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Optimised sampling to replace time-consuming high frequency sampling

On-the-fly decision algorithm based on multiparameter measurements Reduction of the number of samples while retaining the dataset variability Systematic sampling of short events with a strong impact on the environment

Introduction

The composition and quality of aquatic systems are well known to be highly dynamic due to physical, biological, chemical, meteorological, and climatic factors. All these pressures have an impact on the environment quality and take place on very different scales, from minutes to years, and few square meters up to full catchments (Aguilera et al. 2016;Halliday et al. 2014;Meyer et al. 2021;Rode et al. 2016). Daily cycles resulting from recurring environmental phenomena, such as photosynthesis or temperature fluctuations (Halliday et al. 2014;Nimick et al. 2011;Shultz et al. 2018;Superville et al. 2014) are the most usually observed. Quick punctual events can also be recorded such as heavy rainfalls or industrial discharges, which are hardly predictable (Khamis et al. 2020;Seifert-Dähnn et al. 2021;Vaughan et al. 2019). At a much larger time scale, seasonal effects can be critical, as for algal bloom and the resulting organic matter decomposition, which can dramatically affect water quality (Seifert et al. 2016).

Monitoring aquatic ecosystems with an inadequate measurement frequency may lead to missing information and/or misinterpretation of the observed data (Marcé et al. 2016). It is therefore necessary to implement monitoring methods adapted to the environments studied and their dynamics. To address this scientific challenge, automated HF monitoring is a growing trend for operational and research purposes (Bieroza and Heathwaite 2015;Gunatilaka and Diehl 2001;Halliday et al. 2014;Ivanovsky et al. 2016;Khamis et al. 2020;Rode et al. 2016;Seifert-Dähnn et al. 2021). The capacity to measure in situ or on-line was strongly enhanced during the last decades. Miniaturization, increased power capacity and technological advances in probes have allowed new sensors to be deployed with a better stability over time (Marcé et al. 2016).

However, numerous parameters, e.g. micro-pollutants, cannot be easily monitored due to the lack of specific on line probe or analyser and/or intensive maintenance work requirement (Khamis et al. 2020;Marcé et al. 2016).

To overcome these limitations, most studies still rely on taking samples for off-line laboratory analysis, where a wider range of parameters can be studied. However, as the aquatic ecosystems are quickly evolving, the relevance of each sample depends strongly on when and where it was taken (Meyer et al. 2021;Piniewski et al. 2019). To be able to monitoring short-term phenomena, the increase of samples number is paramount (Khamis et al. 2020). However, some phenomena are not predictable and a strong increase in the sampling frequency (for instance several per day) is not operationally sustainable for a long term. Moreover, the probability of sampling a specific event of short duration is very low (Carstea et al. 2010) and it may lead to a misunderstanding of certain processes (Aguilera et al. 2016;Bieroza and Heathwaite 2016;Jarvie et al. 2018;Marcé et al. 2016;Reynolds et al. 2016).

For limnological studies, the number of samples needed to properly represents the environment can be relatively large (Aguilera et al. 2016). Some sampling strategies are based on a preliminary HF monitoring that allows for the optimisation of the sampling frequency (Aguilera et al. 2016;Ferrant et al. 2013;Piniewski et al. 2019). Another solution is to take only a few samples and rely on modelling tools to extrapolate the data (Searcy and Boehm 2021).

However, these tools are not always well adapted and may provide information that is contradictory to the observations (Liu et al. 2018;Piniewski et al. 2019).

Our work establishes an alternative sampling solution. The main idea is to use the HF measurements data on-the-fly as a decision tool to choose when to sample next. The HF measurements are used as a visualization of the chemical status of the water body, and to trigger an automated sampler based on recorded variations. Samplers triggered by the variation of one parameter (e.g. conductivity or turbidity) have been previously used in environmental monitoring (Lewis and Eads 2009) but as far as we know, there are no systems based on a multivariate approach. The aims of this methodology are: (i) to minimise the number of off-line analysis without losing information from specific phenomena; and (ii) to hold data data variability, statistical relevance and robustness of the off-line analysis. An application in the field illustrates critically the proof of concept of this innovative procedure.

