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Abstract

This paper presents a new efficient black-box attribution method based on Hilbert-
Schmidt Independence Criterion (HSIC), a dependence measure based on Re-
producing Kernel Hilbert Spaces (RKHS). HSIC measures the dependence be-
tween regions of an input image and the output of a model based on kernel
embeddings of distributions. It thus provides explanations enriched by RKHS
representation capabilities. HSIC can be estimated very efficiently, significantly
reducing the computational cost compared to other black-box attribution meth-
ods. Our experiments show that HSIC is up to 8 times faster than the previous
best black-box attribution methods while being as faithful. Indeed, we improve
or match the state-of-the-art of both black-box and white-box attribution meth-
ods for several fidelity metrics on Imagenet with various recent model architec-
tures. Importantly, we show that these advances can be transposed to efficiently
and faithfully explain object detection models such as YOLOv4. Finally, we
extend the traditional attribution methods by proposing a new kernel enabling
an orthogonal decomposition of importance scores based on HSIC, allowing
us to evaluate not only the importance of each image patch but also the impor-
tance of their pairwise interactions. Our implementation is available at https:
//anonymous.4open.science/r/HSIC-Attribution-Method-C684.

1 Introduction

Artificial Intelligence has established itself as the reference technique for tackling many real-world
automation tasks. Consequently, the diversity of its applications is growing and reaching fields where
its outputs can contribute to critical decision-making. In such cases, it is essential to be able to provide
explanations for each link of the decision chain, including AI algorithms. Over the past decade,
many techniques have emerged to explain the predictions of these algorithms [47, 39, 44, 17, 57,
35, 34, 30, 29, 41], marking the birth of a new field called Explainable Artificial Intelligence (XAI).
The tools developed in this research field, mostly designed to explain neural networks, have already
proven helpful, for instance, in model debugging, identification of new development strategies for
practitioners, and failure understanding.

Initial approaches are based on analyzing the internal state of neural networks during inference,
often relying on input gradients or activation values of hidden layers [47, 44, 17, 28]. However,
the gradient only reflects the model’s operation in an infinitesimal neighborhood around an input
and can therefore be misleading [20]. Furthermore, their applicability is limited to the case where
the final user has access to the implementation of the model. Therefore, such methods cannot be
applied in the most common use cases, e.g. when models are made available by third parties through
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Figure 1: HSIC Explainability method. We sample random binary masks M that we use to perturb
the input image x. We obtain a perturbed output and measure the dependence between the distribution
of each patch PM of the binary mask and that of the output Py. We use a dependence measure,
Hilbert Schmidt Independence Criterion (HSIC), which is based on the kernel embedding of these
distribution in a Reproducing Kernel Hilbert Space (RKHS). Each patch is then assigned the value of
this measure: the more independent a patch is from y, the less important it is to explain it.

API calls or specialized hardware. In order to address this issue, some black-box approaches have
been recently proposed, relying on the perturbation of the input and the observation of its effect
on the output [60, 39, 35, 13]. One challenge of such perturbation methods is assessing this effect
together with taking into account complex interactions inherent to deep neural networks. To account
for these characteristics, black-box methods resort to complex Monte Carlo methods that require a
high number of model forward passes to compute meaningful explanations. This can be all the more
cumbersome since most recent neural network architectures are growing larger.

In [13, 32], the authors propose methods to reduce the required number of forward passes, but the
obtained performance improvements still do not make them close to white-box methods. In this work,
similarly to [13], we cast perturbation studies as Global Sensitivity Analysis (GSA) [37]. However,
we rely on a whole different approach based on dependence measure rather than analysis of variance.
We measure the dependence between the perturbation of regions of input images (defined by groups
of pixels) and the model output by comparing their distribution embedded in a Reproducing Kernel
Hilbert Space (RKHS). More specifically, we use Hilbert-Schmidt Independence Criterion (HSIC), a
dependence measure based on the Hilbert-Schmidt norm of the empirical cross-covariance operator
evaluated between the represented distribution. HSIC leverages the rich theory of RKHS, thereby
capturing more diverse information than variance-based indices such as Sobol. In addition, it can
be estimated more efficiently, even bridging the performance gap between black-box and white-box
methods.

Our contributions are as follows: (1) we introduce a new efficient black-box attribution method
relying on HSIC; (2) we derive a new kernel that confers an orthogonal decomposition property,
allowing us to go beyond usual attribution methods and evaluating interactions between patches of
the image; (3) we conduct experiments to assess the fidelity of our method on ImageNet and show
that it improves or matches the state-of-the art for different metrics while bridging the computational
gap between black-box and white-box attribution methods; (4) we demonstrate its versatility and its
potential by successfully applying it to a less common test case: explanations of object detection; and
a new test case: evaluation of pairwise interactions between patches of the input image.

2 Related work
Our work builds on prior efforts aiming to develop attribution methods in order to explain the
prediction of a deep neural network by pointing to input variables that support the prediction –
typically pixels or group of pixels, i.e. patches in the image – which lead to importance maps (as
shown in Figure 1).

Attribution methods for white-box models A large number of attribution methods have been
developed relying on the gradient of the decision studied. The first method was introduced in [4]
and improved in [47, 60, 55] and consists of explaining the decisions of a convolution model
by back-propagating the gradient from the output to the input. The resulting gradient heatmap,
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also called the saliency map, indicates which pixels affect the decision score the most. However,
this family of methods is limited because they focus on the influence of individual pixels in an
infinitesimal neighborhood around the input image in the image space. For instance, it has been
shown that gradients often vanish when the prediction score to be explained is near the maximum
value [57]. Integrated Gradient [57] and SmoothGrad [49] partially address this issue by accumulating
gradients. Another family of attribution methods relies on the neural network’s activations. Popular
examples include CAM [61], which computes an attribution score based on a weighted sum of feature
channel activities – right before the classification layer. GradCAM [44] extends CAM via the use of
gradients, reweighting each feature channel to take into account their importance for the predicted
class. Nevertheless, the choice of the layer has a huge impact on the quality of the explanation. In
comparison our proposed approach is model-agnostic and hence does not require access to internal
computations.
Attribution methods for black-box models In this paper, we extend the problem by restricting
it to a black-box model: the analytical form and potential internal states of the model are unknown.
Among this type of approach, we can mention several methods that probe a neural network’s responses
to perturbations over image regions and combine the resulting predictions into an influence score for
each individual pixel or group of pixels.

