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Abstract
Let u be a solution of the Fisher-KPP equation

∂tu = ∆u + f(u), t > 0, x ∈ RN .

We address the following question: does u become locally planar as t → +∞?
Namely, does u(tn, xn + ·) converge locally uniformly, up to subsequences, towards a
one-dimensional function, for any sequence ((tn, xn))n∈N in (0,+∞)×RN such that
tn → +∞ as n → +∞? This question is in the spirit of a conjecture of De Giorgi
for stationary solutions of Allen-Cahn equations. The answer depends on the initial
datum u0 of u. It is known to be affirmative when the support of u0 is bounded or
when it lies between two parallel half-spaces. Instead, the answer is negative when
the support of u0 is “V-shaped”. We prove here that u is asymptotically locally
planar when the support of u0 is a convex set (satisfying in addition a uniform inte-
rior ball condition), or, more generally, when it is at finite Hausdorff distance from
a convex set. We actually derive the result under an even more general geometric
hypothesis on the support of u0. We recover in particular the aforementioned results
known in the literature. We further characterize the set of directions in which u is
asymptotically locally planar, and we show that the asymptotic profiles are mono-
tone. Our results apply in particular when the support of u0 is the subgraph of a
function with vanishing global mean.

Keywords: reaction-diffusion equations, large-time dynamics, symmetry, monoto-
nicity.

1 Introduction

In this paper, we are interested in the large time description of solutions of the Fisher-KPP
reaction-diffusion equation

∂tu = ∆u+ f(u), t > 0, x ∈ RN , (1.1)
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Université), LabEx CARMIN (ANR-10-LABX-59-01), and Università degli Studi di Roma La Sapienza,
where he was Sapienza Visiting Professor and where part of this work was done.
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with N ≥ 2. The Fisher-KPP condition of [9, 17] is
f(0) = f(1) = 0,

f(s) > 0 for all s ∈ (0, 1),

s 7→ f(s)

s
is nonincreasing in (0, 1].

(1.2)

As long as the regularity is concerned, we assume that f ∈ C1([0, 1]). These assumptions
on f will always be understood to hold.

We consider the Cauchy problem associated with (1.1). The initial condition
u(0, ·) = u0 is assumed to be a characteristic function 1U of a measurable set U ⊂ RN , i.e.

u0(x) =

{
1 if x ∈ U,
0 if x ∈ RN \U.

(1.3)

This Cauchy problem is well posed and, given u0, there is a unique bounded classical solu-
tion u of (1.1) such that u(t, ·)→ u0 as t→ 0+ in L1

loc(RN). Furthermore, 0 ≤ u(t, x) ≤ 1
for all t ≥ 0 and x ∈ RN , from the maximum principle. For mathematical convenience,
we extend f by 0 in R \ [0, 1], and the extended function, still denoted f , is then Lipschitz
continuous in R.

Instead of initial conditions u0 = 1U , we could also have considered multiples α1U
of characteristic functions, with α > 0, or even other more general initial conditions
0 ≤ u0 ≤ 1 for which the upper level set {x ∈ RN : u0(x) ≥ h} is at bounded Haus-
dorff distance from the support of u0, for some h ∈ (0, 1) (see Section 8 below). But we
preferred to keep the assumption u0 = 1U for the sake of simplicity of the presentation of
the statements.

The goal of the paper is to understand whether, and under which condition on the
initial datum, the solution of (1.1) eventually becomes locally planar as time goes on. To
express this property in a rigorous way, we consider the notion of the Ω-limit set of a given
bounded function u : R+ × RN → R, which is defined as follows:

Ω(u) :=
{
ψ ∈ L∞(RN) : u(tn, xn + ·)→ ψ in L∞loc(RN) as n→ +∞,
for some sequences (tn)n∈N in R+ diverging to +∞, and (xn)n∈N in RN

}
.

(1.4)

Roughly speaking, the Ω-limit set contains all possible asymptotic profiles of the function
as t→ +∞. Notice that, for any bounded solution u of (1.1), the set Ω(u) is not empty and
is included in C2(RN), from standard parabolic estimates. We say that u is asymptotically
locally planar if every ψ ∈ Ω(u) is one-dimensional, that is, if ψ(x) ≡ Ψ(x · e) for all
x ∈ RN , for some Ψ ∈ C2(R) and e ∈ SN−1, where SN−1 := {x ∈ RN : |x| = 1}, | · |
denotes the Euclidean norm in RN , and “·” denotes the Euclidean scalar product in RN .
Furthermore, we say that ψ is one-dimensional and (strictly) monotone if ψ is as above
with Ψ (strictly) monotone.

This property reclaims the De Giorgi conjecture about bounded solutions of the Allen-
Cahn equation (that is, bounded stationary solutions of the reaction-diffusion equation
∆u+ u(1− u)(u− 1/2) = 0 in RN , obtained after a change of unknown from the original
Allen-Cahn equation), see [5].
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Let us review the results in the literature about the asymptotic one-dimensional sym-
metry. Consider, as before, solutions emerging from indicator functions of a set U . First,
the asymptotic one-dimensional symmetry is known to hold when U is bounded, as a
consequence of [16]. The case of unbounded sets U has been much less studied in the
literature. However, the asymptotic one-dimensional symmetry is known to hold when U
is the subgraph of a bounded function, by [2, 3, 13, 19, 27]. Conversely, the property
fails when U is “V-shaped”, i.e. when U is the union of two half-spaces with non-parallel
boundaries, as follows from the methods developed in [12], see Proposition 4.4 below for
further details. The properties listed in this paragraph are known to hold for other types
of function f as well, see [2, 8, 10, 11, 20, 21, 22, 25] and Section 8.

A possible interpretation of these results is that the asymptotic one-dimensional sym-
metry holds provided U is “not too far” from a convex set. This is indeed what we
will show.

2 Statement of the main results

In order to state our main results, we define the notion of positive-distance-interior of a
set U ⊂ RN as

Uδ :=
{
x ∈ U : dist(x, ∂U) ≥ δ

}
, δ > 0,

where dist(x,A) := inf
{
|x − y| : y ∈ A

}
for a set A ⊂ RN , with the convention

dist(x,A) = +∞ if A = ∅. Throughout the paper, we denote

Br(x) :=
{
y ∈ RN : |x− y| < r

}
and Br := Br(0),

for any x ∈ RN and r > 0. We will also make use of the Hausdorff distance between
subsets of RN , which is defined, for A,B ⊂ RN , by

dH(A,B) := max
(

sup
x∈A

dist(x,B), sup
y∈B

dist(y, A)
)
,

with the conventions that

dH(A, ∅) = dH(∅, A) = +∞ if A 6= ∅ and dH(∅, ∅) = 0.

Theorem 2.1. Let u be the solution of (1.1) with an initial datum u0 = 1U such that
U ⊂ RN satisfies

∃ δ > 0, dH(U,Uδ) < +∞. (2.1)

Assume moreover that U is convex or nearly convex, that is, that there exists a convex
set U ′ ⊂ RN satisfying dH(U,U ′) < +∞. Then any function in Ω(u) is one-dimensional
and, in addition, it is either constant or strictly monotone.

Theorem 2.1 extends the known results about the asymptotic one-dimensional symme-
try for the Fisher-KPP equation that, we recall, have been established under the assump-
tion that U is bounded [16], or it is the subgraph of a bounded function [2, 3, 13, 19, 27].

Condition (2.1) means that there exists some R > 0 such that, for any x ∈ U , there is
a ball Bδ(x0) contained in U of radius δ and centered at a point x0 such that |x−x0| < R.
It is fulfilled in particular if U satisfies a uniform interior ball condition. It is not hard
to see that, in dimension N = 2, for a convex set U , property (2.1) is equivalent to
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require that U has nonempty interior. The role of assumption (2.1) is cutting off regions
of U which play a negligible role in the large-time behavior of the solution of the Cauchy
problem. This assumption is necessary, otherwise one could take a set U ′ for which the
asymptotic one-dimensional symmetry fails (for instance V-shaped), then consider the set
U := U ′ ∪

⋃
k∈ZN Be−|k|2 (k): the set U is nearly convex, being at finite Hausdorff distance

from the convex set RN , but it does not satisfy (2.1) and the asymptotic one-dimensional
symmetry fails for U , see Proposition 4.6 below for further details.

Let us describe the idea of the proof of Theorem 2.1, in relation with the previous
proofs in the literature. First, when U is the subgraph of a bounded function, the one-
dimensional symmetry is derived combining [3] or [13, 19, 27] with the Liouville-type result
of [2], which asserts that an entire solution trapped between two translations of a planar
traveling front is necessary a planar traveling front – hence one-dimensional at every time.
The Liouville result is proved using the sliding method. The proof of [16] concerning the
case where U is bounded is much quicker. It relies on the same reflection argument as in
the moving plane method. This very elegant proof works for arbitrary nonlinear terms f ,
but unfortunately fails as soon as U is unbounded. To circumvent this difficulty, we develop
an argument that allows us to extend the technique of [16] even when U is unbounded.
This is the main technical contribution of the present paper. The idea is to approximate
the solution through a suitable truncation of the initial support U . The choice of the
truncation cannot be made once and for all, but it rather depends on the time at which we
want to approximate the solution. In order to control the approximation error, we exploit
a new family of retracting supersolutions obtained as a superposition of a large number of
traveling fronts, see Lemma 3.2 below.

Figure 1: The definition of the opening function O.

As a matter of fact, the convex-proximity assumption on U in Theorem 2.1 is a very
special case of a geometric hypothesis under which we prove the one-dimensional symmetry,
that we now introduce. For a given nonempty set U ⊂ RN and a given point x ∈ RN , we
let πx denote the set of orthogonal projections of x onto U , i.e.,

πx :=
{
ξ ∈ U : |x− ξ| = dist(x, U)

}
, (2.2)

and, for x /∈ U , we define the opening function as follows:

O(x) := sup
ξ∈πx, y∈U\{ξ}

x− ξ
|x− ξ|

· y − ξ
|y − ξ|

, (2.3)

4



with the convention that O(x) = −∞ if U = ∅ or U is a singleton (otherwise
−1 ≤ O(x) ≤ 1). Namely, when O(x) 6= −∞, one has O(x) = cosα, where α is the
infimum among all ξ ∈ πx of half the opening of the largest exterior cone to U at ξ having
axis x− ξ, see Figure 1.

Here is our most general asymptotic symmetry result.

Theorem 2.2. Let u be a solution of (1.1) with an initial datum u0 = 1U such that
U ⊂ RN satisfies (2.1) and moreover

lim
R→+∞

(
sup

x∈RN ,dist(x,U)=R

O(x)

)
≤ 0. (2.4)

Then any function in Ω(u) is one-dimensional and, in addition, it is either constant or
strictly monotone.

It is understood that the left-hand side in condition (2.4) is equal to −∞ (hence the
condition is fulfilled) if supx∈RN dist(x, U) < +∞ (and indeed in such case the asymptotic
one-dimensional symmetry trivially holds because condition (2.1) yields that u(t, x) → 1
uniformly in x ∈ RN as t → +∞, see Proposition 3.1 below). We remark that the limit
in (2.4) always exists, because the involved quantity is nonincreasing with respect to R,
see Lemma 4.3 below.

The optimality of hypotheses (2.1) and (2.4) is discussed in Section 4.4 below. Hy-
pothesis (2.4) means that the angle α in Figure 1 tends to a value larger than or equal
to π/2 (which means that the exterior cone contains a half-space) as dist(x, U) → +∞.
Theorem 2.2 yields Theorem 2.1 because, firstly, convex sets satisfy O(x) ≤ 0 for every
x /∈ U (actually, they are characterized by such condition in the class of closed sets) and,
secondly, if (2.4) holds for a given set, then it holds true for any set at finite Hausdorff
distance from it, as stated by Lemma 4.3. However, the class of sets satisfying (2.4) is
wider. It contains for instance the subgraphs of functions with vanishing global mean, i.e.,

U =
{
x = (x′, xN) ∈ RN−1 × R : xN ≤ γ(x′)

}
, (2.5)

with γ ∈ L∞loc(RN−1) such that

γ(x′)− γ(y′)

|x′ − y′|
−→ 0 as |x′ − y′| → +∞. (2.6)

As a matter of fact, when U is given by (2.5)-(2.6), we derive a more precise characterization
of the Ω-limit set, see Corollary 2.5 below.

Theorems 2.1 and 2.2 are concerned with locally uniform convergence properties along
sequences of times (tn)n∈N diverging to +∞ and sequences of points (xn)n∈N. We now
assert an asymptotic property which is satisfied uniformly in RN . It is expressed in terms
of the eigenvalues of the Hessian matrices D2u(t, x) (with respect to the x variables). For
a symmetric real-valued matrix A of size N × N , let λ1(A) ≤ · · · ≤ λN(A) denote its
eigenvalues, and let

σk(A) :=
∑

1≤j1<···<jk≤N

λj1(A)× · · · × λjk(A), 1 ≤ k ≤ N,

be the elementary symmetric polynomials of eigenvalues of A (σk(D
2u(t, x)) is also called

k-Hessian).
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Theorem 2.3. Let u be as in Theorem 2.2. Then,

∀ 2 ≤ k ≤ N, σk(D
2u(t, x))→ 0 as t→ +∞ uniformly in x ∈ RN .

