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Robust and efficient solvers for coupled-adjoint linear systems are crucial to successful
aerostructural optimization. Monolithic and partitioned strategies can be applied. The mono-
lithic approach is expected to offer better robustness and efficiency for strong fluid-structure
interactions. However, it requires a high implementation cost and convergence may depend on
appropriate scaling and initialization strategies. On the other hand, the modularity of the par-
titioned method enables a straightforward implementation while its convergence may require
relaxation. In addition, a partitioned solver leads to a higher number of iterations to get the
same level of convergence as the monolithic one. The objective of this paper is to accelerate
the partitioned solver by considering techniques borrowed from Krylov subspace recycling
strategies adapted to sequences of linear systems with varying right-hand sides. Indeed, in
a partitioned framework, the structural source term attached to the fluid block of equations
affects the right-hand side with the nice property of quickly converging to a constant value. We
will also consider error approximation and approximate eigenvectors deflation in conjunction
with advanced inner-outer Krylov solvers for the fluid block equations. We demonstrate the
benefit of these techniques by computing the coupled derivatives for an aeroelastic configura-
tion of the ONERA-M6 fixed wing in transonic flow. For this exercise the fluid grid was coupled
to a structural model specifically designed to exhibit a high flexibility. All computations are
performed using RANS flow modeling and a fully linearized one-equation Spalart-Allmaras
turbulence model.

I. Introduction

Nowadays, aeronautical industries are deeply concerned about the environmental issues generated by the growth
in air traffic. As such, they are constantly confronted with new technological challenges, either by improving the

performance of an aircraft, or by making new insights. One of them consists in finding, in the early design stage, the
best potential design configuration that minimizes a certain objective function (e.g the lift-to-drag ratio) with respect
to a set of design variables leading potentially in the end to a great reduction of CO2 emission. Fine control of an
aerodynamic shape or of a structural layout leads to a high-dimensional parameter space. For high-fidelity simulations,
gradient-based optimizers in conjunction with the adjoint approach are the methods of choice. However, the coupled
adjoint linear system is inherently ill-conditioned as it embeds matrix blocks of different scales and structures. In
addition, the fluid block coming from the exact linearization of the RANS equations associated to a turbulence model is
often very stiff. Besides, a strong level of fluid-structure interaction is known to be detrimental to the robustness and
efficiency of existing solution techniques. Resolving such linear systems is achieved by two main approaches. The
partitioned (or segregated) approach and the monolithic approach. The first one simply consists in resolving, in an
alternating way, the aerodynamic and the structural sub-problems by applying the Linear Block Gauss-Seidel algorithm
(LBGS). It expresses the inder-disciplinary coupling as a source term to the right-hand side of each set of disciplinary
adjoint equations. The modularity of this approach makes it rather interesting since it takes advantage of the specific
routines designed for each sub-problem and does not demand a high implementation cost. Nevertheless, this approach
becomes rapidly inefficient and could even diverge for strong fluid-structure coupling even though the addition of some
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degree of relaxation helps to mitigate this issue. On the other hand, the monolithic approach consists in solving the fluid
and structural equations simultaneously making it more robust in the sense that it is less sensitive to the strength of the
fluid-structure interaction. The coupled adjoint system is generally solved by using Krylov subspace methods. The
challenging aspect of such an approach is then to develop advanced preconditioning strategies combined with numerical
ingredients so that Krylov methods reach the best performances in terms of robustness and efficiency.

In a high-fidelity aerostructural optimization context, Zhang and Zingg [1] implemented a robust monolithic solution
method for both aerostructural analysis and coupled adjoint problem. A three-dimensional formulation was adopted
involving the mesh, the flow and the structural states. The performance of the monolithic method as well as the
partitioned one was investigated through a comparative study by varying the level of fluid-structure coupling. For the
coupled adjoint problem solution, a GCROT [2] Krylov solver has been used in conjunction with a block Gauss-Seidel
preconditioner. The monolithic adjoint solution has been 60 % more efficient than the partitioned one for strong coupling.
For weak fluid-structure coupling, the monolithic solution still outperformed the partitioned one with a better efficiency
of 40 %. In terms of computational time, the monolithic method showed 50 % to over 60 % faster than the partitioned
method. A similar comparative study of both monolithic and partitioned approaches was performed by Kenway et al.
[3] except that a Block Jacobi preconditioner was applied to the coupled adjoint system. The aerodynamic and structural
block preconditioners were solved by a preconditioned Krylov method (restarted Generalized Minimal RESidual -
GMRES [4]) and a direct factorization method respectively. A Flexible Krylov method (e.g FGMRES [5]) has been
used for the coupled adjoint system solution. The Common Research Model (CRM) wing-body-tail configuration was
sized by considering two critical load cases: 1g cruise condition with moderate elastic deformation and a 2.5g pull-up
with significantly more deflection. For the same memory footprint, the best monolithic solution seems to outperform
the best partitioned one by reducing the time to 19% for the 1g load and by 29% for the 2.5g case. These numerical
experiments demonstrate the great benefit of using monolithic approach in the strong coupling case but at the price of a
robust preconditioner for the Krylov solver. We note however that both studies only considered inviscid flow modeling.
These conclusions about the monolithic solver efficiency might be mitigated by the added stiffness of adjoint system
matrices produced by a RANS fluid model associated to a linearized turbulence model.

Although the satisfactory performance of monolithic solvers, advanced strategies that could accelerate the partitioned
algorithm using black-box solvers have received less attention. We recall that a partitioned algorithm consists in
approximately solving the aerodynamic adjoint block at each fluid-structure iteration resulting in a sequence of adjoint
linear systems with varying right-hand sides. As already mentioned, the structural source term that affects the right-hand
side of the fluid block has the nice property of rapidly converging to a constant value. The corollary of this property is
that after several fluid-structure couplings, the subsequent fluid systems should greatly benefit from recycling spectral
information from the previous fluid-structure cycles. At the start of this work, the current partitioned adjoint solver did
not take advantage of recycling and at each update of the structural source term the Krylov solver did a cold start from
the previous solution.

