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ARTICLE

Cell cycle gene regulation dynamics revealed by
RNA velocity and deep-learning
Andrea Riba1,2✉, Attila Oravecz1,2, Matej Durik1, Sara Jiménez1, Violaine Alunni1, Marie Cerciat1, Matthieu Jung1,

Céline Keime 1, William M. Keyes1 & Nacho Molina 1✉

Despite the fact that the cell cycle is a fundamental process of life, a detailed quantitative

understanding of gene regulation dynamics throughout the cell cycle is far from complete.

Single-cell RNA-sequencing (scRNA-seq) technology gives access to these dynamics without

externally perturbing the cell. Here, by generating scRNA-seq libraries in different cell sys-

tems, we observe cycling patterns in the unspliced-spliced RNA space of cell cycle-related

genes. Since existing methods to analyze scRNA-seq are not efficient to measure cycling

gene dynamics, we propose a deep learning approach (DeepCycle) to fit these patterns and

build a high-resolution map of the entire cell cycle transcriptome. Characterizing the cell

cycle in embryonic and somatic cells, we identify major waves of transcription during the G1

phase and systematically study the stages of the cell cycle. Our work will facilitate the study

of the cell cycle in multiple cellular models and different biological contexts.

https://doi.org/10.1038/s41467-022-30545-8 OPEN

1 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR
7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258, 1 Rue Laurent Fries, 67404 Illkirch, France. 2These authors
contributed equally: Andrea Riba, Attila Oravecz. ✉email: arriba87@gmail.com; molinan@igbmc.fr

NATURE COMMUNICATIONS |         (2022) 13:2865 | https://doi.org/10.1038/s41467-022-30545-8 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30545-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30545-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30545-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30545-8&domain=pdf
http://orcid.org/0000-0001-7604-3814
http://orcid.org/0000-0001-7604-3814
http://orcid.org/0000-0001-7604-3814
http://orcid.org/0000-0001-7604-3814
http://orcid.org/0000-0001-7604-3814
http://orcid.org/0000-0003-0233-3055
http://orcid.org/0000-0003-0233-3055
http://orcid.org/0000-0003-0233-3055
http://orcid.org/0000-0003-0233-3055
http://orcid.org/0000-0003-0233-3055
mailto:arriba87@gmail.com
mailto:molinan@igbmc.fr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cells divide by progressing through highly organized phases
in which they grow, synthesize a copy of their genetic
material, and, finally, undergo mitosis1. Alternatively, cells

can stop cycling and reversibly transition into quiescence, irre-
versibly differentiate or become senescent2. These processes
require tight dynamic regulation of gene expression and, despite
immense research during the past decades, a quantitative picture
of the gene regulation dynamics across the cell cycle is still
incomplete. With the advent of single-cell RNA sequencing
(scRNA-seq), scientists can now analyze intrinsically asynchro-
nous populations of cells enabling the simultaneous identification
and analysis of cells at different cell cycle stages. Thus, scRNA-seq
provides a high-resolution approach to study the cell cycle
without external perturbations, such as synchronization by drugs
or engineered fluorescent reporters3,4. While many attempts to
computationally assign cell cycle phases have been performed5–8,
these typically lack generalizability and fail in accurately captur-
ing cell-cycle dynamics. To overcome these problems we propose
to use RNA velocity, an approach that characterizes the tran-
scriptional state of individual genes based on their spliced and
unspliced RNA signals in single cells9. Briefly, RNA velocity is
based on how the process of transcription operates. RNA poly-
merase II starts transcribing a gene, where it first generates a pre-
mRNA molecule that contains both exons and introns. Then, the
pre-mRNA molecule undergoes splicing to produce the final
mRNA molecule without any introns. The estimation of the pre-
and mature mRNA levels from unspliced and spliced reads
therefore allows quantification of the transcriptional changes
happening at the single-gene level. Then, by studying the dis-
tribution of unspliced and spliced reads across all cells (unspliced-
spliced RNA space), it is possible to estimate if a specific gene is
being transcribed or inactivated in any single cell. This can be
simultaneously applied to all genes, in all cells of a population.
With such analysis, cell-cycle-related genes would be expected to
undergo activation and deactivation phases within a single cell
cycle, resulting in a circular pattern in the unspliced-spliced RNA
space. Thanks to the depth of the scRNA-seq datasets generated
in this study, such circular patterns in the unspliced-spliced RNA
space can be observed clearly for a subset of genes, and exploited
to naturally stratify cells across the cell cycle. The challenge is
then to assign, in a reliable and robust manner, a single parameter
to each cell that describes its cell-cycle state combining the
information in the cycling patterns. To accomplish this, we
designed DeepCycle (https://github.com/andreariba/DeepCycle),
a deep learning method to ascribe a continuous high-resolution
cell cycle trajectory to single cells based on RNA velocity. The
approach applies to different cell types and has self-consistency
checks to establish whether the analysis worked properly. Deep-
Cycle allows us to fit the dynamics of gene activation and inac-
tivation in the unspliced-spliced RNA space with minimal
assumptions, and assign cells to cell cycle stages, generating gene
expression series.

Different cell types have specific cell cycle dynamics10,11. For
example, the cell cycle is deeply affected by the degree of stem-
ness, such that pluripotent and neural stem cells have short G1
phases, while committed cells extend their G1 phases and present
with longer overall cell cycles11–13. Thanks to DeepCycle, we not
only recapitulate these findings in mESCs and human fibroblasts,
but also extend the analysis to a public dataset of ductal cell
progenitors. This allows us to suggest underlying regulatory
mechanisms involved, highlighting different genes and tran-
scription factors that are active in the different cellular models
across the cell cycle.

Finally, as most of the cells within multicellular organisms are
not actively cycling, tight control over cell cycle entry and exit is
critical, as seen for example in embryonic development,

hematopoiesis, activation of adaptive immune responses, and
wound healing14. However, in diseases like cancers, cells do not
consistently respond to the normal regulatory cues and signals. It
is therefore important to understand the processes that determine
cell cycle entry, cell cycle progression, and exit to quiescence14.
Here, we characterize the branching point where human fibro-
blasts exit from the cell cycle. This confirms previous findings,
and uncovers marker genes and transcription factors underlying
the process, paving the way to the systematic characterization of
the G1-G0 transition in other cellular models.