The first method, Occlusion [60], masks individual image regions – one at a time – with an occluding
mask set to a baseline value and assigns the corresponding prediction scores to all pixels within
the occluded region. Then the explanation is given by these prediction scores and can be easily
interpreted. However, occlusion fails to account for the joint (higher-order) interactions between
multiple image regions. For instance, occluding two image regions – one at a time – may only
decrease the model’s prediction minimally (say a single eye or mouth component on a face) while
occluding these two regions together may yield a substantial change in the model’s prediction if these
two regions interact non-linearly as is expected for a deep neural network. Our work, together with
related methods such as LIME [39], RISE [35] and more recently Sobol [13] addresses this problem
by randomly perturbating the input image in multiple regions at a time.

Surprisingly, RISE [35] and Sobol Attribution [13] have recently shown that black-box attribution
methods can rival and even surpass the white-box methods commonly used, without recourse to
internal states. However despite the efforts in [13] to limit their computational overhead, black-box
methods remain far from white-box methods in terms of execution time. In this work, we show that it
is possible to match or even surpass the performances of current black-box methods while reaching
computation times lower than some white-box methods by using dependence measure-based Global
Sensitivity Analysis (GSA).
Global sensitivity analysis using dependence measures Our attribution method builds on the
GSA framework. The approach was introduced in the 70s [9] and was popularized with variance-
based sensitivity analysis and Sobol indices [50]. It consists of evaluating the sensitivity of a model’s
output of interest to some input design variables. GSA is currently used in many fields, especially
for the study of physical phenomena [27, 37]. Recently, dependence measure-based sensitivity
analysis was introduced in [10] and was shown to circumvent some practical issues of variance-
based sensitivity analysis. In particular, by relying on the representation capabilities of RKHS, the
dependence measure that we use in this work, HSIC [22], captures more diverse information than
traditional variance-based indices for far fewer model evaluations.

3 Explanations using Hilbert-Schmidt Independence Criterion
In this section, we describe sensitivity analysis-based attribution methods, define Hilbert-Schmidt
Independence Criterion (HSIC) [22] and explain how we can use it and adapt it to design a new
black-box attribution method whose efficiency competes with white-box methods. We also explain
the theoretical advantages of HSIC that we can build on to go beyond traditional attribution methods.

3.1 Sensitivity analysis of perturbed black-box models
Let f : X = X1, ...,Xn → Y be the model under study, xi ∈ Xi the input variables and y =
f(x1, ..., xn) ∈ Y the output value of the model f . GSA studies the sensitivity of y to each input xi
by considering them as iid (independent and identically distributed) random variables and assessing
the link between their distibution and that of the output after an initial input sampling. Given an
input vector x = (x1, ..., xn), a prediction y = f(x) can thus be explained using sensitivity analysis
by applying random perturbations x = (x1, ..., xn), xi ∼ PXi

of the original x and analyzing the
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importance of each xi for explaining the variations of y - which is considered a random variable,
y ∼ Py.

For image data, the inputs xi are pixels. However, pixel perturbations would only emphasize low
level explanations. To obtain high level and meaningful explanations, we rather consider a random
perturbation mask M = (M1, ...,Md) ∈ [0, 1]d that we apply on the input image x using a mask
operator τ : X × [0, 1]d → X . More specifically, we use the inpainting operator [17, 39, 60, 35, 13]
defined by τ (x,M) = x�M + (1−M)µ, with � the Hadamard product and µ a baseline value.
For each image patch, the mask values define a drift from the original image towards the baseline
value µ. We thereby assess the effect of each patch of the image, represented by Mi, on the output.

The perturbation methodology thus consists of (1) sampling p masks {M (1), ...,M (p)} from
M ∼ PM (with PM = PM1

× ...× PMp
), (2) applying them to the original input vector, leading to

p perturbed input vectors (e.g., partially masked images) {τ (x,M (1)), ..., τ (x,M (p))} (3) com-
puting the predictions {y(1), ...,y(p)} = {f(τ (x,M (1))), ...,f(τ (x,M (p)))} and (4) statistically
assessing the effect of each mask Mi on y by estimating a sensitivity measure between each PMi

and
Py from the previous sampling. In this paper, we consider that the more independent Mi is from y,
the less important the corresponding image patch is to explain it [10] and use HSIC, a dependence
measure. In the following, we describe HSIC and how to use it in practice.

3.2 Hilbert-Schmidt Independence Criterion
Let x and y be two random variables of probability distribution Px and Py defined on X and Y .
HSIC measures the dependence between Px and Py based on their embedding in Reproducing Kernel
Hilbert Space (RKHS). Let ϕ : X → F and ψ : Y → G two continuous feature mapping between X ,
Y , and two RKHS F , G, such that the inner product between the feature embeddings of x, x′ ∈ X in
F is given by the kernel k(x, x′) = 〈ϕ(x), ϕ(x′)〉 (and l(y, y′) = 〈ψ(y), ψ(y′)〉 for y, y′ ∈ Y). The
cross covariance operator Cxy : G → F between the random variables x and y is defined in [19] and
can be written.