The principle of deflation is to remove the influence of a system’s subspace on the iterative process. This is usually
beneficial when directions of certain subspaces hamper convergence. Deflation of an eigenspace can be performed in
two ways: the linear system (matrix and right-hand side) is left-multiplied by a projector P, i.e. deflation by projection
[6–8], or some eigenvectors are added to the Krylov subspace, i.e. deflation by augmentation [9]. A survey of deflation
and augmentations techniques can be found in [10]. A specific type of deflation preconditioning aims at solving a
rank-deficient projected system, using a Krylov solver, in a certain subspace outside of the problematic subspace. The
solution is then complemented with the solution in the latter subspace. In [8] the author makes the post-correction
superfluous by using a projection as right-preconditioner instead. For deflation by augmentation, adding eigenvectors to
the Krylov subspace can effectively deflate corresponding eigenvalues from the spectrum because when these directions
are included in the solution approximation, the convergence of the Krylov solver continues according to the modified
spectrum. The deflation by augmentation led to the well-known FGMRES-DR solver [11] and its extension to inner-outer
Krylov solver [12, 13].

Unfortunately, the deflated restarted GMRES framework based on subspace augmentation is not adapted for solving
sequences of linear systems [14]. Fortunately, some authors have proposed new strategies in order to reuse information
accumulated in previous fluid-structure cycles and use it to accelerate the solution of the next linear system. Krylov
subspaces recycling methods seem to be the suitable choice. Historically, De Sturler suggested the Generalized Conjugate
Residuals with inner Orthogonalization (GCRO) method [15], an improved version of the recursive GMRES (GMRESR)
solver [16] by maintaining an orthogonality condition between the outer and the inner spaces generated by GMRESR.
This way, it provides the optimal correction to the solution in a global search space. Later, Parks et al. formulated
the GCRO-DR algorithm [14] that combines GCRO and deflation techniques by augmentation introduced by Morgan



[9]. They demonstrated better performances of GCRO-DR compared to the GMRES-DR in a long sequence of linear
systems from a fracture mechanics problem. Carvhalo et al. extended GCRO-DR to the flexible case (FGCRO-DR) [17]
and they conducted in-depth analysis of both flexible methods. In particular, they showed that both methods can be
algebraically equivalent if a certain colinearity condition is satisfied at each cycle. In 2013, Niu et al. introduced Loose
GCRO-DR (LGCRO-DR) [18] for improving the convergence of GCRO-DR by recycling both spectral information and
approximate error information. The error is defined as the distance between the current iterate and the exact solution
of the system. It is not known by definition but a fair approximation to it can be computed. This idea was initially
proposed by Baker et al. [19] and mimics the idea behind GMRESR of including approximations to the error in the
current approximation space. This error information is interesting since it represents in some sense the previous Krylov
space generated in the previous cycle and subsequently discarded. In addition to that, LGCRO-DR is straightforward
and economic to implement.

In this paper, we investigate advanced Krylov subspace methods using subspace recycling strategies for accelerating
the partitioned solver. More specifically, we compare the performances of flexible GCRO-DR with and without subspace
recycling and flexible GMRES-DR for varying degrees of fluid-structure coupling. This work will benefit from the
recent achievements to improve efficiency of the fluid adjoint solution by applying nested Krylov subspace methods [13].
The numerical experiments are performed on an aeroelastic configuration of the ONERA M6 fixed wing in transonic
viscous flow.

This paper is organized as follows. In section II we briefly recall the theoretical background of aeroelastic and
coupled-adjoint equations. The partitioned algorithm is also outlined. Section III is devoted to the description of the
GCRO algorithm with adaptations related to variable preconditioning and subspace recycling. The aeroelastic numerical
test case is presented in section IV. In section V we detail our preliminary numerical experiments. First, we show that
FGMRES-DR and FGCRO-DR are numerically equivalent for solving the fluid adjoint system as demonstrated in [17].
Then, the benefit of adding more physics in the fluid preconditioner is demonstrated for the standard coupled-adjoint
partitioned solver. Last, we present preliminary results illustrating the acceleration of the partitioned solver thanks to
subspace recycling.

II. Aerostructural adjoint system

A. Aeroelastic equilibrium

Let us denote the state variables of the coupled systemW and U, representing the fluid conservative variables and
the structural displacements respectively. At the aeroelastic equilibrium, the state variables and the meshes satisfy the
discretized equations of fluid and structural mechanics simultaneously:{

Ra(Xa,W,U) = 0
Rs(Xs,W,U) = 0

(1)

where Ra is the discrete aerodynamic residual and Rs the discrete structural residual. These two blocks of equations are
coupled through aerodynamic forces Qa loading the skin of the structure and the structural displacements U deforming
the fluid mesh. The structural mesh is noted Xs . In the following we introduce two aerodynamic grids Xa and Xa0. Xa

denotes the deformed aerodynamic grid at the aeroelastic equilibrium at the outcome of the aeroelastic analysis. Xa0
is called the reference mesh which supports the aerodynamic shape parametrization. Typically for an aircraft design
study the reference mesh is chosen as the jig shape or the flight shape in reference nominal flight conditions. The load,
displacement and mesh deformation operators then merely depend on Xa0 for an aeroelastic or coupled-adjoint analysis.
The structural loads Qs are obtained with a suitable load transfer technique applied to Qa such that

Qs(Qa(W,Xa),Xa0,Xs) = TQ
sur f
(Xa0,Xs)Qa(W,Xa) (2)

where TQ
sur f

represents a linear load transfer operator. The subscript sur f stipulates that the associated linear operators
or data relate to the fluid-structure interface. The structural displacements alter the fluid grid locations through the
relation:

Xa = Xa0 + δXa(δXa,sur f ,Xa0) = Xa0 + Tvol(Xa0)δXa,sur f (3)



with Tvol(Xa0) the volume operator performing the deformation of the fluid domain. The vector δXa,sur f corresponds
to the displacements of the fluid nodes at the fluid-structure interface.

δXa,sur f = δXa,sur f (Xa0,Xs,U) = TU
sur f (Xa0,Xs)U (4)

where TU
sur f
(Xa0,Xs) represents a linear displacement transfer operator.