Material & Methods

Study site

The study site is the Marque River, located in Northern France close to Lille. It has a length of 32 km, an average flow at its confluence of 1.2 m 3 s -1 and crosses an agricultural area in its upstream part and a more urban basin downstream. It is fed mainly by runoff, as well as by 8 urban wastewater treatment plants (WWTP). WWTPs discharges can provide up to 30% of the Marque River flow during dry periods close to the study site. According to the Water Framework Directive criteria, its chemical and ecological quality is poor due to the presence of significant amounts of nitrogen, phosphorus, pesticides and Polycyclic Aromatic Hydrocarbons (HAP). The monitoring station (50°38'43.6"N, 3°10'54.5"E) is located at the beginning of the urban part, about 1 km downstream of the Villeneuve d'Ascq WWTP (144 000 Equivalent inhabitant) and 300 m downstream of the discharge of a rainwater retention basin (Heron lake, 634 000 m 3 ) (Ivanosky et al., 2016;Ivanovsky et al., 2018;Trommetter et al., submitted).

High frequency monitoring set up

Mobile Laboratory -On line monitoring is carried out using a mobile laboratory (ML), designed, and equipped to measure various physicochemical parameters in the field. This type of infrastructure has already been used for similar monitoring (Ivanovsky et al. 2016;Meyer et al. 2021). It is a trailer that can be towed by a commercial vehicle and can be deployed close to the water body (power supply is however necessary). It is equipped with an air conditioning system allowing to keep a relative constant temperature of 15-25°C. A submersible pump (water flow: 10~15 m 3 h -1 ) supplies the ML and its various analysis devices. Briefly, most of the raw water pumped is first introduced into an overflow cell in which a multiparameter probe is immersed. The overflow cell allows a measurement as close as possible to an in-situ measurement, allowing the constant renewal of the sample and an efficient transport of suspended matter. The second part of the hydraulic system includes an output to supply a homemade automatic filtering sampler and another output with an online filter at 100 µm which mainly protects nutrients analysers from the biggest suspended matter. Finally, data acquired are transmitted every 30 minutes via a 4g network to a storage server, allowing the river to be monitored remotely and the whole system (pump, probes…) to be checked regularly.

Multiprobe and automatic filtering sampler -High frequency monitoring is performed with a multiprobe (Eureka Water Probes; Manta+35). It allows the monitoring of 7 chemical parameters: temperature, pH, conductivity, turbidity, dissolved oxygen and two fluorescence probes (Turner Design) for the measurement of DOM (1 sensitive to coloured dissolved organic matter (CDOM) and 1 sensitive to tryptophan-like substances). Every 10 minutes, a python script communicates with this probe, activates a wiper to clean the optical probes, and collects the average values of 10 sucessive measurements for each parameter (Python Software Foundation. Python Language Reference, version 3.7.). After each measurement, a decision algorithm (see section sampling methodology) analyses the new values and decides whether to trigger a sampling. If it is the case, a signal is sent to an automatic filtering sampler equipped with a 0.7 µm filter (glass microfiber, Whatman) to eliminate most of the suspended matter. This homemade instrument consists of a carousel on which 24 syringes are placed and operating with a mechanical jack. As the samples are not refrigerated in the sampler, they are recovered as soon as possible (maximum 3 days) and then kept at 4°C before analyses in the laboratory (within the week).

Sampling methodology

Overview -The sample selection strategy developed in this work consists in collecting a sample on "each state" of the aquatic system that can be observed by the multi-probe. A state is defined as a combination of the values of the 7 parameters measured by the probe (± a certain margin).

By capturing only discrete samples, the main objective of this methodology is to minimise the number of samples while preserving the variability of the data set. Specifically, a decisionmaking algorithm decides after each measurement made by the probe whether it should trigger a new sampling event. The mathematical formalism used in this section is constructed as follows: matrices are noted in bold with a capital letter (e.g. X), vectors are noted in bold with a lower case letter (e.g. msv), row and column indices are presented in lower case and italics (e.g. i, j).

The Optimised Sampling Algorithm (OSA) is triggered after each measurement made by the mobile laboratory, i.e. every ten minutes. Like the ML automation, the OSA is written in python 3.7.6 , mainly based on the pandas 1.1.4 and numpy 1.18.3 packages (Harris et al. 2020;Reback et al. 2022). At each activation, the OSA takes as input 3 different datasets. Firstly, the measurements made by the ML since the beginning of the campaign. The corresponding data are collected in a data matrix X of dimension n × m, with n the number of measurements made since the system was launched and m the number of parameters monitored (in this study, m = 7). Then, a second matrix Xs is defined, which groups together all the previous measurements that led to a sample being taken. This matrix Xs is of dimension k × m with k the number of samples. By construction, Xs X and k < n. Finally, the new measure for which the OSA must decide is noted xnew and corresponds to a vector of 1 × m dimension. This algorithm works in three main steps.

