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Highlights :

- Optimised sampling to replace time-consuming high frequency sampling
- On-the-fly decision algorithm based on multiparameter measurements
- Reduction of the number of samples while retaining the dataset variability

- Systematic sampling of short events with a strong impact on the environment
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Abstract:

The way in which aquatic systems is sampled has a strong influence on our understanding of
them, especially when they are highly dynamic. High frequency sampling has the advantage
over spot sampling for representativeness but leads to a high amount of analysis. This study
proposes a new methodology to choose when sampling accurately with an automated sampler
coupled with a high frequency (HF) multiparameter probe. After each HF measurement, an
optimised sampling algorithm (OSA) determines on-the-fly the relevance of taking a new
sample in relation to previous waters already collected. Once the OSA was optimised,
considering the number of HF parameters and their variabilities, it was demonstrated through a
study case that the number of samples could be significantly reduced, while still covering
periods of low and high variabilities. The comparison between the total HF dataset and the
sampled subdataset shows that physicochemical parameter variability is preserved (Pearson
correlations > 0.96) as well as the multiparameter variability (PCA axes remained similar with
Tucker congruence > 0.99). This algorithm simplifies HF studies by making it easier to take
samples during brief phenomena such as storms or accidental spills that are often poorly
monitored. In addition, it optimises the number of samples to be taken to correctly describe a

system and thus reduce the human and financial costs of these environmental studies.

Keywords: river, monitoring, on line, high frequency, algorithm, sampling
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Introduction

The composition and quality of aquatic systems are well known to be highly dynamic due to
physical, biological, chemical, meteorological, and climatic factors. All these pressures have an
impact on the environment quality and take place on very different scales, from minutes to
years, and few square meters up to full catchments (Aguilera et al. 2016; Halliday et al. 2014;
Meyer et al. 2021; Rode et al. 2016). Daily cycles resulting from recurring environmental
phenomena, such as photosynthesis or temperature fluctuations (Halliday et al. 2014; Nimick
et al. 2011; Shultz et al. 2018; Superville et al. 2014) are the most usually observed. Quick
punctual events can also be recorded such as heavy rainfalls or industrial discharges, which are
hardly predictable (Khamis et al. 2020; Seifert-Ddhnn et al. 2021; Vaughan et al. 2019). At a
much larger time scale, seasonal effects can be critical, as for algal bloom and the resulting

organic matter decomposition, which can dramatically affect water quality (Seifert et al. 2016).

Monitoring aquatic ecosystems with an inadequate measurement frequency may lead to missing
information and/or misinterpretation of the observed data (Marcé et al. 2016). It is therefore
necessary to implement monitoring methods adapted to the environments studied and their
dynamics. To address this scientific challenge, automated HF monitoring is a growing trend for
operational and research purposes (Bieroza and Heathwaite 2015; Gunatilaka and Diehl 2001;
Halliday et al. 2014; Ivanovsky et al. 2016; Khamis et al. 2020; Rode et al. 2016; Seifert-Dahnn
et al. 2021). The capacity to measure in situ or on-line was strongly enhanced during the last
decades. Miniaturization, increased power capacity and technological advances in probes have
allowed new sensors to be deployed with a better stability over time (Marcé et al. 2016).
However, numerous parameters, e.g. micro-pollutants, cannot be easily monitored due to the
lack of specific on line probe or analyser and/or intensive maintenance work requirement

(Khamis et al. 2020; Marcé€ et al. 2016).
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To overcome these limitations, most studies still rely on taking samples for off-line laboratory
analysis, where a wider range of parameters can be studied. However, as the aquatic ecosystems
are quickly evolving, the relevance of each sample depends strongly on when and where it was
taken (Meyer et al. 2021; Piniewski et al. 2019). To be able to monitoring short-term
phenomena, the increase of samples number is paramount (Khamis et al. 2020). However, some
phenomena are not predictable and a strong increase in the sampling frequency (for instance
several per day) is not operationally sustainable for a long term. Moreover, the probability of
sampling a specific event of short duration is very low (Carstea et al. 2010) and it may lead to
a misunderstanding of certain processes (Aguilera et al. 2016; Bieroza and Heathwaite 2016;

Jarvie et al. 2018; Marcé et al. 2016; Reynolds et al. 2016).

For limnological studies, the number of samples needed to properly represents the environment
can be relatively large (Aguilera et al. 2016). Some sampling strategies are based on a
preliminary HF monitoring that allows for the optimisation of the sampling frequency (Aguilera
et al. 2016; Ferrant et al. 2013; Piniewski et al. 2019). Another solution is to take only a few
samples and rely on modelling tools to extrapolate the data (Searcy and Boehm 2021).
However, these tools are not always well adapted and may provide information that is

contradictory to the observations (Liu et al. 2018; Piniewski et al. 2019).

Our work establishes an alternative sampling solution. The main idea is to use the HF
measurements data on-the-fly as a decision tool to choose when to sample next. The HF
measurements are used as a visualization of the chemical status of the water body, and to trigger
an automated sampler based on recorded variations. Samplers triggered by the variation of one
parameter (e.g. conductivity or turbidity) have been previously used in environmental
monitoring (Lewis and Eads 2009) but as far as we know, there are no systems based on a
multivariate approach. The aims of this methodology are: (i) to minimise the number of off-line

analysis without losing information from specific phenomena; and (i1) to hold data data
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variability, statistical relevance and robustness of the off-line analysis. An application in the

field illustrates critically the proof of concept of this innovative procedure.