B. Partitioned strategy for the coupled adjoint system

Let us consider a scalar aeroelastic objective function J(W,Xa,Xs) and a design parameter p. One way to obtain the
coupled adjoint equations is to formulate an augmented objective function by adding the total variation of the residuals
Rs and Ra to the total derivative dJ/dp. More specifically, we define dJ̃/dp as

dJ̃
dp
=

dJ
dp
+ λTa

dRa

dp
+ λTs

dRs

dp
(5)

where

dJ
dp
=

∂J
∂W

dW
dp
+

∂J
∂Xa

dXa

dp
+

∂J
∂Xs

dXs

dp
+
∂J
∂U

∂U
∂p

, (6)

In Eq. (5) the total variations of residuals are exactly zero since they represent constraints related to the satisfaction
of the equilibrium equations at the outcome of the aeroelastic analysis. For simplicity, we restrict here to the specific
case of a shape design parameter not affecting the structural geometry nor the structural stiffness. In addition, the
explicit dependency of the objective function with respect to the structural states is dropped, i.e., we consider only
derivatives of aerodynamic coefficients. The full derivation for the general case can be found in [20, 21]. It is worth to
mention that these assumptions do not lead to any loss of generality of the work presented in this paper since we focus
on solution techniques for the adjoint system. As Xs does not depend on the design parameter p, we have dXs/dp = 0.
Under the same assumption we also have dK/dp = 0. After some algebra manipulation we end up with the following
expression for dJ̃/dp in which the total derivatives dW/dp and dU/dp have been factored out:

dJ̃
dp
=

(
∂J
∂W
+ λTa

∂Ra

∂W
− λTs C

)
dW
dp
+

(
∂J
∂Xa

A + λTa
∂Ra

∂Xa
A + λTs (K − D)

)
dU
dp

+

(
∂J
∂Xa

+ λTa
∂Ra

∂Xa

)
B

dXa0
dp
− λTs E

dXa0
dp

(7)

Constant matrices A to E are defined analytically with the following formulas (see [20]):

A = TvolTU
sur f (8)

B =
∂Xa

∂Xa0
= I +

∂A
∂Xa0

U (9)

C = TQ
sur f

∂Qa

∂W
(10)

D = TQ
sur f

∂Qa

∂Xa
TU
sur f (11)

E = TQ
sur f

∂Qa

∂Xa
B +

∂Qs

∂Xa0
(12)

The coupled adjoint linear system is obtained by canceling factors related to dW/dp and dU/dp in Eq. (7) to give
[
∂Ra

∂W

]T
−CT

AT
[
∂Ra

∂Xa

]T
KT − DT



λa

λs

 =

−

[
∂J
∂W

]T
−AT

[
∂J
∂Xa

]T
 (13)



The process for solving the adjoint system follows an iterative block scheme. Algorithm 1 details the Linear Block
Gauss Seidel (LBGS) scheme applied for the solution of system (13). In this derivation, we use the structural flexibility
S which is a small reduced matrix relating the set of structural forces to the set of structural displacments pertaining to
the fluid-structure coupling. The relaxation factor θs has been introduced on the adjoint vector λs . Assuming that the
coupled system is solved to machine accuracy, the total derivative reconstruction is given by

dJ
dp
=

(
∂J
∂Xa

+ λTa
∂Ra

∂Xa

)
B

dXa0
dp
− λTs E

dXa0
dp

(14)

In the expression above the computation of the product of the geometrical sensitivities with the matrix B is not
trivial. If one already has at hand a linearized version of the operator A, i.e. of TU

sur f
and Tvol , it can be applied to

dXa0/dp as many times as the number of design variables. This is the most straightforward manner but the benefit of
the adjoint formulation is then mitigated by the cost of the gradient assembly. The other way is to transpose the first
term in the right-hand side of Eq. (14) and compute products like [∂TU

sur f
/∂Xa0]Tv and [∂Tvol/∂Xa0]Tv, where v has

fluid grid size. We call this mode the geometrical adjoint of the mesh deformation and displacement transfer operators.
These two modes of gradient assembly have been implemented in the coupled-adjoint module of the elsA software.

Algorithm 1 Partitioned LBGS strategy for coupled-adjoint solution

1: Initialize: U,W Xa,Xs,Xa0, λ
0
a, λ

0
s, θs, tol

2: if λ0
s , 0 then

3: RHSstru ←
(
TQ
sur f

∂Qa

∂W

)T
STλ0

s

4: else

5: RHSstru ← 0

6: end if

7: if λ0
a = 0 then

8:
[
∂Ra

∂W

]T
λ0
a = −

[
∂J
∂W

]T
+ RHSstru . Approximate solution of the fluid adjoint problem

9: end if

10: for k ← 1, ncpl do

11: AXs,sur f ←
(

∂Qa

∂Xa,sur f

)T (
TQ
sur f

)T
STλk−1

s . Structural geometric adjoint

12: AXa ← −
(
[λk−1

a ]T ∂Ra

∂Xa
+ ∂J

∂Xa

)T
. Aerodynamic geometric adjoint

13: AXa,sur f ← (Tvol)TAXa .Mesh deformation adjoint

14: λks ← (TU
sur f
)T (AXs,sur f + AXa,sur f ) . Structural adjoint vector

15: λks ← (1 − θs)λk−1
s + θsλ

k
s . Relaxation

16: RHSstru ←
(
TQ
sur f

∂Qa

∂W

)T
STλks . Update structural rhs

17:
[
∂Ra

∂W

]T
λka = −

[
∂J
∂W

]T
+ RHSstru . Approximate solution of the fluid adjoint problem

18: end for

19: dJ
dp ←

(
∂J
∂Xa
+ λTa

∂Ra

∂Xa

)
B dXa0

dp − λTs E dXa0
dp . Objective function gradient assembly



III. Recycling strategies for sequences of linear systems
As already explained, the current implementation of our partitioned solver does not take advantage of spectral

information produced during the Krylov solver instances applied to the sequence of preceding right-hand sides. An
advanced inner-outer GMRES-DR solver is used for the approximate solution of the fluid block between consecutive
fluid-structure couplings but a simple restart is performed when the structural source term is updated. Unfortunately,
deflated restarting based on subspace augmentation by appending approximate Ritz vectors to the Krylov subspace is
not suitable for sequences of linear systems. Indeed, if the Ritz vectors are obtained from a previous linear system
with another matrix or even another right-hand side, the concatenation of the recycled subspace to the current Krylov
subspace does not form a Krylov subspace for the current problem. It is necessary to introduce a new Krylov solver that
uses recycling of any given subspace without restriction. A famous one is the generalized conjugate residual with inner
orthogonalization (GCRO). It belongs to the family of inner-outer methods [22] where the outer method is based on
GCR, a minimum residual norm method proposed by Eisenstat, Elman and Schultz [23]. The inner solver is GMRES
applied to a projected system matrix.

