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Abstract

Let u be a solution of the Fisher-KPP equation

∂tu = ∆u+ f(u), t > 0, x ∈ RN ,

with an initial datum u0. We address the following question: does u
become locally planar as t → +∞? Namely, does u(tn, xn + ·) con-
verge locally uniformly, up to subsequences, towards a one-dimensional
function, for any sequence ((tn, xn))n∈N in (0,+∞) × RN such that
tn → +∞ as n → +∞? This question is in the spirit of the cele-
brated De Giorgi’s conjecture concerning stationary solutions of the
Allen-Cahn equation. Some affirmative answers to the above question
are known in the literature: when the support of the initial datum u0 is
bounded or when it lies between two parallel half-spaces. Instead, the
answer is negative when the support of u0 is “V-shaped”. We prove
here that u is asymptotically locally planar when the support of u0 is a
convex set (satisfying in addition a uniform interior ball condition), or,
more generally, when it is at finite Hausdorff distance from a convex
set. We actually derive the result under an even more general geometric
hypothesis on the support of u0. We recover in particular the afore-
mentioned results known in the literature. We further characterize the
set of directions in which u is asymptotically locally planar, and we
show that the asymptotic profiles are monotone. Our results apply in
particular when the support of u0 is the subgraph of a function with
vanishing global mean.

Keywords: reaction-diffusion equations, Fisher-KPP equation, large-
time dynamics, symmetry, monotonicity.
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Université), LabEx CARMIN (ANR-10-LABX-59-01), and Università degli Studi di Roma
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1 Introduction

In this paper, we are interested in the large time description of solutions of
the Fisher-KPP reaction-diffusion equation

∂tu = ∆u+ f(u), t > 0, x ∈ RN , (1.1)

with N ≥ 2. The Fisher-KPP condition of [9, 17] is
f(0) = f(1) = 0,

f(s) > 0 for all s ∈ (0, 1),

s 7→ f(s)

s
is nonincreasing in (0, 1].

(1.2)

As long as the regularity is concerned, we assume that f ∈ C1([0, 1]). These
assumptions on f will always be understood to hold.

We consider the Cauchy problem associated with (1.1). The initial condi-
tion u(0, ·) = u0 is assumed to be a characteristic function 1U of a measurable
set U ⊂ RN , i.e.

u0(x) =

{
1 if x ∈ U,
0 if x ∈ RN \U.

(1.3)

This Cauchy problem is well posed and, given u0, there is a unique bounded
classical solution u of (1.1) such that u(t, ·) → u0 as t → 0+ in L1

loc(RN ).
Furthermore, 0 ≤ u(t, x) ≤ 1 for all t ≥ 0 and x ∈ RN , from the maximum
principle. For mathematical convenience, we extend f by 0 in R \ [0, 1], and
the extended function, still denoted f , is then Lipschitz continuous in R.

Instead of initial conditions u0 = 1U , we could also have considered
multiples α1U of characteristic functions, with α > 0, or even other
more general initial conditions 0 ≤ u0 ≤ 1 for which the upper level set
{x ∈ RN : u0(x) ≥ h} is at bounded Hausdorff distance from the support
of u0, for some h ∈ (0, 1) (see Section 8 below). But we preferred to keep
the assumption u0 = 1U for the sake of simplicity of the presentation of the
statements.

The goal of the paper is to understand whether, and under which condi-
tion on the initial datum, the solution of (1.1) eventually becomes locally pla-
nar as time goes on. To express this property in a rigorous way, we consider
the notion of the Ω-limit set of a given bounded function u : R+×RN → R,
which is defined as follows:

Ω(u) :=
{
ψ ∈ L∞(RN ) : u(tn, xn + ·)→ ψ in L∞loc(RN ) as n→ +∞,
for some sequences (tn)n∈N in R+ diverging to +∞,
and (xn)n∈N in RN

}
.

(1.4)
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Roughly speaking, the Ω-limit set contains all possible asymptotic profiles of
the function as t → +∞. Notice that, for any bounded solution u of (1.1),
the set Ω(u) is not empty and is included in C2(RN ), from standard parabolic
estimates. We say that u is asymptotically locally planar if every ψ ∈ Ω(u)
is one-dimensional, that is, if ψ(x) ≡ Ψ(x · e) for all x ∈ RN , for some
Ψ ∈ C2(R) and e ∈ SN−1, where SN−1 := {x ∈ RN : |x| = 1}, | · | denotes the
Euclidean norm in RN , and “·” denotes the Euclidean scalar product in RN .
Furthermore, we say that ψ is one-dimensional and (strictly) monotone if ψ
is as above with Ψ (strictly) monotone.

This property reclaims the De Giorgi conjecture about bounded solu-
tions of the Allen-Cahn equation (that is, bounded stationary solutions of
the reaction-diffusion equation ∆u+ u(1− u)(u− 1/2) = 0 in RN , obtained
after a change of unknown from the original Allen-Cahn equation), see [5].

Let us review the results in the literature about the asymptotic one-
dimensional symmetry. Consider, as before, solutions emerging from indica-
tor functions of a set U . First, the asymptotic one-dimensional symmetry
is known to hold when U is bounded, as a consequence of [16]. The case
of unbounded sets U has been much less studied in the literature. How-
ever, the asymptotic one-dimensional symmetry is known to hold when U is
the subgraph of a bounded function, by [2, 3, 13, 19, 27]. Conversely, the
property fails when U is “V-shaped”, i.e. when U is the union of two half-
spaces with non-parallel boundaries, as follows from the methods developed
in [12], see Proposition 4.4 below for further details. The properties listed
in this paragraph are known to hold for other types of function f as well,
see [2, 8, 10, 11, 20, 21, 22, 25] and Section 8.

A possible interpretation of these results is that the asymptotic one-
dimensional symmetry holds provided U is “not too far” from a convex set.
This is indeed what we will show.

2 Statement of the main results

In order to state our main results, we define the notion of positive-distance-
interior of a set U ⊂ RN as

Uδ :=
{
x ∈ U : dist(x, ∂U) ≥ δ

}
, δ > 0,

where dist(x,A) := inf
{
|x − y| : y ∈ A

}
for a set A ⊂ RN , with the

convention dist(x,A) = +∞ if A = ∅. Throughout the paper, we denote

Br(x) :=
{
y ∈ RN : |x− y| < r

}
and Br := Br(0),
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for any x ∈ RN and r > 0. We will also make use of the Hausdorff distance
between subsets of RN , which is defined, for A,B ⊂ RN , by

dH(A,B) := max
(

sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)
)
,

with the conventions that

dH(A, ∅) = dH(∅, A) = +∞ if A 6= ∅ and dH(∅, ∅) = 0.

Theorem 2.1. Let u be the solution of (1.1) with an initial datum u0 = 1U

such that U ⊂ RN satisfies

∃ δ > 0, dH(U,Uδ) < +∞. (2.1)

Assume moreover that U is convex or nearly convex, that is, that there
exists a convex set U ′ ⊂ RN satisfying dH(U,U ′) < +∞. Then any function
in Ω(u) is one-dimensional and, in addition, it is either constant or strictly
monotone.

Theorem 2.1 extends the known results about the asymptotic one-
dimensional symmetry for the Fisher-KPP equation that, we recall, have
been established under the assumption that U is bounded [16], or it is the
subgraph of a bounded function [2, 3, 13, 19, 27].

Condition (2.1) means that there exists some R > 0 such that, for
any x ∈ U , there is a ball Bδ(x0) contained in U of radius δ and centered at
a point x0 such that |x − x0| < R. It is fulfilled in particular if U satisfies
a uniform interior ball condition. It is not hard to see that, in dimension
N = 2, for a convex set U , property (2.1) is equivalent to require that U
has nonempty interior. The role of assumption (2.1) is cutting off regions
of U which play a negligible role in the large-time behavior of the solution
of the Cauchy problem. This assumption is necessary, otherwise one could
take a set U ′ for which the asymptotic one-dimensional symmetry fails (for
instance V-shaped), then consider the set U := U ′ ∪

⋃
k∈ZN Be−|k|2 (k): the

set U is nearly convex, being at finite Hausdorff distance from the convex
set RN , but it does not satisfy (2.1) and the asymptotic one-dimensional
symmetry fails for U , see Proposition 4.6 below for further details.

In order to explain the ideas of the proof of Theorem 2.1, let us start with
reviewing the proofs of the known results in the literature. First, when U is
the subgraph of a bounded function, the one-dimensional symmetry can be
derived combining [3] or [13, 19, 27] with the Liouville-type result of [2],
which asserts that an entire solution trapped between two translations of
a planar traveling front is necessary a planar traveling front – hence one-
dimensional at every time. The Liouville result is proved using the slid-
ing method. The proof of [16] concerning the case where U is bounded is

4



much quicker. It relies on the same reflection argument used in the mov-
ing plane method. This very elegant proof works for arbitrary nonlinear
terms f , but unfortunately fails as soon as U is unbounded. To circumvent
this obstacle, we develop a technique that allows one to extend the reflection
argument to the case where U is unbounded. Such a technique is the main
technical contribution of the present paper.

The idea is to approximate the solution through a suitable truncation of
the initial support U . The subset of U we want to keep after the truncation
needs to be small enough to allow us to apply the reflection argument, but
large enough in order to approximate well the solution. It turns out that
the choice of the truncation cannot be made once and for all, but it rather
depends on the time at which we want to approximate the solution. In order
to control the approximation error, we exploit a new family of retracting
supersolutions obtained as a superposition of a large number of traveling
fronts, see Lemma 3.2 below.

Figure 1: The definition of the opening function O.

As a matter of fact, the convex-proximity assumption on U in Theo-
rem 2.1 is a very special case of a geometric hypothesis under which we
prove the one-dimensional symmetry, that we now introduce. For a given
nonempty set U ⊂ RN and a given point x ∈ RN , we let πx denote the set
of orthogonal projections of x onto U , i.e.,

πx :=
{
ξ ∈ U : |x− ξ| = dist(x, U)

}
, (2.2)

and, for x /∈ U , we define the opening function as follows:

O(x) := sup
ξ∈πx, y∈U\{ξ}

x− ξ
|x− ξ|

· y − ξ
|y − ξ|

, (2.3)
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with the convention that O(x) = −∞ if U = ∅ or U is a singleton (otherwise
−1 ≤ O(x) ≤ 1). Namely, when O(x) 6= −∞, one has O(x) = cosα, where
α is the infimum among all ξ ∈ πx of half the opening of the largest exterior
cone to U at ξ having axis x− ξ, see Figure 1.

Here is our most general asymptotic symmetry result.

Theorem 2.2. Let u be a solution of (1.1) with an initial datum u0 = 1U

such that U ⊂ RN satisfies (2.1) and moreover

lim
R→+∞

(
sup

x∈RN , dist(x,U)=R

O(x)

)
≤ 0. (2.4)

Then any function in Ω(u) is one-dimensional and, in addition, it is either
constant or strictly monotone.

It is understood that the left-hand side in condition (2.4) is equal to −∞
(hence the condition is fulfilled) if supx∈RN dist(x, U) < +∞ (and indeed in
such case the asymptotic one-dimensional symmetry trivially holds because
condition (2.1) yields that u(t, x) → 1 uniformly with respect to x ∈ RN
as t → +∞, see Proposition 3.1 below). We remark that the limit in (2.4)
always exists, because the involved quantity is nonincreasing with respect
to R, see Lemma 4.3 below.

The optimality of hypotheses (2.1) and (2.4) is discussed in Section 4.4
below. Hypothesis (2.4) means that the angle α in Figure 1 tends to a value
larger than or equal to π/2 (which means that the exterior cone contains a
half-space) as dist(x, U) → +∞. Theorem 2.2 yields Theorem 2.1 because,
firstly, convex sets satisfy O(x) ≤ 0 for every x /∈ U (actually, they are
characterized by such condition in the class of closed sets) and, secondly,
if (2.4) holds for a given set, then it holds true for any set at finite Haus-
dorff distance from it, as stated by Lemma 4.3. However, the class of sets
satisfying (2.4) is wider. It contains for instance the subgraphs of functions
with vanishing global mean, i.e.,

U =
{
x = (x′, xN ) ∈ RN−1 × R : xN ≤ γ(x′)

}
, (2.5)

with γ ∈ L∞loc(RN−1) such that

γ(x′)− γ(y′)

|x′ − y′|
−→ 0 as |x′ − y′| → +∞. (2.6)

Actually, when U is given by (2.5)-(2.6), we show more precisely that all
functions in the Ω-limit set depend on the xN variable alone, see Corollary 2.5
below.

Theorems 2.1 and 2.2 are concerned with locally uniform convergence
properties along sequences of times (tn)n∈N diverging to +∞ and sequences

6



of points (xn)n∈N. We now assert an asymptotic property which is satisfied
uniformly in RN . It is expressed in terms of the eigenvalues of the Hes-
sian matrices D2u(t, x) (with respect to the x variables). For a symmetric
real-valued matrix A of size N × N , let λ1(A) ≤ · · · ≤ λN (A) denote its
eigenvalues, and let

σk(A) :=
∑

1≤j1<···<jk≤N
λj1(A)× · · · × λjk(A), 1 ≤ k ≤ N,

be the elementary symmetric polynomials of eigenvalues of A (σk(D
2u(t, x))

is also called k-Hessian).