Results
Generation of deep-sequenced single-cell RNA-seq datasets. To
robustly study the cell cycle, we reasoned that the dataset should
be enriched for proliferating cells. The majority of public scRNA-
seq datasets have been generated to study the overall population
of cells in a given condition, and, typically, they contain hetero-
geneous cell types. Therefore, we compared three distinct popu-
lations of proliferating cells. First, we cultured mouse embryonic
stem cells (mESCs) in 2i+LIF medium to maintain the ground
state of pluripotency by blocking differentiation15–17, and gen-
erated a scRNA-seq library from more than five thousand mESCs
(Fig. 1A). Then, we included ductal cell progenitors from pan-
creas development in mice in our scRNA-seq analysis (henceforth
referred to as ductal cells) (Fig. 1B)18. These cells have been linked
to a proliferative cell state by specific marker genes19. Finally, to
compare the results to a different cell type from another organism
we also sequenced 5367 human fibroblasts (Fig. 1C). These
fibroblasts separate into two subpopulations, only one of which
expressing cell cycle genes (Supplementary Figs. S1, S2, 16 out of
the top 25 genes belong to the DAVID Keywords Cell cycle,
Benjamini = 2e-15), therefore we first focused on the proliferative
subpopulation (n= 3086).

The three datasets (mESCs, ductal cells, and fibroblasts)
present different sequencing depths: mESCs and fibroblasts have
~30 thousand unique molecular identifiers (UMI) per cell,
median values of 31977 and 27319 UMIs, respectively, a depth
that is high for the recent standards; while the ductal cells are as
low as 8 thousand UMIs per cell, the median value of 8043
(Fig. 1D). Similarly, the median number of genes identified per
cell varies from 2840 in the ductal cells to 5161 and 5630 in
fibroblasts and mESCs (Fig. 1D). These differences across samples
might be partially explained by their respective sequencing
depths: total spliced and unspliced reads of 8 M, 210M, and
220M in ductal cells, fibroblasts, and mESCs, respectively
(Fig. 1D). Overall, they have similar fractions of unspliced reads
(Fig. 1E). All the datasets contain genes with circular patterns in
the spliced-unspliced read space in accordance with the RNA
velocity theory (Fig. 1F). Cycling genes are expected to be
characterized by fully circular patterns as they complete both
their activation and deactivation phases (Fig. 2A). Overall, these
datasets constitute a unique opportunity to study gene regulation
throughout the cell cycle in different mouse and human cell types.

Inference of a cell-cycle transcriptional phase from single-cell
RNA-seq data. The dynamical state of a gene can be inferred by
comparing its unspliced and spliced reads9. Unspliced reads
indirectly measure the nascent transcripts, and the spliced ones
the mature messenger RNAs (see Figs. 1F and 2A). The com-
parison of the two quantities at the single-cell level allows the
inference of the transcriptional activation, or deactivation, of a
gene. The original RNA velocity framework proposed by La
Manno et al.9 assumed either constant velocity or constant
unspliced molecules; to overcome this limitation, Bergen et al.19

developed an extension of the original model to include

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30545-8

2 NATURE COMMUNICATIONS |         (2022) 13:2865 | https://doi.org/10.1038/s41467-022-30545-8 | www.nature.com/naturecommunications

https://github.com/andreariba/DeepCycle
www.nature.com/naturecommunications


intermediate states and more flexible dynamical parameters
(scVelo). However, the extended model was unable to fit the
actual dynamics for the genes in our datasets, while the inferred
latent time did not capture the correct dynamics of the cells (see
Supplementary Fig. S3). Therefore, we reasoned that the com-
plexity of gene regulation in the context of the cell cycle cannot be
approximated by the current models9,19 and that a more flexible
approach is required. In order to achieve this, we developed a
method based on neural networks, taking advantage of their
ability to represent a universal function approximator20.

We expect that genes whose expression is regulated during the
cell cycle show a closed path in the unspliced-spliced RNA space
consisting of both an active and inactive phase (see Fig. 2A, B).
Overall, the cell-cycle progression of a cell can be viewed as a
periodic trajectory within the 2 N-dimensional unspliced-spliced
space where N is the number of considered genes. This embedded
1-dimensional manifold representing the cell cycle can be
characterized by a circular latent variable, the transcriptional
phase (θ), that maps cells into the particular location of the
periodic trajectory. Notice that θ is a continuous variable
representing the continuous cell-cycle progression of cells that
has not to be confused with the discrete phases of the cell cycle
(G1, S, G2, and M). Then, the estimation of θ for each cell given
the unspliced and spliced reads is an embedded manifold learning
problem. To solve this problem, we developed DeepCycle, a deep
learning method based on an AutoEncoder (AE) neural network.

AEs are designed to perform non-linear dimensionality reduction
by compressing the information contained in the inputs to a
lower-dimensional space (latent space) in the encoding phase.
The compressed information is then used to reconstruct the
original input in the decoding phase. AEs have been used to
analyze scRNA-seq data and accomplish different tasks, from
clustering to de-noising21–28. DeepCycle is constructed as an AE
with a single latent variable representing the cell-cycle transcrip-
tional phase θ that is then transformed with cosine and sine
functions in the first layer of the decoder (Fig. 2C and
Supplementary Fig. S4).

To train DeepCycle, we used the expression of unspliced and
spliced RNAs of the genes in the GOterm:cell_cycle (n= 532, see
‘Implementation of DeepCycle’ in Methods) determining circular
paths for cycling genes in the unspliced-spliced space and
removing technical noise or biological fluctuations associated
with stochastic gene expression (see examples in Fig. 2C, D and
Supplementary Fig. S5). Finally, a transcriptional phase is
assigned to each cell in the dataset (see ‘Implementation of
DeepCycle’ in Methods) and the dynamics of unspliced and
spliced RNA with respect to the transcriptional phase can be
further analyzed. It is important to note that the transcriptional
phase is a nonlinear monotonic function of time that can be
arbitrarily complex, so we cannot directly infer temporal
dynamics with it. Importantly, DeepCycle robustly returns very
similar transcriptional phases by selecting as input the genes

Fig. 1 Single-cell RNA-sequencing data show the RNA velocity patterns. UMAP projections for mouse embryonic stem cells (A), ductal cell progenitors
(B), and human fibroblasts (C). D Distribution of RNA content (UMI), number of genes per cell, and the total number of reads (unspliced + spliced) for
each sample. White dots represent the median. Boxes represent 50% of the data and whiskers 99%. E. Fractions of spliced and unspliced reads in the three
datasets. F Examples of the unspliced-spliced patterns for Nusap1, Ccnd3, and MELK in mouse embryonic stem cells, ductal cells, and human fibroblasts,
respectively.
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showing multiple maxima in the unspliced-spliced space
(Supplementary Fig. S6 and ‘Implementation of DeepCycle’ in
Methods). The genes presenting multiple maxima (n= 158) are
listed in Supplementary Data 1 that includes cycling genes not yet
considered in the GO term:cell_cycle that could be added as
markers of the cell cycle.