A. FlexibleGeneralizedConjugateResidualwith innerOrthogonalization andDeflatedRestarting: FGCRO-DR

As previously mentioned, we focus on the solution of a sequence of linear systems with a varying right-hand side
only. This section briefly introduces the Flexible GCRO algorithm with deflated restarting. In this framework, deflation
can reuse spectral information from a previous cycle or from a previous linear system. We start by recalling the original
formulation of the generalized conjugate residual method (GCR)[23]. The idea is to introduce the concept of optimality
for the solution residual. We want to solve

Ax(i) = b(i), i = 1, 2, ... (15)

where A ∈ Rn×n and b(i) ∈ Rn changes from one system to the next.
The GCR method relies on a given full-rank matrix Zk ∈ Rn×k and an orthonormal matrix Ck ∈ Rn×k as the image

of Zk by A satisfying the relations

AZk = Ck, (16)
CT
k Ck = Ik . (17)

For the sake of understanding, suppose that we want to solve the first system of the sequence of linear systems, i.e.,
i = 1. Given an initial guess x1

0 , the principle is to compute an approximation to the solution x1 ∈ x1
0 + range(Zk) that

minimizes the corresponding residual norm in the approximation space range(Zk). More precisely, GCR solves the
following minimization problem

x(1) = argmin
x∈x(1)0 +range(Zk )

‖b(1) − Ax‖2, (18)

The optimal solution of (18) over the subspace x(1)0 + range(Zk) is defined by

x(1) = x(1)0 + ZkCT
k r (1)0 (19)

Consequently, the corresponding residual vector satisfies

r (1)
k
= b(1) − Ax(1) = (I − AZkCT

k )r
(1)
0 = (I − CkCT

k )r
(1)
0 , r (1)

k
⊥ range(Ck). (20)

The orthogonality of the residual r (1)
k

to the subspace AKk(A, r (1)0 ) spanned by the columns of Ck is known as the
optimality property of the residual. In practice, GCR is not considered as a means to solve the linear system. It is
replaced by a GMRES solver which rather computes an implicit representation of the matrices Zk and Ck [2].

Given an orthonormal basis Ck of an outer subspace and the corresponding residual rk = (I − CkCT
k
)r0 after k

steps of GCR, GCRO(m) obtains the next iterates rk+1 and xk+1 by performing m steps of GMRES applied to the
projected operator ACk

= (I − CkCT
k
)A, thereby maintaining optimality of the inner residual to the outer space. Let

Vm+1 ∈ Rn×(m+1) be an orthonormal basis for Km+1(ACk
, rk) with v1 = rk/‖rk ‖, if we consider a flexible inner GMRES

we have the following Arnoldi relation:



ACk
Zm = (I − CkCT

k )AZm = Vm+1H̄m with H̄m = VT
m+1 ACk

Zm (21)

This equation can be expanded as

AZm = CkBm + Vm+1H̄m with Bm = CT
k AZm (22)

At the end of the inner GMRES cycle, the residual is expressed as

rk+1 = rk − ACk
Zmy = rk − Vm+1H̄mym (23)

with, using H̄m = Q̄mRm, ym such that

ym = argmin
y∈Rm

‖rk − ACk
Zmy‖2 = R−1

m Q̄T
m‖rk ‖2e1 (24)

In the above Arnoldi process (22) of the inner GMRES, the vectors Azi are first orthogonalized against Ck , thus
constructing Vm+1 such that CT

k
Vm+1 = 0. So far, we have not yet explained how the matrix Ck is built in the context of

subspace recycling. First, we slightly change the notation in (21) and (22) to point out that we perform m − k steps
(instead of m) of inner FGMRES. This produces the Arnoldi relation

ACk
Zm = (I − CkCT

k )AZm−k = Vm−k+1H̄m−k (25)

Combining (16) and (25), where Ck is renamed Vk for better readability, we have

A[Zk Zm−k] = [Vk Vm−k+1]
[
Ik Bm−k
0 H̄m−k

]
with Bm−k = VT

k AZm−k (26)

From now on, we define Zm = [Zk Zm−k] and Vm+1 = [Vk Vm−k+1] leading to the following compact expression
of (26)

AZm = Vm+1H̄m. (27)

We have now completed the process for the first linear system which formulates the solution from the complementary
subspaces Vk and Vm−k+1. At this stage, we introduce deflated restarting within the FGCRO framework to build the outer
space Vk for the next linear system. The deflation subspace is spanned by the k harmonic Ritz vectors corresponding to
harmonic Ritz values of smallest magnitude. This leads to the FGCRO-DR algorithm that is a combination of FGCRO
and FGMRES-DR (see Algorithm 2). To compute the harmonic Ritz vectors, we solve the m×m generalized eigenvalue
problem defined in step 28 of Algorithm 2. We then form the matrix Pk ∈ Rm×k which stores the retained eigenvectors.
This matrix is expanded by Zm to form the basis of the deflation subspace ZmPk . Then, the image of the deflation space
by A gives

AZmPk = Vm+1H̄mPk (28)

then orthonormalized,

Vk = Vm+1Q̄m (29)

whereVm+1 has been computed at the end of the (i−1)st cycle and Q̄m stands for the unitary factor of the QR factorization
of H̄mPk = Q̄mRk . The relation that holds at this stage is:

AZmPkR−1
k = Vk (30)

From (16), we deduce that Zk = ZmPkR−1
k
. Knowing Vk and Zk , the solution and the residual can be updated with

x(i+1)
1 = x(i+1)

0 + ZkVT
k r (i+1)

0 (31)

r (i+1)
1 = (I − VkVT

k )r
(i+1)
0 (32)

and we can initiate the Arnoldi process in (26) for the next system.