Cxy = Exy[(ϕ(x)− µx)⊗ (ψ(y)− µy)],

where µx = Ex[ϕ(x)] and µy = Ey[ψ(y)] are the mean embedding of x and y in F and G. When
F and G are universal RKHS on the compact domains X and Y , then ‖Cxy‖HS = 0 if and only if
x and y are independent, where ‖ · ‖HS denotes the Hilbert Schmidt norm (see [23]). In [22], the
authors define HSIC as ‖Cxy‖2HS , which can be written:

HSIC(x,y) =Ex,x′,y,y′ [k(x, x
′)l(y, y′)] + Ex,x′ [k(x, x

′)]Ey,y′ [l(y, y
′)]

− 2Ex,y[Ex′ [k(x, x
′)]Ey′ [l(y, y

′)]],
(1)

where x,x′ and y,y′ are pairwise iid. HSIC can also be expressed in terms of Maximum Mean
Discrepancy (MMD), which is a distance between mean embeddings defined in a RKHS [56]. More
specifically, let the product RKHS P = F × G with kernel v((x, y), (x′, y′)) = k(x, x′)l(y, y′).
Then, HSIC(x,y) = γ2v(PxPy,Px,y), where γv is the MMD operator on P . HSIC thus measures
the distance between Pxy and PyPx embedded in P [10]. Since x ⊥ y⇒ Pxy = PyPx, the closer
these distributions are, in the sense of the MMD, the more independent they are.

Thus, given a set of inputs (e.g., random masks) {x1, ...,xp} and the associated outputs {y1, ...,yp},
[22] shows that HSIC can be estimated by

Hpx,y =
1

(p− 1)2
trKHLH, (2)

where H,L,K ∈ Rp×p and Kij = k(xi, xj), Li,j = l(yi, yj) and Hij = δ(i = j) − p−1. Using
this formula, Hpx,y can be computed with a O(p2) complexity. In the following, we apply this
estimator to each component of the random perturbation M and denote Hpi := HpMi,y

for clarity.
In the next section, we discuss about the kernels k and l and show that we can obtain a valuable
orthogonal decomposition property for HSIC based indices, allowing to assess interactions between
input variables.

3.3 Orthogonalisation of HSIC to enable interactions evaluation
One question of interest in explainability is the measurement of the importance of a specific group
of variables. Indeed, it is notorious that neural networkss are highly non linear and as it has been
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demonstrated in several works [16, 13], the effects of the groups of variables are far from being
additive. Concretely, some areas of the image may only be important in interaction with other areas,
affecting the output only when both areas are perturbated at the same time - as we shall see in Section
4.4 (for instance, for mustaches of a puma).

Classical GSA based on variance analysis enjoys an orthogonal decomposition property that is
valuable for that purpose. Let {x1, ..., xn} ∈ Xn a set of n univariate random variables. For any
subset A = {l1, ..., l|A|} ⊆ {1, ..., n}, we denote xA = (xl1 , ..., xl|A|) the vector of input variables
with indices in A. When using Sobol indices based GSA, the sum of the indices of all possible xA
is equal to 1. This property was lacking for dependence measure-based sensitivity analysis until
the work of [11], which shows that when using HSIC, a specific choice of kernel k can enable this
decomposition.

For any choice of l and characteristic univariate kernel k, it is possible to obtain the decomposition
property by defining the input kernel kA such that

kA(xA,x
′
A) =

∏
i∈A

(1 + k0(xi, x
′
i)), s.t. k0(x, x

′) = k(x, x′)−
∫
k(x, t)dP (t)

∫
k(x′, t)dP (t)∫ ∫

k(s, t)dP (s)dP (t)

(3)
These conditions can be stringent, especially the right one, which implies to compute integrals
(analytically or empirically), which can be non trivial for continuous input distributions px and
classical kernel choices such as Radial Basis Function (RBF) of bandwidth σ, k(x, x′) = exp(‖x−
x′‖/2σ2). This condition is alleviated when using discrete input variables of known densities, for
which the integrals can be computed analytically. In particular, in this work, we rely on Proposition 1:

Proposition 1. Let x a Bernoulli variable of parameter p = 1
2 , and δ(x = x′) the dirac kernel. Let

k0 be defined as in equation (3). Then, the following kernel satisfies the decomposition property:

k0(x, x
′) = δ(x = x′)− 1

2
. (4)

The proof is in the Appendix A. As a practical consequence, if we sample binary masks from a
Bernoulli variable of parameter p = 1/2, i.e. Mi ∼ B(p) for i ∈ {1, ..., d}, and use the kernel
defined in equation (4), we can assess not only the importance of each patch in the image but also the
importance of the interactions between patches. It allows to go beyond classical attribution methods
and reveal areas of the image that are only important in interaction with other areas, i.e. that affect
the output only when both areas are perturbated at the same time. Concretely, for two image patches
indexed by i and j, the interaction HSIC,Hi×j , can be obtained with [11]:

Hpi×j = H
p
(Mi,Mj),y

−HpMi,y
−HpMj ,y

. (5)

We insist on the fact that if the decomposition property is not valid, substractingHpMi,y
andHpMj ,y

to Hp(Mi,Mj),y
does not ensure that we assess the importance of the interactions only. Traces of

the independent importances of Mi and Mj may remain in the obtained metric. Some qualitative
benefits of such a property are illustrated in Section 4.4. This decomposition holds for any choice of
kernel l : Y → G. Therefore, in the following, we use the RBF kernel, with the common practice of
choosing the bandwidth as the median of the output [10, 22, 53].

3.4 Sample efficiency of HSIC estimator
Several types of metrics are classically used for sensitivity analysis. The most famous one, Sobol
indices [51] and its variants [18, 6] classically require p2 model evaluations [25] to reach an estimation
error of O( 1√

p ). Recent design of experiments managed to reduce this requirement to p× (d+ 2)

[42], but with the increase in complexity of state-of-the-art architectures and the high dimensionality
of inputs (although mitigated by the use of d patches instead of all pixels), it can still be cumbersome.
Despite this drawback, [13] use Sobol indices to obtain explanations and still achieves execution time
improvement compared to other state-of-the-art attribution methods, which are even less efficient in
terms of samples requirements.

HSIC is much less expensive to estimate than Sobol indices: for a same estimation error of O( 1√
p ),

p forward passes are needed instead of p × (d + 2) [22]. This allows using far fewer samples to
obtain relevant explanations, thereby dramatically increasing the efficiency of the method compared
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to previous black-box approaches. This huge advantage is empirically illustrated in Section 4.2,
where we demonstrate that our method defines a new standard in terms of efficiency for black-box
attribution methods. It even bridges the efficiency gap between black-box and white-box approaches.