1. Material & Methods

1.1. Study site

The study site is the Marque River, located in Northern France close to Lille. It has a length of
32 km, an average flow at its confluence of 1.2 m®s™ and crosses an agricultural area in its
upstream part and a more urban basin downstream. It is fed mainly by runoff, as well as by 8
urban wastewater treatment plants (WWTP). WWTPs discharges can provide up to 30% of the
Marque River flow during dry periods close to the study site. According to the Water
Framework Directive criteria, its chemical and ecological quality is poor due to the presence of
significant amounts of nitrogen, phosphorus, pesticides and Polycyclic Aromatic Hydrocarbons
(HAP). The monitoring station (50°38'43.6"N, 3°10'54.5"E) is located at the beginning of the
urban part, about 1 km downstream of the Villeneuve d’Ascq WWTP (144 000 Equivalent
inhabitant) and 300 m downstream of the discharge of a rainwater retention basin (Heron lake,

634 000 m®) (Ivanosky et al., 2016; Ivanovsky et al., 2018; Trommetter et al., submitted).
1.2. High frequency monitoring set up

Mobile Laboratory — On line monitoring is carried out using a mobile laboratory (ML),
designed, and equipped to measure various physicochemical parameters in the field. This type
of infrastructure has already been used for similar monitoring (Ivanovsky et al. 2016; Meyer et
al. 2021). It is a trailer that can be towed by a commercial vehicle and can be deployed close to
the water body (power supply is however necessary). It is equipped with an air conditioning
system allowing to keep a relative constant temperature of 15-25°C. A submersible pump (water

flow: 10~15 m® h'') supplies the ML and its various analysis devices. Briefly, most of the raw
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water pumped is first introduced into an overflow cell in which a multiparameter probe is
immersed. The overflow cell allows a measurement as close as possible to an in-situ
measurement, allowing the constant renewal of the sample and an efficient transport of
suspended matter. The second part of the hydraulic system includes an output to supply a
homemade automatic filtering sampler and another output with an online filter at 100 um which
mainly protects nutrients analysers from the biggest suspended matter. Finally, data acquired
are transmitted every 30 minutes via a 4g network to a storage server, allowing the river to be

monitored remotely and the whole system (pump, probes...) to be checked regularly.

Multiprobe and automatic filtering sampler - High frequency monitoring is performed with a
multiprobe (Eureka Water Probes; Manta+35). It allows the monitoring of 7 chemical
parameters: temperature, pH, conductivity, turbidity, dissolved oxygen and two fluorescence
probes (Turner Design) for the measurement of DOM (1 sensitive to coloured dissolved organic
matter (CDOM) and 1 sensitive to tryptophan-like substances). Every 10 minutes, a python
script communicates with this probe, activates a wiper to clean the optical probes, and collects
the average values of 10 sucessive measurements for each parameter (Python Software
Foundation. Python Language Reference, version 3.7.). After each measurement, a decision
algorithm (see section sampling methodology) analyses the new values and decides whether to
trigger a sampling. If it is the case, a signal is sent to an automatic filtering sampler equipped
with a 0.7 pum filter (glass microfiber, Whatman) to eliminate most of the suspended matter.
This homemade instrument consists of a carousel on which 24 syringes are placed and operating
with a mechanical jack. As the samples are not refrigerated in the sampler, they are recovered
as soon as possible (maximum 3 days) and then kept at 4°C before analyses in the laboratory

(within the week).
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1.3. Sampling methodology

Overview - The sample selection strategy developed in this work consists in collecting a sample
on “each state” of the aquatic system that can be observed by the multi-probe. A state is defined
as a combination of the values of the 7 parameters measured by the probe (+ a certain margin).
By capturing only discrete samples, the main objective of this methodology is to minimise the
number of samples while preserving the variability of the data set. Specifically, a decision-
making algorithm decides after each measurement made by the probe whether it should trigger
a new sampling event. The mathematical formalism used in this section is constructed as
follows: matrices are noted in bold with a capital letter (e.g. X), vectors are noted in bold with

a lower case letter (e.g. msv), row and column indices are presented in lower case and italics

(e.g. i)

The Optimised Sampling Algorithm (OSA) is triggered after each measurement made by the
mobile laboratory, i.e. every ten minutes. Like the ML automation, the OSA is written in python
3.7.6 , mainly based on the pandas 1.1.4 and numpy 1.18.3 packages (Harris et al. 2020; Reback
et al. 2022). At each activation, the OSA takes as input 3 different datasets. Firstly, the
measurements made by the ML since the beginning of the campaign. The corresponding data
are collected in a data matrix X of dimension n X m, with n the number of measurements made
since the system was launched and m the number of parameters monitored (in this study, m =
7). Then, a second matrix Xs is defined, which groups together all the previous measurements
that led to a sample being taken. This matrix Xs is of dimension k x m with k the number of

samples. By construction, Xs C X and & < n. Finally, the new measure for which the OSA must

decide is noted xnew and corresponds to a vector of 1 x m dimension.

