.5

2

2.5

3

Mode 1

Mode 2

F

6
4

2
0

40
200

103·Reδ1

ω

Figure 2: Stability Diagram at Mach 4.5: Contour
lines αi ∗ 10−3

In the unstable domain of the 2nd mode, the am-
plification rate evolution σ (F, s) along a reduced fre-
quency F - plotted in red in Figure 2 - is described
with two half-parabolas and a linear correction to best
fit the LST results. This linear correction is defined by
matching first derivatives at (R̃, K̃σM ) (see Figure 3).

R0 RM R̃ RPi R1

K̃σM

σM

Linear correction

Reδ1

σ

Figure 3: Definition of all parameters for two half-
parabolas and linear correction (iso–F)

This modelization is optimized with a Sequential
Least Squares Programming (SLSQP) algorithm. It
minimizes, under constraints, the root-mean-squared
error between the LST curve and the analytical model.
Then, the evolution with F of each coefficient defining
the model, namely R0, RM , R̃, R1, and σM , are approx-
imated with a correlation (see equations 11 - 15 and
associated Figures 4 - 7 ), and each coefficient of these
correlations - namelyK0, E0, etc - are stored in a database.

5 10 15 20 25

1

2

·10−2

Fred

σM

Am
(F/F1)+1
(F/F2)+1

LST

Figure 4: σM interpolation

1.5 2 2.5 3

9.5
10

10.5
11

ln(105Fred)

ln(RM)
RM = KMFe−EM

LST

Figure 5: RM interpolation

1.5 2 2.5 3

9.5
10

10.5
11

ln(105Fred)

ln(R0)
R0 = K0Fe−E0

LST

Figure 6: R0 interpolation
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10

10.5
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ln(105Fred)

ln(R1)
R1 = K1Fe−E1

LST

Figure 7: R1 interpolation

Equations of interpolations of R0, RM , R̃, R1, and
σM evolution with reduced frequency F are expressed
as

σM = Am

F
F1
+ 1

F
F2
+ 1

(11)

RM = KM

(
105 F

)EM

(12)

R0 = K0

(
105 F

)E0
(13)

R1 = K1

(
105 F

)E1
(14)

R̃ = KR̃

(
105 F

)ER̃

(15)

The linear correction is defined by

σ

σM
=

(
Reδ1 − R1

) K̃
R̃ − R1

(16)

where

K̃ =
2
(
R1 − R̃

)
2R1 − R̃ − RM

(17)

The parabolas method is used together with the eN-
method which computes the amplification factor N of an
instability, for a given reduced frequency F. To confront
the concept of this new model with LST results, a ded-
icated database has been embedded in ONERA’s elsA
software - along with the NSP model for the integration
of amplification rates - and applied to a sharp cone at
Mach 8 at zero angle of attack.

III. Application of Embedded Parabolas
method in RANS solver

A. Cone Geometry and Free-stream Conditions
The free-stream conditions and geometry are adapted

from Stetson et al. [32], which has been reproduced
by Malik et al. [33], Kufner et al. [34], and Rosen-
boom et al. [35]. The geometry is a 7° half-angle
ideally sharp cone at zero angle-of-attack. The gas
is considered ideal. The free-stream conditions are
as follows: the free-stream Mach number is set to
M∞ = 8.0, the free-stream unit Reynolds number to

Re∞ = 8.202 × 106 1/m, and the free-stream stagna-
tion temperature to Ti∞ = 750K which corresponds
to a free-stream static temperature of T∞ = 54.35K.
Schneider [36] specifies that the free-stream Reynolds
number used by Rosenboom was computed from the
free-stream stagnation pressure Pi∞ = 4.0MPa by using
the Mack-modified form of Sutherland’s viscosity law.
If normal Sutherland’s viscosity law was used, the result
would have been Re∞ = 8.76 × 106 1/m, which makes
and error about 7%. In his experiment, Stetson had
a one-meter-long cone, whereas in the simulations of
Rosenboom and Kufner a two-meters-long one was used.

B. Grid Distribution and Numerical Methods
The grid distribution is shown in Figure 8 with the

Mach number contour to show the control line following
the shock layer. The flow is resolved with 600 points
in the freestream direction and 400 points in the wall-
normal direction, between the surface and the control
line. Grid clustering is applied in the boundary-layer
and the shock layer. The grid is composed of 290,000
points in total. The laminar mean flow is computed with
ONERA’s elsA software using a Roe scheme with Van
Albada limiter for space discretization and backward
Euler scheme for time integration, with scalar LU-SSOR
scheme for implicit time integration. A CFL slope from
0.01 to 10 is used over the 10,000 first iterations and
fixed at 10 afterward. The size of the first grid cell is
adapted so that the size of the cell at the boundary-layer
edge is less than 10% of δ, along with a grid expansion
ratio inside the boundary layer set to 1.04 in the wall-
normal direction. The simulation is stopped when the
boundary-layer profiles are considered to have reached a
converged state.
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Figure 8: Numerical grid: 1 point over 10 is shown
Scaling is different in x and y directions
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C. Mean-Flow Computation
The mean flow is computed over an adiabatic wall

and the accuracy of the simulation is checked by com-
paring the results with Rosenboom’s ones on mean-flow
profiles at stations s ∈ [0.1, 0.5, 0.9] (Figures 9 and 10),
boundary-layer thickness and pressure gradient evolution
along the cone arclength s (Figures 11 and 12). Three
different boundary-layer thicknesses (δu , δt , δh) were
plotted by Rosenboom: they have been computed respec-
tively from velocity (dynamic boundary-layer), tempera-
ture (thermal boundary-layer) and total enthalpy (total
enthalpy boundary-layer). For enthalpy, the boundary-
layer is defined as the wall-normal distance were 99.9%
of the total enthalpy of the free stream. In Figure 12 , the
pressure gradient is very important at the leading-edge
and decreases downstream: the fluid is accelerated until
roughly half the cone.