3.5 Implementation of the method
A summary of the whole attribution method is provided in Algorithm 1. The computation of Hpi
is O(p2) but it is possible to vectorize it using any library optimized for tensor operations (e.g.
tensorflow). As a result, the computation time ofHpi is negligible compared to that of the p forward
passes. Furthermore, we implemented a sampling based on Latin Hypercube Sampling [33], a Quasi
Monte Carlo (QMC) method designed to efficiently fill the input space in Monte Carlo integration.

Algorithm 1 Explanations using HSIC-based sensitivity analysis as attribution method

1: Inputs: d the dimension of the masks, p the number of forward pass, x an input image.
2: Sample p binary masks {M (1), ...,M (p)} using LHS.
3: Compute the perturbed inputs {τ (x,M (1)), ..., τ (x,M (p))}
4: Compute the predictions {y(1), ...,y(p)} = {f(τ (x,M (1))), ...,f(τ (x,M (p)))}
5: for i ∈ {1, ..., d} do
6: ComputeHpi using equation (2) and assign this value to the i-th patch of the input image.

4 Experiments
This section showcases the benefits of our approach compared to other attribution methods. These
benefits are threefold. First, the computational cost of HSIC attribution method is significantly lower
than previous state-of-the-art methods, even bridging the performance gap between black-box and
white-box methods. Second, our method improves state-of-the-art for several fidelity metrics, for
black-box as well as white-box methods. Finally, the orthogonal decomposition property of HSIC
allows to go beyond usual attribution methods and to assess interactions between image patches.

In Section 4.1, we compute explanations of the predictions in the ILSVRC-2012 [12] classification
task (ImageNet), for four common architectures, namely MobileNet [43], ResNet50 [24], EfficientNet
[58] and VGG16 [48]. Then, we compare those explanations with these of other state-of-the-art
black-box and white-box attribution method in terms of fidelity and efficiency. In Section 4.2, we
investigate the convergence of our method by measuring its correlation with a high sample estimator
and comparing it with RISE [35] and Sobol [13]. In the remaining sections, we conduct additional
experiment that show the versatility of our method. In Section 4.3, we evaluate HSIC attribution
method to explain object detection on COCO dataset [31] with YOlOv4 [38]. We conclude the
experiments with Section 4.4, where we showcase the use of the HSIC orthogonal decomposition
property to assess interactions between images patches.

4.1 Fidelity of classification explanations
In this section, we evaluate the fidelity of the explanations with three fidelity metrics. The first,
Deletion [35], assumes that the more faithful an explanation is, the quicker the prediction score
should drop when pixels that are considered important are shut down. The second one, Insertion
[35], instead adds pixels on a baseline image, starting with pixels that are associated with the highest
importance scores of the explanation. Finally, µFidelity [5] creates random pixels subsets which
are assigned a baseline value and measures the correlation between the drop in the score and the
importance of the explanation.

In Table 1, we report the results of several different attribution methods for explaining the classification
of MobileNet [43], ResNet50 [24], EfficientNet [58] and VGG16 [48] on 1000 images sampled from
the ImageNet validation dataset. The models used for the experiments have been accessed from
tensorflow [1] with the keras API [8]. We introduce two variants of our method,Hpi eff. andHpi acc.
The words "eff" and "acc" stand for efficient and accurate, because we use p = 764 and p = 1536
samples, respectively. We use our method with a grid size of 7× 7 (d = 49). To evaluate the different
methods, we use the Xplique [15], a library dedicated to explainability. For black-box and white-box
methods, we bold the best result and underline the second. When the differences between some
methods are not statistically significant, we highlight both. Note that for µFidelity, the estimation
variance is high (typically about 20%), so we only use the bold notation and leave the Table in
Appendix B. The exact error bars are also left in the Appendix to make the presentation lighter.
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Method ResNet50 VGG16 EfficientNet MobileNetV2 Exec. time (s)

Del. (↓)

W
hi

te
-b

ox

Saliency [47] 0.158 0.120 0.091 0.113 0.360
Grad.-Input [46] 0.153 0.116 0.084 0.110 0.023
Integ.-Grad. [57] 0.138 0.114 0.078 0.096 1.024
SmoothGrad [49] 0.127 0.128 0.094 0.088 0.063
GradCAM++ [44] 0.124 0.125 0.112 0.106 0.127
VarGrad [44] 0.134 0.229 0.224 0.097 0.097

B
la

ck
-b

ox

LIME [40] 0.186 0.258 0.186 0.148 6.480
Kernel Shap [32] 0.185 0.165 0.164 0.149 4.097
RISE [35] 0.114 0.106 0.113 0.115 8.427
Sobol [13] 0.121 0.109 0.104 0.107 5.254
Hpi eff. (ours) 0.106 0.100 0.095 0.094 0.956
Hpi acc. (ours) 0.105 0.099 0.094 0.093 1.668

Ins. (↑)

W
hi

te
-b

ox

Saliency [47] 0.357 0.286 0.224 0.246 0.360
Grad.-Input [46] 0.363 0.272 0.220 0.231 0.023
Integ.-Grad. [57] 0.386 0.276 0.248 0.258 1.024
SmoothGrad [49] 0.379 0.229 0.172 0.246 0.063
GradCAM++ [44] 0.497 0.413 0.316 0.387 0.127
VarGrad [44] 0.527 0.241 0.222 0.399 0.097

B
la

ck
-b

ox

LIME [40] 0.472 0.273 0.223 0.384 6.480
Kernel Shap [32] 0.480 0.393 0.367 0.383 4.097
RISE [35] 0.554 0.485 0.439 0.443 8.427
Sobol [13] 0.370 0.313 0.309 0.331 5.254
Hpi eff. (ours) 0.470 0.387 0.357 0.381 0.956
Hpi acc. (ours) 0.481 0.395 0.366 0.392 1.668

Table 1: Deletion and Insertion scores obtained on 1,000 ImageNet validation set images (For
Deletion, lower is better and for Insertion, higher is better). The execution times are averaged over
100 explanations of ResNet50 predictions with a RTX Quadro 8000 GPU. The first and second best
results are bolded and underlined.