The proof of Theorem 2.3 is based on the asymptotic local one-dimensional symme-
try given in Theorem 2.2, and on standard parabolic estimates. We point out that, if
ψ : RN → R is of class C2(RN) and one-dimensional, then σk(D

2ψ(x)) = 0 for all
2 ≤ k ≤ N and x ∈ RN , since the quantities σk(D

2ψ(x)) involve sums of products of
at least two eigenvalues of D2ψ(x) (but σ1(D

2ψ(x)) 6= 0 in general). However, the con-
verse property is immediately not true (for instance, the function ψ : (x1, x2) 7→ x21 + x2
satisfies σ2(D

2ψ(x1, x2)) = 0 for all (x1, x2) ∈ R2, but it is not one-dimensional).
Once the asymptotic one-dimensional symmetry and monotonicity properties are estab-

lished, it is natural to ask what are the directions in which the solution actually becomes
locally one-dimensional. Namely, we investigate the set

E :=
{
e ∈ SN−1 : ∃ψ ∈ Ω(u) such that ψ(x) ≡ Ψ(x · e)
for some strictly decreasing function Ψ ∈ C2(R)

}
.

(2.7)

Under the assumptions of Theorems 2.1 or 2.2, the set E is then the set of the directions of
decreasing monotonicity of all non-constant elements of Ω(u) (by the direction of decrea-
sing monotonicity of a –necessarily one-dimensional by Theorems 2.1 or 2.2– non-constant
function ψ ∈ Ω(u), we mean the unique e ∈ SN−1 such that ψ(x) = Ψ(x · e) for all x ∈ RN ,
with Ψ decreasing). Observe that the constant functions ψ are excluded in the above
definition, which is necessary because they are one-dimensional in every direction. Thus,
a direction e belongs to E only if, along diverging sequences of times, the solution flattens
in the directions orthogonal to e but not in the direction e, along some sequence of points.
We characterize the set E in terms of the initial support U .

Theorem 2.4. Let u be as in Theorem 2.2. Then the set E defined in (2.7) is given by

E =
{
e ∈ SN−1 :

xn − ξn
|xn − ξn|

→ e as n→ +∞, for some sequences (xn)n∈N, (ξn)n∈N in RN

such that dist(xn, U)→ +∞ as n→ +∞ and ξn ∈ πxn for all n ∈ N
}
.

In particular, E = ∅ if and only if U is relatively dense in RN or U = ∅.

We remark that, without the assumption (2.1), the last statement of Theorem 2.4
may fail. Indeed, if U = {0} then u(t, x) ≡ 0 for all t > 0, x ∈ RN , hence E = ∅, but U 6= ∅
is not relatively dense in RN .

When U is bounded with non-empty interior, it follows from Theorem 2.4 that
E = SN−1. On the one hand, this conclusion gives an additional property –namely the
strict monotonicity– with respect to the result contained in [16]. On the other hand, still
when U is bounded, the same conclusion is also a consequence of [7, 24], where it is proved
by a completely different argument. The characterization of the directions of asymptotic
strict monotonicity in the case of unbounded sets U is more involved. The proof of Theo-
rem 2.4 is based on an argument by contradiction and on the acceleration of the solutions
when they become less and less steep.

Theorem 2.4 implies that if U is of class C1 then E is contained in the closure of the set
of the outward unit normal vectors to U . If U is convex then E coincides with the closure
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of the set of outward unit normal vectors to all half-spaces containing U . When U is the
subgraph of a function γ with vanishing global mean, i.e. satisfying (2.6), then we show
that E = {eN}, where eN := (0, · · · , 0, 1). Namely, in such a case we have the following.

Corollary 2.5. Let u be the solution of (1.1) with an initial datum u0 = 1U , where U is
given by (2.5) with γ ∈ L∞loc(RN−1) satisfying (2.6). Then any function ψ ∈ Ω(u) is of the
form ψ(x′, xN) ≡ Ψ(xN) for all (x′, xN) ∈ RN−1 × R, with Ψ ∈ C2(R) either constant or
strictly decreasing. Moreover, it holds that E = {eN}.

Since, by parabolic estimates, the convergence in the definition (1.4) of the Ω-limit set
holds true in C2

loc(RN), up to subsequences, Corollary 2.5 implies that

∇x′u(t, x′, xN)→ 0 as t→ +∞, uniformly with respect to (x′, xN) ∈ RN−1 × R.

A way to interpret this result is that the oscillations of the initial datum are “damped” as
time goes on through some kind of averaging process. We point out that Corollary 2.5 does
not imply the existence of a function Ψ : R+×R→ R such that u(t, x′, xN)−Ψ(t, xN)→ 0
as t→ +∞ uniformly in (x′, xN) ∈ RN−1×R, and indeed such a function Ψ does not exist
in general (as shown in [26] when N = 2 and the limits limx′→±∞ γ(x′) exist but do not
coincide). Condition (2.6) is satisfied in particular when γ is bounded, and in such a case
the conclusion of Corollary 2.5 can also be deduced from [2, 3, 13, 19, 27].

It is possible to relax the uniform mean condition (2.6) of γ in Corollary 2.5, at the
price of restricting the Ω-limit set. With this regard, we will derive a directional asymptotic
symmetry result, Theorem 7.2 below.

Outline of the paper. The rest of the paper is organized as follows. In Section 3, we
show a general uniform spreading result, which is itself based especially on the construction
of retracting super-solutions as finite sums of planar fronts. Section 4 is the central sec-
tion, devoted to the proofs of Theorems 2.1, 2.2 and 2.3 on the asymptotic one-dimensional
symmetry of the solutions under the general hypotheses (2.1) and (2.4). Some counterex-
amples to the main results, when at least one of these assumptions is not fulfilled, are also
shown. Section 5 contains the proof of Theorem 2.4 on the set of directions of asymptotic
strict monotonicity. The case of a subgraph with vanishing global mean is dealt with in
Section 6, where Corollary 2.5 is proved. The case when U is only assumed to be included
into a non-coercive subgraph is considered in Section 7, where the notion of directional
Ω-limit set is introduced. Lastly, some extensions, as well as some open questions and
conjectures, are presented in Section 8.

3 A uniform spreading speed result

It is well known since [17] that, for equation (1.1), propagation occurs with an asymptotic
speed of spreading equal to c∗ := 2

√
f ′(0), and that the latter coincides with the minimal

speed c of traveling fronts, i.e., solutions of the type

u(t, x) = ϕ(x · e− ct), 0 = ϕ(+∞) < ϕ < ϕ(−∞) = 1, c ∈ R, e ∈ SN−1, (3.1)

where ϕ : R → (0, 1) is of class C2(R) and decreasing. The precise result is derived in [1]
and asserts that, for any solution u to (1.1) with an initial condition 0 ≤ u0 ≤ 1 which is

7



compactly supported and fulfills infB u0 > 0 for some ball B ⊂ RN with positive measure,
it holds that

∀ c ∈ (0, c∗), inf
|x|≤ct

u(t, x)→ 1 as t→ +∞, (3.2)

∀ c > c∗, sup
|x|≥ct

u(t, x)→ 0 as t→ +∞, (3.3)

with c∗ = 2
√
f ′(0).

In the sequel, we will need the following uniform version of the above properties for
initial data of the form u0 = 1U with U unbounded.

Proposition 3.1. Let u be a solution of (1.1) emerging from an initial datum u0 = 1U

with U ⊂ RN . Then, for any δ > 0 such that Uδ 6= ∅, the following convergences hold:

∀ c ∈ (0, c∗), inf
x∈RN , dist(x,Uδ)≤ct

u(t, x)→ 1 as t→ +∞, (3.4)

∀ c > c∗, sup
x∈RN , dist(x,U)≥ct

u(t, x)→ 0 as t→ +∞. (3.5)

The reason why (3.4) involves Uδ instead of U is to neglect subsets of U (such as isolated
points) which do not affect the solution u at positive times. The role of hypothesis (2.1)
in our main results is precisely that it allows us to replace Uδ with U in (3.4).

The uniform “invasion property” (3.4) will be immediately deduced from (3.2). Instead,
property (3.5) does not follow from (3.3). In order to prove it we construct a family of
supersolutions whose upper level sets are given by the exterior of balls retracting with a
speed larger, but arbitrarily close, to c∗. These supersolutions will also directly be used to
prove Theorem 2.2. Here is their construction.

Lemma 3.2. For any c > c∗ and λ > 0, there exist R > 0 (depending on N, f, c and λ) and
a family of positive functions (vT )T>0 of class C2(R×RN) such that, for each T > 0, vT is
a supersolution to (1.1) in R× RN and satisfies{

vT (0, x) ≥ 1, for all x such that |x| ≥ R + cT,

vT (t, 0) < λ, for all t ∈ [0, T ].
(3.6)

Proof. The functions vT will be constructed as the sums of finitely many positive solu-
tions to (1.1), hence they will be supersolutions to (1.1) due to the following standard
consequence of the Fisher-KPP condition (1.2):

∀ a, b ≥ 0, f(a+ b) ≤ f(a) + f(b). (3.7)

To show the above inequality, assume to fix the ideas that a ≤ b, with b > 0 (otherwise the
inequality trivially holds because f(0) = 0). Then, observing that the function f , which
we recall is extended by 0 outside [0, 1], fulfills the third condition in (1.2) on the whole
half-line (0,+∞), we get

f(a+ b) ≤ f(b)

b
(a+ b) ≤ f(a) + f(b).

Now, let c > c∗ and λ > 0. Take ε ∈ (0, 1/2) small enough to have that (1− ε)c > c∗.
Consider a finite subset S of the unit ball SN−1 such that

∀ e ∈ SN−1, dist(e,S) ≤ ε.
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The set S only depends on N and ε, which in turn depends on f, c. We define the family
of positive functions (vT )T>0, of class C2(R× RN), by

vT (t, x) := 2
∑
e′∈S

ϕ
(
x · e′ − c∗(t− T ) +R/2

)
,

where ϕ is the traveling front with speed c∗, as in (3.1), normalized by ϕ(0) = 1/2, and
R > 0 is such that ϕ(R/2) < λ/(2n), with n being the number of elements of S. With this
choice of R (which only depends on N, f, c, λ) we have, as desired, vT (t, 0) < λ for all
T > 0, t ∈ [0, T ]. Observe that each term of the sum in the definition of vT is a positive
solution to (1.1), hence vT is a positive supersolution to (1.1) as discussed at the beginning
of the proof.

It remains to check that each vT fulfills the first property in (3.6). Let T > 0 and
x ∈ RN satisfy |x| ≥ R + cT , and consider e′ ∈ S such that∣∣∣∣e′ + x

|x|

∣∣∣∣ ≤ ε.

We have that
vT (0, x) ≥ 2ϕ(x · e′ + c∗T +R/2).

Since x · e′ ≤ −|x|+ ε|x|, we deduce

x · e′ + c∗T +R/2 ≤ (ε− 1)(R + cT ) + c∗T +R/2

≤ (ε− 1/2)R + [(ε− 1)c+ c∗]T,

which is negative because ε < 1/2 and (1− ε)c > c∗. It follows that vT (0, x) ≥ 2ϕ(0) = 1.
This concludes the proof.

We can now prove the uniform spreading speed result.

Proof of Proposition 3.1. We start with (3.4). Let δ > 0 be such that Uδ 6= ∅ and let v
be the solution to (1.1) emerging from the initial datum v0 = 1Bδ . Take c ∈ (0, c∗). For
any x0 ∈ Uδ, we have that u0(x0 + ·) ≥ v0 in RN and therefore u(t, x0 + x) ≥ v(t, x) for
all t ≥ 0, x ∈ RN thanks to the parabolic comparison principle. Applying (3.2) to v we
deduce that

1 ≥ inf
x0∈Uδ, |x|≤ct

u(t, x0 + x) ≥ inf
|x|≤ct

v(t, x)→ 1 as t→ +∞.

This is property (3.4).
Let us turn to (3.5). Take c > c∗, c′ ∈ (c∗, c), λ > 0, and consider the family of

supersolutions (vT )T>0 given by Lemma 3.2, associated with the speed c′. Namely, there
exists R > 0 such that they fulfill (3.6) with c′ instead of c. For T ≥ R/(c − c′) it
holds that cT ≥ R + c′T and thus, if x0 ∈ RN is such that dist(x0, U) ≥ cT , then
dist(x0, U) ≥ R + c′T and (3.6) implies that 0 ≤ u0(x0 + ·) ≤ vT (0, ·) in RN , hence by
comparison 0 ≤ u(T, x0) ≤ vT (T, 0) < λ. This shows that

∀T ≥ R

c− c′
, 0 ≤ sup

x0∈RN ,dist(x0,U)≥cT
u(T, x0) ≤ λ.

