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Abstract

We study the blow up behaviour of nonlinear parabolic equations including a time degeneracy, under dynamical boundary
conditions. For some exponential and polynomial degeneracies, we develop some energy methods and some spectral comparison
techniques and derive upper bounds for the blow up times.
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1. Introduction

In the present paper we study the occurrence of blow up phenomena for several nonlinear parabolic problems
including a time degeneracy:(exp(ku))t = 1u + exp(pu) in � for t > 0,

Bσ (u) := σ∂t u + ∂νu = 0 on ∂� for t > 0,
u(·, 0) = ϕ ∈ C(�)

(1)
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with 1 ≤ k < p ∈ R,(u
2k+1)t = 1u + u|u|

p−1 in � for t > 0,
Bσ (u) := σ∂t u + ∂νu = 0 on ∂� for t > 0,
u(·, 0) = ϕ ∈ C(�)

(2)

with k ∈ N and 2k + 1 < p ∈ R,(u
2k+1)t = div(um

∇u)+ |u|
p in � for t > 0,

Bσ (u) := σ∂t u + ∂νu = 0 on ∂� for t > 0,
u(·, 0) = ϕ ∈ C(�)

(3)

with k ∈ N, m ∈ N and 2k + 1 < p ∈ R.

We assume that � ⊂ Rn is a bounded domain, whose boundary ∂� is of class C2. On the time lateral boundary, we
impose some dynamical conditions, involving the outer normal derivative and the time derivative. The outer normal
unit vector field and the outer normal derivative are respectively denoted by ν : ∂� → Rn and ∂ν . We suppose the
dissipativity condition

σ ≥ 0 on ∂�× (0,∞), (4)

and, dealing with classical solutions, we assume that

σ ∈ C1(∂�× (0,∞)). (5)

As for the initial data, we require

ϕ ∈ C(�), ϕ ≥ 0, ϕ 6= 0. (6)

As for local existence of solutions for parabolic equations with time degeneracy, we refer to [1] and [5]. As for
qualitative theory, we refer to [8], to [3] and [4] for nonlinear parabolic equations under dynamical boundary
conditions, and to [2] for equations with time degeneracy. Blow up results for equations including a principal part
degeneracy are mentioned in [6,7] and in [4] and [10] for dynamical boundary conditions. As for blow up results for
equations containing some gradient term and for Problem (3) in the particular case where m = 0, we refer to the
author’s thesis. As for applications and modellings involving dynamical boundary conditions and time degeneracy,
we refer to [9] and [11]. Since the exponential time degeneracy b(u) := exp(ku) in Problem (1) is a strictly increasing
function, we can apply some methods developed in [4] for reaction–diffusion equations. Especially, we can compare
solutions for different boundary conditions and establish some lower and upper bounds for the blow up times. For
Problem (2) and (3) including a polynomial time degeneracy, the approach is quite different since degeneracies occur
when the l.h.s. vanishes. As proved in [2], a comparison principle does not hold for such equations in general, and
thereby no uniqueness and flow existence can be deduced in general. We investigate the occurrence of blow up
under homogeneous Dirichlet and Neumann boundary conditions by deriving upper bounds for the blow up times.
Furthermore, for Problem (3), we study the blow up behaviour in the dynamical case, in particular for p = m + 1.

2. Exponential time degeneracy

In this section we are interested in Problem (1). Note that for τ > 0, its parabolic partial differential equation can
be written in �× (0, τ ] in the form

∂t u =
1
k

exp(−ku)1u +
1
k

exp((p − k)u) =: F[u],

with F ∈ C1(� × (0, τ ] × R × Rn
× Rn2

). Then, some of the qualitative results developed in [3] and [4] hold. In
particular, the comparison principle Theorem 7.1 of [4] and its corollaries imply the unicity and the non-negativity in
�× [0, τ ] of the solution of Problem (1). Therefore, throughout this section, we note

uσ ∈ C
(
�× [0, T (σ, ϕ))

)
∩ C2,1 (�× (0, T (σ, ϕ))

)
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the maximal solution of Problem (1), where T (σ, ϕ) denotes the blow up time of uσ , i.e. its maximal existence time
in C(�), defined as

T (σ, ϕ) = inf
{

s > 0
∣∣∣∣ lim

t↗s
sup{|uσ (x, t)| | x ∈ �} = ∞

}
.

By the comparison principle, we can prove the decreasing character of T (σ, ϕ) with respect to the initial value ϕ:

Theorem 1. Suppose ϕ1, ϕ2 ∈ C(�). Then

0 ≤ ϕ1 ≤ ϕ2 H⇒ T (σ, ϕ1) ≥ T (σ, ϕ2).

As in [4], the additional assumptions

ϕ ∈ C2(�),
1
k

exp(−kϕ)1ϕ +
1
k

exp((p − k)ϕ) ≥ 0 in �, (7)

and

σ ∈ C1(∂�) (8)

imply

Lemma 2. Let u ∈ C2,1(�× [0, τ ]) be a solution of Problem (1). Then u satisfies ∂t u ≥ 0 in �× [0, τ ].