Finally, we compared DeepCycle with Cyclum7, a recent
method developed for the analysis of the cell cycle in scRNA-seq
data also based on an AE. Strikingly, Cyclum was not able to

place cells consistently in a circular 1D manifold and therefore
could not correctly identify the cell-cycle progression of single
cells when applied to our datasets (Supplementary Fig. S7).
Multiple runs of Cyclum also give inconsistent results that
questions its stability (#1 and #2 in Supplementary Fig. S7). As
opposed to Cyclum, DeepCycle is based on RNA velocity and
trained on both spliced and unspliced RNA levels, which explain
the better performance, as shown by the ablation analysis
(Supplementary Fig. S8). By removing either the unspliced or

Fig. 2 Transcriptional phase inference with DeepCycle. A Single-cell RNA-seq combined with RNA velocity analysis allows the detection of transcriptional
changes within a single cell. B Fully circular RNA velocity patterns can be mapped to an angle describing the transcriptional state of a gene. By generalizing
this to all genes, the angle will describe the actual transcriptional state of a cell. The angle is called the transcriptional phase. C DeepCycle infers the
transcriptional phase of each cell. It takes as input the spliced-unspliced reads (si, ui) for a set of n genes (i= 1,…,n). By fitting the transcriptional phase θ, it
can denoise and predict the unspliced-spliced expressions for each transcriptional phase. D Examples of cycling genes and fits of the RNA velocity patterns
(red lines) in mESCs and human fibroblasts. E Cyclin E and B levels along the transcriptional phase in the three datasets. Negative controls for non-cycling
genes have been added for comparison in Supplementary Fig. S10.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30545-8

4 NATURE COMMUNICATIONS |         (2022) 13:2865 | https://doi.org/10.1038/s41467-022-30545-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the spliced from the input to DeepCycle, the inferred transcrip-
tional phase becomes inconsistent (see Supplementary Fig. S8 for
details).

Another recent method to analyze the cell cycle at the single-
cell level is Revelio8. This method is based on the inference of a
“cylindrical” manifold in the multidimensional gene expression
space. It takes as input the list of gene markers for each cell cycle
transition and phase and removes the principal components
orthogonal to the cell cycle signatures. The results are in
accordance with DeepCycle (Supplementary Fig. S9). The
disadvantage of Revelio is the need to define the list of genes
related to every phase and so it generalizes less to cell types with
different signatures. DeepCycle instead can pre-select the genes
showing a cycling signature and exploit them to extract the cell
cycle with little previous knowledge.

Regarding the discrete assignment of cells to the different
phases, we tested Cyclone29, while in agreement with DeepCycle’s
and Revelio’s assignments for the ductal cell progenitors and the
human fibroblasts, completely fails to detect the correct phases in
the mESCs (Supplementary Fig. S9).

DeepCycle produces dynamic trajectories in the unspliced-
spliced space for each gene (Fig. 2D) and the quality of the fit of
each trajectory to the data can be used to evaluate whether the
learning process worked properly. The alternating expression of
Cyclins E and B across the transcriptional phase suggests a
relation between the transcriptional phase and the cell cycle
progression (Fig. 2E). For completeness, examples of noncycling
genes are shown in Supplementary Fig. S10.

Detection of cell cycle phases in multiple cellular models. Single
cells can be associated with the S and G2/M phases by analyzing
the expression of representative marker genes19,30. The tran-
scriptional phase does not contain information about the cell
cycle phase transitions; gene phase markers are needed to identify
the different transitions throughout the cell cycle. By integrating
the information from S, G2/M marker genes30 and the number of
RNA counts per cell, we devise a strategy to estimate the G1/S, S/
G2 and M/G1 transitions (see Methods ‘Detection of the cell cycle
phase transitions’ and Supplementary Fig. S11). Briefly, the G1/S
transition corresponds to the peak in cyclin-E1 and -E2, the S/G2
transition to the transcriptional phase where the G2M score
increases above the S score, and mitosis to the beginning of the
sharp decrease in the RNA counts per cell (Fig. 3A). The cell cycle
scores calculated by scVelo match well with the transcriptional
phases inferred by DeepCycle (Supplementary Fig. S12). The loss
of Wee1/WEE1, a protein kinase inhibiting mitosis, allows the
cyclin B1-Cdk1 complex to activate the cascade of reactions
necessary to proceed into mitosis31,32 and, consistently, the
mRNA levels of the Aurora kinases A (Aurka/AURKA) that
localize at the centrosomes33,34, and of the Nucleolar and spindle
associated protein 1 (Nusap1/NUSAP1), that plays a role in
spindle microtubule organization35,36, increase in G2 and M
phases (Fig. 3A). Other possible marker genes show cycling
patterns as expected, e.g. Orc1/ORC1, Mcm6/MCM6,
Ccne1/CCNE1, Ccna2/CCNA2, and Ccnb2/CCNB2 (Fig. 3A).

To simplify the comparison of the cell cycles across datasets,
the transcriptional phases were normalized between 0 and 1 and
were aligned such that mitosis occurs at θ = 1. The paths of the
cells around the cell cycle can easily be identified in the
2-dimensional projections (Fig. 3B). Though the extended RNA
velocity model19 did not capture the correct dynamics at the level
of the single gene (Supplementary Fig. S3), it could infer the
correct dynamics of transcriptional changes at the cell level (see
the velocity plots in Supplementary Fig. S12). To add a
complementary experimental validation independent of the

scRNA-seq, we designed a series of bulk RNA-seq in a cell
cycle-sorted population of cells (G1, S, G2/M). The cells from the
scRNA-seq sorted by transcriptional phase are close to the correct
phase with a slight shift. Notice that the phases defined by FACS
and by DeepCycle are based on different markers. In the case of
FACS we defined phases according to DNA content. When we
analyze scRNA-seq data with DeepCycle we do not have
information about DNA content and we use gene markers. Thus,
the phase transitions may not align perfectly (Supplementary
Fig. S13).

Fast cell cycles are typically associated with pluripotency and
stemness11–13. Consistently, the mESCs present the lowest
number of cells in G1, while fibroblasts and ductal cells have
much more extended G1 phases (see Fig. 3). More realistic views
of the cell cycle durations can be produced by rescaling all the
transcriptional phases to have the same S phase length, as known
from the literature the S and M phases are quite constant,
constrained by the structural events happening in the cells and do
not depend on the different cell types37 (see Supplementary
Fig. S14). The fractions of mESCs assigned to the different phases
are 19% to G1, 40% to S, and 41% to G2/M (Fig. 3C). By staining
cells with propidium iodide followed by flow cytometry analysis,
similar fractions of cells are detected in the main cell cycle phases,
respectively, 22–26% in G1, 42–51% in S, and 27–32% in G2/M
(Supplementary Fig. S15).

