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ABSTRACT

The novelty of this paper is the alignment method of
narrow field-of-view hyperspectral images to full-view RGB
images. The interest is to locate hyperspectral measurements
in an environment described by an equirectangular image.
But the very different modalities (3 vs. hundreds of channels)
and fields-of-view are challenges for accurate alignment. We
solve these problems within a dense direct alignment frame-
work that optimizes the warping parameters together with
those of a global illumination difference model. Our align-
ment code is shared with an example dataset available at
github.com/jrl-umi3218/hsrgbalign.

Index Terms— Direct alignment, hyperspectral imaging

1. INTRODUCTION

The interest in hyperspectral imaging (HS imaging or HSI) is
growing in various fields ranging from cultural heritage [1],
to agriculture [2]. HSI provides a spectrum of each pixel in
the image of a scene. Many of the applications require high
spectral-resolution (2nm bins or even shorter [3]). Despite
the long scanning time of whisk-broom HSI (i.e. one hour
for 200×400 pixels of 2068 channels [4]), recent illumination
variation compensation techniques [4] could avoid the usual
need for light calibration [5]. This enables HSI’s applicability
to measurement of historic buildings and artifacts with natural
lighting, particularly for challenging subjects, such as stained-
glass windows [6] (Fig. 1).

Capturing such data “isolated” proves the capability of
HSI but is not sufficient for the needs of archiving heritage
buildings. Indeed, the last decade has seen large efforts to
structure the latter tedious archiving works within Heritage
Building Information Models (HBIM) [7]. To warrant ex-
change amongst surveyors and facility managers, HBIM inte-
grates in one single model a large amount of multi-modal data
of the building (e.g. blueprints, photographs, 3D geometric
shape and full-view images). Hence, the accurate alignment
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Fig. 1: Inside Amiens Cathedral, France: (left) 42m height at
the center; (right) stained-glass III scanned by a hyperspectral
head in the triforium, a corridor at 20m above the ground.

of all data types is a central issue for HBIM. This is a chal-
lenge for new modalities as HSI of ultra high spectral resolu-
tion. Indeed, beyond the difference in data types, HSI’s long
scanning time implies either a low spatial density or a narrow
Field-of-View (FoV) of the hyperspectral measurements.

There are hyperspectral image alignment algorithms with
an RGB image within hyperspectral spatial super resolution
methods [8, 9]. However, they only deal with very slight
misalignments in carefully designed optical systems acquir-
ing both types of images as if they were acquired from the
same viewpoint at the same time.

Instead, this paper tackles the alignment of hyperspec-
tral and full-view RGB images acquired from different view-
points, at different times and with different camera FoV, all
in addition to a very different number of channels. This issue
is solved with a new alignment framework under the dense
direct alignment paradigm, i.e. using all pixels of images to
optimize the alignment parameters.

This paper is organized as follows. First, Section 2 reports
related works on image alignment. Then, Section 3 reports
the camera models considered. After that, the direct align-
ment algorithm is detailed in Section 4 and the results are
reported in Section 5, before conclusion (Sec. 6).

https://github.com/jrl-umi3218/hsrgbalign


2. RELATED WORKS

2.1. Dense direct image alignment approaches

Dense direct image alignment approaches use pixel bright-
ness to express a cost (e.g. the Sum-of-Squared-Differences)
evaluating the geometric alignment of a target image and a
query image, warped toward the target image domain. Since
the seminal work of Lucas and Kanade [10], i.e. warp-
ing a perspective image area with one Degree-of-Freedom
(DoF), four decades of research have considered much more
DoF [11], including exposure compensation [12], and many
camera models, up to panoramic (hemispherical) [13]. Some
approaches have expressed the alignment cost from RGB
channels of pixels instead of their brightness [14]. But using
grayscale [11] leads to the same subpixel accuracy.

2.2. Hyperspectral image alignment methods

Precise hyperspectral image alignment with RGB or panchro-
matic image is mandatory for hyperspectral super-resolution.
Many studies [15, 16, 17] assume a precise alignment of the
modalities and focus only on the integration. But perfect op-
tical alignment is hard to guarantee, so recent works consider
aligning modalities simultaneously to the super-resolution.

These works consider geometric alignment models from
in-plane translation only [18, 19, 20] to rotation and projec-
tive homography [9]. But while successfully generating high
resolution hyperspectral images, they are only robust to very
slight misalignment of the input image pairs of similar view-
point and FoV, i.e. 3–5 pixels according to their experimental
results and none can treat large misalignment in different FoV.