First, a pre-processing resulting in the standardisation of the Xs and xnew data (Eqn 1) is carried out:

Calculation of X std is done element-wise on the i th -row j th -column elements of X. med is a 1 x m vector containing the median of each parameter over the last 1008 rows of X, corresponding to the last week of data. The vector msv, of dimension 1 × m, represents the minimum significant variation used as a standard deviation. msv values are set by the user, considering the quality of the sensor signal, as well as the knowledge of the variability of the observations for the river. The pre-processing step is very important as it will impact the importance of each parameter in the decision process of sampling. For some parameters, such as pH, the noise level will be used to set the values in msv (e.g. the msv for pH has been chosen to be 0.2 even though a variation of 0.1 could be considered relevant for the environment). For others, the corresponding value of the msv can be increased so that there is no oversampling for every small variation of that parameter (e.g. the msv for conductivity was set to 25 µS cm -1 even though the noise is about 2 µS cm -1 ). Following these recommendations, tests are performed to check if the msv vector is well balanced, i.e. variations of one parameter are not under considered compared to the others. Part D in the supplementary information presents examples of msv that are correct or in need of adjustment. If an unbalanced importance of a parameter is observed, msv can be readjusted by the user at any time during the process. Currently for this study, the msv vector is defined with the following values: 0.4 °C for temperature; 0.1 upH for pH; 25 µS/cm for conductivity; 5 FNU for turbidity; 0.5 mg/L for dissolved oxygen; 2 ppb for CDOM and 5 ppb for tryptophan.

Once standardised, the second step is to calculate the Euclidean distances between the new measurement xnew and the k samples available in Xs (Eqn 2).
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where di is the distance between xnew and the i-th samples in Xs. The main idea behind the calculation of these distances is to determine whether the new measurement represents a new state of the system compared to previous samples. For this purpose, all distance value di are compared to a threshold value, denoted t. If one of these distances is smaller than t, it is considered that the measurement xnew is already represented in the Xs database. Conversely, if all distances are greater than t, this measurement is considered to represent a new state of the system. In this case, a sample is taken and xnew is added to the Xs database for the next ML measurements.

Thirdly, the threshold value t is calculated with the Equation 3:
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where slope a and intercept b values are chosen by the users, as explained in detail in the Results & discussion section. The coefficient dto is the distance between the origin and the new measurement, xnew. dto is defined as (Eqn 4):
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It should be noted that the parameters chosen for the calculation of t are of paramount importance to extract maximum information while balancing the number of samples collected.

Making t dependent on the dto for each measurement tested by the OSA allows for a better adaptability to the variability of the system studied. In contrast to the proposed procedure, a fixed t-value could be chosen. However, this would make the sampling very sensitive to extreme events. Indeed, fixing a small value for t would allow to correctly detect fine and daily variations. However, during extreme events, the mean value of e.g turbidity can be multiplied by 50 and, in this case, almost all measurements would lead to the decision of withdrawing a sample. Estimating t using Equation 4 allows overcoming this issue, translating into low threshold values for regular daily variations and higher values for extreme events. In this way, good sensitivity is ensured in normal conditions while oversampling is avoided during extreme events.

The overall functioning of the OSA is summarised in Figure 1. between all principal components. In this way, we can assess the good conservation of high frequency data variability within the sampled dataset.

Results & discussion

Overview of the experimental dataset acquired

The first step in developing this algorithm (OSA) was to obtain a large dataset representative of the Marque River. For that purpose, a month's worth of data was collected using the multiparameter probe deployed in the ML. A total of 3754 measurements were performed from 23 March to 20 April 2021, representing 26 monitoring days, with a total loss of 2 measurement days (7.7 %) due to technical issues (Figure 2). Daily cycles of temperature, pH and dissolved oxygen are clearly evidenced due to the alternance of day and night times and the development of macrophytes during this period in this highly eutrophic river (Ivanovsky and al., 2016).

During this monitoring, significant meteorological evolutions also took place: (i) air daily mean temperature values evolved strongly and ranged between 2.3°C on April 7 th and 17.0°C on April 1 st ; and (ii) a heavy rainfall event was observed with 16.3 mm of water (10-11 April). The discharge of wastewaters from storm overflows was recorded during this event, leading to an important drop of dissolved oxygen and sharp peaks of dissolved organic matter. The input of rainwater in the river is also very significant as the conductivity dropped by around 40%. These events are very different (diel vs. punctual, small variations vs. plummeting/skyrocketing parameters) which makes this first dataset very relevant to optimize our algorithm. 

2.2.Optimisation of the OSA

The behaviour and the associated performances of the OSA have been studied from the collected dataset. The first step is to define the best combinations of a and b used in the threshold value calculation. The way in which this value is calculated affects both the number of samples and their distribution. These choices were based on preliminary tests. Different samples sets are then generated, by testing combinations of a and b over a certain range (from 0.1 to 1 for a and from 0 to 6 for b, with steps of 0.1 and 0.5 respectively). For each samples set generated, the performance control is performed as described previously by calculating the correlation coefficient between X and Xrebuilt and by comparing the PCA.