From this, property (3.5) follows by the arbitrariness of c > c∗ and λ > 0.
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4 Asymptotic one-dimensional symmetry

We first prove our most general symmetry result, Theorem 2.2, in Section 4.2, after the
proof of a preliminary approximation result in Section 4.1. Next, we derive the proof
of Theorem 2.1 in Section 4.3, by showing that its hypotheses imply the ones of Theo-
rem 2.2. Lastly, Section 4.4 provides some counterexamples to the main results when the
assumptions (2.1) or (2.4) are not satisfied, while the proof of Theorem 2.3 is carried out
in Section 4.5.

4.1 An approximation result by truncation of the initial datum

The cornerstone of the proof of Theorem 2.2, hence of the whole paper, is an approximation
result. Before stating it, let us introduce some notation. We recall that BR(x0) and
BR stand for the balls in RN of radius R and center x0 and 0 respectively. A generic
point x ∈ RN will sometimes be denoted by (x′, xN) ∈ RN−1 ×R, and the ball in RN−1 of
radius R and center x′0 ∈ RN−1 is denoted by B′R(x′0), or just B′R if x′0 = 0.

Lemma 4.1. Let u be a solution to (1.1) with an initial condition u0 = 1U , where U ⊂ RN

satisfies, for some δ > 0, L > 0, and σ ∈ (0, c∗/2),

Uδ ∩BL 6= ∅ and U \ (B′L × R) ⊂
{

(x′, xN) ∈ RN−1 × R : xN ≤
σ

2c∗
|x′|
}
. (4.1)

Let (uR)R>0 be the solutions to (1.1) emerging from the initial data (uR0 )R>0 defined by

uR0 = 1U∩(B′R×R).

Then, for any ε > 0, there exists τε > 0, only depending on N, f, δ, L, σ, ε, such that

∀ τ ≥ τε,
∥∥u(τ, ·)− u3στ (τ, ·)

∥∥
C1(B′στ×R+)

< ε. (4.2)

Proof. In order to get the C1 estimate (4.2), it is sufficient to show an L∞ estimate at a
later time, that is,

∀ τ ≥ τε,
∥∥u(τ + 1, ·)− u3στ (τ + 1, ·)

∥∥
L∞(Cτ )

< ε, (4.3)

where τε > 0 depends on N, f, δ, L, σ and ε, and Cτ is the half-cylinder

Cτ := B′στ × R+ = B′στ × (0,+∞).

Indeed, once (4.3) is proved, observing that u − u3στ is nonnegative (by the comparison
principle) and it solves a parabolic equation that can be written in linear form, one infers
from the parabolic Harnack inequality and interior estimates, given for instance by [18],
that (4.2) holds with ε replaced by Cε, where C only depends on f and N . Then, to prove
the lemma it is sufficient to derive (4.3) for an arbitrary ε > 0.

Fix ε > 0. Consider the family of solutions (wR)R>0 to (1.1) emerging from the initial
data (wR0 )R>0 given by

wR0 = 1WR with WR :=
{

(x′, xN) ∈ RN−1 × R : |x′| ≥ R, xN ≤
σ

2c∗
|x′|
}
.

10



By (4.1) it holds that u0 ≤ min(uR0 +wR0 , 1) in RN for every R ≥ L. Hence, since the KPP
condition (1.2) yields (3.7), the minimum between 1 and the sum of two solutions ranging
in [0, 1] is a supersolution. We infer by comparison that, for R ≥ L,

0 ≤ uR ≤ u ≤ min(uR + wR, 1) in [0,+∞)× RN .

Thus, property (4.3) holds for some τε ≥ L/(3σ) if we show that

∀ τ ≥ τε, sup
x∈Cτ

[
min

(
u3στ (τ + 1, x) + w3στ (τ + 1, x) , 1

)
− u3στ (τ + 1, x)

]
< ε. (4.4)

In order to prove (4.4), we consider a value c ∈ (2σ, c∗), that will be specified later, and
divide the half-cylinder Cτ into the subsets

Ciτ :=
(
B′στ × R+

)
∩Bcτ , Ceτ :=

(
B′στ × R+

)
\Bcτ .

Let us first deal with the set Ciτ , with arbitrary c ∈ (2σ, c∗). We want to show that
u3στ (τ + 1, ·) > 1 − ε there for τ large. By hypothesis, there exists a ball Bδ(x0) ⊂ U
with |x0| < L, hence Bδ(x0) ⊂ U ∩ (B′L+δ × R). It follows by comparison that
uL+δ(t, x) ≥ v(t, x − x0) for all t ≥ 0 and x ∈ RN , where v is the solution to (1.1)
with initial datum 1B1 . Then, applying the spreading property (3.2) to v we infer that,
for τ1 > 0 large enough, depending on N, f, c, δ, ε (recall that c∗ = 2

√
f ′(0)), it holds that

∀ τ ≥ τ1, inf
x∈B c∗+c

2 τ
(x0)

uL+δ(τ + 1, x) > 1− ε.

Since the family (uR)R>0 is nondecreasing with respect to R, by the parabolic comparison
principle, up to increasing τ1 so that 3στ1 ≥ L+ δ, we derive

∀ τ ≥ τ1, inf
x∈B c∗+c

2 τ
(x0)

u3στ (τ + 1, x) > 1− ε

(with τ1 also depending on L and σ). Finally, from the inclusions Ciτ ⊂ Bcτ ⊂ Bcτ+L(x0),
which hold for all τ > 0, and Bcτ+L(x0) ⊂ B c∗+c

2
τ (x0), which holds if c∗−c

2
τ ≥ L, we find a

quantity τ2 > 0 depending on N, f, c, δ, L, σ, ε such that

∀ τ ≥ τ2, inf
x∈Ciτ

u3στ (τ + 1, x) ≥ inf
x∈B c∗+c

2 τ
(x0)

u3στ (τ + 1, x) > 1− ε.

This shows that, for any choice of c ∈ (2σ, c∗), the estimate (4.4) holds when Cτ is replaced
by Ciτ and τε is equal to the above quantity τ2.

Let us consider now the set Ceτ . We want to show that w3στ < ε there by estimating the
distance between Ceτ and W 3στ and then applying Lemma 3.2. In this paragraph, τ > 0
is arbitrary and c ∈ (2σ, c∗) will be fixed at the end of the paragraph. Take two arbitrary
points x = (x′, xN) ∈ Ceτ and y = (y′, yN) ∈ W 3στ . There holds

|x′| < στ ≤ 1

3
|y′| and xN >

√
c2 − σ2 τ, yN ≤

σ

2c∗
|y′|.

We compute

|x− y|2 = |x′ − y′|2 + (xN − yN)2 ≥ 4

9
|y′|2 + (xN − yN)2.
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If σ|y′|/(2c∗) ≥
√
c2 − σ2 τ , neglecting (xN − yN)2 in the above inequality we get

|x− y|2 ≥ 16

9
(c∗)2

( c2
σ2
− 1
)
τ 2 ≥ 16

3
(c∗)2τ 2

since c > 2σ > 0. Instead, in the opposite case σ|y′|/(2c∗) <
√
c2 − σ2 τ , one has

yN ≤ σ|y′|/(2c∗) <
√
c2 − σ2 τ < xN , whence

|x− y|2 ≥ 4

9
|y′|2 +

(√
c2 − σ2 τ − σ

2c∗
|y′|
)2

=
4

9
|y′|2 + (c2 − σ2)τ 2 +

σ2

4(c∗)2
|y′|2 − σ

c∗

√
c2 − σ2 τ |y′|,

and we estimate the negative terms by observing that

4

9
|y′|2 − σ2τ 2 − σ

c∗

√
c2 − σ2 τ |y′| ≥ |y′|

(1

3
|y′| − σ

c∗

√
c2 − σ2 τ

)
≥ 0

since |y′|/3 ≥ στ ≥ σ
√
c2 − σ2τ/c∗. Thus, in such case one has

|x− y|2 ≥ c2τ 2 +
σ2

4(c∗)2
|y′|2 ≥ c2τ 2 +

9σ4τ 2

4(c∗)2
,

which is larger than (c∗)2τ 2 for c ∈ (2σ, c∗) close enough to c∗, depending on c∗ = 2
√
f ′(0)

and σ only. Summing up, we have shown the existence of some c ∈ (2σ, c∗) and c′ > c∗,
depending on c∗ = 2

√
f ′(0) and σ, such that

∀ τ > 0, ∀x ∈ Ceτ , dist(x,W 3στ ) ≥ c′τ. (4.5)

At this point, we invoke the supersolutions (vT )T>0 provided by Lemma 3.2, associated with
c̃ := (c∗+c′)/2 and λ = ε; they satisfy (3.6) with c̃ instead of c and a quantity R depending
on N, f, c̃, ε (hence, R depends on N, f, σ, ε, since c̃ depends on c∗ = 2

√
f ′(0) and c′ and

the latter depends on c∗, σ). Take τ3 > 0 large enough (depending on R, c̃, c′, hence on
N, f, σ, ε) so that R + c̃(T + 1) ≤ c′T for all T ≥ τ3. Thus, on one hand, vT+1(0, x) ≥ 1
for |x| ≥ c′T and T ≥ τ3. On the other hand, for all τ > 0 and x0 ∈ Ceτ , we know from (4.5)
that Bc′τ (x0) ∩W 3στ = ∅, which implies that w3στ

0 (x + x0) = 0 for |x| < c′τ . This means
that, for τ ≥ τ3, w

3στ (0, · + x0) ≤ vτ+1(0, ·) in RN , and thus w3στ (t, · + x0) ≤ vτ+1(t, ·)
in RN for all t ≥ 0 by comparison. We conclude by (3.6) that

∀ τ ≥ τ3, ∀x0 ∈ Ceτ , w3στ (τ + 1, x0) ≤ vτ+1(τ + 1, 0) < ε.

This yields that (4.4) holds in the set Ceτ too, for a suitable choice of c depending
on c∗ = 2

√
f ′(0) and σ, and for all τ ≥ τ3 > 0 with τ3 depending on N, f, σ, ε.

Therefore (4.4) holds true in the whole Cτ , for some τε ≥ max(τ2, τ3) > 0 depending
on N, f, δ, L, σ, ε. The proof of the lemma is complete.

4.2 Proof of Theorem 2.2

Lemma 4.1 allows us to derive Theorem 2.2 by applying the reflection argument
“à la Jones” [16] to the solution with the truncated initial datum. This actually yields
an additional information about the direction in which u becomes locally one-dimensional,
that will be used to prove one inclusion of the characterization of the set E in Theorem 2.4.
Here is the description of the Ω-limit set that shows in particular Theorem 2.2.
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Theorem 4.2. Let u be a solution of (1.1) with an initial datum u0 = 1U such that
U ⊂ RN satisfies (2.1) and (2.4). Let ψ ∈ Ω(u) and let (tn)n∈N and (xn)n∈N be the
corresponding sequences given by definition (1.4). The following properties hold:

(i) if lim inf
n→+∞

dist(xn, U)

tn
< c∗ then ψ ≡ 1;

(ii) if lim sup
n→+∞

dist(xn, U)

tn
> c∗ then ψ ≡ 0;

(iii) if lim
n→+∞

dist(xn, U)

tn
= c∗ and if (ξ)n∈N is any sequence such that ξn ∈ πxn for all

n ∈ N, then, up to extraction of a subsequence,

xn − ξn
|xn − ξn|

→ e ∈ SN−1 as n→ +∞,

and ψ(x) ≡ Ψ(x · e) for some function Ψ ∈ C2(R) which is either constant or strictly
decreasing.

Hence, in any case, ψ is one-dimensional, and it is either constant or strictly monotone.

Proof. Statement (ii) is a direct consequence of property (3.5), because in such a case
there is c > c∗ such that, for any x ∈ RN , dist(xn + x, U) > ctn for infinitely many n ∈ N.

In the case (i), there is c ∈ (0, c∗) such that dist(xn, U) < ctn for infinitely many n ∈ N.
Hence, since dist(·, Uδ) ≤ dist(·, U) + dH(U,Uδ), for given c′ ∈ (c, c∗) it follows from hy-
pothesis (2.1) that, for any x ∈ RN , dist(xn + x, Uδ) < c′tn for infinitely many n ∈ N.
The invasion property (3.4) eventually yields that ψ ≡ 1.

We are left with statement (iii), that is, calling for short kn := dist(xn, U), we now have

kn
tn
→ c∗ as n→ +∞, (4.6)

In order to show that ψ is one-dimensional, we proceed in several steps: we first define
some new convenient coordinate systems; next, assuming by contradiction that ψ is not
one-dimensional, we show that a line orthogonal to a level set of u at time tn is far from a
suitable half-cylinder with radius of order tn, which in the following step is used to define
an approximation of u through a truncation of its initial support U . Then Lemma 4.1
will ensure that the error in this approximation is small (this is where the geometric
assumption (2.4) is used), and this in turn will allow us to obtain a contradiction by
applying Jones’ reflection argument to the solution with the truncated initial support. In
the final step of the proof, we will derive the monotonicity of ψ in the desired direction by
using again the reflection argument together with Lemma 4.1.