This algorithm works in three main steps.
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First, a pre-processing resulting in the standardisation of the Xs and xnew data (Eqn 1) is carried

out:

X —med,,

Xf}'}d = (Equation 1)

msv,

Calculation of X* is done element-wise on the i"-row j®-column elements of X. med is a 1 x
m vector containing the median of each parameter over the last 1008 rows of X, corresponding
to the last week of data. The vector msv, of dimension 1 X m, represents the minimum
significant variation used as a standard deviation. msv values are set by the user, considering
the quality of the sensor signal, as well as the knowledge of the variability of the observations
for the river. The pre-processing step is very important as it will impact the importance of each
parameter in the decision process of sampling. For some parameters, such as pH, the noise level
will be used to set the values in msv (e.g. the msv for pH has been chosen to be 0.2 even though
a variation of 0.1 could be considered relevant for the environment). For others, the
corresponding value of the msv can be increased so that there is no oversampling for every
small variation of that parameter (e.g. the msv for conductivity was set to 25 uS cm’ even
though the noise is about 2 uS cm™). Following these recommendations, tests are performed to
check if the msv vector is well balanced, i.e. variations of one parameter are not under
considered compared to the others. Part D in the supplementary information presents examples
of msv that are correct or in need of adjustment. If an unbalanced importance of a parameter is
observed, msv can be readjusted by the user at any time during the process. Currently for this
study, the msv vector is defined with the following values: 0.4 °C for temperature; 0.1 upH for
pH; 25 uS/cm for conductivity; 5 FNU for turbidity; 0.5 mg/L for dissolved oxygen; 2 ppb for

CDOM and 5 ppb for tryptophan.

Once standardised, the second step is to calculate the Euclidean distances between the new

measurement xnew and the k samples available in Xs (Eqn 2).
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d;, = 2 (xnew; — Xsi,]-)2 (Equation 2)
j=1

where d; is the distance between xnew and the i-th samples in Xs. The main idea behind the
calculation of these distances is to determine whether the new measurement represents a new
state of the system compared to previous samples. For this purpose, all distance value d; are
compared to a threshold value, denoted ¢. If one of these distances is smaller than ¢, it is
considered that the measurement xnew is already represented in the Xs database. Conversely,
if all distances are greater than ¢, this measurement is considered to represent a new state of the
system. In this case, a sample is taken and xnew is added to the Xs database for the next ML

measurements.
Thirdly, the threshold value ¢ is calculated with the Equation 3:
t=dtoxXxa+b (Equation 3)

where slope a and intercept b values are chosen by the users, as explained in detail in the Results
& discussion section. The coefficient dto is the distance between the origin and the new

measurement, xnew. dto is defined as (Eqn 4):

dto = (Equation 4)

It should be noted that the parameters chosen for the calculation of ¢ are of paramount
importance to extract maximum information while balancing the number of samples collected.
Making ¢ dependent on the dfo for each measurement tested by the OSA allows for a better
adaptability to the variability of the system studied. In contrast to the proposed procedure, a
fixed t-value could be chosen. However, this would make the sampling very sensitive to

extreme events. Indeed, fixing a small value for t would allow to correctly detect fine and daily

9
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variations. However, during extreme events, the mean value of e.g turbidity can be multiplied
by 50 and, in this case, almost all measurements would lead to the decision of withdrawing a
sample. Estimating ¢ using Equation 4 allows overcoming this issue, translating into low
threshold values for regular daily variations and higher values for extreme events. In this way,
good sensitivity is ensured in normal conditions while oversampling is avoided during extreme

events.

The overall functioning of the OSA is summarised in Figure 1.

X Threshold comparison
Xnew !
d>tVvi
Sampling triggered
Xs Xnew added in Xs
Distances i
calculation No sampling
X : High frequency dataset — Xs : Sampled dataset — xnew : new measurement d<t
i

Figure 1: Schematic view of the OSA.

1.4.Performance control

Once the samples have been identified by the OSA, it is necessary to verify their relevance. A
high frequency dataset (Xrebuilt, dimensions (n x m)) is reconstructed from the sampled
dataset (Xs). Each non-sampled point is assigned the parameter values of the closest sampled
point. To estimate the adequacy of the relevance of samples, two approaches are taken. The
first is calculating the Pearson correlation coefficient for each parameter measured by the

10
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multiparameter probe. This evaluates the quality of the reconstruction of the complete dataset
from the sampled point to a certain extent. The second is based on Principal Component
Analysis (PCA). PCA is performed on both Xrebuilt and X and the loadings obtained are
compared calculating Tucker Congruence Coefficient (Lorenzo-Seva and ten Berge 2006)
between all principal components. In this way, we can assess the good conservation of high

frequency data variability within the sampled dataset.

2. Results & discussion

2.1. Overview of the experimental dataset acquired

The first step in developing this algorithm (OSA) was to obtain a large dataset representative
of the Marque River. For that purpose, a month's worth of data was collected using the
multiparameter probe deployed in the ML. A total of 3754 measurements were performed from
23 March to 20 April 2021, representing 26 monitoring days, with a total loss of 2 measurement
days (7.7 %) due to technical issues (Figure 2). Daily cycles of temperature, pH and dissolved
oxygen are clearly evidenced due to the alternance of day and night times and the development
of macrophytes during this period in this highly eutrophic river (Ivanovsky and al., 2016).
During this monitoring, significant meteorological evolutions also took place: (i) air daily mean
temperature values evolved strongly and ranged between 2.3°C on April 7" and 17.0°C on April
1*%; and (ii) a heavy rainfall event was observed with 16.3 mm of water (10-11 April). The
discharge of wastewaters from storm overflows was recorded during this event, leading to an
important drop of dissolved oxygen and sharp peaks of dissolved organic matter. The input of
rainwater in the river is also very significant as the conductivity dropped by around 40%. These
events are very different (diel vs. punctual, small variations vs. plummeting/skyrocketing

parameters) which makes this first dataset very relevant to optimize our algorithm.