For the Deletion metric, our method obtains the best results among the tested black-box methods, for
all the architectures in both its efficiency and accurate variants. Except for EfficientNet, we even beat
all tested white-box methods. For the Insertion metric, RISE is still the best of black-box methods
but the accurate variant is systematically second. Besides, our methods are among the best of both
black-box and white-box methods.

These results, as such, are already satisfactory. Indeed, we have introduced an attribution method that
matches or improves the state-of-the-art, grounded in the rich theory of RKHS, which enjoys nice
theoretical properties such as orthogonal decomposition (as we showcase in Section 4.4). But it goes
even further: we obtained these results with far fewer forward passes. With the efficient variants, good
results are obtained more than 8 times faster than RISE, the current standard of black-box attribution
method. It improves on Sobol, a recent and promising attribution method that was already branded as
more efficient, by a factor 5. The time improvement factors for the accurate variant of our method are
still very appealing (5 and 3). We even beat the execution time of Integrated Gradients white-box
method [57], a popular and successful white-box method. The efficiency of HSIC attribution method
is investigated more thoroughly in the next section.

4.2 Estimator efficiency

The advantage of black-box attribution methods lies in providing explanations without access to
the internal state or the gradients of the model to explain. However, this advantage comes at a cost
since many forward passes are needed to obtain meaningful explanations. This cost is all the more
constraining since recent architectures are increasingly heavy in terms of computational time.

Therefore, it is critical for such attribution methods to use as few forward passes as possible.
Results reported in Section 4.1 attest that our approach based on Hpi shines in that regard, and
we refer to this section for more comments. It motivates us to study the efficiency of our
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method further. To that end, we compute an "asymptotical"1 explanation with 13, 000 forward
passes, for HSIC, Sobol and RISE attribution methods, on 100 images of ImageNet validation set.

Figure 2: Spearman rank correlation of HSIC, Sobol
and RISE attribution methods explanations on 100 Ima-
geNet validation images with an "asymptotical" expla-
nation based on 13, 000 samples.

We apply the three methods on EfficientNet
with d = 7× 7 masks and image patches,
like in [35] and [13]. We then compute
explanations for an increasing number of
forward passes and compare the obtained
explanation with the baseline "asymptoti-
cal" explanation. We use Spearman rank
correlation [54] like theoretically and em-
pirically argued in [21, 2, 59, 14]. This
experiment allows comparing the conver-
gence speed of our method with RISE and
Sobol. The curves are plotted in Figure 2
and show that our method, HSIC converges
much faster than RISE and Sobol.

4.3 Explanation of object detection
Explaining model’s predictions is more challenging for object detection than for image classification.
Indeed, recent object detection models usually predict three pieces of information: localization
(bounding box corners), objectness score (probability that a bounding box contains an object of any
class), classification information (probability of each different possible class). Recently, it has been
demonstrated that it was possible to use attribution methods to explain object detection by constructing
a score aggregating for the previous information. In [36] the authors combine intersection over union
for localization, cosine similarity for the class probability, and focus on high objectness areas. As a
result, they can use RISE to explain the object detection using this score as the output of the model.

In this section, we test our method for explaining the object detections of YOLOv4 [38] on COCO
dataset [31] compared to the approach presented in [36], D-RISE. We also compare the explanations
with these of Kernel Shap [32], another black-box attribution method. The explanations for 1, 000
validation images are evaluated with the Deletion, Insertion, and µFidelity metrics. This experiment
is time-consuming, so we useHpi eff. and 5000 samples for D-RISE and Kernel Shap.

Method Deletion (↓) Insertion (↑) µFidelity (↑) Exec. time (s)

D-RISE [36] 0.074 0.634 0.442 155
Kernel Shap. [32] 0.070 0.646 0.476 192
Hpi (ours) 0.088 0.658 0.568 34

Table 2: Fidelity metrics obtained from explanations of YOLOv4 object detections on 1, 000 images
of COCO validation data set. Execution times are averaged on the 1, 000 images on RTX 3080 GPUs.

Even if our method is not the best for Deletion, it is for Insertion and µFidelity, and more importantly,
it is 5 and 6 times faster than D-RISE and Kernel Shap. Figure 3 displays visualizations of object
detection explanations. While the first images show a standard detection explanation, the rightmost
one is more interesting since it emphasizes an error of the object detector. The model identifies a
zebra as a cat, and our method manages to explain this error by emphasizing the cat at the bottom
right corner of the image (note that we did not obtain such an explanation with D-RISE, even with a
high sample number and different grid sizes - visualizations can be found in the Appendix C).

4.4 Finding spacial interactions in the model

Usual attribution methods provide explanations in the form of heat maps that assign each pixel (or
patch) an importance score. However, the scope of such explanations is limited since the reason for a
prediction may not be explained only by the single importance of independent patches. In [13], the
authors use Sobol total indices that account for the importance of a patch in interaction with all other
patches, but they cannot localize the interactions. Thanks to its orthogonal decomposition property,
our HSIC-based attribution method is able not only to assess the importance of each patch, but also

1This explanation is not theoretically asymptotical (hence the quotation marks), but we use this designation
because it is obtained with a very high number of forward passes
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Figure 3: Visualisations of object detection explanations. The first three images show standard
explanations while the bottom right explains a misclassification. The zebra has been detected as a cat,
and our method manages to explain why by emphasizing the cat at the bottom right corner.

the importance of interactions between specific patches by computing the HSIC of the joint patches
and subtracting the contribution of each patch taken independently2. It is then possible to identify
regions of the image that affect the output only when both areas are perturbated at the same time; in
other words, image patches which are only important in interaction with other patches.

Figure 4: Upper row: Hpi , estimated HSIC for each image patch. Bottom row: highest Hpi×j
between images patches. For the classification of the puma, the eye / forehead is the most important
independent patch, but the right and left mustaches interaction are even more important.