3. CAMERA MODELS

This section recalls the basics of spherical and equirectangu-
lar camera projection models with unified notation. The coor-
dinates u = (u, v)⊤ ∈ R2 of a point in the digital image plane
are function of the line of sight of the 3D point observed in u.

3.1. Spherical model for whisk-broom HS camera

With s.l and s.u noting lower and upper bounds of spheri-
cal coordinates, the camera samples in its local frame Fs the
azimuth sθ ∈ [sθl,

sθu] ⊆ [−π, π], around axis Zs and the el-
evation angle sϕ ∈ [sϕl,

sϕu] ⊆ [−π/2, π/2], both with con-
stant steps δθ ∈ R and δϕ ∈ R. Here, sθl,

sθu and sϕl,
sϕu

denote the FoV of HSI whose dimensions are Nr
s ×N c

s , with
Nr

s =
sϕu−

sϕl

δϕ
and N c

s =
sθu−sθl

δθ
. Then, the mapping from

(sθ, sϕ) to su in the digital image plane is nothing but the
affine transformation Ks ∈ R3×3:su

sv
1

 = Ks

sθ
sϕ
1

 =


1
δθ

0 −
sθl

δθ

0 1
δϕ

−
sϕl

δϕ

0 0 1


sθ
sϕ
1

 . (1)

3.2. Equirectangular

The equirectangular image format is a common output of
full-view cameras. Many datasets feature such images in
computer vision and robotics [21]. The equirectangular cam-
era projection model is very close to the spherical model
(Sec. 3.1). Azimuth1 eθ and elevation eϕ angles are ex-
pressed in the equirectangular camera coordinate system Fe

with angle eθ around the camera Ze axis. However, as the
equirectangular image format spans the whole full-view in-
stead of a subpart with the spherical model (1), the affine
transformation Ks of (1) is substituted with Ke ∈ R3×3. Ke

is function of the output image dimensions Nr
e × N c

e , such
that the camera axis Xe points toward eθ = eϕ = 0:eu
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With this model, the Ye axis of the camera frame Fe is parallel
to the horizontal axis of the equirectangular image.

3.3. Spherical to equirectangular transformation

For the alignment algorithm hereafter, it is clear to set both
types of images in the same space. Without lack of generality,
we chose to transform the spherical hyperspectral data to the
equirectangular image plane. Basically, we apply (2) to sθ
and sϕ and we obtain eu∗:

[eu∗, ev∗, 1]
⊤
= Ke [

sθ, sϕ, 1]
⊤
. (3)

4. DIRECT ALIGNMENT

The hyperspectral and RGB equirectangular data are aligned
with a projective transformation: the homography on the
unit sphere (Sec. 4.1). To accurately align hyperspectral and
RGB data, they are first converted to grayscale as IS(

eu∗)
and IC(

eu), respectively (Sec. 4.2.1), before being used in
a direct alignment scheme densely aligning the whole set of
pixels of IS(eu∗) to IC(

eu) (.∗ is for reference coordinates).
To account for different exposures of IS(

eu∗) and IC(
eu),

a global exposure affine transformation model is considered
too (Sec. 4.2). In the rest of the paper, exponents to indicate a
quantity is expressed in a frame (mainly Fe) are omitted.

4.1. Geometric model: homography on unit sphere

Homography is a well known projective transformation be-
tween two sets of corresponding image points [22]. For
equirectangular images, it requires first to map image coordi-
nates u∗ and u to azimuth and elevation by inverting (2), i.e.
for u (and similarly for u∗):

[θ, ϕ, 1]
⊤
= K−1

e [u, v, 1]
⊤
. (4)

1e refers to equirectangular image quantities.



The homography H ∈ P2 is defined for Cartesian homoge-
neous coordinates. We transform (θ, ϕ) to Cartesian coordi-
nates X = [X,Y, Z]⊤ ∈ R3 with ||[X,Y, Z]|| = 1 with:

[X,Y, Z] = [cosϕ cos θ, cosϕ sin θ, sinϕ], (5)

and similarly for (θ∗, ϕ∗) to X∗. Then, the homography H
relates Cartesian spherical coordinates X and X∗ under the
collinearity constraint (×: cross product):

X×HX∗ = 0. (6)

Developing and rearranging (6) for M ∈ N pairs of cor-
responding points in a single system leads to a linear matrix
equation of the form Ah = 0, with h ∈ R9, the vector of the
nine elements of H, and A ∈ R3M×9, classically solved by
computing the estimate h0 of h as the kernel of A using the
Singular Value Decomposition (SVD) [22]. Then, H0, made
of the 9 elements of h0, serves as an initial guess for the ho-
mography optimization, minimizing the direct cost (Sec. 4.3).