11
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2.2.0ptimisation of the OSA

The behaviour and the associated performances of the OSA have been studied from the
collected dataset. The first step is to define the best combinations of a and b used in the threshold
value calculation. The way in which this value is calculated affects both the number of samples
and their distribution. These choices were based on preliminary tests. Different samples sets are
then generated, by testing combinations of a and b over a certain range (from 0.1 to 1 for a and
from O to 6 for b, with steps of 0.1 and 0.5 respectively). For each samples set generated, the
performance control is performed as described previously by calculating the correlation

coefficient between X and Xrebuilt and by comparing the PCA.

To assess the performance quality of the sampling carried out by the OSA, it is also necessary
to compare these results with other sampling methods. The first comparison is made against
randomly selected samples (RandS) while the second comparison is performed with a fixed
step sampling method (StepS). The average sampling rates are between 0.15 and 3 samples per
day for each method. This is, in our case, an operationally feasible sampling frequency range

for monitoring over several months while maintaining sensitivity to one-off and daily events.

The results of these different simulations are shown in Figure 3.

Logically, whatever the methods and correlations, increasing the sampling frequency improves
the description of the dataset in a non-linear way. The first observable difference between the
three methods is a better stability for the OSA of the correlations with the increase of the number
of samples. The RandS and StepS methods indeed show strong disparities when increasing the

frequencies.

Figure 3.A shows the evolution of the average Tucker Congruence Coefficient between

principal components of X and Xrebuilt, calculated for the different methods. This coefficient

13
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has the advantage of considering all the parameters under study. OSA consistently exhibits
higher coefficients than the two other methods. Moreover, it is interesting to observe that a
ceiling seems to be reached for frequencies of the order of 1 sample per day. The gain in this

coefficient is then negligible for higher sampling frequencies.
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Figure 3: Comparison between the different sampling methods: OSA, fixed step (StepS) and
random (RandS). For the OSA, each black dot represents a combination of a and b. Figure A
shows the Tucker Congruence Coefficient. Figure B shows the average Pearson correlation.
Figure C shows the Pearson correlation on turbidity. Figure D represents the Pearson correlation
on Dissolved Oxygen.

Figure 3.B shows the mean value of the Pearson correlations between parameters in X and
Xrebuilt. The use of the average of these coefficients allows to approximate a multivariate
visualisation of the system. Again, the OSA shows both better results and greater stability

compared to the other methods.

Figures 3.C and 3.D display the Pearson correlations of two parameters: turbidity and dissolved

oxygen. These two correlations show very different behaviours for the OSA. For turbidity, the

14
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OSA systematically gives a very high correlation where the other methods rarely manage to
describe this signal correctly. The main reason is the variability of the turbidity signal (and
equivalently the tryptophan). For both signals (see Figure 2), the measurements are quite stable
except for a strong increase from 10 to 11 April caused by a heavy rainfall. This event has a
strong impact on water quality for a very short time. For “classical” sampling methods, it is
usually very difficult to take samples on this kind of short event. Conversely, the OSA makes
possible in a systematic way, to consider this type of phenomenon whose impacts may be
important and often poorly understood. The randomness of the ability of classical methods to
sample these events is also reflected in the correlations with highly scattered values, resulting

from the presence or absence of sampling during this stormy period.

For the dissolved oxygen (and comparably for temperature, pH, conductivity and CDOM), the
behaviour of the OSA is quite different. For sampling frequencies between 0.5 and 2, OSA
exhibits good results compared to other methods with high stability. For frequencies above 2,
all three methods give comparable correlation values. However, for low frequencies
(< 0.3 day™"), the OSA indicates lower performance than the two other methods. This is due to
the nature of the operation of the OSA and the dissolved oxygen signal. Indeed, as seen
previously, the OSA systematically samples the rainfall event regardless of the sampling
frequency, so that the few samples are mainly taken during this event. As a result, the dissolved
oxygen values identified are not representative of the overall variability as shown in Figure 2.
In other words, when only a few samples are taken, extreme events will be prioritized over

small daily variations.

Finally, from these data, it is possible to choose a pair of values for the parameters a and b
corresponding to the objectives and limitations of the study under consideration. Adjustments

of the msv values can also be made to slightly adjust the sensitivity of the OSA on the different
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parameters. However, these modifications must be made with an awareness of technical

limitations and environmental variations.
2.3. Application of the OSA to a monitoring campaign

The OSA was used for a campaign conducted from April 20" to June 28", 2021, on the Marque
River. During this period, 103 samples were taken, corresponding to an average frequency of
1.6 samples per day. This frequency is higher than that predicted by the previous simulation
(1.4), probably due to the high variability observed during the campaign and the strong weather

changes due to the transition towards the summer season.

The OSA sampling system ensures a good representation of the environment, by taking samples
during events that have a strong impact on the environment, regardless of their duration. Some

examples of sampled events are shown Figure 4.