At mitosis, the mother cell needs to have approximately double
its original volume in order to generate two daughters of the same
initial size. Droplet-based single-cell technologies, such as 10x,
can indirectly detect the different cell sizes, where a bigger cell
means a higher concentration of mRNA within the droplet, which
should reflect a higher count of unique RNA molecules (UMIs)
within the cell. In this case, the increase in the unique RNA
molecules across the cell cycle should be roughly proportional to
2. Indeed, as predicted, the RNA counts per cell as a function of
the transcriptional phase show a positive fold change of 2.1, 2.0,
and 2.1 for mESCs, ductal cells, and fibroblasts, respectively
(Fig. 3C). Further, the flow cytometry analysis performed for the
mESCs showed roughly a doubling size passing from G1 to G2/M
phases (Supplementary Fig. S15). After validating that the
transcriptional phases identified by DeepCycle are consistent
with the global features of the cell cycle, such as cell cycle
markers, cell sizes, and fractions of cells in each phase, we can
discuss the regulation of individual cell cycle genes at the mRNA
level. The fibroblasts show contamination of cells from the
nonproliferative subpopulation, arrested in mid-G1, as discussed
in the last section.

Members of the Cdc25 family are well conserved key regulators
of the cell cycle38–40. The mRNA expression of the Cdc25 family
of proteins shares the same behaviour across the datasets, i.e.
Cdc25a/CDC25A increases at the G1/S transition while Cdc25b-
c/CDC25B-C at the G2/M (Supplementary Fig. S16), consistently
with the function of their protein products41.

The minichromosome maintenance protein complex (Mcm) is
a heterohexamer, formed by Mcm2-7/MCM2-7 proteins, which
works as a helicase that unwinds the double-stranded DNA and
powers the replication fork progression during the S phase42. As
expected, the mRNA levels of all subunits of the Mcm peak at the
beginning of the S phase for all the datasets (Supplementary
Fig. S16).

Cdk1/CDK1 mRNA level increases in G2 and M phases as
required by its protein function43 (Fig. 3A). The other main Cdk
mRNAs (Cdk2-4-6/CDK2-4-6) show lower expression levels
across phases and are less consistent across the datasets, they
might rather be regulated at the protein level, translationally or
post-translationally (Supplementary Fig. S16). It has been
previously shown that protein levels of the cyclin-E and A do
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not change across the mESC cell cycle44, but instead, mRNA
levels are upregulated at the G1/S transition and in the G2/M
phase, respectively (Fig. 3A).

Finally, DeepCycle allows a genome-wide investigation of gene
expression dynamics across the cell cycle. Indeed, we observed
different waves of gene expression during the different phases of
the cell cycle (Supplementary Fig. S17). Overall, DeepCycle
consistently identifies cycling genes and shows their mRNA
synthesis rate (unspliced) and expression level (spliced) across the
cell cycle.

Prediction of cell-cycle core transcription factors. Having
characterized the cell cycle at the mRNA level, another feature of
our approach is that it allows us to identify potential transcription
factors (TFs) responsible for gene expression dynamics. Tran-
scription factors bind to DNA-specific sequences (binding motifs)
and activate transcription of their target genes. They encode the
cellular programs for many of the functions a cell needs to per-
form. To infer the TFs active during the cell cycle, we imple-
mented an ISMARA-like approach45. Briefly, Balwierz et al.
introduced a linear model to infer TF activities from bulk RNA-
seq samples. To apply it to our data, we used the same linear
model to try to explain the expression level of the unspliced reads
in single cells. Even if the amount of unspliced reads is much
lower compared to the spliced reads (~5-6 times less, Fig. 1E),
they remove the effect of mRNA stability, reflecting more closely

the nascent transcription events and, therefore, the effect of
transcription factors at the gene promoters.

The motif analysis predicts that most TF activity takes place in
the G1 phase when cells need to decide whether to go into
another round of replication or to arrest the cycle in order to
accomplish a new function (Fig. 4A). Among the most significant
activities, Yy1/YY1 targets are upregulated in the G1 phase in all
the datasets, suggesting a general role during the cell cycle
(Fig. 4A, B). Indeed, Yy1 is known to induce proliferation and
maintain pluripotency of mESCs through the BAF complex46.
Interestingly, Yy1 binds to chromosomes during mitosis47 and,
accordingly, its transcription starts already in the G2/M phase
suggesting a pioneering activity at the beginning of a new cycle
(Fig. 4B).

For both mouse datasets (mESCs and ductal cells), the E2f
family appears as a critical group of regulators. Members of the
family are known to act at the beginning of the cell cycle
specifically for the G1/S transition and to become active after the
phosphorylation of the retinoblastoma proteins (pRb)1,48,49. Two
E2f-related motif activities (E2f1, E2f2_E2f5) peak in between the
G1 and the S phase, presumably to activate the genes necessary
for the transition50 (Fig. 4A). More specifically in mESCs,
E2f1 seems to be mostly regulated at the protein level since the
change in the mRNA level (~50%) is very little compared to the
change in activity (Fig. 4B). Other factors seem to act similarly
between mESCs and ductal cells, like the TATA-binding protein-

Fig. 3 Cell cycle analysis in mouse and human cellular models. A The transcriptional phases and the cell cycle phases were connected based on marker
genes. Z-scores are only intended for comparison purposes, the changes in the expression across the cycle are, in general, highly significant. B The UMAP
embeddings for mESCs, ductal cells, and human fibroblasts with the cell cycle directionality identified by DeepCycle (black arrows). The cells are
associated with different colors depending on the cell cycle phase they belong to, light blue for cells in G1, red in S, and dark green in G2/M. C RNA counts
per cell as a function of the transcriptional phase show doubling trends followed by a sudden drop that identifies mitosis.
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associated factor (Taf1), the Specificity factor 1 (Sp1), and the
Nuclear respiratory factor 1 (Nrf1), all active in early G1
(Fig. 4A). Regarding the ductal cells, we found a very high
correlation (r= 0.91, p= 4e-19 exact test of no-correlation)
between Ybx1 mRNA level and the activity of its motif where
both are constantly increasing from G1 to M (Fig. 4B).
Interestingly, Ybx1 is known to positively regulate the G1 and
G2/M phases of the cell cycle51,52. Regarding the factors
appearing in the human fibroblasts, MYB plays a role in the
G2/M transition, with a constant increase of expression from G1
to G2/M53,54. Also, its targets follow the same trend, and MAZ
induces MYB expression shortly after the exit from quiescence,
bypassing the inhibition of E2F-pRB55 (Fig. 4A). Similar to Ybx1
in ductal cells, the mRNA level of FOXM1 grows constantly from
G1 to M as expected by its function during mitosis56,57, but the
activity of its targets is slightly anticorrelated, hinting at a
complex post-transcriptional regulation57.