To assess the performance quality of the sampling carried out by the OSA, it is also necessary to compare these results with other sampling methods. The first comparison is made against randomly selected samples (RandS) while the second comparison is performed with a fixed step sampling method (StepS). The average sampling rates are between 0.15 and 3 samples per day for each method. This is, in our case, an operationally feasible sampling frequency range for monitoring over several months while maintaining sensitivity to one-off and daily events.

The results of these different simulations are shown in Figure 3.

Logically, whatever the methods and correlations, increasing the sampling frequency improves the description of the dataset in a non-linear way. The first observable difference between the three methods is a better stability for the OSA of the correlations with the increase of the number of samples. The RandS and StepS methods indeed show strong disparities when increasing the frequencies.

Figure 3.A shows the evolution of the average Tucker Congruence Coefficient between principal components of X and Xrebuilt, calculated for the different methods. This coefficient has the advantage of considering all the parameters under study. OSA consistently exhibits higher coefficients than the two other methods. Moreover, it is interesting to observe that a ceiling seems to be reached for frequencies of the order of 1 sample per day. The gain in this coefficient is then negligible for higher sampling frequencies. oxygen. These two correlations show very different behaviours for the OSA. For turbidity, the OSA systematically gives a very high correlation where the other methods rarely manage to describe this signal correctly. The main reason is the variability of the turbidity signal (and equivalently the tryptophan). For both signals (see Figure 2), the measurements are quite stable except for a strong increase from 10 to 11 April caused by a heavy rainfall. This event has a strong impact on water quality for a very short time. For "classical" sampling methods, it is usually very difficult to take samples on this kind of short event. Conversely, the OSA makes possible in a systematic way, to consider this type of phenomenon whose impacts may be important and often poorly understood. The randomness of the ability of classical methods to sample these events is also reflected in the correlations with highly scattered values, resulting from the presence or absence of sampling during this stormy period.

For the dissolved oxygen (and comparably for temperature, pH, conductivity and CDOM), the behaviour of the OSA is quite different. For sampling frequencies between 0.5 and 2, OSA exhibits good results compared to other methods with high stability. For frequencies above 2, all three methods give comparable correlation values. However, for low frequencies (< 0.3 day -1 ), the OSA indicates lower performance than the two other methods. This is due to the nature of the operation of the OSA and the dissolved oxygen signal. Indeed, as seen previously, the OSA systematically samples the rainfall event regardless of the sampling frequency, so that the few samples are mainly taken during this event. As a result, the dissolved oxygen values identified are not representative of the overall variability as shown in Figure 2.

In other words, when only a few samples are taken, extreme events will be prioritized over small daily variations.

Finally, from these data, it is possible to choose a pair of values for the parameters a and b corresponding to the objectives and limitations of the study under consideration. Adjustments of the msv values can also be made to slightly adjust the sensitivity of the OSA on the different parameters. However, these modifications must be made with an awareness of technical limitations and environmental variations.

Application of the OSA to a monitoring campaign

The OSA was used for a campaign conducted from April 20 th to June 28 th , 2021, on the Marque River. During this period, 103 samples were taken, corresponding to an average frequency of 1.6 samples per day. This frequency is higher than that predicted by the previous simulation

(1.4), probably due to the high variability observed during the campaign and the strong weather changes due to the transition towards the summer season.

The OSA sampling system ensures a good representation of the environment, by taking samples during events that have a strong impact on the environment, regardless of their duration. Some examples of sampled events are shown Figure 4. parameter, with close sampling during the launch (initialization/discovery phase). This is followed by periods without additional sampling as variability remains as low as previously.

Figure 4.B. shows a one-off event of high dilution of the river by the overflow of the retention basin (the Heron lake), located just upstream. The purple areas correspond to the periods during which the water from this pond is pumped into the river; the time lag between the discharge and the impact on the conductivity is due to the distance between the discharge and the mobile laboratory. The OSA can trigger a sampling during this brief period (less than two hours), but also not to take a sample again when this event reappears some hours later. The last example (Figure 4.C.) shows the ability of the OSA to multiply samples during periods of high variability, here using the example of heavy rainfall leading to a large increase in turbidity.

These periods are often critical for environmental studies and require special attention, here represented by the increase in the number of samples taken over a short period.

The parameters a and b identified in the test phase produced excellent results in this campaign.