A) Initialisation phase B) Ponctual events C) Storm event
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Figure 4: Three examples of the OSA response. Figure A shows the launch of the algorithm
and its initialisation/discovery phase with day/night cycle in white/gray stripes. Figure B shows
its reaction to a brief one-off phenomenon and its learning capacity. Figure C shows the ability
of the algorithm to adapt its measurement frequency according to the observed variations. In B
and C figures, the purple stripes correspond to the input of water from a nearby lake 500 m
upstream of the station.

Figure 4.A. shows the launch of the OSA over the first 7 days, represented for only one

parameter, with close sampling during the launch (initialization/discovery phase). This is
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followed by periods without additional sampling as variability remains as low as previously.
Figure 4.B. shows a one-off event of high dilution of the river by the overflow of the retention
basin (the Heron lake), located just upstream. The purple areas correspond to the periods during
which the water from this pond is pumped into the river; the time lag between the discharge
and the impact on the conductivity is due to the distance between the discharge and the mobile
laboratory. The OSA can trigger a sampling during this brief period (less than two hours), but
also not to take a sample again when this event reappears some hours later. The last example
(Figure 4.C.) shows the ability of the OSA to multiply samples during periods of high
variability, here using the example of heavy rainfall leading to a large increase in turbidity.
These periods are often critical for environmental studies and require special attention, here

represented by the increase in the number of samples taken over a short period.

The parameters a and b identified in the test phase produced excellent results in this campaign.
All correlation coefficients are above 0.96, with a Tucker congruence of 0.998. These excellent
results despite different environmental changes than those observed during the simulation
clearly validate the transposition of the OSA settings over different periods (HF data and the
sampling points are displayed in the Supplementary Information, as well as the performance

indicator on this period).

2.4. OSA limitation

According to these findings and our experience feedback in the field, several points of vigilance

must be mentioned for an optimized deployment in routine of the OSA.

As for any data treatment, bad data lead to bad analysis. The OSA is optimised to detect changes
and will be especially sensitive to probe fouling and drift as well as recalibrations and cleaning

of the instrument. For example, pH sensor re-calibration after a long period without
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maintenance (e.g. several weeks) led to an over-sampling of the daily cycles, despite them
having been characterized previously. To limit this kind of bias, a regular maintenance of the
multiprobe have been implemented (cleaning and calibration). A weekly frequency has been
chosen in this river based on the observation of the fouling, but it could be adapted depending
on the characteristics of the studied water body and weather conditions (e.g. summer vs. winter).
Furthermore, traceability of the maintenance and calibration must be ensured, if possible

automatically, to allow an a posteriori understanding of the sampling by the OSA.

OSA 1is also intended to be a tool for detecting the variability occurring in a system. With good
optimisation, it should be able to sample during both small and extreme phenomena. However,
for lower sampling frequencies (of the order of a week, for example), only extreme events will
be sampled by the OSA. The “baseline” status of the river will systematically be dismissed by
the algorithm and so the information associated with it as well. Figure 3.D confirms that a
misrepresentation can be observed at low sampling rate and that the OSA can become worst

that random sampling in such configuration.

The seven parameters measured with the probe can sometimes be much correlated (e.g.
dissolved oxygen with pH are correlated with an R=0.79 over 9 months in 2021). Therefore,
there is a risk that using them all can give a lot of statistical importance to the group of
parameters varying together. However, there is always the chance that a decorrelation might
occur, indicative of a new phenomenon happening, and the OSA should in this case be able to

detect it. That is why the choice was made to keep all parameters.

Finally, with a more operational vision, the non-regular distribution of samples over time can
be problematic. Indeed, it is possible to have no samples over several days and then 8 samples
over one day during a storm. It requires flexible human resources and alert systems to grab

collected samples.

18



387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

Conclusion

This study was dedicated to the development, optimisation, and validation of a decision support
algorithm for taking samples following multiparametric HF measurements. It allows the overall
variability of the data to be maintained while reducing the number of samples collected. OSA

is particularly suitable for sampling short-lived events with a high environmental impact.

To our best knowledge, this is the first approach of this type of sampling based on on-line
multiparameter measurements. This tool is a particular response to the difficulty observed in
many studies of taking samples on short and difficult to predict events. Even if it remains a
perfectible tool (e.g. msv values could be further optimised in the future), the realisation of a

campaign in spring 2021 has proved its operational applicability.

This type of sampling will be very useful for studies where a large variety of samples are
necessary to insure a statistical robustness. Typically, it will be interesting for dissolved organic
matter studies in which fluorescence excitation emission matrices are measured, as the
exploitation of these matrices with the deconvolution algorithm Parafac requires some
variability in the dataset to have a robust model in the end. More generally, OSA could be of
interest in any environmental study that could benefit from such a system as it should improve

the strength of the correlation or PCA results.

Acknowledgment

We acknowledge Artois-Picardie Water Agency (AEAP) and the region Haute de France for
cofunding the PhD of JM. The Region Hauts de France and the French Government are also
warmly acknowledged through the founding of the CPERs Climibio and ECRIN that funded
part of the monitoring station. We are grateful to Sourceo for allowing us to deploy the station

on their site and to the Lille European Metropolis (MEL) for providing complementary

19



411

412

413

414

415

416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

information and WWTP data. The authors wish to thank the European Commission funding for
the LIFE RUBIES project (LIFE20 ENV/000179). We thank the lab members Jean-Pierre
Verwaerde, Viviane Blotiau and Vincent Carlucci for their help with building and maintaining

the station.