For mESCs the maintenance of the pluripotent state is crucial
and the main factors involved in the pluripotency transcriptional
program are known58 (Fig. 4C). Among them, the strongest
activation happens for the targets of Stat359/Stat4/Stat5b, Tcf3,
and Pou5f1 (Oct4), which are increased in G2/M, followed by
Klf460/Sp3, Gbx2, Nanog, Tfcp2l1, and Essrb61,62/Essra in G1
(Fig. 4C).

From a general perspective, a clear pattern emerges by
comparing the undifferentiated mESCs with the more differ-
entiated human fibroblasts and ductal cells. The undifferentiated
cells show a strong and unique wave of activation of TFs in G1.
Instead, in the more differentiated cell types, the activities of the
TFs across the G1 phase cluster into two groups. The first group
displays an early activation directly after mitosis, while the second
group exhibits a late G1 activation (red boxes in Fig. 4A). We
believe these waves are linked to cell-fate decisions, as discussed
in the next section.

Fig. 4 Transcription factor dynamics driving expression during the cell cycle. AMotif activities for families of transcription factors across the cell cycle in
mESCs, ductal cells, and human fibroblasts. The red boxes identify two waves of transcription in the G1 phases for more differentiated cell lines. B The
comparison of motif activities with the respective mRNA levels around the cell cycle for Yy1 and E2f1 in mESCs, Ybx1 for ductal cells, and FOXM1 for human
fibroblasts. These comparisons allow clarifying whether the regulation is happening more at the transcriptional level or the protein level. The Pearson’s
correlation coefficients between spliced reads and motif activities are reported (r values) as well as the exact tests of no-correlation (p values). C Dunn
et al.58 identified two sets of TFs at the core of the pluripotency maintenance network in mESCs, the first responsible for the integration of the signals
(input) and the latter for taking a fate decision (computation). The heatmap shows their activities around the cell cycle of mESCs for the pluripotency
factors for which the binding motifs are known. The ‘input’ motifs are active in late G2/M while the ‘computation’ factors in the early G1.
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Characterization of cycling cells shifting to a cycle-arrested
state. The human fibroblasts include a subpopulation with a low
cycling activity, which was excluded from the previous analysis
(Supplementary Figs. S1-S2). By mapping the ‘nonproliferative’
cells across the cycle with the model trained with DeepCycle, this
sub-population was closer to cycling cells associated with the
mid-G1 phase (peak in Fig. 5B). Therefore, the full population of
fibroblasts comprises 76% in G0/G1, 15% in S, and 9% in G2/M
phases (Fig. 5B). Similar numbers have been obtained through
flow cytometry analysis, where the DNA content assigns 79% to
G0/G1, 13% to S, and 8% to G2/M phases (Fig. 5C). Further, the
flow cytometry analysis shows that some cells in G1 can be as big
as cells in S and G2/M suggesting that the cells waiting in G0/G1
are increasing in size; it remains unclear whether they will re-
enter the cycle later. The cell velocities are consistent with our

interpretation and do not clarify if the cells in the alternative state
will start cycling again (Supplementary Fig. S18).

The two subpopulations split their trajectories around mid-G1
(Fig. 5A) and specific markers of quiescence63,64 suggest the
nonproliferative cluster might include cells transitioning into the
G0 phase (Fig. 5D and Supplementary Fig. S19-22). To detect the
underlying changes in the gene expressions and their regulations,
we implemented a method based on a modified version of the
Nudged Elastic Band65, to infer the paths connecting the cell
states in the bidimensional space (Fig. 5E). The detected paths
follow the trajectories with the highest density of cells, as shown
in Fig. 5E.

To strengthen our hypothesis of the nonproliferative cells being
at an early stage of quiescence, we checked the expression along
the two paths of G0 markers63,64. The markers supposed to be

Fig. 5 G1/S transition and cell-cycle exit in human fibroblasts. A The two subpopulations of human fibroblasts, separated by the black dashed line: on the
left side the proliferative cells, and on the right the nonproliferative. Each cell is colored according to its inferred transcriptional phase. B The distribution of
transcriptional phases for the human fibroblasts shows the nonproliferative fibroblasts are closer to the cell cycle stage associated to θ = 0.3–0.4 (mid-G1).
C Flow cytometry analysis recapitulates fractions of cells in the main phases of the cell cycle similar to the phases identified with DeepCycle. The cells in
G0/G1 can be bigger than the cells in G2/M. The colors are consistent with panel A, G1 in blue, S in red, and G2M in green. D Examples of G0 marker
expressions for the two subpopulations64. BIRC5 is also known as survivin. Color intensity reprsents gene expression upregulated level (red) and
downregulated level (blue). E The paths, going from mid-G1 towards the S phase (in red and labeled as ‘G1/S’), from the mid-G1 phase towards the
nonproliferative state (in blue and labeled as ‘exit’), and the nonproliferative state toward the S phase (in green and labeled as ‘reentry’), are identified by
the higher density of cells. F FOXM1 is downregulated in the nonproliferative cells and shows the opposite trend along the G1/S and exit paths (red and
blue paths in panel E). The activity of its motif is completely uncorrelated with its expression. G The top up- and down-regulated genes with the strongest
fold changes, compare the paths in E. The third row shows the most significant motif activities identified by comparing the paths in E. Color intensity
reprsents either gene expression or motif activity (red: upregulation; blue: downregulation).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30545-8

8 NATURE COMMUNICATIONS |         (2022) 13:2865 | https://doi.org/10.1038/s41467-022-30545-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