IV. ONERA-M6 wing aeroelastic analysis
In this study the numerical experiments have been performed with the well known ONERA-M6 fixed wing

configuration which has been extensively used for CFD solvers validation in transonic flow conditions. In this work
we use the RANS solver provided by elsA for the steady rigid and aeroelastic analyses [24, 25]. The elsA adjoint
and coupled-adjoint solvers have also been used for the computation of rigid and flexible derivatives. The latest
improvements to the Krylov solvers for the solution of the adjoint linear system are described in [13]. A multi-block
structured mesh featuring a C-H topology is used (Fig. 1). It consists of 3.8 million grids divided into 42 blocks. The
flight conditions are a free-stream Mach number of 0.84 at an angle of attack of 3.06 degrees. The convective fluxes
are discretized by an upwind Roe scheme associated to a Monotonic Upstream-centered Scheme for Conservation
Laws (MUSCL) reconstruction and a Van Albada flux limiter. The one-equation Spalart-Allmaras turbulence model is
selected. The surface contours in the bottom plot of Fig. 2 below show typical results for the ONERA-M6 wing. The
pressure coefficient contours identify a lambda-shock along the mid-chord of the wing. For the aeroelastic analysis a
simple but realistic finite element model has been designed (Fig. 1). The stiffness of this model can be easily tuned to
get stronger or weaker fluid-structure interaction. The pressure coefficient contours at the aeroelastic equilibrium are
plotted in the upper part of Fig. 2 and can be compared to the rigid contours. The maximum vertical displacement is
0.14 meters corresponding to 11.7 % of the wing span. To get a better insight of the effect of flexibility on the pressure
distribution, we report in Fig. 3 the Cp distributions for two sections at y = 0.60 m and y = 1.12 m. The vertical
displacement distributions associated to the front and rear spars as well as the twist increment distribution are plotted in
Fig. 4. The rigid analysis results in a lift coefficient CL = 0.27 whereas the aeroelastic analysis, at the same angle of
attack, results in a lower lift coefficient CL = 0.23.

Fig. 1 M6 wing aeroelastic model: 42 block-structured RANS CFD mesh and FEM internal layout.



Fig. 2 Pressure coefficient contour plots for the rigid and aeroelastic steady flows.

Fig. 3 Comparison of rigid and aeroelastic pressure coefficient section plots at y=0.60m and y=1.12m.



Fig. 4 Vertical displacement and twist increment distribution at aeroelastic equilibrium.

V. Numerical experiments

A. Preconditioning
We are interested in the solution of linear systems of adjoint equations for a finite volume discretization on multi-block

structured meshes. As already mentioned, all computations are performed using a RANS flow model and a fully
linearized one-equation Spalart-Allmaras turbulence model. The spatial discretization relies on a second-order upwind
Roe scheme. The associated system of equations is usually very stiff as it exhibits terms of very different amplitudes,
depending on the location in the fluid domain, e.g., in the flow wake, near the wall surface or at the far boundary. Some
recent work by the authors [13] demonstrated the numerical robustness of the inner-outer GMRES solvers for such
difficult problems. This class of solvers embeds two level of preconditioning. The outer preconditioner is a standard
GMRES solver pre-conditioned itself by an inner stationary operator. The GMRES preconditioner offers the desirable
property of addressing the global eigenspectrum of the entire domain. This also makes the inner-outer solver less
sensitive to the quality of the second-level preconditioner.

Two stationary preconditioning strategies are considered for the inner GMRES. The first one consists in a block
version of a standard block Lower-Upper Symmetric Gauss-Seidel (LU-SGS) iterative solver [26]. LU-SGS is a particular
case of LU-SSOR with a unity relaxation factor. The reader should refer to [27] for further details about LU-SGS as
an iterative solver for the implicit phase of Backward-Euler Newton steady solvers. In the current implementation,
LU-SGS is combined with a domain decomposition method. More specifically, the globalization of the preconditioner
is achieved with a Restricted Additive Schwarz method [28].

LU-SGS is applied to a first-order diagonally dominant upwind approximation of the flux Jacobian matrix inspired
by [29]. This operator is based on a first-order spatial discretization of the convective and of the viscous fluxes using a
simplifying thin layer assumption [27]. This strategy leads to a very compact stencil for the preconditioning matrix
which will be denoted as JAPP

O1 in the remainder of this paper. The second one is a Block Incomplete Lower Upper
(BILU(k)) factorization applied to either an approximate or exact flux Jacobian matrix. For the so-called first-order exact
Jacobian matrix JEX

O1 , a first-order spatial Roe scheme is used for the discretization of the mean-flow convective fluxes
and a 5-point corrected centered discretization scheme is used for the diffusive fluxes. The BILU(k) preconditioner will
be applied either to the first-order approximate Jacobian matrix JAPP

O1 , or to the first-order exact Jacobian matrix JEX
O1 .

About memory footprint, JEX
O1 has a 9-point stencil in 2D whereas a 5-point stencil is associated with JAPP

O1 . In 3D, we
have a 7-point stencil for JAPP

O1 and a stencil of 19 points for JEX
O1 . Consequently, a better robustness is achieved but at

the price of about twice the storage for JEX
O1 compared to JAPP

O1 . For a better understanding, we have reproduced the 3D
stencils in Fig. 5.



a) Exact 2nd order stencil (size 25) b) Exact 1st order stencil (size 19) c) Approx. 1st order stencil (size 7)

Fig. 5 Stencils of the various Jacobian matrices.

In order to efficiently tackle the different scales in the system Jacobian matrix, an additional level of preconditioning
is considered in the present work. We perform a block-diagonal left-right scaling, i.e., row-column scaling, of the
system matrix leading to a modified system of the form

D−1
L AD−1

U M−1t = D−1
L b, (33)

where D−1
L and D−1

U are lower and upper inverses of the LU factors of the block-diagonal of matrix A. This leads to a
scaled system matrix with unit diagonal. The preconditioner is then based on an approximate BILU factorization of
D−1

L AD−1
U . Even if the scaling is performed externally, i.e., the approximate Jacobian matrix is left/right pre-multiplied

before applying BILU, the condition number of the BILU factors is greatly reduced and the rounding errors during the
factorization process are smaller. About products involving the system matrix A, the operation is performed on-the-fly
as the matrix is not stored.