References:

Aguilera, R., Livingstone, D.M., Marcé, R., Jennings, E., Piera, J., Adrian, R., 2016. Using dynamic factor
analysis to show how sampling resolution and data gaps affect the recognition of patterns in
limnological time series. Inland Waters 6, 284—294. https://doi.org/10.1080/IW-6.3.948

Bieroza, M.Z., Heathwaite, A.L., 2016. Unravelling organic matter and nutrient biogeochemistry in
groundwater-fed rivers under baseflow conditions: Uncertainty in in situ high-frequency
analysis. Science of The Total Environment 572, 1520-1533.
https://doi.org/10.1016/j.scitotenv.2016.02.046

Bieroza, M.Z., Heathwaite, A.L., 2015. Seasonal variation in phosphorus concentration—discharge
hysteresis inferred from high-frequency in situ monitoring. Journal of Hydrology 524, 333-347.
https://doi.org/10.1016/j.jhydrol.2015.02.036

Carstea, E.M., Baker, A., Bieroza, M., Reynolds, D., 2010. Continuous fluorescence excitation—emission
matrix monitoring of river organic matter. Water Research 44, 5356-5366.
https://doi.org/10.1016/j.watres.2010.06.036

Ferrant, S., Laplanche, C., Durbe, G., Probst, A., Dugast, P., Durand, P., Sanchez-Perez, J.M., Probst, J.L.,
2013. Continuous measurement of nitrate concentration in a highly event-responsive
agricultural catchment in south-west of France: is the gain of information useful?: HIGH-
FREQUENCY SAMPLING OF NITRATE FLUSHING. Hydrol. Process. 27, 1751-1763.
https://doi.org/10.1002/hyp.9324

Gunatilaka, A., Diehl, P., 2001. A Brief Review of Chemical and Biological Continuous Monitoring of
Rivers in Europe and Asia. In 'Biomonitors and Biomarkers as Indicators of Environmental
Change 2' (Eds. Butterworth, F.M., Gunatilaka, A., Gonsebatt, M.E.). Springer US, Boston, MA,
pp. 9-28. https://doi.org/10.1007/978-1-4615-1305-6_2

Halliday, S., Skeffington, R., Bowes, M., Gozzard, E., Newman, J., Loewenthal, M., Palmer-Felgate, E.,
Jarvie, H., Wade, A., 2014. The Water Quality of the River Enborne, UK: Observations from
High-Frequency Monitoring in a Rural, Lowland River System. Water 6, 150-180.
https://doi.org/10.3390/w6010150

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M.,
Haldane, A., del Rio, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E., 2020. Array programming with
NumPy. Nature 585, 357—362. https://doi.org/10.1038/s41586-020-2649-2

Ivanovsky, A., Criquet, J., Dumoulin, D., Alary, C., Prygiel, J., Duponchel, L., Billon, G., 2016. Water
quality assessment of a small peri-urban river using low and high frequency monitoring.
Environ. Sci.: Processes Impacts 18, 624—637. https://doi.org/10.1039/C5EM00659G

Jarvie, H.P., Sharpley, A.N., Kresse, T., Hays, P.D., Williams, R.J., King, S.M., Berry, L.G., 2018. Coupling
High-Frequency Stream Metabolism and Nutrient Monitoring to Explore Biogeochemical
Controls on Downstream Nitrate Delivery. Environ. Sci. Technol. 52, 13708-13717.
https://doi.org/10.1021/acs.est.8b03074

20



455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

Khamis, K., Bradley, C., Hannah, D.M., 2020. High frequency fluorescence monitoring reveals new
insights into organic matter dynamics of an urban river, Birmingham, UK. Science of The Total
Environment 710, 135668. https://doi.org/10.1016/j.scitotenv.2019.135668

Lewis, J., Eads, R., 2009. Implementation guide for turbidity threshold sampling: principles, procedures,
and analysis (No. PSW-GTR-212). U.S. Department of Agriculture, Forest Service, Pacific
Southwest Research Station, Albany, CA. https://doi.org/10.2737/PSW-GTR-212

Liu, X., Beusen, A.H.W., Van Beek, L.P.H., Mogollén, J.M., Ran, X., Bouwman, A.F., 2018. Exploring
spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources,
retention and export to the East China Sea and Yellow Sea. Water Research 142, 246—-255.
https://doi.org/10.1016/j.watres.2018.06.006

Lorenzo-Seva, U., ten Berge, J.M.F., 2006. Tucker’s Congruence Coefficient as a Meaningful Index of
Factor Similarity. Methodology 2, 57-64. https://doi.org/10.1027/1614-2241.2.2.57

Marcé, R., George, G., Buscarinu, P., Deidda, M., Dunalska, J., de Eyto, E., Flaim, G., Grossart, H.-P.,
Istvanovics, V., Lenhardt, M., Moreno-Ostos, E., Obrador, B., Ostrovsky, I., Pierson, D.C,,
Potuzak, J., Poikane, S., Rinke, K., Rodriguez-Mozaz, S., Staehr, P.A., Sumberova, K., Waajen,
G., Weyhenmeyer, G.A., Weathers, K.C., Zion, M., Ibelings, B.W., Jennings, E., 2016. Automatic
High Frequency Monitoring for Improved Lake and Reservoir Management. Environ. Sci.
Technol. 50, 10780-10794. https://doi.org/10.1021/acs.est.6b01604