Theorem 2.3. Let u be as in Theorem 2.2. Then,

∀ 2 ≤ k ≤ N, σk(D
2u(t, x))→ 0 as t→ +∞ uniformly in x ∈ RN .

The proof of Theorem 2.3 is based on the asymptotic local one-
dimensional symmetry given in Theorem 2.2, and on standard parabolic
estimates. We point out that, if ψ : RN → R is of class C2(RN ) and one-
dimensional, then σk(D

2ψ(x)) = 0 for all 2 ≤ k ≤ N and x ∈ RN , since the
quantities σk(D

2ψ(x)) involve sums of products of at least two eigenvalues
of D2ψ(x) (but σ1(D

2ψ(x)) 6= 0 in general). However, the converse property
is immediately not true (for instance, the function ψ : (x1, x2) 7→ x21 + x2
satisfies σ2(D

2ψ(x1, x2)) = 0 for all (x1, x2) ∈ R2, but it is not one-
dimensional).

Once the asymptotic one-dimensional symmetry and monotonicity prop-
erties are established, it is natural to ask what are the directions in which the
solution actually becomes locally one-dimensional. Namely, we investigate
the set

E :=
{
e ∈ SN−1 : ∃ψ ∈ Ω(u) such that ψ(x) ≡ Ψ(x · e)
for some strictly decreasing function Ψ ∈ C2(R)

}
.

(2.7)

Under the assumptions of Theorems 2.1 or 2.2, the set E is then the set
of the directions of decreasing monotonicity of all non-constant elements
of Ω(u) (by the direction of decreasing monotonicity of a –necessarily one-
dimensional by Theorems 2.1 or 2.2– non-constant function ψ ∈ Ω(u), we
mean the unique e ∈ SN−1 such that ψ(x) = Ψ(x · e) for all x ∈ RN ,
with Ψ decreasing). Observe that the constant functions ψ are excluded in
the above definition, which is necessary because they are one-dimensional
in every direction. Thus, a direction e belongs to E only if, along diverging
sequences of times, the solution flattens in the directions orthogonal to e but
not in the direction e, along some sequence of points. We characterize the
set E in terms of the initial support U .
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Theorem 2.4. Let u be as in Theorem 2.2. Then the set E defined in (2.7)
is given by

E =
{
e ∈ SN−1 :

xn − ξn
|xn − ξn|

→ e as n→ +∞,

for some sequences (xn)n∈N, (ξn)n∈N in RN

such that dist(xn, U)→ +∞ as n→+∞ and ξn∈πxn for all n∈N
}
.

In particular, E = ∅ if and only if U is relatively dense in RN or U = ∅.

We remark that, without the assumption (2.1), the last statement of
Theorem 2.4 may fail. Indeed, if U = {0} then u(t, x) ≡ 0 for all t > 0,
x ∈ RN , hence E = ∅, but U 6= ∅ is not relatively dense in RN .

When U is bounded with non-empty interior, it follows from Theorem 2.4
that E = SN−1. On the one hand, this conclusion gives an additional prop-
erty –namely the strict monotonicity– with respect to the result contained
in [16]. On the other hand, still when U is bounded, the same conclusion
is also a consequence of [7, 24], where it is proved by a completely differ-
ent argument. The characterization of the directions of asymptotic strict
monotonicity in the case of unbounded sets U is more involved. The proof
of Theorem 2.4 is based on an argument by contradiction and on the accel-
eration of the solutions when they become less and less steep.

Theorem 2.4 implies that if U is of class C1 then E is contained in the
closure of the set of the outward unit normal vectors to U . If U is convex
then E coincides with the closure of the set of outward unit normal vectors
to all half-spaces containing U . When U is the subgraph of a function γ with
vanishing global mean, i.e. satisfying (2.6), then we show that E = {eN},
where eN := (0, · · · , 0, 1). Namely, in such a case we have the following.

Corollary 2.5. Let u be the solution of (1.1) with an initial datum
u0 = 1U , where U is given by (2.5) with γ ∈ L∞loc(RN−1) satisfying (2.6).
Then any function ψ ∈ Ω(u) is of the form ψ(x′, xN ) ≡ Ψ(xN ) for all
(x′, xN ) ∈ RN−1 ×R, with Ψ ∈ C2(R) either constant or strictly decreasing.
Moreover, it holds that E = {eN}.

Since, by parabolic estimates, the convergence in the definition (1.4) of
the Ω-limit set holds true in C2

loc(RN ), up to subsequences, Corollary 2.5
implies that

∇x′u(t, x′, xN )→ 0 as t→ +∞, uniformly in (x′, xN ) ∈ RN−1 × R.

A way to interpret this result is that the oscillations of the initial datum
are “damped” as time goes on through some kind of averaging process.
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We point out that Corollary 2.5 does not imply the existence of a func-
tion Ψ : R+ × R → R such that u(t, x′, xN ) − Ψ(t, xN ) → 0 as t → +∞
uniformly in (x′, xN ) ∈ RN−1 × R, and indeed such a function Ψ does not
exist in general (as shown in [26] when N = 2 and the limits limx′→±∞ γ(x′)
exist but do not coincide). Condition (2.6) is satisfied in particular when γ
is bounded, and in such a case the conclusion of Corollary 2.5 can also be
deduced from [2, 3, 13, 19, 27].

It is possible to relax the uniform mean condition (2.6) of γ in Corol-
lary 2.5, at the price of restricting the Ω-limit set. With this regard, we will
derive a directional asymptotic symmetry result, Theorem 7.2 below.

Outline of the paper. The rest of the paper is organized as follows. In
Section 3, we show a general uniform spreading result, which is itself based
especially on the construction of retracting super-solutions as finite sums
of planar fronts. Section 4 is the central section, devoted to the proofs of
Theorems 2.1, 2.2 and 2.3 on the asymptotic one-dimensional symmetry of
the solutions under the general hypotheses (2.1) and (2.4). Some counterex-
amples to the main results, when at least one of these assumptions is not
fulfilled, are also shown. Section 5 contains the proof of Theorem 2.4 on the
set of directions of asymptotic strict monotonicity. The case of a subgraph
with vanishing global mean is dealt with in Section 6, where Corollary 2.5 is
proved. The case when U is only assumed to be included into a non-coercive
subgraph is considered in Section 7, where the notion of directional Ω-limit
set is introduced. Lastly, some extensions, as well as some open questions
and conjectures, are presented in Section 8.

3 A uniform spreading speed result

It is well known since [17] that, for equation (1.1), propagation occurs with
an asymptotic speed of spreading equal to c∗ := 2

√
f ′(0), and that the latter

coincides with the minimal speed c of traveling fronts, i.e., solutions of the
type

u(t, x) = ϕ(x · e− ct), 0=ϕ(+∞)<ϕ<ϕ(−∞)=1, c ∈ R, e ∈ SN−1, (3.1)

where ϕ : R → (0, 1) is of class C2(R) and decreasing. The precise result
is derived in [1] and asserts that, for any solution u to (1.1) with an initial
condition 0 ≤ u0 ≤ 1 which is compactly supported and fulfills infB u0 > 0
for some ball B ⊂ RN with positive measure, it holds that

∀ c ∈ (0, c∗), inf
|x|≤ct

u(t, x)→ 1 as t→ +∞, (3.2)

∀ c > c∗, sup
|x|≥ct

u(t, x)→ 0 as t→ +∞, (3.3)
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with c∗ = 2
√
f ′(0).

In the sequel, we will need the following uniform version of the above
properties for initial data of the form u0 = 1U with U unbounded.

Proposition 3.1. Let u be a solution of (1.1) emerging from an initial
datum u0 = 1U with U ⊂ RN . Then, for any δ > 0 such that Uδ 6= ∅, the
following convergences hold:

∀ c ∈ (0, c∗), inf
x∈RN , dist(x,Uδ)≤ct

u(t, x)→ 1 as t→ +∞, (3.4)

∀ c > c∗, sup
x∈RN , dist(x,U)≥ct

u(t, x)→ 0 as t→ +∞. (3.5)

The reason why (3.4) involves Uδ instead of U is to neglect subsets of U
(such as isolated points) which do not affect the solution u at positive times.
The role of hypothesis (2.1) in our main results is precisely that it allows us
to replace Uδ with U in (3.4).

The uniform “invasion property” (3.4) will be immediately deduced
from (3.2). Instead, property (3.5) does not follow from (3.3). In order
to prove it we construct a family of supersolutions whose upper level sets
are given by the exterior of balls retracting with a speed larger, but arbi-
trarily close, to c∗. These supersolutions will also directly be used to prove
Theorem 2.2. Here is their construction.

Lemma 3.2. For any c > c∗ and λ > 0, there exist R > 0 (depending on
N, f, c and λ) and a family of positive functions (vT )T>0 of class C2(R×RN )
such that, for each T > 0, vT is a supersolution to (1.1) in R × RN and
satisfies {

vT (0, x) ≥ 1, for all x such that |x| ≥ R+ cT,

vT (t, 0) < λ, for all t ∈ [0, T ].
(3.6)

Proof. The functions vT will be constructed as the sums of finitely many
positive solutions to (1.1), hence they will be supersolutions to (1.1) due to
the following standard consequence of the Fisher-KPP condition (1.2):

∀ a, b ≥ 0, f(a+ b) ≤ f(a) + f(b). (3.7)

To show the above inequality, assume to fix the ideas that a ≤ b, with b > 0
(otherwise the inequality trivially holds because f(0) = 0). Then, observing
that the function f , which we recall is extended by 0 outside [0, 1], fulfills
the third condition in (1.2) on the whole half-line (0,+∞), we get

f(a+ b) ≤ f(b)

b
(a+ b) ≤ f(a) + f(b).
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Now, let c > c∗ and λ > 0. Take ε ∈ (0, 1/2) small enough to have that
(1− ε)c > c∗. Consider a finite subset S of the unit ball SN−1 such that

∀ e ∈ SN−1, dist(e,S) ≤ ε.

The set S only depends on N and ε, which in turn depends on f, c. We
define the family of positive functions (vT )T>0, of class C2(R× RN ), by

vT (t, x) := 2
∑
e′∈S

ϕ
(
x · e′ − c∗(t− T ) +R/2

)
,

where ϕ is the traveling front with speed c∗, as in (3.1), normalized by
ϕ(0) = 1/2, and R > 0 is such that ϕ(R/2) < λ/(2n), with n being the
number of elements of S. With this choice of R (which only depends on
N, f, c, λ) we have, as desired, vT (t, 0) < λ for all T > 0, t ∈ [0, T ]. Observe
that each term of the sum in the definition of vT is a positive solution to (1.1),
hence vT is a positive supersolution to (1.1) as discussed at the beginning of
the proof.

It remains to check that each vT fulfills the first property in (3.6). Let
T > 0 and x ∈ RN satisfy |x| ≥ R+ cT , and consider e′ ∈ S such that∣∣∣∣e′ + x

|x|

∣∣∣∣ ≤ ε.
We have that

vT (0, x) ≥ 2ϕ(x · e′ + c∗T +R/2).

Since x · e′ ≤ −|x|+ ε|x|, we deduce

x · e′ + c∗T +R/2 ≤ (ε− 1)(R+ cT ) + c∗T +R/2

≤ (ε− 1/2)R+ [(ε− 1)c+ c∗]T,

which is negative because ε < 1/2 and (1 − ε)c > c∗. It follows that
vT (0, x) ≥ 2ϕ(0) = 1. This concludes the proof.

We can now prove the uniform spreading speed result.

Proof of Proposition 3.1. We start with (3.4). Let δ > 0 be such that Uδ 6= ∅
and let v be the solution to (1.1) emerging from the initial datum v0 = 1Bδ .
Take c ∈ (0, c∗). For any x0 ∈ Uδ, we have that u0(x0 + ·) ≥ v0 in RN and
therefore u(t, x0 + x) ≥ v(t, x) for all t ≥ 0, x ∈ RN thanks to the parabolic
comparison principle. Applying (3.2) to v we deduce that

1 ≥ inf
x0∈Uδ, |x|≤ct

u(t, x0 + x) ≥ inf
|x|≤ct

v(t, x)→ 1 as t→ +∞.

This is property (3.4).
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Let us turn to (3.5). Take c > c∗, c′ ∈ (c∗, c), λ > 0, and consider the
family of supersolutions (vT )T>0 given by Lemma 3.2, associated with the
speed c′. Namely, there exists R > 0 such that they fulfill (3.6) with c′

instead of c. For T ≥ R/(c − c′) it holds that cT ≥ R + c′T and thus,
if x0 ∈ RN is such that dist(x0, U) ≥ cT , then dist(x0, U) ≥ R + c′T
and (3.6) implies that 0 ≤ u0(x0 + ·) ≤ vT (0, ·) in RN , hence by comparison
0 ≤ u(T, x0) ≤ vT (T, 0) < λ. This shows that

∀T ≥ R

c− c′
, 0 ≤ sup

x0∈RN , dist(x0,U)≥cT
u(T, x0) ≤ λ.