We illustrate this property in Figure 4. For each image, we computed all the possible interactions
between patches and reported the most important ones. Note that not all images exhibit significant
interactions, so we performed a qualitative selection for pedagogical purposes. On the upper row, we
plot usual heatmaps that traduce the importance of each patch taken independently. On the bottom
row, important interactions are represented in red. We can see that the middle part of the snake
body is not the only important element in the picture, that one part of the mountain interacts with
one of the skiers, so do the mustaches of the puma and two corners of the roof. Note that for each
image, the maximum values ofHpi are 40.6, 11.4, 8.2 and 18.8 and the maximum values ofHpi×j are
19.6, 6.6, 9.2 and 6.3 respectively. Thanks to the orthogonal decomposition property, these metrics
can be compared and we can deduce that some interactions are as significant as some important
independent patches. For the image with a puma, the interactions between the mustaches are even
more important than the eye / forehead for identifying the animal (Hpi×j = 9.2 when i and j are the
right and left mustaches andHpiff = 8.2 when i is the eye / forehead).

5 Conclusion
We have introduced a new attribution method based on a dependence measure, Hilbert-Schmidt
Independence Criterion, which leverages representation capabilities of Reproducing Kernel Hilbert
Spaces, thus being able to capture complex information. This attribution method is black-box, so
it is applicable even when the implementation of the neural network to explain is not available.
Nonetheless, it alleviates the computational burden of traditional black-box methods, improving on
the state-of-the-art of both black-box and white-box attribution methods while being closer to the

2With the decomposition property, it is also possible to obtain HSIC "total" indices, like for Sobol, but it did
not bring significant qualitative or quantitative advantages.
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latter than the former in terms of efficiency. In addition, we showed how the rich framework of RKHS
could be used to assess and localize interactions between pairs of patches of the input image that are
relevant for explaining the output. We hope that the introduced framework will open up research
avenues for attribution methods beyond traditional pixel-wise or patch-wise explanations.
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A Orthogonal Decomposition Property 1

Let X = {x1, ..., xn} ∈ Xn be a set of n univariate random input variables. For any subset
A = {l1, ..., l|A|} ⊆ {1, ..., n}, we denote xA = (xl1 , ..., xl|A|) the vector of input variables with
indices in A. Let y the random output variable defined by y = f(X), F the RKHS defined by the
kernel kA : X |A| → R and G the RKHS defined by the kernel l : Y → R.

In [11], the author shows that for any choice of kernel l, if we respect some constraints on the kernel
kA, we can construct indices HSIC(xA,y) that satisfy the following decomposition property.

Property 1 (Decomposition property). For any kernel l, the kernel kA satisfies the decomposition
property if:

HSIC(X,y) =
∑

A⊆{1,...,n}

HSICA, (6)

where each term HSICA is given by

HSICA =
∑
B⊆A

(−1)|A|−|B|HSIC(xB ,y),

and HSIC(xB ,y) is defined as in equation (1) with kernels l and kA.

To obtain this property, the kernel kA must satisfy the following assumption:

Assumption 1. The kernel kA satisfies Property 1 if

kA(xA,x
′
A) =

∏
i∈A

(1 + k0(xi, x
′
i)),

where

k0(x, x
′) = k(x, x′)−

∫
k(x, t)dP (t)

∫
k(x′, t)dP (t)∫ ∫

k(s, t)dP (s)dP (t)
.

We now recall the introduced Proposition 1 defined in Section 3.3.

Proposition 1. Let x a Bernoulli variable of parameter p = 1/2, and δ(x = x′) the dirac kernel
such that δ(x = x′) = 1 if x = x′ and 0 otherwise. Let k0 be defined as in equation (3). Then, the
kernel kA satisfies the decomposition property (Property 1) if it is defined according to Assumption 1,
with

k0(x, x
′) = δ(x = x′)− 1

2
. (7)

Proof. Let s and t be two iid random Bernoulli variables of parameter p with probability density
functions ps and pt. We have that{

dP (s) = ps(s)ds =
(
pδ(s = 1) + (1− p)δ(s = 0)

)
ds

dP (t) = pt(t)dt =
(
pδ(t = 1) + (1− p)δ(t = 0)

)
dt.

Now, let’s consider two Bernoulli variables x and x′, two samples x ∼ x and x′ ∼ x′, and a kernel k
such that k(x, x′) = δ(x = x′).

• if x 6= x′ 
∫
k(x, t)dP (t)

∫
k(x, s)dP (s) = p(1− p)∫ ∫

k(s, t)dP (s)dP (t) = p2 + (1− p)2

• if x = x′ = 0 
∫
k(x, t)dP (t)

∫
k(x, s)dP (s) = p2∫ ∫

k(s, t)dP (s)dP (t) = p2 + (1− p)2
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• if x = x′ = 1 
∫
k(x, t)dP (t)

∫
k(x, s)dP (s) = (p− 1)2∫ ∫

k(s, t)dP (s)dP (t) = p2 + (1− p)2

Therefore, since p = 1
2 , ∫

k(x, t)dP (t)
∫
k(x′, t)dP (t)∫ ∫

k(s, t)dP (s)dP (t)
=

1

2
,

so the kernel
k0(x, x

′) = δ(x = x′)− 1

2
satisfies the decomposition property 1.
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B Complete fidelity results

Method ResNet50 VGG16 EfficientNet MobileNetV2 Exec. time (s)

Del. (↓)
W

hi
te

-b
ox

Saliency [47] 0.158 ± 0.006 0.120 ± 0.005 0.091 ± 0.003 0.113 ± 0.004 0.360
Grad.-Input [46] 0.153 ± 0.006 0.116 ± 0.004 0.084 ± 0.003 0.110 ± 0.004 0.023
Integ.-Grad. [57] 0.138 ± 0.005 0.114 ± 0.004 0.078 ± 0.002 0.096 ± 0.004 1.024
SmoothGrad [49] 0.127 ± 0.005 0.128 ± 0.005 0.094 ± 0.003 0.088 ± 0.003 0.063
GradCAM++ [44] 0.124 ± 0.004 0.105 ± 0.003 0.112 ± 0.005 0.106 ± 0.005 0.127
VarGrad [44] 0.134 ± 0.005 0.229 ± 0.007 0.224 ± 0.007 0.097 ± 0.004 0.097