Step 1: coordinates transformations. For n ∈ N, let ξn belong to the set πxn of the
projections of xn onto U (i.e., ξn ∈ U and |xn−ξn| = kn). Up to extraction of a subsequence,
we have by (4.6) that kn > 0 for all n ∈ N. We set

en :=
xn − ξn
kn

=
xn − ξn
|xn − ξn|

.

Next, we consider a family of N × N orthogonal transformations (Mn)n∈N such that
Mn(eN) = en, with eN := (0, · · · , 0, 1). Up to subsequences, (en)n∈N and (Mn)n∈N converge
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respectively to some direction e ∈ SN−1 and some orthogonal transformation M , with
M(eN) = e. We define, for t ≥ 0 and x ∈ RN ,

un(t, x) := u(t, ξn +Mn(x)).

These are still solutions to (1.1), because the equation is invariant under isometry. It
follows that

un(tn, kneN + x) = u(tn, xn +Mn(x)) −→ ψ(M(x)) =: ψ̃(x) as n→ +∞, (4.7)

locally uniformly in x ∈ RN . Moreover, un(0, ·) = 1Un with

Un := M−1
n (U)− {M−1

n (ξn)}

The set Un is a rigid transformation of U and it is constructed in a way that 0 ∈ Un is an
orthogonal projection of kneN onto Un, whence dist(kneN , Un) = kn → +∞ as n → +∞
by (4.6) and therefore the geometric assumption (2.4) (which, being invariant by isometries,
is fulfilled by Un too) yields

Un ⊂
{

(x′, xN) ∈ RN−1 × R : xN ≤ αn|x′|
}

with αn → 0 as n→ +∞. (4.8)

Step 2: the choice of the truncation. Firstly, by interior parabolic estimates, the L∞loc(RN)
convergence (4.7) holds true in C2

loc(RN). We claim that

∇x′ψ̃ ≡ 0 in RN , (4.9)

which will yield, in the original coordinate system,

∂e′ψ ≡ ∇ψ̃ · (M−1(e′)) ≡ 0 in RN

for any direction e′ ∈ SN−1 such that M−1(e′) ⊥ eN , that is, e′ ⊥ M(eN) = e. This will
imply that ψ(x) ≡ Ψ(x · e) for some Ψ ∈ C2(R).

Assume by contradiction that the above claim (4.9) fails, that is, that ∇x′ψ̃(x̄) 6= 0

for some x̄ ∈ RN . Let us call for short β := ∇ψ̃(x̄), hence β = (β′, βN) ∈ RN−1 × R
with β′ 6= 0, and it holds that

∇un(tn, kneN + x̄)→ β as n→ +∞. (4.10)

Take a real number ϑ > 0, that will be fixed at the end of this paragraph. Let (Hn)n∈N
be the family of closed half-cylinders in RN defined by

Hn := B′ϑtn × (−∞, ϑtn].

Consider also the conical sets (Vn)n∈N given by

Vn :=
{
kneN + x̄+ s(β + ζ) : s ∈ R, ζ ∈ Bϑ

}
. (4.11)

We look for ϑ > 0 small enough so that

Hn ∩ Vn = ∅ for all n sufficiently large. (4.12)
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To this end, consider a generic point P = (P ′, PN) ∈ Vn. It can be written as
P = kneN + x̄+ s(β + ζ) for some s ∈ R, ζ ∈ Bϑ. Suppose that PN ≤ ϑtn, thus

ϑtn ≥ kn − |x̄| − (|βN |+ ϑ)|s|.

By (4.6), for n large enough we have kn > (c∗/2)tn and therefore

|s| ≥ (c∗/2− ϑ)tn − |x̄|
|βN |+ ϑ

. (4.13)

The component P ′ is estimated as follows:

|P ′| ≥ (|β′| − ϑ)|s| − |x̄|.

We impose ϑ < |β′| and, for n sufficiently large, we can invoke (4.13) and get

|P ′| − ϑtn ≥
(
|β′| − ϑ
|βN |+ ϑ

(c∗/2− ϑ)− ϑ
)
tn −

(
|β′|
|βN |

+ 1

)
|x̄|.

Thus, one can find ϑ ∈ (0,min(|β′|, c∗/2)) sufficiently small, only depending on β′, βN
and c∗, such that, for n large, |P ′| > ϑtn, i.e. P /∈ Hn. This means that, with this
choice of ϑ, condition (4.12) holds. This fixes our choice of ϑ and thus of the family of
half-cylinders (Hn)n∈N.

Step 3: the approximation procedure. We now apply Lemma 4.1 to the sequence of solu-
tions (un)n∈N. Take δ > 0 from hypothesis (2.1), and call

σ :=
ϑ

3
> 0, L := dH(U,Uδ) + 1 > 0, ε :=

ϑ

2
> 0, (4.14)

where ϑ > 0 is given in the previous step. One has 0 < σ < ϑ < c∗/2 and 0 < L < +∞
by (2.1). We further have, on the one hand, that

(Un)δ ∩BL 6= ∅, (4.15)

because 0 ∈ Un and dH(Un, (Un)δ) = dH(U,Uδ) < L. On the other hand, it follows
from (4.8) that, for n large,

Un ⊂
{

(x′, xN) ∈ RN−1 × R : xN ≤
σ

2c∗
|x′|
}
.

This means that the sets Un fulfill the hypotheses (4.1) of Lemma 4.1 for n large enough.
Therefore, for such values of n, considering the solution uϑtnn of (1.1) whose initial datum
is given by the indicator function of the set

Un ∩ (B′ϑtn × R),

the estimate (4.2) implies∥∥un(tn, ·)− uϑtnn (tn, ·)
∥∥
C1(B′

ϑtn/3
×R+)

<
ϑ

2
, (4.16)

provided that tn is larger than a quantity depending on ϑ but not on n. This means that
the above estimate holds for all n sufficiently large. Furthermore, (4.15) implies that, for
all n large enough,

Un ∩ (B′ϑtn × R) ⊃ Bδ(yn), (4.17)

15



for some yn ∈ BL. Since un fulfills (4.10), one then infers from (4.16) that∣∣∇uϑtnn (tn, kneN + x̄)− β
∣∣ < ϑ for all n sufficiently large.

This entails that, for such values of n, the line Γn passing through the point kneN + x̄ and
directed as ∇uϑtnn (tn, kneN + x̄) is contained in the set Vn defined in (4.11), and therefore,
by (4.12), (

Γn ∩Hn

)
⊂
(
Vn ∩Hn

)
= ∅ for all n sufficiently large.

Next, owing to (4.8), we also have that Un∩ (B′ϑtn×R) ⊂ Hn for all n sufficiently large,
hence

suppuϑtnn (0, ·) ⊂ Hn for all n sufficiently large, (4.18)

where suppuϑtnn (0, ·) denotes the support of uϑtnn (one has uϑtnn (0, ·) ≡ 0 in RN \Hn).

Step 4: the reflection argument. Let Hn, Vn,Γn and uϑtnn be as in the previous steps. For n
large enough, the half-cylinder Hn and the line Γn are convex, closed and disjoint; we can
then separate them with an hyperplane, which, up to translation, can be assumed without
loss of generality to contain Γn. Namely, for n large, there exists an open half-space Ωn

such that
Γn ⊂ ∂Ωn and Hn ⊂ Ωn. (4.19)

Let Rn denote the affine orthogonal reflection with respect to ∂Ωn. Then define the
function vn in [0,+∞)× Ωn by

vn(t, x) := uϑtnn (t,Rn(x)).

The function vn coincides with uϑtnn on [0,+∞) × ∂Ωn. Furthermore vn(0, ·) vanishes
identically in Ωn, while uϑtnn = 1 in Bδ(yn) ⊂ Un ∩ (B′ϑtn × R) ⊂ Hn ⊂ Ωn, provided n is
large enough for (4.17), (4.18) and (4.19) to hold. Then, for such values of n, it follows
from the comparison principle that vn ≤ uϑtnn in (0,+∞)×Ωn, and moreover, by the Hopf
lemma, that ∂νnv

n > ∂νnu
ϑtn
n on (0,+∞)×∂Ωn, where νn is the exterior normal to Ωn. Since

clearly ∂νnv
n = −∂νnuϑtnn on (0,+∞)×∂Ωn, this means that ∂νnu

ϑtn
n < 0 on (0,+∞)×∂Ωn,

and thus in particular that ∂νnu
ϑtn
n (tn, kneN+x̄) < 0, because kneN+x̄ ∈ Γn ⊂ ∂Ωn. This is

however impossible because ∇uϑtnn (tn, kneN + x̄) is parallel to Γn and thus orthogonal to νn.
We have reached a contradiction. This therefore shows (4.9), and then ψ(x) ≡ Ψ(x · e) for
some function Ψ ∈ C2(R).

Step 5: the large monotonicity property. Let us now show that Ψ is nonincreasing, that
is, ∂xN ψ̃ ≤ 0 in RN . We fix an arbitrary ε > 0 and an arbitrary x̂ ∈ RN . As in Step 3,
we apply Lemma 4.1 to the sequence of solutions (un)n∈N. Namely, we take δ > 0 from
hypothesis (2.1) and call

σ :=
c∗

6
, L := dH(U,Uδ) + 1. (4.20)

As seen before, with these values, we have that the sets Un fulfill (4.1) for n large enough.
Therefore, calling uRn the solution with initial datum given by the indicator function of
the set

Un ∩ (B′R × R),

for such large values of n, one can apply Lemma 4.1 and infer that

∀ τ ≥ τε,
∥∥un(τ, ·)− uc∗τ/2n (τ, ·)

∥∥
C1(B′

c∗τ/6×R
+)
< ε,
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where τε only depends on N, f, δ, L, ε. As a consequence, for n large enough such that the
above holds, and in addition tn > τε, we deduce that∥∥un(tn, ·)− uc

∗tn/2
n (tn, ·)

∥∥
C1(B′

c∗tn/6
×R+)

< ε for all n sufficiently large. (4.21)

Next, consider the half-space

Ωn := RN−1 × (−∞, kn + x̂ · eN ],

so that kneN + x̂ ∈ ∂Ωn. By (4.6) and (4.8) it holds that Un ∩ (B′c∗tn/2 × R) ⊂ Ωn for n

sufficiently large (also depending on x̂), that is, the support of the initial datum of u
c∗tn/2
n

is contained in Ωn. The same reflection argument as in Step 4 eventually yields

∂xNu
c∗tn/2
n (tn, kneN + x̂) ≤ 0 for all n sufficiently large.

Combining this with (4.21) we infer that ∂xN ψ̃(x̂) ≤ ε, and thus ∂xN ψ̃ ≤ 0 in RN by the
arbitrariness of ε > 0 and x̂ ∈ RN .

Step 6: the strict monotonicity property. We have shown in the above steps that
ψ(x) ≡ Ψ(x · e) with Ψ nonincreasing. It remains to show that Ψ is either
constant or strictly decreasing in the whole R. To do so, consider the functions
(t, x) 7→ u(tn + t, xn + Mn(x)) for n ∈ N, which satisfy the same equation (1.1) as u, but
for t > −tn. From standard parabolic estimates, there is a solution u∞ : R× RN → [0, 1]
of (1.1), which is a solution also for t ≤ 0, and such that, up to extraction of a subsequence,

u(tn + t, xn +Mn(x))→ u∞(t, x) as n→ +∞ locally uniformly in R× RN .

We apply the results derived in the Steps 1-5 to the sequences (tn − 1)n∈N and (xn)n∈N.
Observe that also these sequences fulfill the condition of statement (iii). Moreover, the
direction e associated with these new sequences, as defined at the beginning of Step 1, only
depends on (xn)n∈N and (ξn)n∈N, hence it is the same before. We deduce the existence of
a nonincreasing function Φ : R→ [0, 1] such that u∞(−1, x) ≡ Φ(x · e) in RN . Notice also
that u∞(0, x) ≡ Ψ(x · e) in RN . Now, if the function Φ is constant in R, which means
that u∞(−1, ·) is constant in RN , then so is u∞(0, ·) in RN (because u∞ solves (1.1) for all
t ∈ R), that is, Ψ is constant in R. On the other hand, if Φ is not constant in R, then, for
each h > 0,

u∞(−1, x+ he) ≤ u∞(−1, x) and u∞(−1, x+ he) 6≡ u∞(−1, x) in RN ,

hence u∞(0, x + he) < u∞(0, x) in RN from the strong parabolic maximum principle,
yielding Ψ(s + h) < Ψ(s) for all s ∈ R. As a conclusion, Ψ is either constant or strictly
decreasing in R. The proof of the theorem is complete.