4.2. Intensity model: global affine transformation

4.2.1. Multi-channel to gray level

An image maps pixel coordinates u to a vector of N ∈ N
channels sampling the spectrum. Below, we recall the data
conversions considered for alignment.

RGB to Gray For a grayscale image, N = 1. Consider-
ing grayscales are classically coded with 8 bits, we note the
grayscale image mapping I(u) : R2 7−→ [[0, 255]]1, the latter
being a discrete interval. For an RGB image, N = 3 and we
note the RGB image mapping C(u) : R2 7−→ [[0, 255]]3.

Classically, the grayscale image IC(u) ∈ R is computed
as the weighted sum of the three channels of C(u). The
weights are defined as wC = [0.299, 0.587, 0.114]⊤, follow-
ing standards [23]. Thus, I(u) is computed from C(u) with:

IC(u) = w
⊤
C C(u). (7)

Hyperspectral to Gray Hyperspectral images offer a
much sharper capture of the spectrum (high spectral resolu-
tion) than RGB images, leading to thousands of channels [4],
i.e. N ≫ 3. To simplify, we assume the hyperspectral im-
age is represented as the mapping S(u) : R2 7−→ [0, 255]N

(directly or after pre-processing).
Then, IS(u) ∈ R, the conversion of S(u) to grayscale,

is also a weighted sum of channels, but of uniform weight
wS = 1/N . So, with 1 ∈ RN (N -vector of ones) we define:

IS(u) = wS 1⊤ S(u). (8)

4.2.2. A linear transformation for exposure difference

The different camera hardware used at different capture time
make intensities IS(u∗) rather different from IC(u), even for

corresponding u∗ and u. Assuming a linear transformation
between both exposures modeled by an intensity scale factor
m ∈ R and an intensity offset s ∈ R, we express IC(u), the
transformed intensity IC(u), as:

IC(u) = m IC(u) + s. (9)

4.3. Direct cost and optimization

The direct alignment algorithm is designed to optimize for pa-
rameters of both geometric (Sec. 4.1) and intensity (Sec. 4.2)
models, minimizing the cost expressed as the difference be-
tween intensities IC(u) and IS(u

∗) of all pairs (u,u∗) of cor-
responding pixels, i.e. satisfying the homography parameters
h. We write the dependence of considered pixels in IC to the
homography and source pixel u∗ as IC(h,u∗). Then, stack-
ing the intensities of each image in vectors IC(h) ∈ RNr

sN
c
s

and IS
∗ ∈ RNr

sN
c
s , respectively, the optimization problem is:[

ĥ, m̂, ŝ
]⊤

= argmin
h,m,s

1

2
∥m IC(h) + s− IS

∗∥2 . (10)

The above optimization problem is classically solved with
the Levenberg-Marquardt algorithm [24]. Jacobians are com-
puted with auto-differentiation, image gradients and interpo-
lation at non-integer coordinates are computed with a bi-cubic
interpolation of IC . Parameters are initialized at iteration 0 as
m(0) = 1, s(0) = 0 and h(0) = h0 (Sec. 4.1 and see Sec. 5
for the source of corresponding pairs of points).

5. RESULTS

5.1. Experiment setup

We applied the alignment algorithm of this paper on data ac-
quired inside the Gothic cathedral of Amiens, France (Fig. 1).
Hyperspectral and RGB images of tall and large (several
meters) stained-glasses were captured in a narrow corridor.
Alignment results are reported for three stained glasses: III
(St Peter), XVIII (St Bishop) and South Portal (back).

We use the hyperspectral data of 2068 channels acquired
by an imaging system comprising a single-point spectrometer
(Ocean Optics Maya2000 Pro) connected with an optical fiber
to a scanning head (Ocular Robotics RobotEye REHS25).
This system was set on a tripod to keep a static base during the
scanning. The inevitable variation of natural illumination dur-
ing such a time is eliminated thanks to a quick extra scanned
line [4]. In the experiments, we’ve selected N = 663 chan-
nels (among 2068) of the spectrum ranging from 400nm to
700nm approximately corresponding to the visible light also
captured by the RGB full-view camera.