0 200 400 600 800 1,000 1,200
0
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U [m/s]

y
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m
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elsA s=0.9
Rosenboom s=0.9
elsA s=0.5
Rosenboom s=0.5
elsA s=0.1
Rosenboom s=0.1

Figure 9: Comparison of velocity profiles alongwall-
normal coordinate at stations s = 0.1, 0.5 and 0.9
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Figure 10: Comparison of temperature profiles
along wall-normal coordinate at stations s = 0.1, 0.5
and 0.9
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δ
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Rosenboom δh
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Figure 11: Comparison of boundary-layer thickness
evolution along the cone arclength
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p
ρ
∞
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Figure 12: Comparison of pressure gradient evolu-
tion along the cone arclength

D. Local Linear Stability results comparison
Stability results for the second mode are first com-

pared against those of Rosenboom. In Figure 13 , the
current code computes the same evolution of the am-
plification rates as Rosenboom’s except for the end of
each parabolas: the 2nd branch of the second mode goes
faster toward zero for the current stability code. It has an
impact on the amplification factor maximum of each fre-
quency as shown in Figure 14 . Although, these maxima
are not the same between the two stability codes, the limit
defined by the critical N-factor Ntr is usually crossed
before this maxima, where the two stability codes give
amplification rates with negligible error.

Higher unstable frequencies are located near the cone
leading edge. In this region, the growth rates of the two
stability codes are quite different: as plotted in Figure 13,
the relative error on the maximum value for frequency
400kHz is about 20%.This could be a critical issue if the
transition was to occur here. However, the N-factors are
considered low enough to not trigger transition, which is
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supported by experimental results. Indeed, Stetson et al.
[32] noticed that the boundary-layer starts transitioning
around s = 0.57. Rosenboom deduced from this result
that the transition is triggered by the frequency 180kHz.
The associated critical N-factor is deduced at Ntr ≈ 4.5.
Using the same critical N-factor Ntr , the stability code
used presently predicts a transition triggered by the fre-
quency 175kHz - which makes an error about 3% - and
the transition location is found at s = 0.59. The relative
error on the transition location between the two codes is
about 3%.

These differences between both results can come
from mainly two factors. The equations of the current
stability code are made dimensionless using boundary-
layer quantities and variables at boundary-layer edge.
Although the two numerical simulations compute the
same mean flow, extracting boundary-layer quantities
to compute flow stability requires the determination of
the boundary-layer edge. However this velocity is not
constant, making this determination tricky. Another
explanation is linked to the stability code itself: Malik
[37] showed that the choice of the scheme for the dis-
cretization of the stability equation can have an impact
on the growth rate value. However, references in Rosen-
boom’s paper could not give any further information
on the stability code. In any case, the current stability
code is aimed to be used for the modelization of the
second mode growth rate, thus this differences are con-
sidered low enough to have negligible impact on the
final modelization.
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−10
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s[m]

σ
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Figure 13: Comparison of growth rate of linear lo-
cal stability code (plain) and Rosenboom’s (dashed),
for several frequencies propagating along the cone
surface
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s [m]

N
Figure 14: Comparison of N-factors from current
linear local stability code (plain) and Rosenboom’s
(dashed) for several frequencies, same legend as in
Figure 13

E. Transition prediction with parabolas method

The local linear stability code presented in the previ-
ous subsection has been used for the construction of the
current database. The comparisation of amplification
rate evolutions and N-factors for several frequencies with
both methods are presented respectively in Figures 15
and 16 to assess the error of the model.

The amplification rates computed from elsA’s parabo-
las method allow to find the same evolution of amplifica-
tion rates as the LST. For low frequencies, the evolution
differs slightly between the two methods, which impacts
the maxima of N-factors. As said in the previous subsec-
tion, the limit defined by the critical amplification factor
Ntr is usually crossed before the maximum. Thus, the
error of the reconstructed parabolas for low frequencies
is considered negligible.

Figure 16 shows the comparison ofN-factors between
LST and embedded method in elsA. The integration of
amplification rates is recasted into a transport equation,
using Bégou’s method.
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Figure 15: Comparison of growth rate from elsA
(plain) and LST’s (dashed) for several frequencies
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Figure 16: Comparison of N-factors from elsA
(plain) and LST’s (dashed) of the cone for several
frequencies

The N-factors evolutions computed from elsA’s
parabolas method matches that of the LST for the cone,
except for the maxima of low and high frequencies.
These discrepancies are the same as the ones for the
construction of the model: reconstruction of the LST by
the parabolas method at low frequencies is not yet accu-
rate enough to match the second branch. Even tough,
at s = 0.59, the transition is triggered by a frequency
between 170 and 180 kHz, and the associated Nt is about
4.5 which is the same results as LST one.

IV. Conclusion
The parabolas method has been extended with a

new model for Mack’s mode in order to predict natural
laminar-turbulent transition for hypersonic flows. This
model has been applied to a sharp cone geometry at
Mach number 8 following the experiment of Stetson, and
has proven its capability to reproduce the amplification
rate evolution predicted by the LST. This method, when
coupled with the eN-method, is able to give the begin-
ning of the transitional region for RANS code at smaller
computational costs and in good agreement with LST
results. Moreover, it allows engineers to easily compute
transition location because using this method bypasses
the resolution of stability equations. This new model
still needs to be enriched with isothermal profiles and
wider pressure gradient range in order to be used on
more complex geometries for hypersonic applications.
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