B. Performance of recycling Krylov solvers for aerodynamic adjoint systems

Having coded our new FGCRO-DR solver, the primal objective in this section is to assess its performances and
compare to FGMRES-FR for the solution of a fluid adjoint problem. This exercise will also confirm the expected
algebraic equivalence that exists between FGCRO-DR and FGMRES-DR and proved by Carvalho et al. in [17]. Since
we solve a single linear adjoint system, the subspace recycling step (step 2 to step 4 of Algorithm 2 in Appendix
A) is skipped. Actually, Fig.6 illustrates an essential numerical aspect pertaining to the FGCRO-DR method. More
precisely, FGCRO-DR seems to be more sensitive than FGMRES-DR to the rounding errors during the orthogonalization
process. Indeed, for FGCRO-DR we observe a stagnation of the relative residual after 10−8 when a single step of
orthogonalization is applied, even for a moderate size Krylov subspace (FGCRO-DR(30,10,10) with nMGS=1).

The best way to restore convergence in a reasonable number of iterations is to perform two steps of orthogonalization
(FGCRO-DR(30,10,10) with nMGS=2). The main reason that FGCRO-DR suffers from rounding errors during the
orthogonalization process comes essentially from the two-stepArnoldi process. Indeed, maintaining the orthogonalization
condition between the recycled space Vk and the inner Krylov space Vm−k during the Arnoldi process is challenging for
our stiff numerical problem. To point out the two-step orthogonalization process, (25) can be rewritten as

AZm−k = VkBm−k + Vm−k H̄m−k (34)

In Fig.6 we see that the theoretical numerical equivalence, in exact arithmetics, between FGCRO-DR and
FGMRES-DR is demonstrated.



Fig. 6 Comparison of the numerical performances between FGCRO-DR and FGMRES-DR. Impact of the
orthogonalization step on the FGCRO-DR solver: one step orthogonalization (nMGS=1) deteriorates the con-
vergence after 10−8 while a re-orthogonalization restores the convergence (nMGS=2). We recall the numerical
parameters as follows: m = 30, mi = 10, k = 10.

As we are dealing with RANS flow equations associated to a fully linearized turbulence model, the Jacobian
operators may be poorly conditioned in certain areas of the fluid domain. To mitigate this issue, we have considered
a block diagonal scaling of the system matrix as defined in (33). Fig.7 illustrates the benefit of this scaling. Indeed,
scaling has a strong impact on the stagnation observed at the beginning of the convergence by shrinking the plateau.

Also, true and least-squares relative residuals match more accurately even at tiny convergence levels, i.e., 10−9 in
this case. Scaling seems then to be a good alternative to re-orthogonalization, and also a cheaper one. In Fig.7 we
notice a slightly lower convergence rate for the scaled problem so that both scaled and original problems converge in
approximately the same number of iterations. However, in the context of a partitioned solution strategy, we seek for an
early decrease of the fluid residual and, in this sense, scaling is very attractive.



Fig. 7 Adjoint relative residual norm convergence history of FGMRES-DR and FGCRO-DR. Impact of the
scaling on the convergence. We recall the numerical parameters of solvers as follows: m = 30, mi = 10, k = 10.

C. Performance of the current partitioned solver for coupled-adjoint systems

This subsection illustrates the impact of preconditioning strategies applied to the fluid adjoint problem that improve
the current partitioned solver in terms of robustness and computational time. We recall that an inner-outer Krylov
solver is used in this work and then the selection of the preconditioner of the inner Krylov solver is of interest. The
preconditioning strategies have been presented in section V.A.

Considering the relative size of the stencils associated to the exact first-order and the approximate first-order Jacobian
matrices, one needs roughly three times more storage for JEX

O1 compared to JAPP
O1 but resulting in a better efficiency as

we can see in Fig. 8. Indeed, BILU(0) applied to JEX
O1 outperforms LU-SGS with a gain of 45% in terms of iterations.

Moreover, the scaling has the ability to enhance the convergence of the coupled-adjoint system by shrinking the plateau
that appears at the beginning of each fluid-structure coupling (see Fig.9). From these numerical experiments, we
conclude that the best option for performance of the partitioned solver is to associate a diagonal scaling to the BILU(0)
factorization of the first-order exact Jacobian matrix. We also recall that the flow equations are systematically physically
non-dimensionalized in the first place.



Fig. 8 Adjoint relative residual norm convergence history of FGMRES-DR. Impact of various preconditioners.

Fig. 9 Adjoint relative residual norm convergence history for FGMRES-DR and FGCRO-DR. Impact of
scaling on the convergence. The plateau that appears after each fluid-structure coupling is dropped thanks to
the scaling effect.



D. Performance of recycling strategies for aerostructural adjoint systems

The results presented in this section are associated to an approximate linearization using the constant eddy viscosity
assumption. However, we point out that the conclusions can be readily transposed to a fully linearized system of
equations.

Our objective is to propose simple criteria to assess whether recycling can be activated. The first criterion consists
in monitoring the norm of the right-hand side of the fluid block. Indeed, recycling is expected to be efficient for slowly
varying systems. As we are solving a coupled problem, we know that after a given number of fluid-structure (F/S)
couplings, the structural source term stabilizes. This stabilization of the structural part means that the aerostructural
adjoint system solution reduces to an aerodynamic adjoint system only.

In Fig. 10, we plot the assembled right-hand side (red curve) which sums the structural one (RHSstru , blue curve)
and the aerodynamic one (RHSaero, green curve). We recall that RHSaero is constant during the solution process and
only RHSstru varies. We observe in Fig. 10 that RHSstru varies significantly during the first fluid-structure cycles and
stabilizes after six couplings.

Fig. 10 Variation of structural and aerodynamic right-hand sides with respect to F/S cycles. Residual norms
are scaled by the norm of the fluid right-hand side.