Theorem 2.2 is a direct consequence of Theorem 4.2. We also point out that in the
case (iii) of Theorem 4.2 it may still happen that ψ is constant, and this actually occurs
for instance when U is bounded. Indeed, in such a case, Ψ coincides with some translation
of the profile ϕ of the critical front (hence it is not constant) if and only if the quantity

dist(xn, U)− c∗tn +
N + 2

c∗
ln tn

stays bounded as n → +∞ (that is, if and only if |xn| − c∗tn + N+2
c∗

ln tn is bounded as
n→ +∞), otherwise Ψ ≡ 1 if it diverges to −∞ and Ψ ≡ 0 if it diverges to +∞, see [7, 24].
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4.3 Proof of Theorem 2.1

Let us turn to Theorem 2.1 that, as we now show, is a special case of Theorem 2.2. For this,
we need to check that the geometric condition (2.4) is invariant among sets having finite
Hausdorff distance from one another. This is done in the following geometric lemma.

Lemma 4.3. For any U ⊂ RN , consider the function O(x) defined in (2.3). Then the map

R 7→ sup
x∈RN , dist(x,U)=R

O(x)

is nonincreasing in (0,+∞). Moreover, for any U ′ ⊂ RN satisfying dH(U,U ′) < +∞,
then U fulfills (2.4) if and only if U ′ does (with the corresponding O defined as in (2.3)
with U ′ instead of U).

Proof. The monotonicity property involving O is readily derived. Consider indeed any

0 < R′ < R.

If the set {x ∈ RN : dist(x, U) = R} is empty, then supx∈RN , dist(x,U)=RO(x) = −∞ and
the inequality supx∈RN ,dist(x,U)=RO(x) ≤ supx∈RN , dist(x,U)=R′ O(x) is trivially true. Assume

now that the set {x ∈ RN : dist(x, U) = R} is not empty, and consider any x in this set
and any ξ ∈ πx, that is, ξ ∈ U and |x− ξ| = dist(x, U) = R. If U = {ξ} then O(x) = −∞
by our convention, hence this case is trivial too.

Assume then that U 6= {ξ}. Consider the point x′ := ξ + (R′/R)(x − ξ). Its unique
projection onto U is ξ, that is, πx′ = {ξ}. Furthermore, dist(x′, U) = |x′ − ξ| = R′. One
also observes that, for any y ∈ U \{ξ},

x− ξ
|x− ξ|

· y − ξ
|y − ξ|

=
x′ − ξ
|x′ − ξ|

· y − ξ
|y − ξ|

≤ O(x′) ≤ sup
z∈RN , dist(z,U)=R′

O(z).

Since x with dist(x, U) = R, together with ξ ∈ πx and y ∈ U \{ξ}, were arbitrary, this
shows that

sup
z∈RN , dist(z,U)=R

O(z) ≤ sup
z∈RN , dist(z,U)=R′

O(z).

Let us turn to the second statement of the lemma. One considers any two subsets U
and U ′ of RN satisfying dH(U,U ′) < +∞. Denote π′x and O′(x) the objects defined as
in (2.2)-(2.3) with U ′ instead of U .

Assume by way of contradiction that U fulfills (2.4) and U ′ does not. Then there
are ε > 0 and a sequence (xn)n∈N in RN \U ′ such that

0 < R′n := dist(xn, U
′)→ +∞ as n→ +∞, and O′(xn) ≥ 2ε > 0 for all n ∈ N. (4.22)

Calling d := dH(U,U ′) < +∞, one then has Rn := dist(xn, U) → +∞ as n → +∞, and
moreover

Rn − d ≤ R′n ≤ Rn + d for all n ∈ N. (4.23)

Without loss of generality, one has Rn > 0 for every n ∈ N. Since U is assumed to
satisfy (2.4), there holds lim supn→+∞O(xn) ≤ 0, that is,

O(xn)+ := max
(
O(xn), 0

)
→ 0 as n→ +∞. (4.24)
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Now, from (4.22), for each n ∈ N, there are ξ′n ∈ π′xn , that is, ξ′n ∈ U ′ and
|xn − ξ′n| = dist(xn, U

′) = R′n > 0, and y′n ∈ U ′\{ξ′n} such that

xn − ξ′n
|xn − ξ′n|

· y
′
n − ξ′n
|y′n − ξ′n|

≥ ε > 0. (4.25)

For each n ∈ N, consider any ξn ∈ πxn , that is, ξn ∈ U and |xn−ξn| = dist(xn, U) = Rn > 0,
and then there is a point yn ∈ U such that

|yn − y′n| ≤ dH(U,U ′) + 1 = d+ 1. (4.26)

We estimate from above the quantities in (4.25) by writing:

xn−ξ′n
|xn−ξ′n|

· y
′
n−ξ′n
|y′n−ξ′n|

≤
∣∣∣ xn−ξ′n|xn−ξ′n|

− xn−ξn
|xn−ξn|

∣∣∣︸ ︷︷ ︸
=:I1,n

+
∣∣∣ y′n−ξ′n|y′n−ξ′n|

− yn−ξn
|yn−ξn|

∣∣∣︸ ︷︷ ︸
=:I2,n

+
xn−ξn
|xn−ξn|

· yn−ξn
|yn−ξn|︸ ︷︷ ︸

=:I3,n

. (4.27)

This inequality is understood to hold whenever yn 6= ξn, which we will show to occur
for n sufficiently large. We will then prove that I1,n, I2,n, I3,n → 0 as n→ +∞, which will
eventually contradict (4.25). In order to estimate I1,n, we take zn ∈ U such that |zn−ξ′n| ≤ d
and we compute

(xn − ξn) · (xn − ξ′n) = R2
n + (xn − ξn) · (ξn − zn) + (xn − ξn) · (zn − ξ′n)

≥ R2
n −O(xn)Rn|zn − ξn| −Rnd

≥ Rn

(
Rn − 2(Rn + d)O(xn)+ − d

)
,

(4.28)

where the last inequality follows from

|zn − ξn| ≤ |zn − ξ′n|+ |ξ′n − xn|+ |xn − ξn| ≤ d+R′n +Rn ≤ 2(Rn + d).

One then derives from (4.23) and (4.28) that

0 ≤ I1,n ≤

√
2−

2
(
Rn − 2(Rn + d)O(xn)+ − d

)
R′n

≤ 2

√
(Rn + d)O(xn)+ + d

R′n
.

Together with (4.22)-(4.24), one gets that

I1,n → 0 as n→ +∞. (4.29)

Next, let us check that yn 6= ξn for n large. We first control |y′n− ξ′n| from below. We write

|y′n − xn|2 = |y′n − ξ′n|2 + (R′n)2 − 2(y′n − ξ′n) · (xn − ξ′n),

which together with (4.25) and the inequality |y′n − xn| ≥ dist(xn, U
′) = R′n yields

|y′n − ξ′n|
(
|y′n − ξ′n| − 2εR′n

)
≥ |y′n − xn|2 − (R′n)2 ≥ 0.

Since y′n 6= ξ′n, this means that

|y′n − ξ′n| ≥ 2εR′n. (4.30)
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Now, using (4.28) and R′n ≤ Rn + d, one infers

|ξn − ξ′n|2 = R2
n + (R′n)2 − 2(xn − ξn, xn − ξ′n) ≤ 4Rnd+ d2 + 4Rn(Rn + d)O(xn)+. (4.31)

Gathering together the inequalities (4.26), (4.30) and (4.31) shows that

|yn − ξn| ≥ |y′n − ξ′n| − |yn − y′n| − |ξ′n − ξn|
≥ 2εR′n − (d+ 1)−

√
4Rnd+ d2 + 4Rn(Rn + d)O(xn)+.

The right-hand side is positive for all n large enough and is equivalent to 2εR′n as n→ +∞,
because of (4.22)-(4.24). This means that yn 6= ξn for n large enough. Let us estimate I2,n.
One has, for n large,

0 ≤ I2,n =

√
2− 2

(y′n − ξ′n) · (yn − ξn)

|y′n − ξ′n| × |yn − ξn|

=

√
|(y′n − ξ′n)− (yn − ξn)|2 − (|y′n − ξ′n| − |yn − ξn|)2

|y′n − ξ′n| × |yn − ξn|

≤ |(y
′
n−ξ′n)− (yn−ξn)|√
|y′n−ξ′n|×|yn−ξn|

≤ |yn−y
′
n|+ |ξn−ξ′n|√

|y′n−ξ′n|×|yn−ξn|
≤ d+1+|ξn−ξ′n|√

|y′n−ξ′n|×|yn−ξn|
,

(4.32)

where the last inequality follows from (4.26). Putting together (4.30)-(4.32) leads to

0 ≤ I2,n ≤
d+ 1 +

√
4Rnd+ d2 + 4Rn(Rn + d)O(xn)+√

2εR′n ×
√

2εR′n − (d+1)−
√

4Rnd+d2+4Rn(Rn+d)O(xn)+

for all n large enough. Using again (4.22)-(4.24), it follows that

I2,n → 0 as n→ +∞. (4.33)

Finally, one has that 0 ≤ I3,n ≤ O(xn) ≤ O(xn)+ for all n, hence I3,n → 0 as n → +∞,
by (4.24). Together with (4.27), (4.29) and (4.33), one gets that

lim sup
n→+∞

xn − ξ′n
|xn − ξ′n|

· y
′
n − ξ′n
|y′n − ξ′n|

≤ 0,

a contradiction with (4.25). The conclusion of the lemma then follows by changing the
roles of U and U ′.

Proof of Theorem 2.1. If the set U is convex, then the quantity O(x) defined by (2.3)
satisfies O(x) ≤ 0 for all x /∈ U , hence condition (2.4) is immediately true in this case.
Condition (2.4) holds true as well when U is at bounded Hausdorff distance from a convex
set U ′, thanks to Lemma 4.3. The conclusion then follows from Theorem 2.2.

4.4 Counterexamples without the conditions (2.1) or (2.4)

This section essentially consists of two propositions, which assert that the conclusions of
the main results do not hold in general without the assumptions (2.1) or (2.4).
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Proposition 4.4. Let u be the solution of (1.1) with an initial datum u0 = 1U , where U
is the union of two half-spaces with non-parallel boundaries. The set U satisfies (2.1) but
not (2.4), and Ω(u) contains some elements which are not one-dimensional.

Proof. We consider the dimension N = 2 only, since the general case N ≥ 3 follows by
trivially extending the functions in the variables x3, · · · , xN . Since the equation (1.1) is
invariant by rigid transformations, one can assume without loss of generality that

U =
{

(x1, x2) ∈ R2 : x2 ≤ β |x1|
}
,

for some β > 0. Denote α := arctan β ∈ (0, π/2). Notice immediately that U satisfies (2.1),
but it does not satisfy (2.4). Let u be the solution of (1.1) in dimension N = 2, with initial
condition u0 := 1U . Let v be the solution of (1.1) in dimension N = 1, with Heaviside
initial condition v0 := 1(−∞,0]. As follows from [3, 13, 17, 19, 27], there is a function
t 7→ ζ(t) such that

v(t, x)− ϕ(x− ζ(t))→ 0 as t→ +∞ uniformly in x ∈ R, (4.34)

where ϕ is the (decreasing) profile of the traveling front ϕ(x − c∗t) solving (3.1), with
N = 1, e = 1, and minimal speed c = c∗ = 2

√
f ′(0) (furthermore, it is known that

ζ(t) = c∗t− (3/c∗) ln t + x∞ + o(1) as t → +∞, for some real number x∞). Since (1.1) is
invariant by rigid transformations and since f(a+ b) ≤ f(a) +f(b) for all a, b ≥ 0 by (3.7),
it follows from the definition of U and the maximum principle that

max
(
v(t, x2 cosα− x1 sinα), v(t, x2 cosα + x1 sinα)

)
≤ u(t, x1, x2) ≤ v(t, x2 cosα− x1 sinα) + v(t, x2 cosα + x1 sinα)

(4.35)

for all t ≥ 0 and (x1, x2) ∈ R2. Together with (4.34), one gets that

lim inf
t→+∞

u
(
t, 0,

ζ(t) + ϕ−1(1/2)

cosα

)
≥ 1

2
and lim sup

t→+∞
u
(
t, 0,

ζ(t) + ϕ−1(1/8)

cosα

)
≤ 1

4
,

where ϕ−1 : (0, 1)→ R denotes the reciprocal of the decreasing function ϕ. Consider now
any sequence (tn)n∈N diverging to +∞. Up to extraction of a subsequence, the functions
(x1, x2) 7→ u(tn, x1, ζ(tn)/ cosα + x2) converge in C2

loc(R2) to a function ψ : R2 → [0, 1],
which then belongs to Ω(u). One has

ψ
(

0,
ϕ−1(1/2)

cosα

)
≥ 1

2
>

1

4
≥ ψ

(
0,
ϕ−1(1/8)

cosα

)
,

hence there exists y ∈ (ϕ−1(1/2)/ cosα, ϕ−1(1/8)/ cosα) such that 1/4 < ψ(0, y) < 1/2
and ∂x2ψ(0, y) < 0. Furthermore, since U is symmetric with respect to the axis {x1 = 0},
the function u0 is even in x1, and so are u(t, ·) for every t > 0, and then ψ. Thus,
∂x1ψ(0, x2) = 0 for all x2 ∈ R. From the previous observations, the gradient of ψ at
the point (0, y) is a non-zero vector parallel to the vector (0, 1). If the function ψ were
one-dimensional, it would then necessarily be written as ψ(x1, x2) ≡ Ψ(x2) in R2, for some
C2(R) function Ψ. In particular, one would have that ψ(x1, y) = ψ(0, y) ∈ (1/4, 1/2) for
all x1 ∈ R. But (4.34)-(4.35) yield

1 ≥ ψ(x1, y) = lim
n→+∞

u
(
tn, x1,

ζ(tn)

cosα
+ y
)
≥ lim

n→+∞
v(tn, ζ(tn) + y cosα− x1 sinα)

= ϕ(y cosα− x1 sinα),
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hence ψ(x1, y)→ 1 as x1 → +∞, leading to a contradiction. As a conclusion, the element
ψ of Ω(u) is not one-dimensional. Notice finally that all shifts ψ(·+ a1, ·+ a2) of ψ belong
to Ω(u), and are not one-dimensional either.