From this, property (3.5) follows by the arbitrariness of c > c∗ and λ > 0.

4 Asymptotic one-dimensional symmetry

We first prove our most general symmetry result, Theorem 2.2, in Section 4.2,
after the proof of a preliminary approximation result in Section 4.1. Next,
we derive the proof of Theorem 2.1 in Section 4.3, by showing that its hy-
potheses imply the ones of Theorem 2.2. Lastly, Section 4.4 provides some
counterexamples to the main results when the assumptions (2.1) or (2.4) are
not satisfied, while the proof of Theorem 2.3 is carried out in Section 4.5.

4.1 An approximation result by truncation of the initial da-
tum

The cornerstone of the proof of Theorem 2.2, hence of the whole paper, is
an approximation result. Before stating it, let us introduce some notation.
We recall that BR(x0) and BR stand for the balls in RN of radius R and
center x0 and 0 respectively. A generic point x ∈ RN will sometimes be
denoted by (x′, xN ) ∈ RN−1 × R, and the ball in RN−1 of radius R and
center x′0 ∈ RN−1 is denoted by B′R(x′0), or just B′R if x′0 = 0.

Lemma 4.1. Let u be a solution to (1.1) with an initial condition u0 = 1U ,
where U ⊂ RN satisfies, for some δ > 0, L > 0, and σ ∈ (0, c∗/2), Uδ ∩BL 6= ∅,

U \ (B′L × R) ⊂
{

(x′, xN ) ∈ RN−1 × R : xN ≤
σ

2c∗
|x′|
}
.

(4.1)

Let (uR)R>0 be the solutions to (1.1) emerging from the initial data (uR0 )R>0

defined by
uR0 = 1U∩(B′R×R).

Then, for any ε > 0, there exists τε > 0, only depending on N, f, δ, L, σ, ε,
such that

∀ τ ≥ τε,
∥∥u(τ, ·)− u3στ (τ, ·)

∥∥
C1(B′στ×R+)

< ε. (4.2)

12



Proof. In order to get the C1 estimate (4.2), it is sufficient to show an L∞

estimate at a later time, that is,

∀ τ ≥ τε,
∥∥u(τ + 1, ·)− u3στ (τ + 1, ·)

∥∥
L∞(Cτ ) < ε, (4.3)

where τε > 0 depends on N, f, δ, L, σ and ε, and Cτ is the half-cylinder

Cτ := B′στ × R+.

Indeed, once (4.3) is proved, observing that u− u3στ is nonnegative (by the
comparison principle) and it solves a parabolic equation that can be written
in linear form, one infers from the parabolic Harnack inequality and interior
estimates, given for instance by [18], that (4.2) holds with ε replaced by Cε,
where C only depends on f and N . Then, to prove the lemma it is sufficient
to derive (4.3) for an arbitrary ε > 0.

Fix ε > 0. Consider the family of solutions (wR)R>0 to (1.1) emerging
from the initial data (wR0 )R>0 given by

wR0 = 1WR with WR :=
{

(x′, xN ) ∈ RN−1×R : |x′| ≥ R, xN ≤
σ

2c∗
|x′|
}
.

By (4.1) it holds that u0 ≤ min(uR0 +wR0 , 1) in RN for every R ≥ L. Hence,
since the KPP condition (1.2) yields (3.7), the minimum between 1 and
the sum of two solutions ranging in [0, 1] is a supersolution. We infer by
comparison that, for R ≥ L,

0 ≤ uR ≤ u ≤ min(uR + wR, 1) in [0,+∞)× RN .

Thus, property (4.3) holds for some τε ≥ L/(3σ) if we show that

∀ τ ≥ τε,
sup
x∈Cτ

[
min

(
u3στ (τ+1, x) + w3στ (τ+1, x) , 1

)
− u3στ (τ+1, x)

]
< ε. (4.4)

In order to prove (4.4), we consider a value c ∈ (2σ, c∗), that will be
specified later, and divide the half-cylinder Cτ into the subsets

Ciτ :=
(
B′στ × R+

)
∩Bcτ , Ceτ :=

(
B′στ × R+

)
\Bcτ .

We will derive (4.4) by showing that u3στ (τ + 1, ·) > 1 − ε in Ciτ while
w3στ (τ + 1, ·) < ε in Ciτ , for τ sufficiently large; see Figure 2 to visualize the
different sets involved in the proof.
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Figure 2: The sets Ciτ , Ceτ and W 3στ .

Let us first deal with the set Ciτ , with an arbitrary value c ∈ (2σ, c∗).
By the first condition in (4.1), there exists a ball Bδ(x0) ⊂ U with
|x0| < L, hence Bδ(x0) ⊂ U ∩ (B′L+δ × R). We deduce by comparison that

uL+δ(t, x) ≥ v(t, x − x0) for all t ≥ 0 and x ∈ RN , where v is the solution
to (1.1) with initial datum 1B1 . Then, applying the spreading property (3.2)
to v we infer that, for τ1 > 0 large enough, depending on N, f, c, δ, ε (recall
that c∗ = 2

√
f ′(0)), it holds that

∀ τ ≥ τ1, inf
x∈B c∗+c

2 τ
(x0)

uL+δ(τ + 1, x) > 1− ε.

Since the family (uR)R>0 is nondecreasing with respect to R, by the parabolic
comparison principle, up to increasing τ1 so that 3στ1 ≥ L+ δ, we derive

∀ τ ≥ τ1, inf
x∈B c∗+c

2 τ
(x0)

u3στ (τ + 1, x) > 1− ε

(with τ1 also depending on L and σ). Finally, from the inclusions
Ciτ ⊂ Bcτ ⊂ Bcτ+L(x0), which hold for all τ > 0, andBcτ+L(x0) ⊂ B c∗+c

2
τ
(x0),

which holds if c∗−c
2 τ ≥ L, we find a quantity τ2 > 0 depending on

N, f, c, δ, L, σ, ε such that

∀ τ ≥ τ2, inf
x∈Ciτ

u3στ (τ + 1, x) ≥ inf
x∈B c∗+c

2 τ
(x0)

u3στ (τ + 1, x) > 1− ε.

This shows that, for any choice of c ∈ (2σ, c∗), the estimate (4.4) holds
when Cτ is replaced by Ciτ and τε is equal to the above quantity τ2.
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Let us consider now the set Ceτ . We will show that w3στ < ε there by
estimating the distance between Ceτ and W 3στ and then applying Lemma 3.2.
In this paragraph, τ > 0 is arbitrary and c ∈ (2σ, c∗) will be fixed at the
end of the paragraph. Take two arbitrary points x = (x′, xN ) ∈ Ceτ and
y = (y′, yN ) ∈W 3στ . There holds

|x′| < στ ≤ 1

3
|y′| and xN >

√
c2 − σ2 τ, yN ≤

σ

2c∗
|y′|.

We compute

|x− y|2 = |x′ − y′|2 + (xN − yN )2 ≥ 4

9
|y′|2 + (xN − yN )2.

If σ|y′|/(2c∗) ≥
√
c2 − σ2 τ , neglecting (xN − yN )2 in the above inequality

we get

|x− y|2 ≥ 16

9
(c∗)2

( c2
σ2
− 1
)
τ2 ≥ 16

3
(c∗)2τ2

since c > 2σ > 0. Instead, in the opposite case σ|y′|/(2c∗) <
√
c2 − σ2 τ ,

one has yN ≤ σ|y′|/(2c∗) <
√
c2 − σ2 τ < xN , whence

|x− y|2 ≥ 4

9
|y′|2 +

(√
c2 − σ2 τ − σ

2c∗
|y′|
)2

=
4

9
|y′|2 + (c2 − σ2)τ2 +

σ2

4(c∗)2
|y′|2 − σ

c∗

√
c2 − σ2 τ |y′|,

and we estimate the negative terms by observing that

4

9
|y′|2 − σ2τ2 − σ

c∗

√
c2 − σ2 τ |y′| ≥ |y′|

(1

3
|y′| − σ

c∗

√
c2 − σ2 τ

)
≥ 0

since |y′|/3 ≥ στ ≥ σ
√
c2 − σ2τ/c∗. Thus, in such case one has

|x− y|2 ≥ c2τ2 +
σ2

4(c∗)2
|y′|2 ≥ c2τ2 +

9σ4τ2

4(c∗)2
,

which is larger than (c∗)2τ2 for c ∈ (2σ, c∗) close enough to c∗, depending
on c∗ = 2

√
f ′(0) and σ only. Summing up, we have shown the existence of

some c ∈ (2σ, c∗) and c′ > c∗, depending on c∗ = 2
√
f ′(0) and σ, such that

∀ τ > 0, ∀x ∈ Ceτ , dist(x,W 3στ ) ≥ c′τ. (4.5)

At this point, we invoke the supersolutions (vT )T>0 provided by Lemma 3.2,
associated with c̃ := (c∗ + c′)/2 and λ = ε; they satisfy (3.6) with c̃ in-
stead of c and a quantity R depending on N, f, c̃, ε (hence, R depends
on N, f, σ, ε, since c̃ depends on c∗ = 2

√
f ′(0) and c′ and the latter de-

pends on c∗, σ). Take τ3 > 0 large enough (depending on R, c̃, c′, hence
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on N, f, σ, ε) so that R + c̃(T + 1) ≤ c′T for all T ≥ τ3. Thus, on one
hand, vT+1(0, x) ≥ 1 for |x| ≥ c′T and T ≥ τ3. On the other hand, for all
τ > 0 and x0 ∈ Ceτ , we know from (4.5) that Bc′τ (x0) ∩W 3στ = ∅, which
implies that w3στ

0 (x + x0) = 0 for |x| < c′τ . This means that, for τ ≥ τ3,
w3στ (0, ·+x0) ≤ vτ+1(0, ·) in RN , and thus w3στ (t, ·+x0) ≤ vτ+1(t, ·) in RN
for all t ≥ 0 by comparison. We conclude by (3.6) that

∀ τ ≥ τ3, ∀x0 ∈ Ceτ , w3στ (τ + 1, x0) ≤ vτ+1(τ + 1, 0) < ε.

This yields that (4.4) holds in the set Ceτ too, for a suitable choice of c
depending on c∗ = 2

√
f ′(0) and σ, and for all τ ≥ τ3 > 0 with τ3 de-

pending on N, f, σ, ε. Therefore (4.4) holds true in the whole Cτ , for some
τε ≥ max(τ2, τ3) > 0 depending on N, f, δ, L, σ, ε. The proof of the lemma is
complete.

4.2 Proof of Theorem 2.2

Lemma 4.1 allows us to derive Theorem 2.2 by applying the reflection ar-
gument “à la Jones” [16] to the solution with the truncated initial datum.
This actually yields an additional information about the direction in which u
becomes locally one-dimensional, that will be used to prove one inclusion of
the characterization of the set E in Theorem 2.4. Here is the description of
the Ω-limit set that shows in particular Theorem 2.2.

Theorem 4.2. Let u be a solution of (1.1) with an initial datum u0 = 1U

such that U ⊂ RN satisfies (2.1) and (2.4). Let ψ ∈ Ω(u) and let (tn)n∈N
and (xn)n∈N be the corresponding sequences given by definition (1.4). The
following properties hold:

(i) if lim inf
n→+∞

dist(xn, U)

tn
< c∗ then ψ ≡ 1;

(ii) if lim sup
n→+∞

dist(xn, U)

tn
> c∗ then ψ ≡ 0;

(iii) if lim
n→+∞

dist(xn, U)

tn
= c∗ and if (ξ)n∈N is any sequence such that

ξn ∈ πxn for all n ∈ N, then, up to extraction of a subsequence,

xn − ξn
|xn − ξn|

→ e ∈ SN−1 as n→ +∞,

and ψ(x) ≡ Ψ(x · e) for some function Ψ ∈ C2(R) which is either
constant or strictly decreasing.

Hence, in any case, ψ is one-dimensional, and it is either constant or strictly
monotone.
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Proof. Statement (ii) is a direct consequence of property (3.5), because in
such a case there is c > c∗ such that, for any x ∈ RN , dist(xn + x, U) > ctn
for infinitely many n ∈ N.

In the case (i), there is c ∈ (0, c∗) such that dist(xn, U) < ctn for in-
finitely many n ∈ N. Hence, since dist(·, Uδ) ≤ dist(·, U) + dH(U,Uδ), for
given c′ ∈ (c, c∗) it follows from hypothesis (2.1) that, for any x ∈ RN ,
dist(xn+x, Uδ) < c′tn for infinitely many n ∈ N. The invasion property (3.4)
eventually yields that ψ ≡ 1.

We are left with statement (iii), that is, calling for short kn := dist(xn, U),
we now have

kn
tn
→ c∗ as n→ +∞, (4.6)

In order to show that ψ is one-dimensional, we proceed in several steps:
we first define some new convenient coordinate systems; next, assuming by
contradiction that ψ is not one-dimensional, we show that a line orthogonal
to a level set of u at time tn is far from a suitable half-cylinder with radius
of order tn, which in the following step is used to define an approximation
of u through a truncation of its initial support U . Then Lemma 4.1 will
ensure that the error in this approximation is small (this is where the ge-
ometric assumption (2.4) is used), and this in turn will allow us to obtain
a contradiction by applying Jones’ reflection argument to the solution with
the truncated initial support. In the final step of the proof, we will derive
the monotonicity of ψ in the desired direction by using again the reflection
argument together with Lemma 4.1.