All correlation coefficients are above 0.96, with a Tucker congruence of 0.998. These excellent results despite different environmental changes than those observed during the simulation clearly validate the transposition of the OSA settings over different periods (HF data and the sampling points are displayed in the Supplementary Information, as well as the performance indicator on this period).

OSA limitation

According to these findings and our experience feedback in the field, several points of vigilance must be mentioned for an optimized deployment in routine of the OSA.

As for any data treatment, bad data lead to bad analysis. The OSA is optimised to detect changes and will be especially sensitive to probe fouling and drift as well as recalibrations and cleaning of the instrument. For example, pH sensor re-calibration after a long period without maintenance (e.g. several weeks) led to an over-sampling of the daily cycles, despite them having been characterized previously. To limit this kind of bias, a regular maintenance of the multiprobe have been implemented (cleaning and calibration). A weekly frequency has been chosen in this river based on the observation of the fouling, but it could be adapted depending on the characteristics of the studied water body and weather conditions (e.g. summer vs. winter).

Furthermore, traceability of the maintenance and calibration must be ensured, if possible automatically, to allow an a posteriori understanding of the sampling by the OSA.

OSA is also intended to be a tool for detecting the variability occurring in a system. With good optimisation, it should be able to sample during both small and extreme phenomena. However, for lower sampling frequencies (of the order of a week, for example), only extreme events will be sampled by the OSA. The "baseline" status of the river will systematically be dismissed by the algorithm and so the information associated with it as well. Figure 3.D confirms that a misrepresentation can be observed at low sampling rate and that the OSA can become worst that random sampling in such configuration.

The seven parameters measured with the probe can sometimes be much correlated (e.g.

dissolved oxygen with pH are correlated with an R=0.79 over 9 months in 2021). Therefore, there is a risk that using them all can give a lot of statistical importance to the group of parameters varying together. However, there is always the chance that a decorrelation might occur, indicative of a new phenomenon happening, and the OSA should in this case be able to detect it. That is why the choice was made to keep all parameters.

Finally, with a more operational vision, the non-regular distribution of samples over time can be problematic. Indeed, it is possible to have no samples over several days and then 8 samples over one day during a storm. It requires flexible human resources and alert systems to grab collected samples.

Conclusion

This study was dedicated to the development, optimisation, and validation of a decision support algorithm for taking samples following multiparametric HF measurements. It allows the overall variability of the data to be maintained while reducing the number of samples collected. OSA is particularly suitable for sampling short-lived events with a high environmental impact.

To our best knowledge, this is the first approach of this type of sampling based on on-line multiparameter measurements. This tool is a particular response to the difficulty observed in many studies of taking samples on short and difficult to predict events. Even if it remains a perfectible tool (e.g. msv values could be further optimised in the future), the realisation of a campaign in spring 2021 has proved its operational applicability.

This type of sampling will be very useful for studies where a large variety of samples are necessary to insure a statistical robustness. Typically, it will be interesting for dissolved organic 

B. First campaign results

It can be noted that the first big storm was not sampled due to a clogging of the automated sampler. 

Figure 1 :

 1 Figure 1: Schematic view of the OSA.
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 2 Figure 2: Set of data recorded by the multiprobe and used for OSA optimisation. The red dots represent the moments when the OSA triggers a sampling. Air temperature and daily pluviometry have been added for information.

Figure 3 :

 3 Figure 3: Comparison between the different sampling methods: OSA, fixed step (StepS) and random (RandS). For the OSA, each black dot represents a combination of a and b. Figure A shows the Tucker Congruence Coefficient. Figure B shows the average Pearson correlation. Figure C shows the Pearson correlation on turbidity. Figure D represents the Pearson correlation on Dissolved Oxygen.

Figure 3 .

 3 Figure 3.B shows the mean value of the Pearson correlations between parameters in X and

Figure 4 :

 4 Figure 4: Three examples of the OSA response. Figure A shows the launch of the algorithm and its initialisation/discovery phase with day/night cycle in white/gray stripes. Figure B shows its reaction to a brief one-off phenomenon and its learning capacity. Figure C shows the ability of the algorithm to adapt its measurement frequency according to the observed variations. In B and C figures, the purple stripes correspond to the input of water from a nearby lake 500 m upstream of the station.

Figure 4 .

 4 Figure 4.A. shows the launch of the OSA over the first 7 days, represented for only one

  matter studies in which fluorescence excitation emission matrices are measured, as the exploitation of these matrices with the deconvolution algorithm Parafac requires some variability in the dataset to have a robust model in the end. More generally, OSA could be of interest in any environmental study that could benefit from such a system as it should improve the strength of the correlation or PCA results.
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