Remark 4.5. In the example considered in the above proof, the set Ω(u) nevertheless
contains some elements which are one-dimensional (apart from the constant elements 0
and 1, which belong to Ω(u) by Proposition 3.1). Indeed, it follows from (4.34)-(4.35) and
ϕ(+∞) = 0 that, for any % : [0,+∞)→ R with %(t)→ +∞ as t→ +∞, one has

u
(
t, %(t) + x1, %(t) tanα +

ζ(t)

cosα
+ x2

)
→ ϕ(x2 cosα− x1 sinα) as t→ +∞,

locally uniformly in (x1, x2) ∈ R2. Therefore, the one-dimensional non-constant function
(x1, x2) 7→ ϕ(x2 cosα−x1 sinα) belongs to Ω(u). So does the one-dimensional non-constant
function (x1, x2) 7→ ϕ(x2 cosα + x1 sinα), by choosing % such that %(+∞) = −∞ and
adapting the above limit.

The second result shows that the conclusions of the main results do not hold in general
without the assumption (2.1).

Proposition 4.6. In any dimension N ≥ 2, there are measurable sets U ⊂ RN , which
satisfy (2.4) but not (2.1), such that Ω(u) contains some elements that are not one-
dimensional, where u is the solution of (1.1) with initial datum u0 = 1U .

Proof. Consider β > 0 and U := U1 ∪ U2, with

U1 :=
{
x ∈ RN : x2 ≤ β|x1|

}
and U2 :=

⋃
k∈ZN

Be−|k|2 (k). (4.36)

The set U1 is the same as in the proof of Proposition 4.4, and as before we call
α := arctan β ∈ (0, π/2). Notice that U satisfies (2.4) (it is at finite Hausdorff dis-
tance from RN), but not (2.1). Let u, u1 and u2 denote the solutions of (1.1) with initial
conditions 1U , 1U1 and 1U2 , respectively. As in the proof of Proposition 4.4, one has

max(u1(t, x), u2(t, x)) ≤ u(t, x) ≤ u1(t, x) + u2(t, x) for all t ≥ 0 and x ∈ RN . (4.37)

Furthermore, since f(s) ≤ f ′(0)s for all s ≥ 0, there holds that

0≤u2(1, x)≤ ef
′(0)

(4π)N/2

∑
k∈ZN

∫
B
e−|k|2

(k)

e−|x−y|
2/4dy ≤ e

f ′(0)−|x|2/8

(4π)N/2

∑
k∈ZN

∫
B
e−|k|2

(k)

e|y|
2/4dy≤Ae−|x|2/8

for all x ∈ RN , for some positive real number A. Therefore, for any ξ ∈ SN−1, one has

0 ≤ u2(1, x) ≤ Ae−
√
f ′(0)x·ξ+2f ′(0) for all x ∈ RN , and using again that f(s) ≤ f ′(0)s for

all s ≥ 0, the maximum principle implies that

0 ≤ u2(t, x) ≤ Ae−
√
f ′(0)x·ξ+2f ′(0)t for all t ≥ 1 and x ∈ RN .

Since ξ ∈ SN−1 was arbitrary, this means that 0 ≤ u2(t, x) ≤ Ae−
√
f ′(0) |x|+2f ′(0)t for

all t ≥ 1 and x ∈ RN . In particular, sup|x|≥ct u2(t, x) → 0 as t → +∞, for any

c > c∗ = 2
√
f ′(0).
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On the other hand, from the proof of Proposition 4.4 (and the trivial extension of all
functions in the variables (x3, · · · , xN)), there is a sequence (tn)n∈N diverging to +∞ such
that the functions x 7→ u1(tn, x1, ζ(tn)/ cosα + x2, x3, · · · , xN) converge locally uniformly
in RN to a function ψ1 ∈ Ω(u1) that is not one-dimensional. We also recall that ζ(t) ∼ c∗t
as t → +∞, hence ζ(tn)/ cosα ∼ (c∗/ cosα)tn as n → +∞, with c∗/ cosα > c∗. It
then follows from (4.37) and the conclusion of the previous paragraph that the functions
x 7→ u(tn, x1, ζ(tn)/ cosα + x2, x3, · · · , xN) still converge locally uniformly in RN to the
function ψ1. Therefore, Ω(u) contains the element of ψ1, which is not one-dimensional, as
well as all its shifts.

Remark 4.7. The sets U given in Propositions 4.4 and 4.6 are actually closed and equal
to the closure of their interior. By doing so, we avoid meaningless counterexamples. For
instance, if U1 is as in (4.36) and if U2 = ZN , then U := U1 ∪ U2 satisfies (2.4) (because
it is relatively dense in RN) and it does not satisfy (2.1). But the solutions u and u1
of (1.1) with initial conditions 1U and 1U1 are actually identical in (0,+∞) × RN (since
the Lebesgue measure of U2 is equal to 0), hence Ω(u) = Ω(u1) and this counterexample
turns out to be equivalent to the one given in Proposition 4.4.

4.5 Proof of Theorem 2.3

Let u be the solution of (1.1) with an initial condition u0 = 1U and a set U satisfying (2.1)
and (2.4). Assume, by way of contradiction, that the conclusion of Theorem 2.3 does
not hold. Then, there are k ∈ {2, · · · , N}, a sequence (tn)n∈N of positive real numbers
diverging to +∞ and a sequence (xn)n∈N in RN , such that

lim inf
n→+∞

|σk(D2u(tn, xn))| > 0. (4.38)

Up to extraction of a subsequence, the functions u(tn, xn + ·) converge in C2
loc(RN), to an

element ψ of Ω(u). By Theorem 2.2, ψ : RN → R is one-dimensional, hence, for all x ∈ RN ,
the eigenvalues of D2ψ(x) are all equal to 0 except at most one of them, which implies
that σk(D

2ψ(x)) = 0 (because k ≥ 2). On the other hand, since (−1)kσk(D
2u(tn, xn))

is the coefficient of XN−k in the characteristic polynomial X 7→ det(XIN − D2u(tn, xn))
(where IN denotes the identity matrix of size N × N), σk(D

2u(tn, xn)) is therefore a
polynomial function of the coefficients of D2u(tn, xn). It then follows from the convergence
u(tn, xn + ·) → ψ in C2

loc(RN) that σk(D
2u(tn, xn)) → σk(D

2ψ(0)) = 0 as n → +∞. This
contradicts (4.38), and the proof of Theorem 2.3 is complete. �

5 Directions of one-dimensional symmetry: proof of

Theorem 2.4

With Theorem 4.2 in hand, the proof of Theorem 2.4 consists in showing that u has some
partial derivatives which do not vanish as t→ +∞, around suitable sequences of points.

Proof of Theorem 2.4. The set on the right-hand side of the equivalence stated in the
theorem is empty if and only if U is relatively dense in RN or U = ∅. Hence the last
statement of the theorem follows from the first one.

Let us show the double inclusion between the sets, as stated in the theorem. The
inclusion “⊂ ” is a consequence of Theorem 4.2.
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Let us turn to the inclusion “⊃ ”. Assume that U 6= ∅ is not relatively dense in RN .
Let e ∈ SN−1, (xn)n∈N in RN \ U and (ξn)n∈N in RN be such that

lim
n→+∞

dist(xn, U) = +∞, lim
n→+∞

xn − ξn
|xn − ξn|

= e, and ξn ∈ πxn for all n ∈ N.

We need to show that e ∈ E . For n ∈ N, we set for short

kn := |xn − ξn| = dist(xn, U) and en :=
xn − ξn
|xn − ξn|

∈ SN−1.

We start with showing that

lim inf
t→+∞

(
inf

n∈N, λ∈(0,1)
∂enu(t, λxn + (1− λ)ξn)

)
< 0. (5.1)

Assume by contradiction that (5.1) does not hold. Then, for any ε > 0 there exists τε > 0
such that

∀ t ≥ τε, ∀n ∈ N, ∀λ ∈ (0, 1), ∂enu(t, λxn + (1− λ)ξn) > −ε. (5.2)

Hypothesis (2.1) implies the existence of two constants δ, R > 0 such that dH(U,Uδ) < R.
Moreover, by parabolic estimates, there is K > 0, only depending on f and N , such that

∀ t ≥ 1, ∀x ∈ RN , |∇u(t, x)| ≤ K. (5.3)

Call δ′ := min(δ, 1/(8K)). By (3.2) there exists τ > 0, only depending on f , N , δ and R,
such that the solution v to (1.1) with initial datum v0 = 1

8
1Bδ′

satisfies v(t, x) ≥ 1/2 for
all t ≥ τ and x ∈ BR. We can assume without loss of generality that τ ≥ 1.

Take n ∈ N. Because dH(U,Uδ) = dH(U,Uδ) < R, there exists ζn ∈ Uδ such
that |ζn − ξn| < R. It follows that u0(x) ≥ v0(x − ζn) for all x ∈ RN and therefore,
by comparison,

∀ t ≥ τ, u(t, ξn) ≥ v(t, ξn − ζn) ≥ 1

2
.

Using (5.2) we then deduce

u
(
τε + τ, ξn + min

( 1

4ε
, kn

)
en

)
≥ 1

4
.

We now start an iterative argument. By (5.3) (recall that τ ≥ 1) we get

∀x ∈ B 1
8K
, u

(
τε + τ, ξn + min

( 1

4ε
, kn

)
en + x

)
≥ 1

8
.

Since δ′ ≤ 1/(8K), this allows us to compare u(τε + τ + ·, ξn + min( 1
4ε
, kn)en + ·) with v

and obtain

u
(
τε + 2τ, ξn + min

( 1

4ε
, kn

)
en

)
≥ 1

2
,

whence by (5.2)

u
(
τε + 2τ, ξn + min

( 2

4ε
, kn

)
en

)
≥ 1

4
.
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We iterate jn times this procedure, where jn is the smallest j ∈ N satisfying j/(4ε) ≥ kn.
Namely, for any n ∈ N we have shown that

u(τε + jnτ, xn) ≥ 1

4
with jn ∈ N such that jn − 1 < 4εkn ≤ jn. (5.4)

We compute

dist(xn, U)

τε + jnτ
=

kn
τε + jnτ

>
kn

τε + (4εkn + 1)τ
→ 1

4ετ
as n→ +∞.

Take c > c∗ and ε < 1/(4τc). It follows from the above estimate that dist(xn, U)>c(τε+jnτ)
for n large enough, but then (5.4) contradicts (3.5) because (jn)n∈N diverges to +∞
since (kn)n∈N does. This proves (5.1).

We can now conclude. By (5.1) there exist ε > 0, a diverging sequence (tk)k∈N in R+,
a sequence (nk)k∈N in N and a sequence (λk)k∈N in (0, 1) such that

∂enku(tk, yk) < −ε, where yk := λkxnk + (1− λk)ξnk .

Therefore, by parabolic estimates, the sequence of functions (u(tk, yk + ·))k∈N converges
in C1

loc(RN) (up to subsequences) towards a function ψ ∈ Ω(u) satisfying ∂eψ(0) ≤ −ε.
Moreover, since ξnk ∈ πxnk , there also holds by definition of yk that ξnk ∈ πyk and

yk − ξnk
|yk − ξnk |

= enk → e as k → +∞.

We deduce from Theorem 4.2 that ψ(x) ≡ Ψ(x · e) for some nonincreasing func-
tion Ψ ∈ C2(R). We further know that Ψ′(0) ≤ −ε < 0. Theorem 4.2 then implies
that Ψ is actually strictly decreasing in R, hence e ∈ E .