Fig. 11 clearly shows the benefit of subspace recycling on the relative residual convergence of the partitioned solver.
As just mentioned, the recycling strategy is relevant after six fluid-structure cycles. More precisely, we have considered
two cases: the first one triggers the recycling strategy from the fifth cycle and the second one from the sixth cycle.
Obviously, recycling is not relevant before six couplings.

Fig. 12 proposes another criterion for the activation of the recycling process. More precisely, at the beginning of
the ith fluid-structure cycle, we compare the norms of the initial relative residual r (i)0 and that of the relative residual
projected orthogonally to the recycled subspace Vk = [v1, ..., vk] denoted as r (i)1 = (I −VkVT

k
)r (i)0 . The ratio ‖r (i)1 ‖/‖r

(i)
0 ‖

can be interpreted as a measure of the degree of colinearity between the two residual vectors. Thus, a value close
to unity indicates that the previous approximation Vk of the invariant subspace of the system matrix is relevant for
recycling. By the way, as fluid-structure cycles proceed, we expect this approximation to get closer to the true invariant
subspace. One interesting way to assess the approximation error is to monitor the distance between subspaces V (i)

k
and

V (i+1)
k

. This distance is expressed as dist(V (i)
k
,V (i+1)

k
) = ‖(I − V (i)

k
[V (i)

k
]T )V (i+1)

k
[V (i+1)

k
]T ‖.

Fig. 11 reflects these considerations. The convergence of the FGMRES-DR solver is reported for reference.
As expected, it is directly comparable to the FGCRO-DR curve without recycling. Turning to the convergence of
FGCRO-DR with recycling from the fifth F/S cycle, we observe a degradation of convergence. Clearly, the recycled
space is not sufficiently informative to improve convergence during the subsequent cycles. However, recycling at the
next cycle dramatically speeds up convergence.



Fig. 11 Relative residual convergence history for both FGCOR-DR and FGMRES-DR. Impact of recycling on
the convergence.

(a) (b)

Fig. 12 Contribution of the recycled subspace to the next system solution: (a) corresponds to contribution
from the 6th cycle and (b) corresponds from the 7th cycle.



E. Deflation strategies based on error approximation

As part of the GCRO-DR solver, Niu et al. [18] proposed to recycle both the approximate error and the harmonic
vectors corresponding to the smallest harmonic Ritz values in magnitude. Let first recall the definition of the error
approximation. If we denote xs and xs−1 the approximate solutions obtained at the end of cycle (s) and cycle (s − 1)
of GMRES(m), and x̂ the exact solution, then the approximate error is defined as zs = xs − xs−1. It represents the
correction to xs−1 selected from Km(A, rs−1). The specific choice of zs for recycling is interesting since it represents the
best available approximation of A−1rs−1. Indeed, De Sturler demonstrated that the true error vector es = x̂ − xs is the
optimal solution of the linear system Ae = rs−1. Therefore, deflating the error approximation zs enables the GCRO-DR
solver to compute a new search direction thus avoiding the zs-direction in the subsequent cycles. This strategy leads to a
new solver which is denoted as LGCRO-DR(m,k − p,p) where p stands for the number of error approximations that are
recycled. Typically, p varies between 1 and 3. Note that we want to keep the size k of the recycled space unchanged,
irrespective of the small number of recycled error, that is, p < k. Baker [19] proposed a numerical criterion based on
both sequential and skip angles to analyze the co-linearity of residuals between cycles. We recall a simple expression
of the sequential and skip angles relying on the residual norm (see [18]). Let rs+1 and rs be the (s+1)st and the (s)th
residual vectors from LGCRO-DR(m,k − p,p). Then the sequential angle between two residual vectors is

cos∠(rs+1, rs) =
‖rs+1‖
‖rs ‖

. (35)

Also, let rs+1 and rs−1 be the (s+1)st and the (s-1)st residual vectors from LGCRO-DR(m,k − p,p). Then the skip
angle between two residual vectors is

cos∠(rs+1, rs−1) =
‖rs+1‖
‖rs−1‖

. (36)

We point out that the expression of the skip angle (36) is only valid for the LGCRO-DR method. Otherwise, the skip
angle is formulated for the non-flexible GCRO-DR as:

cos∠(rs+1, rs−1) =
‖rs+1‖
‖rs−1‖

− < Azs+1, Azs >
‖rs+1‖‖rs−1‖

, (37)

where zs+1 = xs+1 − xs ∈ Km(A, rs) stands for the error approximation of the (s+1)st cycle.

Fig. 13 Adjoint relative residual normconvergencehistory forGCRO-DRandLGCRO-DR. Impact of recycling
the error approximations on the convergence. No scaling strategy is considered in this case.



Fig. 13 shows how the recycling of the error approximation improves the robustness of the GCRO-DR solver. In
order to highlight the interest of the error approximation strategy, we decided to solve the aerodynamic adjoint system
for two different sizes of the Krylov space. We consider both GCRO-DR(60,20) and GCRO-DR(30,10). As we can see
in Fig. 13, GCRO-DR(60,20) converges after 1900 iterations. Even though a plateau is observed at the beginning, the
convergence of GCRO-DR(60,20) seems to follow the superlinear convergence property of GMRES without restarting.
Fig. 14a depicts the variation of the sequential and skip angles for GCRO-DR(60,20) throughout the cycles. At the
beginning, we observe for both sequential and skip angles low values which corroborates the plateau that we see in Fig.
13.

(a) (b)

(c) (d)

Fig. 14 Sequential and skip angles: (a) GCRO-DR(60,20), (b) GCRO-DR(30,10), (c) LGCRO-DR(30,9,1) and
(d) LGCRO-DR(30,8,2).