Meyer, A.M., Fuenfrocken, E., Kautenburger, R., Cairault, A., Beck, H.P., 2021. Detecting pollutant
sources and pathways: High-frequency automated online monitoring in a small rural
French/German transborder catchment. Journal of Environmental Management 290, 112619.
https://doi.org/10.1016/j.jenvman.2021.112619

Nimick, D.A., Gammons, C.H., Parker, S.R., 2011. Diel biogeochemical processes and their effect on the
aqueous chemistry of streams: A review. Chemical Geology 283, 3-17.
https://doi.org/10.1016/j.chemgeo.2010.08.017

Piniewski, M., Marcinkowski, P., Koskiaho, J., Tattari, S., 2019. The effect of sampling frequency and
strategy on water quality modelling driven by high-frequency monitoring data in a boreal
catchment. Journal of Hydrology 579, 124186. https://doi.org/10.1016/j.jhydrol.2019.124186

Reback, J., Jorockmendel, McKinney, W., Van Den Bossche, J., Augspurger, T., Roeschke, M., Hawkins,
S., Cloud, P., Gfyoung, Sinhrks, Hoefler, P., Klein, A., Terji Petersen, Tratner, J., She, C., Ayd, W.,
Naveh, S., JHM Darbyshire, Garcia, M., Shadrach, R., Schendel, J., Hayden, A., Saxton, D.,
Gorelli, M.E., Fangchen Li, Zeitlin, M., Jancauskas, V., McMaster, A., Wortwein, T., Battiston,
P, 2022. pandas-dev/pandas: Pandas 1.4.2. Zenodo.
https://doi.org/10.5281/ZENODO.3509134

Reynolds, K.N., Loecke, T.D., Burgin, A.J., Davis, C.A., Riveros-Iregui, D., Thomas, S.A., St. Clair, M.A,,
Ward, A.S., 2016. Optimizing Sampling Strategies for Riverine Nitrate Using High-Frequency
Data in  Agricultural Watersheds. Environ. Sci. Technol. 50, 6406-6414.
https://doi.org/10.1021/acs.est.5b05423

Rode, M., Wade, A.J., Cohen, M.J., Hensley, R.T., Bowes, M.J., Kirchner, J.W., Arhonditsis, G.B., Jordan,
P., Kronvang, B., Halliday, S.J., Skeffington, R.A., Rozemeijer, J.C., Aubert, A.H., Rinke, K.,
Jomaa, S., 2016. Sensors in the Stream: The High-Frequency Wave of the Present. Environ. Sci.
Technol. 50, 10297-10307. https://doi.org/10.1021/acs.est.6b02155

Searcy, R.T., Boehm, A.B., 2021. A Day at the Beach: Enabling Coastal Water Quality Prediction with
High-Frequency Sampling and Data-Driven Models. Environ. Sci. Technol. 55, 1908-1918.
https://doi.org/10.1021/acs.est.0c06742

Seifert, A.-G., Roth, V.-N., Dittmar, T., Gleixner, G., Breuer, L., Houska, T., Marxsen, J., 2016. Comparing
molecular composition of dissolved organic matter in soil and stream water: Influence of land
use and chemical characteristics. Science of The Total Environment 571, 142-152.
https://doi.org/10.1016/j.scitotenv.2016.07.033

Seifert-Dahnn, I., Furuseth, |.S., Vondolia, G.K., Gal, G., de Eyto, E., Jennings, E., Pierson, D., 2021. Costs
and benefits of automated high-frequency environmental monitoring — The case of lake water

21



506
507
508
509
510
511
512
513
514
515
516
517
518

management. Journal of Environmental Management 285, 112108.
https://doi.org/10.1016/j.jenvman.2021.112108

Shultz, M., Pellerin, B., Aiken, G., Martin, J., Raymond, P., 2018. High Frequency Data Exposes Nonlinear
Seasonal Controls on Dissolved Organic Matter in a Large Watershed. Environ. Sci. Technol. 52,
5644-5652. https://doi.org/10.1021/acs.est.7b04579

Superville, P.-)., Prygiel, E., Magnier, A., Lesven, L., Gao, Y., Baeyens, W., Ouddane, B., Dumoulin, D.,
Billon, G., 2014. Daily variations of Zn and Pb concentrations in the Delle River in relation to
the resuspension of heavily polluted sediments. Science of The Total Environment 470-471,
600—607. https://doi.org/10.1016/j.scitotenv.2013.10.015

Vaughan, M.C.H., Bowden, W.B., Shanley, J.B., Vermilyea, A., Schroth, A.W., 2019. Shining light on the
storm: in-stream optics reveal hysteresis of dissolved organic matter character.
Biogeochemistry 143, 275-291. https://doi.org/10.1007/s10533-019-00561-w

22



Optimising punctual water sampling with an on-
the-fly algorithm based on multiparameter high-
frequency measurements

Supplementary information

Jérémy Mougin', Pierre-Jean Superville'*, Cyril Ruckebusch’, Gabriel Billon'

"Université Lille, CNRS, UMR 8516 - LASIRE, LAboratoire de Spectroscopie pour les

Interactions, la Réactivité et I’Environnement, F-59000 Lille, France.