B
la

ck
-b

ox

LIME [40] 0.186 ± 0.006 0.258 ± 0.008 0.186 ± 0.007 0.148 ± 0.006 6.480
Kernel Shap [32] 0.185 ± 0.006 0.165 ± 0.006 0.164 ± 0.006 0.149 ± 0.006 4.097
RISE [35] 0.114 ± 0.004 0.106 ± 0.004 0.113± 0.005 0.115 ± 0.004 8.427
Sobol [13] 0.121 ± 0.003 0.109 ± 0.004 0.104 ± 0.003 0.107 ± 0.004 5.254
Hpi eff. (ours) 0.106 ± 0.003 0.100 ± 0.004 0.095 ± 0.003 0.094 ± 0.003 0.956
Hpi acc. (ours) 0.105 ± 0.003 0.099 ± 0.004 0.094 ± 0.003 0.093 ± 0.003 1.668

Ins. (↑)

W
hi

te
-b

ox

Saliency [47] 0.357 ± 0.009 0.286 ± 0.009 0.224 ± 0.008 0.246 ± 0.008 0.360
Grad.-Input [46] 0.363 ± 0.010 0.272 ± 0.008 0.220 ± 0.009 0.231 ± 0.007 0.023
Integ.-Grad. [57] 0.386 ± 0.010 0.276 ± 0.009 0.248 ± 0.008 0.258 ± 0.008 1.024
SmoothGrad [49] 0.379 ± 0.010 0.229 ± 0.008 0.172 ± 0.006 0.246 ± 0.008 0.063
GradCAM++ [44] 0.497 ± 0.010 0.413 ± 0.010 0.316 ± 0.009 0.387 ± 0.009 0.127
VarGrad [44] 0.527 ± 0.010 0.241 ± 0.008 0.222 ± 0.007 0.399 ± 0.009 0.097

B
la

ck
-b

ox

LIME [40] 0.472 ± 0.010 0.273 ± 0.009 0.223 ± 0.007 0.384 ± 0.009 6.480
Kernel Shap [32] 0.480 ± 0.010 0.393 ± 0.009 0.367 ± 0.008 0.383 ± 0.009 4.097
RISE [35] 0.554 ± 0.010 0.485 ± 0.010 0.439 ± 0.009 0.443 ± 0.009 8.427
Sobol [13] 0.370 ± 0.009 0.313 ± 0.009 0.309 ± 0.009 0.331 ± 0.009 5.254
Hpi eff. (ours) 0.470 ± 0.011 0.387 ± 0.010 0.357 ± 0.009 0.381 ± 0.009 0.956
Hpi acc. (ours) 0.481 ± 0.011 0.395 ± 0.011 0.366 ± 0.009 0.392 ± 0.009 1.668

Table 1: Deletion and Insertion scores obtained on 1,000 ImageNet validation set images (For
Deletion, lower is better and for Insertion, higher is better). The execution times are averaged over
100 explanations of ResNet50 predictions with a RTX Quadro 8000 GPU. The first and second best
results are bolded and underlined.

Method ResNet50 VGG16 EfficientNet MobileNetV2 Exec. time (s)

W
hi

te
-b

ox

Saliency [47] 0.192 ± 0.034 0.092 ± 0.035 0.102 ± 0.029 0.172 ± 0.030 0.360
Grad.-Input [46] 0.157 ± 0.034 0.066 ± 0.029 0.085 ± 0.030 0.116 ± 0.029 0.023
Integ.-Grad. [57] 0.162 ± 0.033 0.073 ± 0.029 0.139 ± 0.028 0.157 ± 0.030 1.024
SmoothGrad [49] 0.230 ± 0.032 0.087 ± 0.030 0.101 ± 0.030 0.126 ± 0.028 0.063
GradCAM++ [44] 0.142 ± 0.032 0.143 ± 0.032 0.128 ± 0.031 0.131 ± 0.029 0.127
VarGrad [44] 0.021 ± 0.022 0.022 ± 0.020 0.001 ± 0.003 0.101 ± 0.032 0.097

B
la

ck
-b

ox

LIME [40] 0.110 ± 0.033 0.015 ± 0.032 0.000 ± 0.024 0.055 ± 0.031 6.480
Kernel Shap [32] 0.104 ± 0.033 0.068 ± 0.034 0.079 ± 0.032 0.051 ± 0.031 4.097
RISE [35] 0.182 ± 0.034 0.099 ± 0.034 0.133 ± 0.036 0.123 ± 0.031 8.427
Sobol [13] 0.230 ± 0.034 0.110 ± 0.030 0.141 ± 0.034 0.131 ± 0.030 5.254
Hpi eff. (ours) 0.202 ± 0.034 0.116 ± 0.034 0.154 ± 0.035 0.111 ± 0.031 0.956
Hpi acc. (ours) 0.187 ± 0.035 0.136 ± 0.030 0.155 ± 0.035 0.120 ± 0.031 1.668

Table 2: µFidelity scores, obtained on 1,000 images from ImageNet validation set. Higher is better.
The first and second best results are bolded and underlined. The execution times are averaged over
100 explanations of ResNet50 predictions with a RTX Quadro 8000 GPU.

C Additional visualizations on object detection explanations

C.1 Visualizations

In this part we provide a sample of visualizations of object detection explanations for HSIC, RISE and
KernelShap. HSIC seems more robust than the two other methods that are often blurry and sometimes
fail. These images are taken from the 40 first images of COCO dataset. Out of transparancy, we
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provide all the 40 first explanations in the github repository found at https://anonymous.4open.
science/r/HSIC-Attribution-Method-C684.
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Figure 1: Visualisations of object detection explanations (1/2).
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Figure 2: Visualisations of object detection explanations (2/2).
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C.2 Error explanations oh HSIC against RISE

In this section, we show explanations of RISE and KernelShap for the image where Yolov4 erroneously
recognizes a cat instead of a zebra. HSIC manages to find an explanation for this error while both
RISE and KernelShap fail, even for different grid sizes.