In contrast, sequential and skip angles are gradually improved throughout the cycles. More precisely, the skip
angle reaches up to 80 degrees whereas the sequential angle reaches up to 60 degrees. The second test case consists in
reducing the size of the Krylov space by considering GCRO-DR(30,10). In that case, the GCRO-DR solver stagnates.
Indeed, this stagnation is clearly illustrated in Fig.14b where the sequential and skip angles never exceed 2 degrees.
Let see how the recycling of error approximations affects the convergence behaviour. More specifically, a maximum
of two error approximations have been recycled. The red curve in Fig. 13 shows numerically the capability of one
error approximation to retrieve the convergence after 9000 iterations. We point out that we have computed the error



approximation in an economical way (see [18]). This economical method has the advantage of being straightforward and
easy to implement but is inexact. The LGCRO-DR(30,8,2) solver outperforms the LGCRO-DR(30,9,1) and improves
even more the solution with a gain of 10 %. Also, Fig. 14c and 14d shows the correlation between the convergence and
the value of the angles. At first glance, there is no major difference between the two Figures. However, if we look a little
closer, we see that both angle values in Fig. 14d are higher than those in Fig. 14c. Practically speaking, the lower the
angle values the larger the plateau at the beginning of the cycle.

It reflects exactly the size of the plateau of red and black curves in the Fig. 13. Apart from that, no difference
appears.

VI. Conclusion
In this exploratory work, recycling Krylov subspace methods have been investigated for improving the partitioned

solution of aerostructural adjoint systems.
Numerical experiments have been conducted on turbulent transonic flows over the three-dimensional ONERA M6

wing. In order to challenge our advanced Krylov solvers, a very flexible structural model of the wing was designed
leading to a strongly coupled aeroelastic problem. Many of the improvements investigated in this study have proven
beneficial to the convergence of Krylov solvers but often for problems of limited size or complexity.

At the beginning of this study, the current strategy was based on a FGMRES-DR solver for the fluid block with a
varying right-hand side, i.e., the contribution of the structural source terms is updated at each fluid-structure coupling.
However, this class of Krylov solvers is not able to take advantage of valuable spectral information produced during
the previous fluid-structure cycles. This is mainly due to the fact that the deflation strategy is based on subspace
augmentation. We then decided to implement a projection-based deflated Krylov solver which is able to virtually recycle
any subspace at hand. The The current work particularly focused on the FGCRO-DR solver. More specifically, this
class of solvers can recycle a spectral information from a linear system to another one.

A first step consisted in developing relevant numerical ingredients in order to improve robustness and efficiency of
our inner-outer Krylov solvers. The combination of varying preconditioning strategies associated to proper diagonal
scaling of the system matrix led to substantial improvement in the convergence rate, especially when the BILU(0)
approximate factorization is applied to the exact first-order flux Jacobian matrix.

These numerical ingredients have been introduced in FGMRES-DR and FGCRO-DR and a numerical comparison
showed the equivalence of these two solvers in terms of convergence rate and CPU cost. One important aspect which
deserves to be mentioned is that scaling of the system matrix dramatically reduces the plateau of the residual convergence
curve, which is a desirable feature in the framework of partitioned solvers when we want to achieve fast convergence
between two fluid-structure couplings.

In the context of FGCRO-DR, we then explored subspace recycling from previous fluid-structure cycles. This
showed very satisfactory convergence improvements, providing that the recycling process is activated after sufficient
convergence of the fixed-point solver. Indeed, effective recycling of spectral information for the solution of a sequence
of linear systems assumes that system matrix and right-hand side vary slowly. We proposed some distance criterion to
monitor the beginning of recycling. We demonstrated a beneficial impact of recycling on the coupled adjoint system
with gain of 20 % in terms of number of iterations.

Finally, we also investigated the recycling of error approximations for the aerodynamic adjoint system and for the
standard (non flexible) GCRO-DR solver. Sequential and skip angles have been computed as a relevant criteria for
appreciating the convergence. This loose formulation also brought significant improvements to the convergence rate
of the Krylov solver. The next step will be to extend the error approximation recycling theory to the flexible class of
GCRO solver and to demonstrate its added value in the contex of our partitioned coupled-adjoint solver.



Appendix A Flexible GCRO with deflated restarting (FGCRO-DR) for a sequence of
linear systems with varying right-hand sides.

Algorithm 2 FGCRO-DR(m,k)
1: Choose m, the maximum size of the subspace, and k, the desired number of approximate eigenvectors.

let tol be the convergence tolerance. Choose an initial guess x0. Compute r0 = b − Ax0, and set i = 1.
2: if Ck and Zk are defined (from solving a previous linear system) then
3: x(i)1 = x(i)0 + ZkCT

k
r (i)0 . Do not recompute Zk and Ck because only b varies

4: r (i)1 = r (i)0 − CkCT
k

r (i)0
5: else
6: v1 = r0/‖r0‖2
7: c = ‖r0‖2e1

8: Perform m steps of FGMRES, solving min ‖c − H̄my‖2 for y and generating Vm+1, Zm and H̄m.
9: x1 = x0 + Zmy

10: r1 = Vm+1(c − H̄my)
11: Set Wm = Vm

12: Compute the k eigenvectors g̃j of (Hm + h2
m+1,mH−Tm emeTm)g̃j = θ̃ j g̃j associated with the smallest

magnitude eigenvalues θ̃ j and store in Pk .
13: Let [Q,R] be the reduced QR-factorization of H̄mPk .
14: Ck = Vm+1Q
15: Zk = ZmPkR−1

16: Wk = WmPkR−1

17: end if
18: while ‖ri ‖2 > tol do
19: i = i + 1
20: Perform (m − k) Arnoldi steps with the linear operator (I − CkCT

k
)A and vk+1 = ri−1/‖ri−1‖2

generating Vm−k+1, Zm−k , H̄m−k , and Bm−k .
21: Vm+1 = [Ck,Vm−k+1]
22: Zm = [Zk, Zm−k]
23: Wm = [Wk,Vm−k]

24: Ḡm =

[
Ik Bm−k

0 H̄m−k

]
25: Solve min‖VT

m+1ri−1 − Ḡmy‖2 for y.
26: xi = xi−1 + Zmy

27: ri = b − Axi
28: Compute the k eigenvectors g̃j of ḠT

mḠmg̃j = θ̃ jḠT
mVT

m+1Wmg̃j associated with smallest magnitude
eigenvalues θ̃ j and store in Pk .

29: Let [Q,R] be the reduced QR factorization of H̄mPk .
30: Ck = Vm+1Q
31: Zk = ZmPkR−1

32: Wk = WmPkR−1

33: end while
34: Recycling of Zk and Ck (for the next system)
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