G0-downregulated are consistently inactivated (Supplementary
Figs. S19-S20) and similarly activated for G0-upregulated genes
(Supplementary Figs. S21-S22). Overall, we cannot exclude that
nonproliferative fibroblasts might represent a differentiated state
of the fibroblasts and not simply reflect cells entering in
quiescence66. FOXM1 is strongly downregulated in nonprolifera-
tive cells, and it is indeed a known marker of quiescence63. With
regards to the cell cycle analysis (Fig. 4B), FOXM1 targets do not
follow its mRNA expression but are still upregulated while exiting
the cell cycle (Fig. 5F). The proliferation-quiescence decision is
controlled by a bifurcation in CDK2 activity67, which is consistent
with the expression of CDK2 mRNA in the population of
fibroblasts (Supplementary Fig. S23). Among the top genes
upregulated along the path toward the nonproliferative state (the
blue and green paths vs the red path in Fig. 5E), we find MXD4,
CDC42EP5, CLIP3, and MIR22HG. MXD4 is a MYC antagonist
known to increase the fraction of cells in the G0/G1 phase in
hematopoietic differentiation68, and could be a master regulator
of entry into the quiescence-like state. CDC42EP5 is a small Rho-
GTPase belonging to the Borg family and is involved in cell shape
regulation and lamellipodia formation69. Similarly, CLIP3 (or
CLIPR-59) is a CAP-Gly domain-containing linker protein with a
poorly-specified function, perhaps modulating the compartmen-
talization of the AKT kinase family70. Lastly, MIR22HG is a long
non-coding RNA involved in proliferation that acts as a tumor
suppressor in primary lung tumors71 and leads to poor prognosis
in glioblastoma72. On the other side, among the most down-
regulated genes in the quiescent state are ESCO2, MCM10,
MYBL2, and NUF2. ESCO2 is needed during the S phase to
modify cohesin73 and MCM10 accumulates during the S phase
while being lowly expressed during the rest of the cycle74. MYBL2
(B-Myb) belongs to the family of the MYB transcription factors
and has been typically associated with poor prognosis in cancer75,
while NUF2 localizes at centrosomes and is necessary for mitotic
progression in vertebrates76,77. For the extended lists of up and
down-regulated genes see Supplementary Figs. S24-S27.

Importantly, the top motif, that distinguishes the two
subpopulations (E2F7_E2F1), belongs to the E2F family, which
is one of the master regulators of the cell cycle1, and is strongly
inactivated in the non-proliferating quiescent cells. The other TFs
shown in Fig. 5G (NKX2-6, TBX1, and NR3C1) do not have a
clear function associated with the cell cycle, so further studies are
needed to elucidate their role. More TF motifs associated with the
paths are shown in the Supplementary Figs. S28-S29.

In summary, DeepCycle allowed us to characterize G0
transitioning cells in wild-type fibroblasts without having to
perturb the cells, finding previously unknown candidate genes
and transcription factors regulating quiescence.

Discussion
We generated scRNA-seq datasets in mouse embryonic stem cells
and human fibroblasts with high sequencing depth. The circular
RNA velocity patterns emerged clearly in cell-cycle regulated
genes revealing the activation/inactivation phases that these genes
undergo during the cell cycle. We developed DeepCycle, a deep
learning approach, to exploit the RNA velocity patterns and study
gene regulation dynamics during the cell cycle. DeepCycle assigns
a cell-cycle transcriptional phase for each cell by fitting the RNA
velocity patterns. Furthermore, the inferred transcriptional phase
can be associated with cell-cycle phases thanks to known gene
markers. Thus, DeepCycle allows us to determine the cell-cycle
progression state of each cell from scRNA-seq data and identify
genes involved in the cell cycle. Importantly, the efficacy of the
method was extensively proven in cellular models from different
organisms at different developmental stages. Given the variability

in the cell cycle signatures among cellular models, defining the
cell cycle phases in RNA data based solely on gene markers lacks
generalizability. In the future, the usage of gene markers needs to
be replaced by the adoption of methods relying on dynamical
features of gene expression, able to accommodate changes in the
regulation of the cell cycle.

The decision to implement this approach came after noticing
the failure of the current methods within the RNA velocity
framework7,19, to correctly infer the dynamics of the cycling
genes. DeepCycle’s ability to infer cycling patterns in the spliced-
unspliced RNA space at the gene level shows that the framework
of the RNA velocity can be further improved by the study of more
flexible models of transcription. Likely the assumptions in the
previous model (constant rates) should be relaxed to fit the
transcriptional model to the data. It is reasonable to imagine that
the transcription, splicing, and degradation rates are complex
functions changing during the cell cycle progression. Our method
will allow the analysis of trajectories without making assumptions
about the model parameters, enabling more focus on the
dynamics of the single gene.

Furthermore, we envision extending DeepCycle as a Varia-
tional Autoencoder (VAE), a neural network capable of model-
ling distributions over the input data. VAEs have already been
applied to scRNA-seq data as imputation methods to correct for
capture rate and noise21,78–80. In our case, it will allow us to learn
the posterior distribution of the transcriptional phase and model
the whole distribution of unspliced-spliced RNAs.

The analysis highlighted known and unknown cell cycle reg-
ulators in established cell lines, identifying two major waves of
transcription in the G1 phase of differentiated cells while plur-
ipotent cells seem to undergo a single wave of transcription
during G1. The two waves are likely to be associated with the
restriction point where the cells finally commit to undergoing
another cell cycle. Further, for the first time, we could observe
single cells exiting from the cell cycle in a scRNA-seq sample and
disentangle the underlying regulations, thereby providing lists of
targets for the regulation of the cell cycle and the quiescent states
in mammalian cells. We envision that our approach will facilitate
the characterization of the branching point between the S and G0
phases in multiple cellular models by applying it to other scRNA-
seq datasets. In particular, an extensive study of the transcrip-
tional changes happening at the cell cycle while cells reach con-
fluence is still missing and of general interest.

Finally, we anticipate that DeepCycle will become an essential
tool for the scientific community to further investigate the cell
cycle in a broad range of systems without the need for cell syn-
chronization or genetic-tagging and complement the experi-
mental methods that have been used in the past to unravel the
regulation of the cell cycle67,81,82. This makes our approach
especially suitable to study the interplay of the cell cycle with
pluripotency and cell reprogramming83. Moreover, the compar-
ison between normal and cancer tissues may lead to the discovery
of cell-cycle dysregulated mechanisms in tumors and, perhaps,
potential targets for drug development.

Methods
Cell culture. E14Tg2a.4 mouse embryonic stem cells (ECACC General Cell Col-
lection; catalogue number: 08021401) were cultured on 0.1% gelatin-coated culture
plates in DMEM (4,5 g/l glucose) supplemented with GLUTAMAX-I, 15% heat-
inactivated fetal calf serum (42F5874K, ESC culture tested, GIBCO), 0.1 mM beta-
mercaptoethanol, 0.1 mM nonessential amino acids 1500 U/ml leukemia inhibitory
factor (produced in house), 3 µM CHIR99021 (72054, Stem Cell Technologies) and
1 µM PD0325901 (72184, Stem Cell Technologies) in 5% CO2 at 37 °C.