Step 1: coordinates transformations. For n ∈ N, let ξn belong to the set πxn
of the projections of xn onto U (i.e., ξn ∈ U and |xn − ξn| = kn). Up to
extraction of a subsequence, we have by (4.6) that kn > 0 for all n ∈ N.
We set

en :=
xn − ξn
kn

=
xn − ξn
|xn − ξn|

.

Next, we consider a family of N × N orthogonal transformations (Mn)n∈N
such that Mn(eN ) = en, with eN := (0, · · · , 0, 1). Up to subsequences,
(en)n∈N and (Mn)n∈N converge respectively to some direction e ∈ SN−1 and
some orthogonal transformation M , with M(eN ) = e. We define, for t ≥ 0
and x ∈ RN ,

un(t, x) := u(t, ξn +Mn(x)).

These are still solutions to (1.1), because the equation is invariant under
isometry. It follows that

un(tn, kneN +x) = u(tn, xn+Mn(x))→ ψ(M(x)) =: ψ̃(x) as n→+∞, (4.7)

locally uniformly in x ∈ RN . Moreover, un(0, ·) = 1Un with

Un := M−1n (U)− {M−1n (ξn)}
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The set Un is a rigid transformation of U and it is constructed in a
way that 0 ∈ Un is an orthogonal projection of kneN onto Un, whence
dist(kneN , Un) = kn → +∞ as n → +∞ by (4.6) and therefore the ge-
ometric assumption (2.4) (which, being invariant by isometries, is fulfilled
by Un too) yields

Un ⊂
{

(x′, xN ) ∈ RN−1×R : xN ≤ αn|x′|
}

with αn→0 as n→+∞. (4.8)

Step 2: the choice of the truncation. Firstly, by interior parabolic estimates,
the L∞loc(RN ) convergence (4.7) holds true in C2

loc(RN ). We claim that

∇x′ψ̃ ≡ 0 in RN , (4.9)

which will yield, in the original coordinate system,

∂e′ψ ≡ ∇ψ̃ · (M−1(e′)) ≡ 0 in RN

for any direction e′ ∈ SN−1 such thatM−1(e′) ⊥ eN , that is, e′ ⊥M(eN ) = e.
This will imply that ψ(x) ≡ Ψ(x · e) for some Ψ ∈ C2(R).

Assume by contradiction that the above claim (4.9) fails, that is, that
∇x′ψ̃(x̄) 6= 0 for some x̄ ∈ RN . Let us call for short β := ∇ψ̃(x̄), hence
β = (β′, βN ) ∈ RN−1 × R with β′ 6= 0, and it holds that

∇un(tn, kneN + x̄)→ β as n→ +∞. (4.10)

Take a real number ϑ > 0, that will be fixed at the end of this paragraph.
Let (Hn)n∈N be the family of closed half-cylinders in RN defined by

Hn := B′ϑtn × (−∞, ϑtn].

Consider also the conical sets (Vn)n∈N given by

Vn :=
{
kneN + x̄+ s(β + ζ) : s ∈ R, ζ ∈ Bϑ

}
. (4.11)

We look for ϑ > 0 small enough so that

Hn ∩ Vn = ∅ for all n sufficiently large. (4.12)

To this end, consider a generic point P = (P ′, PN ) ∈ Vn. It can be written as
P = kneN+x̄+s(β+ζ) for some s ∈ R, ζ ∈ Bϑ. Suppose that PN ≤ ϑtn, thus

ϑtn ≥ kn − |x̄| − (|βN |+ ϑ)|s|.

By (4.6), for n large enough we have kn > (c∗/2)tn and therefore

|s| ≥ (c∗/2− ϑ)tn − |x̄|
|βN |+ ϑ

. (4.13)
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The component P ′ is estimated as follows:

|P ′| ≥ (|β′| − ϑ)|s| − |x̄|.

We impose ϑ < |β′| and, for n sufficiently large, we can invoke (4.13) and
get

|P ′| − ϑtn ≥
(
|β′| − ϑ
|βN |+ ϑ

(c∗/2− ϑ)− ϑ
)
tn −

(
|β′|
|βN |

+ 1

)
|x̄|.

Thus, one can find ϑ ∈ (0,min(|β′|, c∗/2)) sufficiently small, only depending
on β′, βN and c∗, such that, for n large, |P ′| > ϑtn, i.e. P /∈ Hn. This means
that, with this choice of ϑ, condition (4.12) holds. This fixes our choice of ϑ
and thus of the family of half-cylinders (Hn)n∈N.

Step 3: the approximation procedure. We now apply Lemma 4.1 to the
sequence of solutions (un)n∈N. Take δ > 0 from hypothesis (2.1), and call

σ :=
ϑ

3
> 0, L := dH(U,Uδ) + 1 > 0, ε :=

ϑ

2
> 0, (4.14)

where ϑ > 0 is given in the previous step. One has 0 < σ < ϑ < c∗/2 and
0 < L < +∞ by (2.1). We further have, on the one hand, that

(Un)δ ∩BL 6= ∅, (4.15)

because 0 ∈ Un and dH(Un, (Un)δ) = dH(U,Uδ) < L. On the other hand, it
follows from (4.8) that, for n large,

Un ⊂
{

(x′, xN ) ∈ RN−1 × R : xN ≤
σ

2c∗
|x′|
}
.

This means that the sets Un fulfill the hypotheses (4.1) of Lemma 4.1 for n
large enough. Therefore, for such values of n, considering the solution uϑtnn
of (1.1) whose initial datum is given by the indicator function of the set

Un ∩ (B′ϑtn × R),

the estimate (4.2) implies∥∥un(tn, ·)− uϑtnn (tn, ·)
∥∥
C1(B′

ϑtn/3
×R+)

<
ϑ

2
, (4.16)

provided that tn is larger than a quantity depending on ϑ but not on n.
This means that the above estimate holds for all n sufficiently large. Fur-
thermore, (4.15) implies that, for all n large enough,

Un ∩ (B′ϑtn × R) ⊃ Bδ(yn), (4.17)
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for some yn ∈ BL. Since un fulfills (4.10), one then infers from (4.16) that∣∣∇uϑtnn (tn, kneN + x̄)− β
∣∣ < ϑ for all n sufficiently large. (4.18)

This entails that, for such values of n, the line Γn passing through the
point kneN + x̄ and directed as ∇uϑtnn (tn, kneN + x̄) is contained in the
set Vn defined in (4.11), and therefore, by (4.12),(

Γn ∩Hn

)
⊂
(
Vn ∩Hn

)
= ∅ for all n sufficiently large.

Next, owing to (4.8), we also have that Un ∩ (B′ϑtn × R) ⊂ Hn for all n
sufficiently large, hence

suppuϑtnn (0, ·) ⊂ Hn for all n sufficiently large, (4.19)

where suppuϑtnn (0, ·) denotes the support of uϑtnn (one has uϑtnn (0, ·) ≡ 0
in RN \Hn).

Step 4: the reflection argument. Let Hn, Vn,Γn and uϑtnn be as in the previous
steps. For n large enough, the half-cylinder Hn and the line Γn are convex,
closed and disjoint; we can then separate them with an hyperplane, which,
up to translation, can be assumed without loss of generality to contain Γn.
Namely, for n large, there exists an open half-space Ωn such that

Γn ⊂ ∂Ωn and Hn ⊂ Ωn. (4.20)

Let Rn denote the affine orthogonal reflection with respect to ∂Ωn. Then
define the function vn in [0,+∞)× Ωn by

vn(t, x) := uϑtnn (t,Rn(x)).

The function vn coincides with uϑtnn on [0,+∞)× ∂Ωn. Furthermore vn(0, ·)
vanishes identically in Ωn, while

uϑtnn = 1 in Bδ(yn) ⊂ Un ∩ (B′ϑtn × R) ⊂ Hn ⊂ Ωn,

provided n is large enough for (4.17), (4.19) and (4.20) to hold. Then, for
such values of n, it follows from the comparison principle that vn ≤ uϑtnn
in (0,+∞) × Ωn, and moreover, by the Hopf lemma, that ∂νnv

n > ∂νnu
ϑtn
n

on (0,+∞) × ∂Ωn, where νn is the exterior normal to Ωn. Since clearly
∂νnv

n = −∂νnuϑtnn on (0,+∞) × ∂Ωn, this means that ∂νnu
ϑtn
n < 0

on (0,+∞) × ∂Ωn, and thus in particular that ∂νnu
ϑtn
n (tn, kneN + x̄) < 0,

because kneN + x̄ ∈ Γn ⊂ ∂Ωn. This is however impossible because
∇uϑtnn (tn, kneN + x̄) is parallel to Γn and thus orthogonal to νn. We have
reached a contradiction. This therefore shows (4.9), and then ψ(x) ≡ Ψ(x·e)
for some function Ψ ∈ C2(R).
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Step 5: the large monotonicity property. Let us now show that Ψ is non-
increasing, that is, ∂xN ψ̃ ≤ 0 in RN . We fix an arbitrary ε > 0 and an
arbitrary x̂ ∈ RN . As in Step 3, we apply Lemma 4.1 to the sequence of
solutions (un)n∈N. Namely, we take δ > 0 from hypothesis (2.1) and call

σ :=
c∗

6
, L := dH(U,Uδ) + 1. (4.21)

As seen before, with these values, we have that the sets Un fulfill (4.1) for
n large enough. Therefore, calling uRn the solution with initial datum given
by the indicator function of the set

Un ∩ (B′R × R),

for such large values of n, one can apply Lemma 4.1 and infer that

∀ τ ≥ τε,
∥∥un(τ, ·)− uc∗τ/2n (τ, ·)

∥∥
C1(B′

c∗τ/6×R
+)
< ε,

where τε only depends on N, f, δ, L, ε. As a consequence, for n large enough
such that the above holds, and in addition tn > τε, we deduce that∥∥un(tn, ·)− uc

∗tn/2
n (tn, ·)

∥∥
C1(B′

c∗tn/6
×R+)

< ε for all n large enough. (4.22)

Next, consider the half-space

Ωn := RN−1 × (−∞, kn + x̂ · eN ],

so that kneN + x̂ ∈ ∂Ωn. By (4.6) and (4.8) one has Un∩ (B′c∗tn/2×R) ⊂ Ωn

for n sufficiently large (also depending on x̂), that is, the support of the

initial datum of u
c∗tn/2
n is contained in Ωn. The same reflection argument as

in Step 4 eventually yields

∂xNu
c∗tn/2
n (tn, kneN + x̂) ≤ 0 for all n sufficiently large.

Combining this with (4.22) we infer that ∂xN ψ̃(x̂) ≤ ε, and thus ∂xN ψ̃ ≤ 0
in RN by the arbitrariness of ε > 0 and x̂ ∈ RN .

Step 6: the strict monotonicity property. We have shown in the above steps
that ψ(x) ≡ Ψ(x · e) with Ψ nonincreasing. It remains to show that Ψ is
either constant or strictly decreasing in the whole R. To do so, consider the
functions (t, x) 7→ u(tn + t, xn + Mn(x)) for n ∈ N, which satisfy the same
equation (1.1) as u, but for t > −tn. From standard parabolic estimates,
there is a solution u∞ : R × RN → [0, 1] of (1.1), which is a solution also
for t ≤ 0, and such that, up to extraction of a subsequence,

u(tn + t, xn +Mn(x))→ u∞(t, x) as n→ +∞ locally uniformly in R× RN .
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We apply the results derived in the Steps 1-5 to the sequences (tn−1)n∈N and
(xn)n∈N. Observe that also these sequences fulfill the condition of statement
(iii). Moreover, the direction e associated with these new sequences, as
defined at the beginning of Step 1, only depends on (xn)n∈N and (ξn)n∈N,
hence it is the same before. We deduce the existence of a nonincreasing
function Φ : R → [0, 1] such that u∞(−1, x) ≡ Φ(x · e) in RN . Notice also
that u∞(0, x) ≡ Ψ(x · e) in RN . Now, if the function Φ is constant in R,
which means that u∞(−1, ·) is constant in RN , then so is u∞(0, ·) in RN
(because u∞ solves (1.1) for all t ∈ R), that is, Ψ is constant in R. On the
other hand, if Φ is not constant in R, then, for each h > 0,

u∞(−1, x+ he) ≤ u∞(−1, x) and u∞(−1, x+ he) 6≡ u∞(−1, x) in RN ,

hence u∞(0, x+ he) < u∞(0, x) in RN from the strong parabolic maximum
principle, yielding Ψ(s + h) < Ψ(s) for all s ∈ R. As a conclusion, Ψ is
either constant or strictly decreasing in R. The proof of the theorem is
complete.