HSIC

RISE

KernelShap

Figure 3: Visualizations of object detection explanations for a model error with HSIC method. Blurry
explanations for different grid sizes with RISE and KernelShap.
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D Additional visualizations of HSIC attribution method on ImageNet

Figure 4: Explanations for ImageNet with HSIC eff.
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Figure 5: Explanations for ImageNet with HSIC acc.

E Attribution methods

In the following section, we give the formulation of the different attribution methods used in this
work. The library used to generate the attribution maps is Xplique [15]. By simplification of notation,
we define f(x) the logit score (before softmax) for the class of interest (we omit c). We recall that
an attribution method provides an importance score for each input variables xi. We will denote the
explanation functionnal mapping an input of interest x = (x1, ..., xd) as g(x).

Saliency [47] is a visualization techniques based on the gradient of a class score relative to the input,
indicating in an infinitesimal neighborhood, which pixels must be modified to most affect the score
of the class of interest.

g(x) = ||∇xf(x)||

Gradient � Input [45] is based on the gradient of a class score relative to the input, element-wise
with the input, it was introduced to improve the sharpness of the attribution maps. A theoretical
analysis conducted by [3] showed that Gradient � Input is equivalent to ε-LRP and DeepLIFT [45]
methods under certain conditions – using a baseline of zero, and with all biases to zero.
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g(x) = x� ||∇xf(x)||

Integrated Gradients [57] consists of summing the gradient values along the path from a baseline
state to the current value. The baseline x0 used is zero. This integral can be approximated with a set
of m points at regular intervals between the baseline and the point of interest. In order to approximate
from a finite number of steps, we use a Trapezoidal rule and not a left-Riemann summation, which
allows for more accurate results and improved performance (see [52] for a comparison).

g(x) = (x− x0)
∫ 1

0

∇xf(x0 + α(x− x0)))dα

SmoothGrad [49] is also a gradient-based explanation method, which, as the name suggests, averages
the gradient at several points corresponding to small perturbations (drawn i.i.d from an isotropic
normal distribution of standard deviation σ) around the point of interest. The smoothing effect
induced by the average help reducing the visual noise, and hence improve the explanations. The
attribution is obtained by averaging after samplingm points. For all the experiments, we tookm = 80
and σ = 0.2× (xmax − xmin) where (xmin, xmax) being the input range of the dataset.

g(x) = E
δ∼N (0,Iσ)

(∇xf(x+ δ))

VarGrad [26] is similar to SmoothGrad as it employs the same methodology to construct the
attribution maps: using a set of m noisy inputs, it aggregate the gradients using the variance rather
than the mean. For the experiment, m and σ are the same as Smoothgrad. Formally:

g(x) = V
δ∼N (0,Iσ)

(∇xf(x+ δ))

Grad-CAM [44] can only be used on Convolutional Neural Network (CNN). Thus we couldn’t use it
for the MNIST dataset. The method uses the gradient and the feature mapsAk of the last convolution
layer. More precisely, to obtain the localization map for a class, we need to compute the weights αkc
associated to each of the feature map activationAk, with k the number of filters and Z the number of
features in each feature map, with αck = 1

Z

∑
i

∑
j
∂f(x)

∂Ak
ij

and

g = max(0,
∑
k

αckA
k)

As the size of the explanation depends on the size (width, height) of the last feature map, a bilinear
interpolation is performed in order to find the same dimensions as the input. For all the experiment,
we used the last convolutional layer of each model to compute the explanation.

Grad-CAM++ (G+) [7] is an extension of Grad-CAM combining the positive partial derivatives of
feature maps of a convolutional layer with a weighted special class score. The weights α(k)

c associated
to each feature map is computed as follow :

αck =
∑
i

∑
j

[

∂2f(x)

(∂A
(k)
ij )2

2 ∂2f(x)

(∂A
(k)
ij )2

+
∑
i

∑
jA

(k)
ij

∂3f(x)

(∂A
(k)
ij )3

]

Occlusion [60] is a sensitivity method that sweep a patch that occludes pixels over the images using
a baseline state, and use the variations of the model prediction to deduce critical areas. For all the
experiments, we took a patch size and a patch stride of 1

7 of the image size. Moreover, the baseline
state x0 was zero.

g(x)i = f(x)− f(x[xi=0])
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RISE [35] is a black-box method that consist of probing the model withN randomly masked versions
of the input image to deduce the importance of each pixel using the corresponding outputs. The
masksm ∼M are generated randomly in a subspace of the input space. For all the experiments, we
use a subspace of size 7× 7 and E(M) = 0.5.

g(x) =
1

E(M)N

N∑
i=0

f(x�mi)mi

F Evaluation

For the purpose of the experiments, three fidelity metrics have been chosen. For the whole set of
metrics, f(x) score is the score after softmax of the models.

Deletion. [35] The first metric is Deletion, it consists in measuring the drop of the score when the
important variables are set to a baseline state. Intuitively, a sharper drop indicates that the explanation
method has well identified the important variables for the decision. The operation is repeated on the
whole image until all the pixels are at a baseline state. Formally, at step k, with u the most important
variables according to an attribution method, the Deletion(k) score is given by:

Deletion(k) = f(x[xu=x0])

We then measure the AUC of the Deletion scores. For all the experiments, the baseline state is fixed
at x0 = 0.

Insertion. [35] Insertion consists in performing the inverse of Deletion, starting with an image in
a baseline state and then progressively adding the most important variables. Formally, at step k, with
u the most important variables according to an attribution method, the Insertion(k) score is given by:

Insertion(k) = f(x[xu=x0])

The baseline is the same as for Deletion.

µFidelity [5] consists in measuring the correlation between the fall of the score when variables are
put at a baseline state and the importance of these variables. Formally:

µFidelity = Corr
u⊆{1,...,d}
|u|=k

(∑
i∈u

g(x)i,f(x)− f(x[xu=x0])

)

For all experiments, k is equal to 20% of the total number of variables and the baseline is the same as
the one used by Deletion.
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