IMR90 primary human fetal lung fibroblast cells (CORIELL Institute for
Medical Research, Reference: I90-19) were cultured in DMEM 41966 (4,5 g/l
glucose) supplemented with 10% fetal calf serum, Penicillin 100 UI/ml, and
Streptomycin 100 µg/ml in 5% CO2 at 37 °C. The cells were at passage 21 when
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performing the experiments. For both scRNAseq and FACS experiments, 20,000
cells per well were seeded into 6 well plates and cultured for 72 h.

Single-cell RNA sequencing. To obtain single-cell suspension of mESCs for
single-cell RNA sequencing, cells on a 60 mm culture dish were washed once with
PBS and treated with 1 ml 0,25% trypsin-1mM EDTA (25200-072, Invitrogen) at
37 °C for 3 min, then harvested into 3 ml medium containing serum, and washed
2-times with PBS containing 0.04% BSA. To prepare single-cell suspension of
IMR90 cells, the cells from one well of a 6 well culture plate were washed twice with
PBS and treated with 500 ul 0.05% trypsin-0.53 mM EDTA (25300-062, Invitrogen)
at 37 °C for 2 min, then harvested into 4.5 ml medium containing serum, passed
through 50 µm cell strainer and washed 2-times with PBS containing 0.04% BSA.
In both cases, cell concentration and viability (98%) was determined using
Countess II (Invitrogen) according to the manufacturer’s instructions. Cells were
then processed using the 10x Genomics Chromium System according to the
manufacturer’s instructions.

Cell number and viability were determined by a Trypan Blue exclusion assay on
a Neubauer Chamber. Samples consisting of >90 percent viable cells were
processed on the Chromium Controller from 10x Genomics (Leiden, The
Netherlands). Ten thousand cells were loaded per well to yield approximately 6500
captured cells into nanoliter-scale Gel Beads-in-Emulsion (GEMs).

In the case of mESCs, the single-cell 3 prime mRNA seq library was generated
according to 10X Genomics User Guide Chromium Single Cell 3ʹ Reagent Kits v3
(P/N CG000183 Rev A). For the human fibroblasts, the single-cell 3 prime mRNA
seq library was generated according to 10x Genomics User Guide Chromium
NEXT GEM Single Cell 3’ Reagent Kits v3.1 (P/N CG000204 Rev D). The raw and
processed data for both libraries were stored on the GEO (Accession number:
GSE167609).

CellRanger outputs have been processed with velocyto9 (version 0.17.17) and
analyzed using scanpy84 (version 1.4.4.post1) and scvelo19 (version 0.2.2) and
imputed spliced and unspliced reads from scvelo.pp.moments have been used for
the analysis.

Cell cycle assay and flow cytometry. Cells were harvested by trypsin as before
and washed once with PBS. About 2×106 cells were resuspended in 100 µl PBS and
added drop-by-drop to 900 µl 95 % ethanol, while mixing, then stored at +4 °C
overnight. Cells were then collected by centrifugation, washed once with PBS, re-
suspended in 1 ml staining buffer (50 µg/ml propidium iodide, 2 mMMgCl2, 50 ng/
ml RNaseA [EN0531, ThermoScientific] in PBS) and incubated for 20 min at 37 °C.
Stained cells were washed once with PBS and analyzed on BD LSRII flow
cytometer.

The fcs files were processed with fcsparser (https://github.com/eyurtsev/
fcsparser). For the mESCs, the debris in the data was removed by filtering SSC-H
and SSC-W values higher than 140,000 and 100,000, respectively, and by selecting
cells with a Hotelling T2 value lower than 6 in the FSC-A SSC-A space, see
Supplementary Fig. S15. The filtering retained more than 80% of the original cells
(~26k out of 31k). For the human fibroblasts, SSC-H values lower than 25,000 and
SSC-H and SSC-W values greater than 150,000 and 110,000, respectively, were
excluded. As for the mESCs, only cells with Hotelling T2 lower than 6 in the FSC-A
SSC-A space were retained.

For bulk RNA sequencing of isolated cells of different cell cycle phases, 5 × 106

E14Tg2a cells were stained in FACS tubes in 5 ml culture medium for 30 min at
37 °C with Vybrant DyeCycle Violet (V35003 Invitrogen). Cells were then
harvested by centrifugation at 1000 rpm (61x g) for 4 min, resuspended in 500 µl
medium containing 50 nM TOPRO-3 (T3605 Invitrogen) and sorted on BD FACS
ARIA II. First, TOPRO-3 negative live single cells were gated, then G0/G1, S and
G2/M phases were sorted based on the distribution of the Vybrant DyeCycle Violet
signal (Supplementary Fig. S13A). Sort purity was verified by analysing a small
aliquot of the sorted cells.

Implementation of DeepCycle. The autoencoder was implemented in TensorFlow
2. The input and output layers of the autoencoder consist of Densely connected
layers of size twice the number of input genes to accommodate spliced and
unspliced read values. The subset of genes in the GOterm:cell_cycle (GO:0007049)
passing through the hotelling filter (see section ‘Identification of cycling genes and
high-density paths’) has been fed to the autoencoder. The detailed structure of the
autoencoder is depicted in Supplementary Fig. S4. The Densely connected layers in
the blue boxes have a size equal to 4 times the number of genes and are activated
through a leaky ReLU function. The neural network in the orange box calculates
the atan2 for the gene selected as the input gene and concatenates this value with
the output of the dense layers from the first part of the encoder (blue box). The
concatenation is fed to a Dense layer of size four times the number of genes and
outputs a real number (θ). The real number is the input of the decoder that
transforms it to (cos(θ), sin(θ)) with the layer Circularize. The bidimensional vector
is then fed to a series of densely connected layers till the output layer. The
GaussianNoise layers add gaussian noise to the inputs to avoid the neural network
overfitting the data.

The training is performed in 2 steps: 1) training the encoder on the phases
estimated from the input gene (atan2 of z-scored spliced and unspliced reads),

Nusap1 for mESCs, Ccnd3 for ductal cells, and MELK for human fibroblasts; 2)
training encoder+decoder to reconstruct the unspliced-spliced reads. Both training
steps have an early stop when they reach a plateau

tf.keras.callbacks.EarlyStopping(monitor= ‘val_loss’, min_delta= 0.0, patience= 20,
verbose= 1, mode= ‘auto’, restore_best_weights=True) and the learning rate decreases
accordingly with tf.keras.callbacks.ReduceLROnPlateau(monitor= ‘val_loss’,
factor= 0.8, patience= 5, min_lr= 0.00001). 17% of the input cells are used as
validation and the training is performed in batches of 5 cells. SGD, RMSprop and Adam
optimizers have been tested and the latter (Adam) was the one giving the best
performance. The optimization has been performed on the loss function Mean Squared
Error (MSE) between the input and the output.