Theorem 2.2 is a direct consequence of Theorem 4.2. We also point out
that in the case (iii) of Theorem 4.2 it may still happen that ψ is constant,
and this actually occurs for instance when U is bounded. Indeed, in such a
case, Ψ coincides with some translation of the profile ϕ of the critical front
(hence it is not constant) if and only if the quantity

dist(xn, U)− c∗tn +
N + 2

c∗
ln tn

stays bounded as n → +∞ (that is, if and only if |xn| − c∗tn + N+2
c∗ ln tn is

bounded as n→ +∞), otherwise Ψ ≡ 1 if it diverges to −∞ and Ψ ≡ 0 if it
diverges to +∞, see [7, 24].

4.3 Proof of Theorem 2.1

Let us turn to Theorem 2.1 that, as we now show, is a special case of Theo-
rem 2.2. For this, we need to check that the geometric condition (2.4)
is invariant among sets having finite Hausdorff distance from one another.
This is done in the following geometric lemma.

Lemma 4.3. For any U ⊂ RN , consider the function O(x) defined in (2.3).
Then the map

R 7→ sup
x∈RN , dist(x,U)=R

O(x)

is nonincreasing in (0,+∞). Moreover, for any U ′ ⊂ RN satisfying
dH(U,U ′) < +∞, then U fulfills (2.4) if and only if U ′ does (with the
corresponding O defined as in (2.3) with U ′ instead of U).
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Proof. The monotonicity property involving O is readily derived. Consider
indeed any

0 < R′ < R.

If {x ∈ RN : dist(x, U) = R} = ∅, then supx∈RN ,dist(x,U)=RO(x) = −∞
and the inequality supx∈RN , dist(x,U)=RO(x) ≤ supx∈RN ,dist(x,U)=R′ O(x) is

trivially true. Assume now that the set {x ∈ RN : dist(x, U) = R} is not
empty, and consider any x in this set and any ξ ∈ πx, that is, ξ ∈ U and
|x − ξ| = dist(x, U) = R. If U = {ξ} then O(x) = −∞ by our convention,
hence this case is trivial too.

Assume then that U 6= {ξ}. Consider the point x′ := ξ + (R′/R)(x− ξ).
Its unique projection onto U is ξ, that is, πx′ = {ξ}. Furthermore,
dist(x′, U) = |x′ − ξ| = R′. One also observes that, for any y ∈ U \{ξ},

x− ξ
|x− ξ|

· y − ξ
|y − ξ|

=
x′ − ξ
|x′ − ξ|

· y − ξ
|y − ξ|

≤ O(x′) ≤ sup
z∈RN , dist(z,U)=R′

O(z).

Since x with dist(x, U) = R, together with ξ ∈ πx and y ∈ U \{ξ}, were
arbitrary, this shows that

sup
z∈RN ,dist(z,U)=R

O(z) ≤ sup
z∈RN , dist(z,U)=R′

O(z).

Let us turn to the second statement of the lemma. One considers any two
subsets U and U ′ of RN satisfying dH(U,U ′) < +∞. Denote π′x and O′(x)
the objects defined as in (2.2)-(2.3) with U ′ instead of U .

Assume by way of contradiction that U fulfills (2.4) and U ′ does not.
Then there are ε > 0 and a sequence (xn)n∈N in RN \U ′ such that{

0 < R′n := dist(xn, U
′)→ +∞ as n→ +∞,

O′(xn) ≥ 2ε > 0 for all n ∈ N.
(4.23)

Calling d := dH(U,U ′) < +∞, one then has Rn := dist(xn, U) → +∞ as
n→ +∞, and moreover

Rn − d ≤ R′n ≤ Rn + d for all n ∈ N. (4.24)

Without loss of generality, one has Rn > 0 for every n ∈ N. Since U is
assumed to satisfy (2.4), there holds lim supn→+∞O(xn) ≤ 0, that is,

O(xn)+ := max
(
O(xn), 0

)
→ 0 as n→ +∞. (4.25)

Now, from (4.23), for each n ∈ N, there are ξ′n ∈ π′xn , that is, ξ′n ∈ U ′ and
|xn − ξ′n| = dist(xn, U

′) = R′n > 0, and y′n ∈ U ′\{ξ′n} such that

xn − ξ′n
|xn − ξ′n|

· y
′
n − ξ′n
|y′n − ξ′n|

≥ ε > 0. (4.26)
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For each n ∈ N, consider any ξn ∈ πxn , that is, ξn ∈ U and
|xn−ξn| = dist(xn, U) = Rn > 0, and then there is a point yn ∈ U such that

|yn − y′n| ≤ dH(U,U ′) + 1 = d+ 1. (4.27)

We estimate from above the quantities in (4.26) by writing:

xn−ξ′n
|xn−ξ′n|

· y
′
n−ξ′n
|y′n−ξ′n|

≤
∣∣∣ xn−ξ′n|xn−ξ′n|

− xn−ξn
|xn−ξn|

∣∣∣︸ ︷︷ ︸
=:I1,n

+
∣∣∣ y′n−ξ′n|y′n−ξ′n|

− yn−ξn
|yn−ξn|

∣∣∣︸ ︷︷ ︸
=:I2,n

+
xn−ξn
|xn−ξn|

· yn−ξn
|yn−ξn|︸ ︷︷ ︸

=:I3,n

.

(4.28)

This inequality is understood to hold whenever yn 6= ξn, which we will show
to occur for n sufficiently large. We will then prove that I1,n, I2,n, I3,n → 0
as n → +∞, which will eventually contradict (4.26). In order to estimate
I1,n, we take zn ∈ U such that |zn − ξ′n| ≤ d and we compute

(xn − ξn) · (xn − ξ′n)

= R2
n + (xn − ξn) · (ξn − zn) + (xn − ξn) · (zn − ξ′n)

≥ R2
n −O(xn)Rn|zn − ξn| −Rnd

≥ Rn
(
Rn − 2(Rn + d)O(xn)+ − d

)
,

(4.29)

where the last inequality follows from

|zn − ξn| ≤ |zn − ξ′n|+ |ξ′n − xn|+ |xn − ξn| ≤ d+R′n +Rn ≤ 2(Rn + d).

One then derives from (4.24) and (4.29) that

0 ≤ I1,n ≤

√
2−

2
(
Rn − 2(Rn + d)O(xn)+ − d

)
R′n

≤ 2

√
(Rn + d)O(xn)+ + d

R′n
.

(4.30)

Together with (4.23)-(4.25), one gets that

I1,n → 0 as n→ +∞. (4.31)

Next, let us check that yn 6= ξn for n large. We first control |y′n − ξ′n| from
below. We write

|y′n − xn|2 = |y′n − ξ′n|2 + (R′n)2 − 2(y′n − ξ′n) · (xn − ξ′n),
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which together with (4.26) and the inequality |y′n − xn| ≥ dist(xn, U
′) = R′n

yields
|y′n − ξ′n|

(
|y′n − ξ′n| − 2εR′n

)
≥ |y′n − xn|2 − (R′n)2 ≥ 0.

Since y′n 6= ξ′n, this means that

|y′n − ξ′n| ≥ 2εR′n. (4.32)

Now, using (4.29) and R′n ≤ Rn + d, one infers

|ξn − ξ′n|2 = R2
n + (R′n)2 − 2(xn − ξn, xn − ξ′n)

≤ 4Rnd+ d2 + 4Rn(Rn + d)O(xn)+.
(4.33)

Gathering together the inequalities (4.27), (4.32) and (4.33) shows that

|yn − ξn| ≥ |y′n − ξ′n| − |yn − y′n| − |ξ′n − ξn|
≥ 2εR′n − (d+1)−

√
4Rnd+d2+4Rn(Rn+d)O(xn)+.

(4.34)

The right-hand side is positive for all n large enough and is equivalent to
2εR′n as n → +∞, because of (4.23)-(4.25). This means that yn 6= ξn for n
large enough. Let us estimate I2,n. One has, for n large,

0 ≤ I2,n =

√
2− 2

(y′n − ξ′n) · (yn − ξn)

|y′n − ξ′n| × |yn − ξn|

=

√
|(y′n − ξ′n)− (yn − ξn)|2 − (|y′n − ξ′n| − |yn − ξn|)2

|y′n − ξ′n| × |yn − ξn|

≤ |(y′n−ξ′n)− (yn−ξn)|√
|y′n−ξ′n|×|yn−ξn|

≤ |yn−y′n|+ |ξn−ξ′n|√
|y′n−ξ′n|×|yn−ξn|

≤ d+1+|ξn−ξ′n|√
|y′n−ξ′n|×|yn−ξn|

,

(4.35)

where the last inequality follows from (4.27). Putting together (4.32)-(4.35)
leads to

0 ≤ I2,n ≤
d+ 1 +

√
4Rnd+ d2 + 4Rn(Rn + d)O(xn)+√

2εR′n ×
√

2εR′n − (d+1)−
√

4Rnd+d2+4Rn(Rn+d)O(xn)+

for all n large enough. Using again (4.23)-(4.25), it follows that

I2,n → 0 as n→ +∞. (4.36)

Finally, one has that 0 ≤ I3,n ≤ O(xn) ≤ O(xn)+ for all n, hence I3,n → 0
as n → +∞, by (4.25). Together with (4.28), (4.31) and (4.36), one gets
that

lim sup
n→+∞

xn − ξ′n
|xn − ξ′n|

· y
′
n − ξ′n
|y′n − ξ′n|

≤ 0,
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a contradiction with (4.26). The conclusion of the lemma then follows by
changing the roles of U and U ′.

Proof of Theorem 2.1. If the set U is convex, then the quantity O(x) de-
fined by (2.3) satisfies O(x) ≤ 0 for all x /∈ U , hence condition (2.4) is
immediately true in this case. Condition (2.4) holds true as well when U is
at bounded Hausdorff distance from a convex set U ′, thanks to Lemma 4.3.
The conclusion then follows from Theorem 2.2.

4.4 Counterexamples without the conditions (2.1) or (2.4)

This section essentially consists of two propositions, which assert that the
conclusions of the main results do not hold in general without the assump-
tions (2.1) or (2.4).

Proposition 4.4. Let u be the solution of (1.1) with an initial datum
u0 = 1U , where U is the union of two half-spaces with non-parallel bound-
aries. The set U satisfies (2.1) but not (2.4), and Ω(u) contains some ele-
ments which are not one-dimensional.

Proof. We consider the dimension N = 2 only, since the general case N ≥ 3
follows by trivially extending the functions in the variables x3, · · · , xN . Since
the equation (1.1) is invariant by rigid transformations, one can assume
without loss of generality that

U =
{

(x1, x2) ∈ R2 : x2 ≤ β |x1|
}
,

for some β > 0. Denote α := arctanβ ∈ (0, π/2). Notice immediately that U
satisfies (2.1), but it does not satisfy (2.4). Let u be the solution of (1.1)
in dimension N = 2, with initial condition u0 := 1U . Let v be the solution
of (1.1) in dimension N = 1, with Heaviside initial condition v0 := 1(−∞,0].
As follows from [3, 13, 17, 19, 27], there is a function t 7→ ζ(t) such that

v(t, x)− ϕ(x− ζ(t))→ 0 as t→ +∞ uniformly in x ∈ R, (4.37)

where ϕ is the (decreasing) profile of the traveling front ϕ(x − c∗t) solv-
ing (3.1), with N = 1, e = 1, and minimal speed c = c∗ = 2

√
f ′(0) (fur-

thermore, it is known that ζ(t) = c∗t − (3/c∗) ln t + x∞ + o(1) as t → +∞,
for some real number x∞). Since (1.1) is invariant by rigid transformations
and since f(a+ b) ≤ f(a) + f(b) for all a, b ≥ 0 by (3.7), it follows from the
definition of U and the maximum principle that

max
(
v(t, x2 cosα− x1 sinα), v(t, x2 cosα+ x1 sinα)

)
≤ u(t, x1, x2)

≤ v(t, x2 cosα− x1 sinα) + v(t, x2 cosα+ x1 sinα)

(4.38)
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for all t ≥ 0 and (x1, x2) ∈ R2. Together with (4.37), one gets that

lim inf
t→+∞

u
(
t, 0,

ζ(t) + ϕ−1(1/2)

cosα

)
≥ 1

2

and

lim sup
t→+∞

u
(
t, 0,

ζ(t) + ϕ−1(1/8)

cosα

)
≤ 1

4
,

where ϕ−1 : (0, 1) → R denotes the reciprocal of the decreasing function ϕ.
Consider now any sequence (tn)n∈N diverging to +∞. Up to extraction of
a subsequence, the functions (x1, x2) 7→ u(tn, x1, ζ(tn)/ cosα+ x2) converge
in C2

loc(R2) to a function ψ : R2 → [0, 1], which then belongs to Ω(u). One
has

ψ
(

0,
ϕ−1(1/2)

cosα

)
≥ 1

2
>

1

4
≥ ψ

(
0,
ϕ−1(1/8)

cosα

)
,

hence there exists a real number y ∈ (ϕ−1(1/2)/ cosα,ϕ−1(1/8)/ cosα) such
that 1/4 < ψ(0, y) < 1/2 and ∂x2ψ(0, y) < 0. Furthermore, since U is sym-
metric with respect to the axis {x1 = 0}, the function u0 is even in x1, and
so are u(t, ·) for every t > 0, and then ψ. Thus, ∂x1ψ(0, x2) = 0 for all
x2 ∈ R. From the previous observations, the gradient of ψ at the point (0, y)
is a non-zero vector parallel to the vector (0, 1). If the function ψ were
one-dimensional, it would then necessarily be written as ψ(x1, x2) ≡ Ψ(x2)
in R2, for some C2(R) function Ψ. In particular, one would have that
ψ(x1, y) = ψ(0, y) ∈ (1/4, 1/2) for all x1 ∈ R. But (4.37)-(4.38) yield

1 ≥ ψ(x1, y) = lim
n→+∞

u
(
tn, x1,

ζ(tn)

cosα
+ y
)

≥ lim
n→+∞

v(tn, ζ(tn)+y cosα−x1 sinα) = ϕ(y cosα−x1 sinα),

hence ψ(x1, y)→ 1 as x1 → +∞, leading to a contradiction. As a conclusion,
the element ψ of Ω(u) is not one-dimensional. Notice finally that all shifts
ψ(·+a1, ·+a2) of ψ belong to Ω(u), and are not one-dimensional either.