The RGB camera is an off-the-shelf Ricoh Theta V
dual-fisheye camera used with its built-in High Dynamic
Range (HDR) mode to avoid exposure issues. It outputs an
equirectangular RGB image of 2688×5376 pixels. To ensure



the image sharpness, this camera is also used on a tripod but
at a different time than the hyperspectral imaging system.

The alignment algorithm is implemented with C++ lan-
guage using the OpenCV library [25] to detect and match key-
points for the linear estimation of the homography (Sec. 4.1)
which matrix operations are handled with the Eigen library.
The Ceres solver library [26] is used for the Levenberg-
Marquardt optimization of the direct cost (10). Our imple-
mentation is shared (see abstract).

5.2. Point correspondences for initial H

We applied descriptor-based keypoint matching algorithms to
automatically find the set of point correspondences between
IS and IC , allowing the estimation of an initial homogra-
phy H0 (see end of Sec. 4.1). Several keypoint matching
algorithms have been considered among which AKAZE [27]
and SuperGlue [28]. The most reliable matching sets have
been obtained by the AKAZE features with upright descrip-
tors matched by L2-norm. This version of AKAZE has shown
to be more robust than the others to distortions of equirectan-
gular images. However, there is still a minority of outliers that
have classically been discarded by encapsulating the homog-
raphy estimation within a RANSAC [22] process (Fig. 2).

5.3. Alignment results

An initial homography H0 warps the gray version IS of an
hyperspectral image (see an example with South Portal on
Fig. 3a toward Fig. 3b) to be geometrically close to the gray
version IC the target RGB image (Fig. 3d). The remaining
misalignment is minimized by the dense direct optimization
described in Section 4.3 such that the optimal homography Ĥ
warps IS with pixel accuracy to IC (Fig. 3c). From H0 to the
Ĥ, the cost (10) is divided by 6.8 for stained-glass III, by 6.1
for South Portal and by 6.4 for XVIII.

5.4. Evaluation

The images of differences between target IC and the warping
of IS thanks to either initial H0 or optimal Ĥ are a good tool
to quantitatively evaluate the alignment quality. Indeed, only
warping with H0 leads to obvious remaining misalignment,
particularly visible on the top and bottom parts of stained-
glass XVIII (Fig. 4c) and the top of III (Fig. 4a). Though
present, it is less obvious on South Portal (Fig. 4b). Actually,

Fig. 2: RANSAC-based AKAZE feature matching for ho-
mography initialization (South Portal).

(a) IS (b) H0 warps IS (c) Ĥ warps IS (d) Target

Fig. 3: (a) Initial IS of South Portal warped with (b) initial
homography, (c) optimal homography solving (10). (d) Color
version of the target image. Images are cropped afterwards.

since the South Portal HSI to align has a larger FoV than those
of III and XVIII (65 degrees vs. 41 for III and 39 for XVIII),
H0 is estimated more reliably than for III and XVIII.

Inversely, the optimal Ĥ corrects all the remaining mis-
alignment encountered with H0. It is obvious for XVIII when
looking at the top glass of trilobal shape, offset toward the bot-
tom by several pixels with H0 (Fig. 4c) but almost perfectly
aligned with Ĥ. Equivalent observations can be made for III
and South Portal (Fig. 4d-4e vs. Fig. 4a-4b).

6. CONCLUSION

This paper has introduced the direct alignment of hyperspec-
tral image of narrow FoV and full-view RGB image, i.e. opti-
mizing a projective transformation minimizing the differences
between pixel intensities. To make intensities comparable,
RGB and hyperspectral channels have been converted to sin-
gle channel first and a global exposure transformation model
considered within the optimization process. Results show
despite the very different FoVs and the nature of the data,
AKAZE feature points can lead to a rough alignment, serving
as a good initial guess for the direct optimization that reaches
an accurate alignment. Our implementation is publicly shared
to enable hyperspectral measurements integration in a HBIM.

(a) III (b) South Portal (c) XVIII

(d) III (e) South Portal (f) XVIII

Fig. 4: Alignment evaluation. Zoom on images of differences
for all three stained-glasses: (a-c) with H0 ; (d-f) with Ĥ.
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