Finally, to infer a phase for each cell, we binned the angles in 50 and assign a
cell to the closest bin in the unspliced-spliced space predicted by the autoencoder
(red lines in Fig. 2C, D and black in Supplementary Fig. S5) for all the genes used
for the training (GO term: cell_cycle, GO:0007049).

DeepCycle implementation was stored in the GitHub repository https://github.
com/andreariba/DeepCycle.

Detection of the cell cycle phase transitions. The transcriptional phase contains
only the information about the succession of states composing the cell cycle. To
annotate the different cell cycle phases, we analyze the expression of cell cycle
markers30 and the number of RNA counts per cell. We computed 2 scores based on
the marker genes in the S and G2M phases30. For all the expressed genes in the two
lists we computed the z-score expression across all the cells and then calculated an
average z-score per cell for all the genes. Similarly, we computed a CyclinE score by
considering only Ccne1-2/CCNE1-2 genes. Finally the transitions are defined as
follows.

● M/G1: the first bin across the transcriptional phase when the number of
RNA counts (UMI) per cell drops;

● G1/S: the first bin across the transcriptional phase after the CyclinE score
reaches its maximum;

● S/G2: the theta where the G2M score becomes greater than the S score.

The detailed analysis for the three datasets is shown in Supplementary Fig. S11.

Validation bulk RNA-seq in cell cycle-sorted populations of cells. The three
samples were sorted as in section ‘Cell cycle assay and flow cytometry’ and the
libraries have been prepared as follows. Total RNA from 5×105 cells in G0/G1, S
and G2/M phases was extracted using the Machery-Nagel NucleoSpin RNA kit
(740955.50) according to the manufacturer’s instructions. Total RNA-Seq libraries
were generated from 500 ng of total RNA using TruSeq Stranded Total RNA
Library Prep Gold kit and TruSeq RNA Single Indexes kits A and B (Illumina, San
Diego, CA), according to manufacturer’s instructions. Briefly, cytoplasmic and
mitochondrial ribosomal RNA (rRNA) was removed using biotinylated, target-
specific oligos combined with Ribo-Zero rRNA removal beads. Following pur-
ification, the depleted RNA was fragmented into small pieces using divalent cations
at 94oC for 8 minutes. Cleaved RNA fragments were then copied into first-strand
cDNA using reverse transcriptase and random primers followed by second-strand
cDNA synthesis using DNA Polymerase I and RNase H. Strand specificity was
achieved by replacing dTTP with dUTP during second-strand synthesis. The
double-stranded cDNA fragments were blunted using T4 DNA polymerase, Kle-
now DNA polymerase and T4 PNK. A single ‘A’ nucleotide was added to the 3’
ends of the blunt DNA fragments using a Klenow fragment (3’ to 5’exo minus)
enzyme. The cDNA fragments were ligated to double-stranded adapters using T4
DNA Ligase. The ligated products were enriched by PCR amplification (30 sec at
98 °C; [10 sec at 98 °C, 30 sec at 60 °C, 30 sec at 72 °C] x 12 cycles; 5 min at 72 °C).
Surplus PCR primers were further removed by purification using AMPure XP
beads (Beckman-Coulter, Villepinte, France) and the final cDNA libraries were
checked for quality and quantified using capillary electrophoresis. Libraries were
then sequenced on Illumina HiSeq 4000 as 50 bases single-end reads.

Reads were preprocessed in order to remove the adapter, polyA, and low-
quality sequences (Phred quality score below 20). After this preprocessing, reads
shorter than 40 bases were discarded for further analysis. These preprocessing steps
were performed using cutadapt version 1.10. Reads were mapped to rRNA
sequences using bowtie version 2.2.8, and reads mapping to rRNA sequences were
removed for further analysis.

Transcription factor activity. The linear model used to infer the motif activities
was implemented as in ISMARA45. To find the regulatory interactions between
transcription factors and genes, we used Motevo predictions of binding sites in
promoters downloaded from the Swiss Regulon Portal (https://swissregulon.unibas.
ch/sr/downloads) for mm10 mouse genome assembly (https://swissregulon.unibas.
ch/data/mm10_f5/mm10_sites_v2.gff.gz) and hg19 human genome assembly
(https://swissregulon.unibas.ch/data/hg19_f5/hg19_sites_v2.gff.gz). Briefly, the
Motevo algorithm uses a Bayesian framework to estimate the posterior probability
that a binding site for a given weight matrix (associated with a motif) occurs in an
interval85. After, we summarized the transcription factor binding sites in a matrix
of site-counts Npm by summing the posterior probabilities for each motif m in a
promoter p. We defined a promoter as the TSS+/− 1 kb.
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The cross-validation was repeated 10 times and the average optimal strength of
the ridge regularization was used for the final calculation of the TF activities.

Identification of cycling genes and high-density paths. A mixture of two
bivariate Gaussians was used to fit the distribution of unspliced-spliced expressions,
to identify genes showing at least two maxima in the distribution of cells. After
identifying the two Gaussians, a Hotelling’s T2 test was applied to select the genes
with two significantly different attractors. After supervised filtering of the remaining
genes, we implemented a method to select genes with at least two paths connecting
the two maxima. The path detection was implemented into two steps. First, coarse-
grained paths were drawn by slicing the spliced-unspliced landscape and connecting
the minima found across the successive slices. To refine the identified paths we
implemented the Nudged Elastic Band65 with the addition of a viscosity term to
stabilize the dynamics, we called the method Viscous Nudged Elastic Band (VNEB).

The VNEB was also applied to the fibroblasts dataset to identify the paths
connecting the G1 phase to the S and G0 phases in Fig. 5E.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data generated in this study has been deposited in the GEO database under
accession code GSE167609. The binding site predictions used in this study are avilable in
the SwissRegulon database (https://swissregulon.unibas.ch/sr/downloads). The source
data files with the results of this paper are openly accessible in Zenodo under accession
code 471943686.

Code availability
The code of DeepCycle can be downloaded from the GitHub repository https://github.
com/andreariba/DeepCycle. Data analysis was perfomed using python 3.7.9 and the
following pyhton packages: scipy 1.5.2, numpy 1.19.1, pandas 1.1.1, scikit-learn 0.23.2,
tensorflow 2.2.0, anndata 0.7.4, matplotlib 3.3.1, seaborn 0.10.1, scanpy 1.4.4.post1, scvelo
0.2.2 and velocyto 0.17.17.
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