Remark 4.5. In the example considered in the above proof, the set Ω(u)
nevertheless contains some elements which are one-dimensional (apart from
the constant elements 0 and 1, which belong to Ω(u) by Proposition 3.1).
Indeed, it follows from (4.37)-(4.38) and ϕ(+∞) = 0 that, for any
% : [0,+∞)→ R with %(t)→ +∞ as t→ +∞, one has

u
(
t, %(t) + x1, %(t) tanα+

ζ(t)

cosα
+ x2

)
→ ϕ(x2 cosα− x1 sinα) as t→ +∞,

locally uniformly in (x1, x2) ∈ R2. Therefore, the one-dimensional non-
constant function (x1, x2) 7→ ϕ(x2 cosα− x1 sinα) belongs to Ω(u). So does
the one-dimensional non-constant function (x1, x2) 7→ ϕ(x2 cosα+x1 sinα),
by choosing % such that %(+∞) = −∞ and adapting the above limit.
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The second result shows that the conclusions of the main results do not
hold in general without the assumption (2.1).

Proposition 4.6. In any dimension N ≥ 2, there are measurable sets
U ⊂ RN , which satisfy (2.4) but not (2.1), such that Ω(u) contains some
elements that are not one-dimensional, where u is the solution of (1.1) with
initial datum u0 = 1U .

Proof. Consider β > 0 and U := U1 ∪ U2, with

U1 :=
{
x ∈ RN : x2 ≤ β|x1|

}
and U2 :=

⋃
k∈ZN

B
e−|k|2

(k). (4.39)

The set U1 is the same as in the proof of Proposition 4.4, and as before we
call α := arctanβ ∈ (0, π/2). Notice that U satisfies (2.4) (it is at finite
Hausdorff distance from RN ), but not (2.1). Let u, u1 and u2 denote the
solutions of (1.1) with initial conditions 1U , 1U1 and 1U2 , respectively. As
in the proof of Proposition 4.4, one has

max(u1(t, x), u2(t, x)) ≤ u(t, x) ≤ u1(t, x) + u2(t, x)

for all t ≥ 0 and x ∈ RN .
(4.40)

Furthermore, since f(s) ≤ f ′(0)s for all s ≥ 0, there holds that

0 ≤ u2(1, x) ≤ ef
′(0)

(4π)N/2

∑
k∈ZN

∫
B
e−|k|2

(k)
e−|x−y|

2/4dy

≤ ef
′(0)−|x|2/8

(4π)N/2

∑
k∈ZN

∫
B
e−|k|2

(k)
e|y|

2/4dy≤Ae−|x|2/8

for all x ∈ RN , for some positive real number A. Therefore, for any ξ ∈ SN−1,
one has 0 ≤ u2(1, x) ≤ Ae−

√
f ′(0)x·ξ+2f ′(0) for all x ∈ RN , and using again

that f(s) ≤ f ′(0)s for all s ≥ 0, the maximum principle implies that

0 ≤ u2(t, x) ≤ Ae−
√
f ′(0)x·ξ+2f ′(0)t for all t ≥ 1 and x ∈ RN .

Since ξ ∈ SN−1 was arbitrary, this yields 0 ≤ u2(t, x) ≤ Ae−
√
f ′(0) |x|+2f ′(0)t

for all t ≥ 1 and x ∈ RN . In particular, sup|x|≥ct u2(t, x) → 0 as t → +∞,

for any c > c∗ = 2
√
f ′(0).

On the other hand, from the proof of Proposition 4.4 (and the trivial
extension of all functions in the variables (x3, · · · , xN )), there is a sequence
(tn)n∈N diverging to +∞ such that the functions

x 7→ u1(tn, x1, ζ(tn)/ cosα+ x2, x3, · · · , xN )

28



converge locally uniformly in RN to a function ψ1 ∈ Ω(u1) that is not
one-dimensional. We also recall that ζ(t) ∼ c∗t as t → +∞, hence
ζ(tn)/ cosα ∼ (c∗/ cosα)tn as n→ +∞, with c∗/ cosα > c∗. It then follows
from (4.40) and the conclusion of the previous paragraph that the functions
x 7→ u(tn, x1, ζ(tn)/ cosα + x2, x3, · · · , xN ) still converge locally uniformly
in RN to the function ψ1. Therefore, Ω(u) contains the element of ψ1, which
is not one-dimensional, as well as all its shifts.

Remark 4.7. The sets U given in Propositions 4.4 and 4.6 are actually
closed and equal to the closure of their interior. By doing so, we avoid mean-
ingless counterexamples. For instance, if U1 is as in (4.39) and if U2 = ZN ,
then U := U1∪U2 satisfies (2.4) (because it is relatively dense in RN ) and it
does not satisfy (2.1). But the solutions u and u1 of (1.1) with initial condi-
tions 1U and 1U1 are actually identical in (0,+∞)×RN (since the Lebesgue
measure of U2 is equal to 0), hence Ω(u) = Ω(u1) and this counterexample
turns out to be equivalent to the one given in Proposition 4.4.

4.5 Proof of Theorem 2.3

Let u be the solution of (1.1) with an initial condition u0 = 1U and a
set U satisfying (2.1) and (2.4). Assume, by way of contradiction, that the
conclusion of Theorem 2.3 does not hold. Then, there are k ∈ {2, · · · , N}, a
sequence (tn)n∈N of positive real numbers diverging to +∞ and a sequence
(xn)n∈N in RN , such that

lim inf
n→+∞

|σk(D2u(tn, xn))| > 0. (4.41)

Up to extraction of a subsequence, the functions u(tn, xn + ·) converge
in C2

loc(RN ), to an element ψ of Ω(u). By Theorem 2.2, ψ : RN → R is
one-dimensional, hence, for all x ∈ RN , the eigenvalues of D2ψ(x) are all
equal to 0 except at most one of them, which implies that σk(D

2ψ(x)) = 0
(because k ≥ 2). On the other hand, since (−1)kσk(D

2u(tn, xn)) is the coeffi-
cient of XN−k in the characteristic polynomial X 7→ det(XIN−D2u(tn, xn))
(where IN denotes the identity matrix of size N × N), σk(D

2u(tn, xn))
is therefore a polynomial function of the coefficients of D2u(tn, xn). It
then follows from the convergence u(tn, xn + ·) → ψ in C2

loc(RN ) that
σk(D

2u(tn, xn)) → σk(D
2ψ(0)) = 0 as n → +∞. This contradicts (4.41),

and the proof of Theorem 2.3 is complete. �
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5 Directions of one-dimensional symmetry: proof
of Theorem 2.4

With Theorem 4.2 in hand, the proof of Theorem 2.4 consists in showing
that u has some partial derivatives which do not vanish as t→ +∞, around
suitable sequences of points.

Proof of Theorem 2.4. The set on the right-hand side of the equivalence
stated in the theorem is empty if and only if U is relatively dense in RN
or U = ∅. Hence the last statement of the theorem follows from the first
one.

Let us show the double inclusion between the sets, as stated in the theo-
rem. The inclusion “⊂ ” is a consequence of Theorem 4.2.

Let us turn to the inclusion “⊃ ”. Assume that U 6= ∅ is not relatively
dense in RN . Let e ∈ SN−1, (xn)n∈N in RN \ U and (ξn)n∈N in RN be such
that

lim
n→+∞

dist(xn, U) = +∞, lim
n→+∞

xn − ξn
|xn − ξn|

= e, and ξn ∈ πxn for all n ∈ N.

We need to show that e ∈ E . For n ∈ N, we set for short

kn := |xn − ξn| = dist(xn, U) and en :=
xn − ξn
|xn − ξn|

∈ SN−1.

We start with showing that

lim inf
t→+∞

(
inf

n∈N, λ∈(0,1)
∂enu(t, λxn + (1− λ)ξn)

)
< 0. (5.1)

Assume by contradiction that (5.1) does not hold. Then, for any ε > 0 there
exists τε > 0 such that

∀ t ≥ τε, ∀n ∈ N, ∀λ ∈ (0, 1), ∂enu(t, λxn + (1− λ)ξn) > −ε. (5.2)

Hypothesis (2.1) implies the existence of two constants δ,R > 0 such that
dH(U,Uδ) < R. Moreover, by parabolic estimates, there is K > 0, only
depending on f and N , such that

∀ t ≥ 1, ∀x ∈ RN , |∇u(t, x)| ≤ K. (5.3)

Call δ′ := min(δ, 1/(8K)). By (3.2) there exists τ > 0, only depending on f ,
N , δ and R, such that the solution v to (1.1) with initial datum v0 = 1

81Bδ′

satisfies v(t, x) ≥ 1/2 for all t ≥ τ and x ∈ BR. We can assume without loss
of generality that τ ≥ 1.
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Take n ∈ N. Because dH(U,Uδ) = dH(U,Uδ) < R, there exists ζn ∈ Uδ
such that |ζn − ξn| < R. It follows that u0(x) ≥ v0(x − ζn) for all x ∈ RN
and therefore, by comparison,

∀ t ≥ τ, u(t, ξn) ≥ v(t, ξn − ζn) ≥ 1

2
.

Using (5.2) we then deduce

u
(
τε + τ, ξn + min

( 1

4ε
, kn

)
en

)
≥ 1

4
.

We now start an iterative argument. By (5.3) (recall that τ ≥ 1) we get

∀x ∈ B 1
8K
, u

(
τε + τ, ξn + min

( 1

4ε
, kn

)
en + x

)
≥ 1

8
.

Since δ′ ≤ 1/(8K), this allows us to compare u(τε+τ+·, ξn+min( 1
4ε , kn)en+·)

with v and obtain

u
(
τε + 2τ, ξn + min

( 1

4ε
, kn

)
en

)
≥ 1

2
,

whence by (5.2)

u
(
τε + 2τ, ξn + min

( 2

4ε
, kn

)
en

)
≥ 1

4
.

We iterate jn times this procedure, where jn is the smallest j ∈ N satisfying
j/(4ε) ≥ kn. Namely, for any n ∈ N we have shown that

u(τε + jnτ, xn) ≥ 1

4
with jn ∈ N such that jn − 1 < 4εkn ≤ jn. (5.4)

We compute

dist(xn, U)

τε + jnτ
=

kn
τε + jnτ

>
kn

τε + (4εkn + 1)τ
→ 1

4ετ
as n→ +∞.

Take c > c∗ and ε < 1/(4τc). It follows from the above estimate that
dist(xn, U)>c(τε + jnτ) for n large enough, but then (5.4) contradicts (3.5)
because (jn)n∈N diverges to +∞ since (kn)n∈N does. This proves (5.1).

We can now conclude. By (5.1) there exist ε > 0, a diverging se-
quence (tk)k∈N in R+, a sequence (nk)k∈N in N and a sequence (λk)k∈N
in (0, 1) such that

∂enku(tk, yk) < −ε, where yk := λkxnk + (1− λk)ξnk .

Therefore, by parabolic estimates, the sequence of functions (u(tk, yk+·))k∈N
converges in C1

loc(RN ) (up to subsequences) towards a function ψ ∈ Ω(u)
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satisfying ∂eψ(0) ≤ −ε. Moreover, since ξnk ∈ πxnk , there also holds by
definition of yk that ξnk ∈ πyk and

yk − ξnk
|yk − ξnk |

= enk → e as k → +∞.

We deduce from Theorem 4.2 that ψ(x) ≡ Ψ(x · e) for some nonincreasing
function Ψ ∈ C2(R). We further know that Ψ′(0) ≤ −ε < 0. Theorem 4.2
then implies that Ψ is actually strictly decreasing in R, hence e ∈ E .

6 The subgraph case: proof of Corollary 2.5

We now turn to Corollary 2.5, which is a consequence of Theorems 2.2
and 2.4. In order to check the geometric condition (2.4) of these two theo-
rems, we will make use of the following simple property of functions with
vanishing global mean.

Lemma 6.1. Let γ : RN−1 → R satisfy (2.6). Then

M := sup
x′,y′∈RN−1

|γ(x′)− γ(y′)|
|x′ − y′|+ 1

< +∞. (6.1)

In particular, |xN − γ(x′)| ≤M for all (x′, xN ) ∈ ∂U .

Proof. By (2.6), there exists L > 0 such that

sup
x′∈RN−1, y′∈RN−1, |x′−y′|≥L

|γ(x′)− γ(y′)|
|x′ − y′|

≤ 1.