Content

p-2: Map of the site

p.3: First campaign results

p-4: OSA performance during the campaign

p.5: Checking and optimizing the msv



A. Map of the site

The monitoring station is situated in Villeneuve d’Ascq, near Lille, in northern France, on the Marque
River. Both rural and urban pressures impact this small river. Specifically on the site of the monitoring,
3 inputs can be highlighted:

- the wastewater treatment plant of Villeneuve d’Ascq (150 000 inhabitant equivalent) 3km
upstream.

- the Heron Lake. Its waters are a mix of rainwater and some domestic untreated waters,
biologically treated in a chain of lakes ending in the Heron Lake. When the level of the Lake is
too high, the water is pumped into the Marque River.

- The Petite Marque is a network of ditches in the middle of fields with a few occasional farms.
Agricultural and domestic impacts can be expected.

| B Monitoring station

© Input

Waste water
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B. First campaign results

)
e R
£ « Samples W’
m
5 154 Wi
=1
E
= 10 -
W
T
AW "y“i\ W 58
=3
‘ d% mw I
« (=8
-E - 7.0
a
= W
> 1000 - L] i
: M o i
e |
T 7504
3 3 400 _
: =
i t 200 2
i H 2
=
1 ¥ i 5
[T —— ———— T il o s s I N

Dissolved Oxygen (mg/L)
w5
%
s Sty e
=,
z

*

b
=
%Fiv. Fo]

,_%_’-"
LY
=
m =
(= I =
o)

CODOM (ppb

i - Bl
— 8600
0
g A
= 400 4 i *
= i £
2 200 - 4 1
(=% 4 I
E 0 4 T il L T g e h“'l m‘m“ﬁ
ot A% o D o
,ﬂ.ﬁ‘ﬁ ,ﬁ.u"»‘ ,ﬂ.ﬁﬁ 11.—“6 ,1}.::{1
79 19 79 2% 70

It can be noted that the first big storm was not sampled due to a clogging of the automated

sampler.



C. OSA performance during the campaign

Parameter correlation between the original high frequency dataset and the dataset rebuilt from the

samples:
- - Dissolved
Temperature | pH | Conductivity | Turbidity 0 CDOM | Tryptophane
2
Parameter self- 0.98 0.99 0.97 0.98 097 | 0.96 0.99
correlation

PCA self-correlation, i.e. Tucker congruence coefficient between the original high frequency dataset
and the dataset rebuilt from the samples:

PC1 rebuilt | PC2 rebuilt | PC3 rebuilt | PC4 rebuilt | PC5 rebuilt | PC6 rebuilt | PC7 rebuilt
(47 %) (26 %) (13 %) (6 %) (4 %) (2 %) (1 %)
PC1 original
13.%) 0.999 0.039 0.012 0.002 0.001 0.001 0.011
PC2 original
-0.039 0.997 -0.055 0.018 -0.027 0.004 0.001
(26 %)
PC3 original
-0.014 0.055 0.997 -0.038 -0.005 -0.009 0.011
(13 %)
Pcig;g)'”a' 0.001 0.016 -0.039 0.997 0.008 -0.060 -0.011
(0]
PCS(:;g)'”a' 0.002 -0.027 -0.004 -0.008 -0.999 -0.004 -0.003
(0]
Pcigz}g)'”a' -0.001 -0.003 0.006 -0.061 -0.004 0.996 0.051
(0]
PC7(f;g)'”a' -0.011 -0.002 0.012 -0.008 -0.003 -0.051 0.998
0




D. Checking and optimizing the msv

The figure D.1 presents the Pearson correlation coefficient between the raw data and the rebuilt data
for different ways of sampling. It shows in particular the importance of choosing properly the values
of the minimal significant variation, msv.

The black points in the Figure D.1 correspond to the chosen msv for the rest of the study. The values
for each parameter can be found in the Table D.2. in the line msv OSA. It can be seen that most of the
Pearson correlation coefficient are quite good. The lowest is for pH (R=0.79) but this parameter is very
noisy so it is not expected to have a perfect correlation.
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Figure D.1: Pearson correlation coefficient between the raw data and the rebuilt data for different
values of msv.

Table D.2: values of the msv for the seven parameters

Temp. pH Cond. Turb. Diss. O CDOM Trypt.
msv OSA 0.4 0.1 25 5 0.5 2 5
msv 2 CDOM =5 0.4 0.1 25 5 0.5 5 5
msv3D0O=0.1 0.4 0.1 25 5 0.1 2 5

If the msv for a parameter is increased, e.g. CDOM msv is changed from 2 to 5, a lower sensitivity
toward this parameter should be expected. And a decrease in the correlation coefficient is indeed
observed, from R=0.84 to R=0.65.

If the msv for a parameter is decreased, e.g. Dissolved oxygen msv is changed from 0.5 to 0.1, smaller
variation of oxygen concentration will be detected as significant. Representativity of our samples are
now increase in term of oxygen (R goes from 0.91 to 0.99). But it is important to note that over-
weighing dissolved oxygen has consequences on other parameters. Temperature (R= 0.92 to 0.86),
conductivity (0.91 to 0.85) and CDOM (0.84 to 0.75) have a lower correlation coefficient, indicating a
worst representativity of the sample. In a way, most of the samples are now dedicated to improve the
O3 signal and less are left for the other parameters. Therefore it is important to have a test phase in
order to properly balance this msv vector.