6 The subgraph case: proof of Corollary 2.5

We now turn to Corollary 2.5, which is a consequence of Theorems 2.2 and 2.4. In order
to check the geometric condition (2.4) of these two theorems, we will make use of the
following simple property of functions with vanishing global mean.

Lemma 6.1. Let γ : RN−1 → R satisfy (2.6). Then

M := sup
x′,y′∈RN−1

|γ(x′)− γ(y′)|
|x′ − y′|+ 1

< +∞. (6.1)

In particular, |xN − γ(x′)| ≤M for all (x′, xN) ∈ ∂U .

Proof. By (2.6), there exists L > 0 such that

sup
x′∈RN−1, y′∈RN−1, |x′−y′|≥L

|γ(x′)− γ(y′)|
|x′ − y′|

≤ 1.

Consider x′, y′ ∈ RN−1. Let z′ ∈ RN−1 be such that |z′ − x′| = L and |z′ − y′| ≥ L. We
have that

|γ(x′)− γ(y′)| ≤ |γ(x′)− γ(z′)|+ |γ(z′)− γ(y′)| ≤ L+ |z′ − y′| ≤ 2L+ |x′ − y′|,

from which the desired estimate immediately follows. The last statement of Lemma 6.1 is
an immediate consequence of (6.1).
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Proof of Corollary 2.5. The proof consists in showing that the assumptions of this corollary
entail, on one hand, that U fulfills the hypotheses (2.1), (2.4) of Theorems 2.2 and 2.4,
and, on the other hand, that

lim
n→+∞

xn − ξn
|xn − ξn|

= eN , (6.2)

for any sequence (xn)n∈N satisfying dist(xn, U) → +∞ as n → +∞ and any sequence
(ξn)n∈N such that ξn ∈ πxn for each n ∈ N.

By (2.6), there exists L > 0 such that

∀x′ ∈ RN−1, ∀ y′ ∈ RN−1\B′L(x′), γ(y′) ≥ γ(x′)− |y′ − x′|.

It follows that, for any x′ ∈ RN−1,

U ⊃
{

(y′, yN) ∈ (RN−1\B′L(x′))× R : yN ≤ γ(x′)− |y′ − x′|
}
.

Take δ > 0. Since the set in the right-hand side above contains the N -dimensional ball
Bδ((x

′ + y′, γ(x′) + yN)), for any (y′, yN) with |y′| = L+ δ and yN ≤ −L−3δ, we find that

∂B′L+δ(x
′)× (−∞, γ(x′)− L− 3δ) ⊂ Uδ for all x′ ∈ RN−1.

From this inclusion, and the fact that

∀(x′, xN) ∈ U, dist
(
(x′, xN) , ∂B′L+δ(x

′)×(−∞, γ(x′)−L−3δ)
)
≤
√

(L+ δ)2 + (L+ 3δ)2,

we deduce that
dH(U,Uδ) ≤

√
(L+ δ)2 + (L+ 3δ)2,

that is, (2.1) holds for any δ > 0.
Next, we claim that

sup
x=(x′,xN )∈RN , dist(x,U)=R, ξ=(ξ′,ξN )∈πx

|x′ − ξ′|
R

→ 0 as R→ +∞. (6.3)

To show (6.3), take R > 0, consider any point xR = (x′R, xR,N) ∈ RN such that
dist(xR, U) = R and let ξR = (ξ′R, ξR,N) ∈ πxR (remember that πxR ⊂ ∂U). The quantity
hR := xR,N − γ(x′R) satisfies hR ≥ R. We compute

R2 = |(x′R, γ(x′R) + hR)− (ξ′R, ξR,N)|2 ≥ |x′R − ξ′R|2 + h2R − 2hR|γ(x′R)− ξR,N |. (6.4)

If x′R−ξ′R stays bounded as R→ +∞ then the limit in (6.3) trivially holds. Suppose instead
that (up to subsequences) |x′R − ξ′R| → +∞ as R → +∞. Then, by hypothesis (2.6) and
Lemma 6.1, it follows that |γ(x′R) − ξR,N | ≤ |x′R − ξ′R|/2 for R large, and thus, for such
values of R, (6.4) yields

R2 ≥ |x′R − ξ′R|2 + h2R − hR|x′R − ξ′R| ≥
1

2
|x′R − ξ′R|2 +

1

2
h2R ≥

1

2
h2R,

that is, hR ≤
√

2R. Recalling that hR ≥ R, we then derive from (6.4) and Lemma 6.1 that

|x′R − ξ′R|
R

≤ 2
hR|γ(x′R)− ξR,N |
R|x′R − ξ′R|

≤ 2
√

2
|γ(x′R)− ξR,N |
|x′R − ξ′R|

≤ 2
√

2
|γ(x′R)− γ(ξ′R)|+M

|x′R − ξ′R|
,
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which tends to 0 as R→ +∞ by (2.6). This shows that property (6.3) holds.
Now, consider any sequence (xn)n∈N in RN\U such that dist(xn, U)→ +∞ as n→ +∞,

and any sequence (ξn)n∈N such that ξn ∈ πxn for each n ∈ N. By Lemma 6.1, one has that

|xn − ξn| ≥ xn,N − ξn,N ≥ xn,N − γ(ξ′n)−M ≥ xn,N − γ(x′n)− 2M −M |x′n − ξ′n|

for all n ∈ N. But xn,N − γ(x′n) = |xn − (x′n, γ(x′n))| ≥ |xn − ξn| since ξn ∈ πxn . Hence
|xn− ξn| ≥ xn,N − ξn,N ≥ |xn− ξn| − 2M −M |x′n− ξ′n|, and the last quantity is equivalent
to |xn− ξn| = dist(xn, U) as n→ +∞, by (6.3). As a consequence, xn,N − ξn,N ∼ |xn− ξn|
as n→ +∞ and, together with (6.3) again, the property (6.2) follows.

We are left to show (2.4). As before, let xR = (x′R, xR,N) ∈ RN such that
dist(xR, U) = R > 0. We want to estimate O(xR) defined by (2.3) when R is large,
i.e.

O(xR) = sup
ξ∈πxR , y∈U\{ξ}

xR − ξ
R

· y − ξ
|y − ξ|

.

We first consider the set of points ξ, y satisfying |y − ξ| <
√
R. Since at any ξ ∈ πxR

and y ∈ U it holds that

R2 ≤ |xR − y|2 = R2 + |ξ − y|2 + 2(xR − ξ) · (ξ − y),

we derive

sup
ξ∈πxR , y∈U, 0<|y−ξ|<

√
R

xR − ξ
R

· y − ξ
|y − ξ|

≤ 1

2
√
R
→ 0 as R→ +∞. (6.5)

It remains to estimate the above scalar product when |y− ξ| ≥
√
R. We first observe that,

for ξ = (ξ′, ξ′N) 6= y = (y′, yN),

xR − ξ
R

· y − ξ
|y − ξ|

≤
(
|x′R − ξ′|

R
+

(xR,N − ξN)(yN − ξN)

R|y − ξ|

)
. (6.6)

Let ξ ∈ πxR and y ∈ U \ {ξ}. The first term of the right-hand side is handled by (6.3). As
for the second term, we notice that (6.2) and Lemma 6.1 imply that xR,N − ξN ≥ 0 for R
large enough, and ξN ≥ γ(ξ′)−M . Therefore, since yN ≤ γ(y′), it follows that

(xR,N − ξN)(yN − ξN)

R|y − ξ|
≤ (xR,N − ξN)(γ(y′)− γ(ξ′) +M)

R|y − ξ|
≤ |γ(y′)− γ(ξ′)|+M

|y − ξ|
(6.7)

for all R large enough. From this, on one hand, restricting to |y′ − ξ′| ≥ 3
√
R, it follows

from (2.6) that

sup
dist(xR,U)=R, ξ=(ξ′,ξ′N )∈πxR
y=(y′,yN )∈U, |y′−ξ′|≥ 3√R

(xR,N−ξN)(yN−ξN)

R|y − ξ|
≤ sup

ξ′,y′∈RN−1

|y′−ξ′|≥ 3√R

|γ(y′)−γ(ξ′)|+M
|y′ − ξ′|

−→
R→+∞

0. (6.8)

On the other hand, when |y′ − ξ′| < 3
√
R, we deduce from (6.7) that

sup
dist(xR,U)=R, ξ=(ξ′,ξ′N )∈πxR

y=(y′,yN )∈U |y′−ξ′|< 3√R, |y−ξ|≥
√
R

(xR,N − ξN)(yN − ξN)

R|y − ξ|
≤ 2M + 3

√
R√

R
−→
R→+∞

0. (6.9)

Summing up, (2.4) follows from the estimates (6.5) and (6.6), (6.3), (6.8), and (6.9).
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7 Directional asymptotic one-dimensional symmetry

The arguments of the proof of Theorem 2.2 can somehow be localized. Loosely speaking,
if one focuses on the asymptotic one-dimensional property around a given direction, the
global geometric assumption (2.4) can be restricted to the points x around that direction,
and hypothesis (2.1) can be relaxed too. Under such weaker assumptions, we derive the
one-dimensional symmetry for functions belonging to the directional Ω-limit set of the
solution, which is defined as follows.

Definition 7.1. For a given bounded function u : R+ × RN → R and for any direction
e ∈ SN−1, the set

Ωe(u) :=
{
ψ ∈ L∞(RN) : u(tn, xn + ·)→ ψ in L∞loc(RN)
for some sequences (tn)n∈N in R+ diverging to +∞,
and (xn)n∈N in RN \ {0} such that xn/|xn| → e as n→ +∞

}
is called the Ω-limit set in the direction e of u. Notice that Ωe(u) ⊂ Ω(u).

Theorem 7.2. Let u be a solution of (1.1) with an initial condition u0 =1U , where U⊂RN

has nonempty interior and satisfies

U ⊂
{

(x′, xN) ∈ RN−1 × R : xN ≤ γ(x′)
}
, (7.1)

for a function γ ∈ L∞loc(RN−1) such that

lim sup
|x′|→+∞

γ(x′)

|x′|
≤ 0. (7.2)

Then, any function ψ ∈ ΩeN (u) is one-dimensional and satisfies ψ(x′, xN) ≡ Ψ(xN) in RN ,
with Ψ ∈ C2(R) either constant or strictly decreasing. In particular it holds that

∇x′u(t, x′, xN)→ 0 as t→ +∞, locally in x′∈RN−1 and uniformly in xN ∈ [R,+∞),

for any R ∈ R, and moreover if the inclusion is replaced by an equality in (7.1), then

∇x′u(t, x′, xN)→ 0 as t→ +∞, locally in x′∈RN−1 and uniformly in xN ∈R.

Proof. We prove the result showing that, when restricted to the directional Ω-limit
set ΩeN (u), the arguments of the proof of Theorem 4.2 can be performed with hypothe-
ses (2.1) and (2.4) replaced by the assumptions that U has nonempty interior and ful-
fills (7.1)-(7.2). We will also show that the functions in ΩeN (u) are one-dimensional pre-
cisely in the direction eN . The situation is simpler here and we do not need to introduce
any coordinates transformation.

Assume by contradiction that there exists ψ ∈ ΩeN (u) satisfying ∇x′ψ(x̄) 6= 0 for
some x̄ ∈ RN . Let (tn)n∈N in R+ and (xn)n∈N in RN\{0} be the associated sequences given
in Definition 7.1, that is,

tn → +∞ and
xn
|xn|
→ eN as n→ +∞. (7.3)

Since U has nonempty interior, the invasion property (3.2) applies and yields

∀ c ∈ (0, c∗), |xn| ≥ ctn for all n sufficiently large, (7.4)
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because otherwise ψ ≡ 1 in RN . In particular, (xn)n∈N needs to be unbounded. Therefore,
up to replacing (xn)n∈N with (xn + x̄)n∈N, we can assume without loss of generality that
x̄ = 0. Namely, the sequences (tn)n∈N, (xn)n∈N satisfy (7.3) and (7.4), and by parabolic
estimates it holds that

∇u(tn, xn)→ β as n→ +∞, (7.5)

with β = (β′, βN), β′ 6= 0. We write, for n ∈ N, xn = (x′n, xn,N). Properties (7.3), (7.4)
immediately imply

∀ c ∈ (0, c∗), xn,N = xn · eN ≥ ctn for all n sufficiently large. (7.6)

Similarly, (3.5) implies that lim supn→+∞ dist(xn, U)/tn ≤ c∗ (because otherwise
ψ ≡ 0 in RN). Furthermore, it follows from (7.1)-(7.3) and limn→+∞ |xn| = +∞, that
dist(xn, U) ∼ xn,N as n→ +∞. Therefore, lim supn→+∞ xn,N/tn ≤ c∗, hence

|x′n| = o(tn) as n→ +∞, (7.7)

by using (7.3) again.
For given ϑ > 0, define the sets

Hn := B′ϑtn × (−∞, ϑtn], Vn :=
{
xn + s(β + ζ) : s ∈ R, ζ ∈ Bϑ

}
.