Consider x′, y′ ∈ RN−1. Let z′ ∈ RN−1 be such that |z′ − x′| = L and
|z′ − y′| ≥ L. We have that

|γ(x′)−γ(y′)| ≤ |γ(x′)−γ(z′)|+ |γ(z′)−γ(y′)| ≤ L+ |z′−y′| ≤ 2L+ |x′−y′|,

from which the desired estimate immediately follows. The last statement of
Lemma 6.1 is an immediate consequence of (6.1).

Proof of Corollary 2.5. The proof consists in showing that the assumptions
of this corollary entail, on one hand, that U fulfills the hypotheses (2.1), (2.4)
of Theorems 2.2 and 2.4, and, on the other hand, that

lim
n→+∞

xn − ξn
|xn − ξn|

= eN , (6.2)

for any sequence (xn)n∈N satisfying dist(xn, U)→ +∞ as n→ +∞ and any
sequence (ξn)n∈N such that ξn ∈ πxn for each n ∈ N.
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By (2.6), there exists L > 0 such that

∀x′ ∈ RN−1, ∀ y′ ∈ RN−1\B′L(x′), γ(y′) ≥ γ(x′)− |y′ − x′|. (6.3)

It follows that, for any x′ ∈ RN−1,

U ⊃
{

(y′, yN ) ∈ (RN−1\B′L(x′))× R : yN ≤ γ(x′)− |y′ − x′|
}
.

Take δ > 0. Since the set in the right-hand side above contains the N -
dimensional ball Bδ((x

′ + y′, γ(x′) + yN )), for any (y′, yN ) with |y′| = L+ δ
and yN ≤ −L− 3δ, we find that

∂B′L+δ(x
′)× (−∞, γ(x′)− L− 3δ) ⊂ Uδ for all x′ ∈ RN−1.

From this inclusion, and the fact that

dist
(
(x′, xN ), ∂B′L+δ(x

′)× (−∞, γ(x′)−L−3δ)
)
≤
√

(L+δ)2 + (L+3δ)2

for all (x′, xN ) ∈ U , we deduce that

dH(U,Uδ) ≤
√

(L+ δ)2 + (L+ 3δ)2,

that is, (2.1) holds for any δ > 0.
Next, we claim that

sup
x=(x′,xN )∈RN , dist(x,U)=R, ξ=(ξ′,ξN )∈πx

|x′ − ξ′|
R

→ 0 as R→ +∞. (6.4)

To show (6.4), take R > 0, consider any point xR = (x′R, xR,N ) ∈ RN
such that dist(xR, U) = R and let ξR = (ξ′R, ξR,N ) ∈ πxR (remember that
πxR ⊂ ∂U). The quantity hR := xR,N−γ(x′R) satisfies hR ≥ R. We compute

R2 = |(x′R, γ(x′R) + hR)− (ξ′R, ξR,N )|2

≥ |x′R − ξ′R|2 + h2R − 2hR|γ(x′R)− ξR,N |.
(6.5)

If x′R − ξ′R stays bounded as R → +∞ then the limit in (6.4) trivially
holds. Suppose instead that (up to subsequences) |x′R − ξ′R| → +∞ as
R → +∞. Then, by hypothesis (2.6) and Lemma 6.1, it follows that
|γ(x′R) − ξR,N | ≤ |x′R − ξ′R|/2 for R large, and thus, for such values of R,
(6.5) yields

R2 ≥ |x′R − ξ′R|2 + h2R − hR|x′R − ξ′R| ≥
1

2
|x′R − ξ′R|2 +

1

2
h2R ≥

1

2
h2R,

that is, hR ≤
√

2R. Recalling that hR ≥ R, we then derive from (6.5) and
Lemma 6.1 that

|x′R − ξ′R|
R

≤ 2
hR|γ(x′R)− ξR,N |

R|x′R − ξ′R|
≤ 2
√

2
|γ(x′R)− ξR,N |
|x′R − ξ′R|

≤ 2
√

2
|γ(x′R)− γ(ξ′R)|+M

|x′R − ξ′R|
,
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which tends to 0 as R→ +∞ by (2.6). This shows that property (6.4) holds.
Now, consider any sequence (xn)n∈N in RN\U such that dist(xn, U)→+∞

as n → +∞, and any sequence (ξn)n∈N such that ξn ∈ πxn for each n ∈ N.
By Lemma 6.1, one has that

|xn−ξn| ≥ xn,N−ξn,N ≥ xn,N−γ(ξ′n)−M ≥ xn,N−γ(x′n)−2M−M |x′n−ξ′n|

for all n ∈ N. But xn,N − γ(x′n) = |xn − (x′n, γ(x′n))| ≥ |xn − ξn| since
ξn ∈ πxn . Hence |xn − ξn| ≥ xn,N − ξn,N ≥ |xn − ξn| − 2M −M |x′n − ξ′n|,
and the last quantity is equivalent to |xn − ξn| = dist(xn, U) as n → +∞,
by (6.4). As a consequence, xn,N−ξn,N ∼ |xn−ξn| as n→ +∞ and, together
with (6.4) again, the property (6.2) follows.

We are left to show (2.4). As before, let xR = (x′R, xR,N ) ∈ RN such that
dist(xR, U) = R > 0. We want to estimate O(xR) defined by (2.3) when R
is large, i.e.

O(xR) = sup
ξ∈πxR , y∈U\{ξ}

xR − ξ
R

· y − ξ
|y − ξ|

.

We first consider the set of points ξ, y satisfying |y − ξ| <
√
R. Since at any

ξ ∈ πxR and y ∈ U it holds that

R2 ≤ |xR − y|2 = R2 + |ξ − y|2 + 2(xR − ξ) · (ξ − y),

we derive

sup
ξ∈πxR , y∈U, 0<|y−ξ|<

√
R

xR − ξ
R

· y − ξ
|y − ξ|

≤ 1

2
√
R
→ 0 as R→ +∞. (6.6)

It remains to estimate the above scalar product when |y−ξ| ≥
√
R. We first

observe that, for ξ = (ξ′, ξ′N ) 6= y = (y′, yN ),

xR − ξ
R

· y − ξ
|y − ξ|

≤
(
|x′R − ξ′|

R
+

(xR,N − ξN )(yN − ξN )

R|y − ξ|

)
. (6.7)

Let ξ ∈ πxR and y ∈ U \{ξ}. The first term of the right-hand side is handled
by (6.4). As for the second term, we notice that (6.2) and Lemma 6.1 imply
that xR,N − ξN ≥ 0 for R large enough, and ξN ≥ γ(ξ′) −M . Therefore,
since yN ≤ γ(y′), it follows that

(xR,N − ξN )(yN − ξN )

R|y − ξ|
≤

(xR,N − ξN )(γ(y′)− γ(ξ′) +M)

R|y − ξ|

≤ |γ(y′)− γ(ξ′)|+M

|y − ξ|

(6.8)
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for all R large enough. From this, on one hand, restricting to |y′−ξ′| ≥ 3
√
R,

it follows from (2.6) that

sup
dist(xR,U)=R, ξ=(ξ′,ξ′N )∈πxR
y=(y′,yN )∈U, |y′−ξ′|≥ 3√R

(xR,N−ξN )(yN−ξN )

R|y − ξ|

≤ sup
ξ′,y′∈RN−1

|y′−ξ′|≥ 3√R

|γ(y′)−γ(ξ′)|+M
|y′ − ξ′|

−→
R→+∞

0.

(6.9)

On the other hand, when |y′ − ξ′| < 3
√
R, we deduce from (6.8) that

sup
dist(xR,U)=R, ξ=(ξ′,ξ′N )∈πxR

y=(y′,yN )∈U |y′−ξ′|< 3√R, |y−ξ|≥
√
R

(xR,N − ξN )(yN − ξN )

R|y − ξ|

≤ 2M + 3
√
R√

R
−→

R→+∞
0.

(6.10)

Summing up, (2.4) follows from the estimates (6.6) and (6.7), (6.4), (6.9),
and (6.10).

7 Directional asymptotic one-dimensional symme-
try

The arguments of the proof of Theorem 2.2 can somehow be localized.
Loosely speaking, if one focuses on the asymptotic one-dimensional prop-
erty around a given direction, the global geometric assumption (2.4) can be
restricted to the points x around that direction, and hypothesis (2.1) can be
relaxed too. Under such weaker assumptions, we derive the one-dimensional
symmetry for functions belonging to the directional Ω-limit set of the solu-
tion, which is defined as follows.

Definition 7.1. For a given bounded function u : R+ × RN → R and for
any direction e ∈ SN−1, the set

Ωe(u) :=
{
ψ ∈ L∞(RN ) : u(tn, xn + ·)→ ψ in L∞loc(RN )
for some sequences (tn)n∈N in R+ diverging to +∞,
and (xn)n∈N in RN \ {0} such that xn/|xn| → e as n→ +∞

}
is called the Ω-limit set in the direction e of u. Notice that Ωe(u) ⊂ Ω(u).

Theorem 7.2. Let u be a solution of (1.1) with an initial condition u0=1U ,
where U⊂RN has nonempty interior and satisfies

U ⊂
{

(x′, xN ) ∈ RN−1 × R : xN ≤ γ(x′)
}
, (7.1)
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for a function γ ∈ L∞loc(RN−1) such that

lim sup
|x′|→+∞

γ(x′)

|x′|
≤ 0. (7.2)

Then, any function ψ ∈ ΩeN (u) is one-dimensional and satisfies

ψ(x′, xN ) ≡ Ψ(xN ) in RN ,

with Ψ ∈ C2(R) either constant or strictly decreasing. In particular it holds
that

∇x′u(t, x′, xN )→ 0 as t→ +∞,
locally in x′∈RN−1 and uniformly in xN ∈ [R,+∞),

for any R ∈ R, and moreover if the inclusion is replaced by an equality
in (7.1), then

∇x′u(t, x′, xN )→ 0 as t→ +∞,
locally in x′∈RN−1 and uniformly in xN ∈R.

Proof. We prove the result showing that, when restricted to the directional
Ω-limit set ΩeN (u), the arguments of the proof of Theorem 4.2 can be per-
formed with hypotheses (2.1) and (2.4) replaced by the assumptions that U
has nonempty interior and fulfills (7.1)-(7.2). We will also show that the
functions in ΩeN (u) are one-dimensional precisely in the direction eN . The
situation is simpler here and we do not need to introduce any coordinates
transformation.

Assume by contradiction that there exists ψ ∈ ΩeN (u) satisfying
∇x′ψ(x̄) 6= 0 for some x̄ ∈ RN . Let (tn)n∈N in R+ and (xn)n∈N in RN \{0}
be the associated sequences given in Definition 7.1, that is,

tn → +∞ and
xn
|xn|

→ eN as n→ +∞. (7.3)

Since U has nonempty interior, the invasion property (3.2) applies and yields

∀ c ∈ (0, c∗), |xn| ≥ ctn for all n sufficiently large, (7.4)

because otherwise ψ ≡ 1 in RN . In particular, (xn)n∈N needs to be un-
bounded. Therefore, up to replacing (xn)n∈N with (xn + x̄)n∈N, we can as-
sume without loss of generality that x̄ = 0. Namely, the sequences (tn)n∈N,
(xn)n∈N satisfy (7.3) and (7.4), and by parabolic estimates it holds that

∇u(tn, xn)→ β as n→ +∞, (7.5)
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with β = (β′, βN ), β′ 6= 0. We write, for n ∈ N, xn = (x′n, xn,N ). Proper-
ties (7.3), (7.4) immediately imply

∀ c ∈ (0, c∗), xn,N = xn · eN ≥ ctn for all n sufficiently large. (7.6)

Similarly, (3.5) implies that lim supn→+∞ dist(xn, U)/tn ≤ c∗ (because
otherwise ψ ≡ 0 in RN ). Furthermore, it follows from (7.1)-(7.3) and
limn→+∞ |xn| = +∞, that dist(xn, U) ∼ xn,N as n → +∞. Therefore,
lim supn→+∞ xn,N/tn ≤ c∗, hence

|x′n| = o(tn) as n→ +∞, (7.7)

by using (7.3) again.
For given ϑ > 0, define the sets

Hn := B′ϑtn × (−∞, ϑtn], Vn :=
{
xn + s(β + ζ) : s ∈ R, ζ ∈ Bϑ

}
.

Consider a point P = (P ′, PN ) ∈ Vn satisfying PN ≤ ϑtn. Namely,
P = xn + s(β + ζ) for some ζ ∈ Bϑ and s ∈ R such that

ϑtn ≥ xn,N − (|βN |+ ϑ)|s|.

As a consequence, if ϑ < |β′| we derive

|P ′| ≥ (|β′| − ϑ)|s| − |x′n| ≥
|β′| − ϑ
|βN |+ ϑ

(xN,n − ϑtn)− |x′n|.

Since β′ 6= 0 and |x′n|/xn,N → 0 as n → +∞ due to (7.3), using (7.6) one
can find ϑ ∈ (0,min(|β′|, c∗/2)) sufficiently small, only depending on β′, βN
and c∗, such that, for n large, |P ′| > ϑtn, i.e. P /∈ Hn. With this choice it
holds that Hn ∩ Vn = ∅ for n sufficiently large.

We then set

σ :=
ϑ

3
> 0, ε :=

ϑ

2
> 0. (7.8)

We further take δ > 0 such that Uδ 6= ∅ and finally L > 0 large enough so
that (4.1) holds, the latter being possible due to (7.1)-(7.2). Observe that
0 < σ < ϑ < c∗/2. This means that U fulfills the hypotheses of Lemma 4.1.
Therefore, for n ∈ N, the solution uϑtn of (1.1) whose initial datum is equal
to the indicator function of the set U ∩ (B′ϑtn × R) satisfies (4.2), i.e.

∥∥u(tn, ·)− uϑtn(tn, ·)
∥∥
C1(B′

ϑtn/3
×R+)

<
ϑ

2
,

provided n is sufficiently large. By (7.5)-(7.7), one has |∇uϑtn(tn, xn)−β| < ϑ
for all n sufficiently large. This means that, for such values of n, the line Γn
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passing through the point xn and directed as ∇uϑtn(tn, xn) is contained in
the set Vn defined before, whence(

Γn ∩Hn

)
⊂
(
Vn ∩Hn

)
= ∅ for all n sufficiently large.

On the other hand, we have that

suppuϑtn(0, ·) ⊂ U ∩ (B′ϑtn × R) ⊂ Hn for all n sufficiently large. (7.9)

We are thus in a position to apply the reflection argument. Namely, pro-
ceeding as in Step 4 of the proof of Theorem 4.2, with uϑtnn replaced by uϑtn ,
we reach a contradiction thanks to the Hopf lemma. This proves that
any ψ ∈ ΩeN (u) satisfies ∇x′ψ ≡ 0, that is, there is a C2(R) function Ψ
such that ψ(x) ≡ Ψ(xN ) in RN . The monotonicity of Ψ can then be shown
as in Step 5 of the proof of Theorem 4.2, with un replaced by u, kneN
by xn, and kn by xn,N . Furthermore, similarly as in Step 6 of the proof of
Theorem 4.2, the function Ψ is either constant or strictly decreasing.

Let us deal now with the last part of the theorem concerning the con-
vergences of ∇x′u towards 0. Consider a diverging sequence (tn)n∈N in R+,
a bounded sequence (x′n)n∈N in RN−1 and a sequence (xn,N )n∈N in R. By
parabolic estimates, as n→ +∞, the function u(tn, (x

′
n, xn,N ) + ·) converge

in C2
loc(RN ), up to extraction of a subsequence, towards a function ψ. On one

hand, if up to extraction of another subsequence, xn,N → +∞ as n→ +∞,
then ψ ∈ ΩeN (u) and thus, by the first part of the theorem proved above,
there is a C2(R) function Ψ such that ψ(x) ≡ Ψ(xN ) in RN . On the other
hand, if (xn,N )n∈N is bounded then ψ ≡ 1 in RN due to (3.2). Summing up,
we have ∇x′u(tn, x

′
n, xn,N )→ 0 as n→ +∞ when (xn,N )n∈N is bounded from

below. This proves the first convergence of ∇x′u stated in the theorem. We
are left with the case where, up to subsequences, xn,N → −∞ as n → +∞
and the inclusion is replaced by an equality in (7.1). In such a case, even
if it means replacing U by a measurable set U ′ ⊃ U such that U ′ \ U has
zero Lebesgue measure, the set U contains, for given δ > 0, the half-cylinder
B′δ × (−∞, ess infB′δ γ), where ess infB′δ γ > −∞ because γ ∈ L∞loc(RN−1).
We deduce

Uδ ⊃ {0} × (−∞, ess inf
B′δ

γ − δ),

where 0 above stands for the origin in RN−1. It follows from property (3.4)
of Proposition 3.1 that u(t, x′, xN )→ 1 as t→ +∞ locally in x′∈RN−1 and
uniformly in xN ∈ (−∞, R], for any R > 0. This implies that ψ ≡ 1 in RN ,
hence ∇x′u(tn, x

′
n, xn,N )→ 0 as n→ +∞ up to subsequences. The proof of

the theorem is complete.
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8 Extensions and open questions

We list in this last section some extensions of the main results for more
general initial data, as well as some open questions and conjectures.

Some extensions of the main results

First of all, we point out that the conclusions of the main results of Sec-
tion 2 still hold for the solutions to (1.1) with measurable initial conditions
u0 : RN → [0, 1] more general than characteristic functions. To be more
precise, if there are h ∈ (0, 1] and δ > 0 such that (2.1) is replaced by

dH
(
{u0 ≥ h}, suppu0

)
< +∞ and dH

(
{u0 ≥ h}, {u0 ≥ h}δ

)
< +∞, (8.1)

and if (2.4) is replaced by

lim
R→+∞

(
sup

x∈RN , dist(x,suppu0)=R
O(x)

)
≤ 0, (8.2)

then the conclusion of Theorem 4.2 – and thus of Theorem 2.2 – holds true.
Indeed, first of all, one checks that Proposition 3.1 holds with U and Uδ
replaced by suppu0 and {u0 ≥ h}δ respectively, where, for the proof of (3.4),
one defines v as the solution with initial datum v0 = h1Bδ . Then Lemma 4.1
still holds with uR0 := u0 1B′R×R and with the assumption (4.1) replaced by {u0 ≥ h}δ ∩BL 6= ∅,suppu0 \ (B′L × R) ⊂

{
(x′, xN ) ∈ RN−1 × R : xN ≤

σ

2c∗
|x′|
}

(but now in the conclusion (4.2) the time τε depends on h too). Next, one
repeats the arguments of the proof of Theorem 4.2 with the Un defined as
rigid transformations of suppu0 in place of U , and

L := dH
(
{u0 ≥ h}, {u0 ≥ h}δ

)
+ 1

in (4.14) and (4.21).
As a consequence of Theorem 2.2, the conclusion of Theorem 2.3 still

holds for initial conditions u0 satisfying (8.1)-(8.2) instead of u0 = 1U

with (2.1) and (2.4). Similarly, the conclusion of Theorem 2.4 holds for
such u0’s, with U replaced by suppu0 in the statement, while the con-
clusion of Corollary 2.5 holds when dH

(
{u0 ≥ h}, suppu0

)
< +∞ and

dH
(
U, suppu0

)
< +∞, with U still satisfying (2.5)-(2.6). Finally, the con-

clusion of Theorem 2.1 is satisfied when u0 fulfills (8.1) instead of (1.3)
and (2.1), and when the convexity – or convex proximity – of U is replaced
by that of suppu0.
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Some open questions and conjectures

To complete the paper, we propose a list of open questions and conjectures
related to our results. First of all, let us call ϕ the traveling front profile with
minimal speed, that is, for each e ∈ SN−1, ϕ(x · e− c∗t) satisfies (1.1) with
0 = ϕ(+∞) < ϕ < ϕ(−∞) = 1 and c∗ = 2

√
f ′(0). Based on Theorems 2.2

and 4.2, and according to the definition (2.7) of E , we propose the following.

Conjecture 8.1. Let u be as in Theorem 2.2. Then,

Ω(u) =
{

0, 1, ϕ(x · e+ a) : e ∈ E , a ∈ R
}
.

This conjecture is known to hold when U is bounded with non-empty
interior, by [7, 24], and when U is the subgraph of a bounded function, or
more generally when there are two half-spaces H and H ′ –necessarily with
parallel boundaries– such that H ⊂ U ⊂ H ′, by [2, 3, 13, 19, 27].

We have shown in Lemma 4.3 that the assumption (2.4) of Theorem 2.2
is stable by bounded perturbations of the sets U . We could then wonder
whether the asymptotic one-dimensional symmetry is also stable with respect
to bounded perturbations of the initial support. Namely, if the solution
to (1.1) with an initial datum 1U satisfying (2.1) is asymptotically locally
planar, and if U ′ ⊂ RN satisfies (2.1) and dH(U ′, U) < +∞, then is the
solution to (1.1) with initial datum 1U ′ asymptotically locally planar as
well?

One can also wonder whether the reciprocal of Theorem 2.2 is true, in
the following sense: if the asymptotic one-dimensional symmetry holds for
a solution u of (1.1) with initial datum 1U and U satisfying (2.1), does
necessarily U fulfill (2.4)? The answer is immediately seen to be negative in
general: take for instance U given by

U =
⋃
n∈N

[2n, 2n + 1]× RN−1,

which fulfills (2.1) but not (2.4), while u – hence any element of Ω(u) – is
one-dimensional, depending on the variable x1 only. However, the question
is open if U is connected.

Our study concerns the Fisher-KPP equation, with functions f satis-
fying (1.2). However, the same question of asymptotic one-dimensional
symmetry can be asked for more general reaction terms f , still with
f(0) = f(1) = 0. First of all, the hypothesis (2.1) should be strength-
ened, by requiring δ > 0 to be large enough. Indeed, if f is for instance of
the bistable type

f ′(0) < 0, f ′(1) < 0, f < 0 in (0, α), f > 0 in (α, 1),

∫ 1

0
f(s)ds > 0 (8.3)
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for some α ∈ (0, 1), then by [6, 28] there is δ0 > 0 such that the solution
to (1.1) with initial condition u0 = 1Bδ0

converges uniformly as t→ +∞ to a
ground state, that is, a positive radial solution converging to 0 as |x| → +∞,
hence u is not asymptotically locally planar. However, if u0 := 1Bδ with
δ > δ0, then u(t, x) → 1 as t → +∞ locally uniformly in x ∈ RN . We then
say that the invasion property holds if there is ρ such that the solution u
to (1.1) with initial condition 1Bρ satisfies u(t, x) → 1 as t → +∞ locally
uniformly in x ∈ RN . For general functions f for which the invasion property
holds, if U is bounded and Uρ 6= ∅, then the solutions to (1.1) with initial
condition 1U are known to be asymptotically locally planar, by [16]. The
same conclusion holds for bistable functions f of the type (8.3) if there
are two half-spaces H and H ′ –necessarily with parallel boundaries– such
that H ⊂ U ⊂ H ′, by [2, 8, 20, 21] (see also [23] for the case of more
general functions f). On the other hand, still for bistable functions f of
the type (8.3), the solutions u to (1.1) with initial condition 1U are not
asymptotically locally planar if U is V-shaped, that is, if it is the union
of two half-spaces with non-parallel boundaries, by [10, 11, 22, 25]. These
known results lead us to formulate the following De Giorgi type conjecture
for the solutions of the reaction-diffusion equation (1.1) beyond the Fisher-
KPP case.

Conjecture 8.2. Assume that the invasion property holds for some ρ > 0.
Let u be the solution to (1.1) with an initial datum u0 = 1U such that
U ⊂ RN satisfies dH(U,Uρ) < +∞ and (2.4). Then any function in Ω(u) is
one-dimensional and, in addition, it is either constant or strictly monotone.

Let us also mention another natural question related to the preservation
of the convexity of the upper level sets of u when u0 = 1U and U is convex.
It is known from [4, 15] that, if U is convex, then the solution of the heat
equation ∂tu = ∆u is quasi-concave at each t > 0, that is, for each t > 0
and λ ∈ R, the upper level set {x ∈ RN : u(t, x) > λ} is convex. The same
conclusion holds for (1.1) set in bounded convex domains instead of RN , and
under some additional assumptions on f , by [14]. A natural question is to
wonder for which class of functions f this property still holds for (1.1) in RN .

Notice finally that, for any solution u to (1.1), for any sequence (tn)n∈N
diverging to +∞, and for any sequence (xn)n∈N in RN , the functions
u(tn + ·, xn + ·) converge locally uniformly in R×RN , up to extraction of a
subsequence, to an entire solution to (1.1) (that is, solution for all t ∈ R).
Remembering Theorem 2.1 on the asymptotic one-dimensional symmetry for
the solutions to (1.1) with u0 = 1U and U convex, and having in mind the
question of the previous paragraph on the convexity of the upper level sets, it
is then natural to ask the following: if an entire solution v : R×RN → [0, 1]
to (1.1) is quasi-concave for every t ∈ R, is v(t, ·) necessarily one-dimensional
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for every t ∈ R?
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problème biologique. Bull. Univ. État Moscou, Sér. Intern. A, 1:1-26, 1937.

[18] N. V. Krylov. Lectures on elliptic and parabolic equations in Sobolev spaces,
volume 96 of Graduate Studies in Mathematics. Amer. Math. Soc., Providence,
RI, 2008.

[19] K.-S. Lau. On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and
Piscounov. J. Diff. Equations, 59:44–70, 1985.

[20] H. Matano and M. Nara. Large time behavior of disturbed planar fronts in the
Allen-Cahn equation. J. Diff. Equations, 251:3522–3557, 2011.

[21] H. Matano, M. Nara, and M. Taniguchi. Stability of planar waves in the Allen-
Cahn equation. Comm. Part. Diff. Equations, 34:976–1002, 2009.

[22] H. Ninomiya and M. Taniguchi, Existence and global stability of traveling
curved fronts in the Allen-Cahn equations. J. Diff. Equations, 213:204–233,
2005.
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