Consider a point P = (P ′, PN) ∈ Vn satisfying PN ≤ ϑtn. Namely, P = xn + s(β + ζ) for
some ζ ∈ Bϑ and s ∈ R such that

ϑtn ≥ xn,N − (|βN |+ ϑ)|s|.

As a consequence, if ϑ < |β′| we derive

|P ′| ≥ (|β′| − ϑ)|s| − |x′n| ≥
|β′| − ϑ
|βN |+ ϑ

(xN,n − ϑtn)− |x′n|.

Since β′ 6= 0 and |x′n|/xn,N → 0 as n → +∞ due to (7.3), using (7.6) one can find
ϑ ∈ (0,min(|β′|, c∗/2)) sufficiently small, only depending on β′, βN and c∗, such that, for n
large, |P ′| > ϑtn, i.e. P /∈ Hn. With this choice it holds that Hn ∩ Vn = ∅ for n sufficiently
large.

We then set

σ :=
ϑ

3
> 0, ε :=

ϑ

2
> 0.

We further take δ > 0 such that Uδ 6= ∅ and finally L > 0 large enough so that (4.1)
holds, the latter being possible due to (7.1)-(7.2). Observe that 0 < σ < ϑ < c∗/2. This
means that U fulfills the hypotheses of Lemma 4.1. Therefore, for n ∈ N, the solution uϑtn

of (1.1) whose initial datum is equal to the indicator function of the set U ∩ (B′ϑtn × R)
satisfies (4.2), i.e. ∥∥u(tn, ·)− uϑtn(tn, ·)

∥∥
C1(B′

ϑtn/3
×R+)

<
ϑ

2
,

provided n is sufficiently large. By (7.5)-(7.7), one then derives |∇uϑtn(tn, xn)−β| < ϑ for
all n sufficiently large. This means that, for such values of n, the line Γn passing through
the point xn and directed as ∇uϑtn(tn, xn) is contained in the set Vn defined before, whence(

Γn ∩Hn

)
⊂
(
Vn ∩Hn

)
= ∅ for all n sufficiently large.
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On the other hand, we have that

suppuϑtn(0, ·) ⊂ U ∩ (B′ϑtn × R) ⊂ Hn for all n sufficiently large.

We are thus in a position to apply the reflection argument. Namely, proceeding as in Step 4
of the proof of Theorem 4.2, with uϑtnn replaced by uϑtn , we reach a contradiction thanks
to the Hopf lemma. This proves that any ψ ∈ ΩeN (u) satisfies ∇x′ψ ≡ 0, that is, there is
a C2(R) function Ψ such that ψ(x) ≡ Ψ(xN) in RN . The monotonicity of Ψ can then be
shown as in Step 5 of the proof of Theorem 4.2, with un replaced by u, kneN by xn, and kn
by xn,N . Furthermore, similarly as in Step 6 of the proof of Theorem 4.2, the function Ψ
is either constant or strictly decreasing.

Let us deal now with the last part of the theorem concerning the convergences of ∇x′u
towards 0. Consider a diverging sequence (tn)n∈N in R+, a bounded sequence (x′n)n∈N
in RN−1 and a sequence (xn,N)n∈N in R. By parabolic estimates, as n→ +∞, the function
u(tn, (x

′
n, xn,N)+·) converge in C2

loc(RN), up to extraction of a subsequence, towards a func-
tion ψ. On one hand, if up to extraction of another subsequence, xn,N → +∞ as n→ +∞,
then ψ ∈ ΩeN (u) and thus, by the first part of the theorem proved above, there is a C2(R)
function Ψ such that ψ(x) ≡ Ψ(xN) in RN . On the other hand, if (xn,N)n∈N is bounded
then ψ ≡ 1 in RN due to (3.2). Summing up, we have ∇x′u(tn, x

′
n, xn,N)→ 0 as n→ +∞

when (xn,N)n∈N is bounded from below. This proves the first convergence of ∇x′u stated in
the theorem. We are left with the case where, up to subsequences, xn,N → −∞ as n→ +∞
and the inclusion is replaced by an equality in (7.1). In such a case, even if it means repla-
cing U by a measurable set U ′ ⊃ U such that U ′ \U has zero Lebesgue measure, the set U
contains, for given δ > 0, the half-cylinder B′δ × (−∞, ess infB′δ γ), where ess infB′δ γ > −∞
because γ ∈ L∞loc(RN−1). We deduce

Uδ ⊃ {0} × (−∞, ess inf
B′δ

γ − δ),

where 0 above stands for the origin in RN−1. It follows from property (3.4) of Propo-
sition 3.1 that u(t, x′, xN) → 1 as t → +∞ locally in x′ ∈ RN−1 and uniformly in
xN ∈(−∞, R], for any R > 0. This implies that ψ ≡ 1 in RN , hence ∇x′u(tn, x

′
n, xn,N)→ 0

as n→ +∞ up to subsequences. The proof of the theorem is complete.

8 Extensions and open questions

We list in this last section some extensions of the main results for more general initial data,
as well as some open questions and conjectures.

Some extensions of the main results

First of all, we point out that the conclusions of the main results of Section 2 still hold
for the solutions to (1.1) with measurable initial conditions u0 : RN → [0, 1] more general
than characteristic functions. To be more precise, if there are h ∈ (0, 1] and δ > 0 such
that (2.1) is replaced by

dH
(
{u0 ≥ h}, suppu0

)
< +∞ and dH

(
{u0 ≥ h}, {u0 ≥ h}δ

)
< +∞, (8.1)
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and if (2.4) is replaced by

lim
R→+∞

(
sup

x∈RN ,dist(x,suppu0)=R
O(x)

)
≤ 0, (8.2)

then the conclusion of Theorem 4.2 – and thus of Theorem 2.2 – holds true. Indeed, first of
all, one checks that Proposition 3.1 holds with U and Uδ replaced by suppu0 and {u0 ≥ h}δ
respectively, where, for the proof of (3.4), one defines v as the solution with initial datum
v0 = h1Bδ . Then Lemma 4.1 still holds with uR0 := u0 1B′R×R and with the assumption (4.1)
replaced by

{u0 ≥ h}δ ∩BL 6= ∅ and suppu0 \ (B′L×R) ⊂
{

(x′, xN) ∈ RN−1×R : xN ≤
σ

2c∗
|x′|
}

(but now in the conclusion (4.2) the time τε depends on h too). Next, one repeats the
arguments of the proof of Theorem 4.2 with the Un defined as rigid transformations of
suppu0 in place of U , and L := dH

(
{u0 ≥ h}, {u0 ≥ h}δ

)
+ 1 in (4.14) and (4.20).

As a consequence of Theorem 2.2, the conclusion of Theorem 2.3 still holds for initial
conditions u0 satisfying (8.1)-(8.2) instead of u0 = 1U with (2.1) and (2.4). Similarly,
the conclusion of Theorem 2.4 holds for such u0’s, with U replaced by suppu0 in the
statement, while the conclusion of Corollary 2.5 holds when dH

(
{u0 ≥ h}, suppu0

)
< +∞

and dH
(
U, suppu0

)
< +∞, with U still satisfying (2.5)-(2.6). Finally, the conclusion of

Theorem 2.1 is satisfied when u0 fulfills (8.1) instead of (1.3) and (2.1), and when the
convexity – or convex proximity – of U is replaced by that of suppu0.

Some open questions and conjectures

To complete the paper, we propose a list of open questions and conjectures related to our
results. First of all, let us call ϕ the traveling front profile with minimal speed, that is,
for each e ∈ SN−1, ϕ(x · e − c∗t) satisfies (1.1) with 0 = ϕ(+∞) < ϕ < ϕ(−∞) = 1 and
c∗ = 2

√
f ′(0). Based on Theorems 2.2 and 4.2, and according to the definition (2.7) of E ,

we propose the following.

Conjecture 8.1. Let u be as in Theorem 2.2. Then,

Ω(u) =
{

0, 1, ϕ(x · e+ a) : e ∈ E , a ∈ R
}
.

This conjecture is known to hold when U is bounded with non-empty interior, by [7, 24],
and when U is the subgraph of a bounded function, or more generally when there are two
half-spaces H and H ′ –necessarily with parallel boundaries– such that H ⊂ U ⊂ H ′,
by [2, 3, 13, 19, 27].

We have shown in Lemma 4.3 that the assumption (2.4) of Theorem 2.2 is stable by
bounded perturbations of the sets U . We could then wonder whether the asymptotic
one-dimensional symmetry is also stable with respect to bounded perturbations of the
initial support. Namely, if the solution to (1.1) with an initial datum 1U satisfying (2.1)
is asymptotically locally planar, and if U ′ ⊂ RN satisfies (2.1) and dH(U ′, U) < +∞, then
is the solution to (1.1) with initial datum 1U ′ asymptotically locally planar as well?

One can also wonder whether the reciprocal of Theorem 2.2 is true, in the following
sense: if the asymptotic one-dimensional symmetry holds for a solution u of (1.1) with
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initial datum 1U and U satisfying (2.1), does necessarily U fulfill (2.4)? The answer is
immediately seen to be negative in general: take for instance U given by

U =
⋃
n∈N

[2n, 2n + 1]× RN−1,

which fulfills (2.1) but not (2.4), while u – hence any element of Ω(u) – is one-dimensional,
depending on the variable x1 only. However, the question is open if U is connected.

Our study concerns the Fisher-KPP equation, with functions f satisfying (1.2). How-
ever, the same question of asymptotic one-dimensional symmetry can be asked for more
general reaction terms f , still with f(0) = f(1) = 0. First of all, the hypothesis (2.1)
should be strengthened, by requiring δ > 0 to be large enough. Indeed, if f is for instance
of the bistable type

f ′(0) < 0, f ′(1) < 0, f < 0 in (0, α), f > 0 in (α, 1),

∫ 1

0

f(s)ds > 0 (8.3)

for some α ∈ (0, 1), then by [6, 28] there is δ0 > 0 such that the solution to (1.1) with
initial condition u0 = 1Bδ0

converges uniformly as t → +∞ to a ground state, that is, a
positive radial solution converging to 0 as |x| → +∞, hence u is not asymptotically locally
planar. However, if u0 := 1Bδ with δ > δ0, then u(t, x)→ 1 as t→ +∞ locally uniformly
in x ∈ RN . We then say that the invasion property holds if there is ρ such that the solution
u to (1.1) with initial condition 1Bρ satisfies u(t, x) → 1 as t → +∞ locally uniformly in
x ∈ RN . For general functions f for which the invasion property holds, if U is bounded and
Uρ 6= ∅, then the solutions to (1.1) with initial condition 1U are known to be asymptotically
locally planar, by [16]. The same conclusion holds for bistable functions f of the type (8.3)
if there are two half-spaces H and H ′ –necessarily with parallel boundaries– such that
H ⊂ U ⊂ H ′, by [2, 8, 20, 21] (see also [23] for the case of more general functions f). On
the other hand, still for bistable functions f of the type (8.3), the solutions u to (1.1) with
initial condition 1U are not asymptotically locally planar if U is V-shaped, that is, if it is
the union of two half-spaces with non-parallel boundaries, by [10, 11, 22, 25]. These known
results lead us to formulate the following De Giorgi type conjecture for the solutions of the
reaction-diffusion equation (1.1) beyond the Fisher-KPP case.

Conjecture 8.2. Assume that the invasion property holds for some ρ > 0. Let u be the
solution to (1.1) with an initial datum u0 = 1U such that U ⊂ RN satisfies dH(U,Uρ) < +∞
and (2.4). Then any function in Ω(u) is one-dimensional and, in addition, it is either
constant or strictly monotone.

Let us also mention another natural question related to the preservation of the convexity
of the upper level sets of u when u0 = 1U and U is convex. It is known from [4, 15] that,
if U is convex, then the solution of the heat equation ∂tu = ∆u is quasi-concave at each
t > 0, that is, for each t > 0 and λ ∈ R, the upper level set {x ∈ RN : u(t, x) > λ} is
convex. The same conclusion holds for (1.1) set in bounded convex domains instead of RN ,
and under some additional assumptions on f , by [14]. A natural question is to wonder for
which class of functions f this property still holds for (1.1) in RN .

Notice finally that, for any solution u to (1.1), for any sequence (tn)n∈N diverging
to +∞, and for any sequence (xn)n∈N in RN , the functions u(tn + ·, xn + ·) converge
locally uniformly in R × RN , up to extraction of a subsequence, to an entire solution
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to (1.1) (that is, solution for all t ∈ R). Remembering Theorem 2.1 on the asymptotic
one-dimensional symmetry for the solutions to (1.1) with u0 = 1U and U convex, and
having in mind the question of the previous paragraph on the convexity of the upper level
sets, it is then natural to ask the following: if an entire solution v : R×RN → [0, 1] to (1.1)
is quasi-concave for every t ∈ R, is v(t, ·) necessarily one-dimensional for every t ∈ R?
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