Then by the comparison principle, T (σ, ϕ) is increasing with respect to the coefficient σ :

Theorem 3. Under Condition (7), suppose that the functions 0 ≤ σ1 ≤ σ2 satisfy (8). Then uσ1 ≥ uσ2 in
�× [0, T (σ1, ϕ)) and

T (σ1, ϕ) ≤ T (σ2, ϕ).

Moreover, following the comparative techniques of [4] we can establish a relation between the blow up times of the
classical solutions of Problem (1) fulfilling different boundary conditions. Indeed, recall that the Neumann boundary
condition ∂νu = 0 on ∂� is the dynamical boundary condition Bσ (u) = 0 with σ = 0 and that the Dirichlet condition
u = ϕ on ∂� corresponds to the case σ ≡ ∞. Introduce

v ∈ C
(
�× [0, T (∞, ϕ))

)
∩ C2,1 (�× (0, T (∞, ϕ))

)
as the maximal solution of(exp(kv))t = 1v + exp(pv) in �× (0, T (∞, ϕ)),

v(·, 0) = ϕ in �,
v = ϕ on ∂�× (0, T (∞, ϕ)),

(9)

and

w ∈ C
(
�× [0, T0(∞, ϕ̃))

)
∩ C2,1 (�× (0, T0(∞, ϕ̃))

)
as the maximal solution of(exp(kw))t = 1w + exp(pw) in �× (0, T0(∞, ϕ̃)),

w(·, 0) = ϕ̃ in �,
w = 0 on ∂�× (0, T0(∞, ϕ̃)),

(10)

with

ϕ̃ ∈ C(�), ϕ̃ = 0 on ∂�, ϕ̃ ≤ ϕ. (11)

We are led to
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Theorem 4. Under Conditions (7) and (8)

u0 ≥ uσ ≥ v ≥ w

in the domain of definition of u0, uσ and v respectively, and

T (0, ϕ) ≤ T (σ, ϕ) ≤ T (∞, ϕ) ≤ T0(∞, ϕ̃).

Furthermore, we can establish a lower bound for the blow up time. Consider the maximal solution z ∈ C1([0, t1)) of
the EDO{

ż = (1/k) exp((p − k)z) in [0, t1),
z(0) = ‖ϕ‖∞.

(12)

By Theorems 1 and 3, we obtain

Theorem 5.

T (σ, ϕ) ≥ T (0, ϕ) ≥ T (0, ‖ϕ‖∞) =
k

p − k
exp((k − p)‖ϕ‖∞) = t1.

Now, we derive upper bounds for the blow up time T (σ, ϕ). First, we establish an optimal upper bound under
Neumann boundary condition, which corresponds to t1 for a constant initial data ϕ.

Theorem 6. Suppose σ = 0. Then the classical maximal solution u0 of Problem (1) blows up in finite time T (0, ϕ)
satisfying

T (0, ϕ) ≤
k

p − k
|�|

(p−k)/k
(∫

�

exp(kϕ) dx
)(k−p)/k

=: t2.

Proof. The Neumann boundary condition implies
∫
�
1u dx =

∫
∂�
∂νu ds = 0. Set M(t) =

∫
�

exp(ku(·, t)) dx , then
Ṁ =

∫
�

exp(pu) dx , and by Hölder’s inequality,

Ṁ ≥ |�|
(k−p)/k M p/k .

Integration between 0 and t > 0 leads to∫ M(t)

M(0)
η−p/k dη ≥ |�|

(k−p)/k t

and

M(t) ≥

(
M(0)(k−p)/k

−
p − k

k
|�|

(k−p)/k t
)k/(k−p)

.

The right hand side of the inequality becomes infinite iff

t =
k

p − k
M(0)(k−p)/k

|�|
(p−k)/k

= t2

then T (0, ϕ) ≤ t2. �

Now, dealing with spectral methods described in [4], we derive an upper bound for the blow up time for any boundary
condition already mentioned. Throughout, we note λ = λ(�) the minimal eigenvalue of −1 in H1

0 (�) and

ψ ∈ H1
0 (�) (13)

an eigenfunction belonging to λ fulfilling

0 < ψ ≤ 1 in �. (14)
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Clearly ψ satisfies

∂νψ ≤ 0 on ∂�. (15)

The following holds:

Theorem 7. Let c > 0, T > 0 and 1 ≤ k < p denote real constants and let

u ∈ C
(
�× [0, T )

)
∩ C2,1 (�× (0, T ))

be a maximal solution of(exp(ku))t ≥ 1u + c exp(pu) in �× (0, T ),
u ≥ 0 on ∂�× (0, T ),
u(·, 0) = ϕ ≥ 0, 6= 0.

(16)

If

|�|

(
λ

c

)k/(p−k)

<

∫
�

exp(kϕ)ψ dx, (17)

then

T ≤
k

λ(p − k)
ln

(
c

c − λ|�|(p−k)/k
(∫
�

exp(kϕ)ψ dx
)(k−p)/p

)
=: t3.

Proof. Define M(t) =
∫
�

exp(ku(·, t)) ψ dx . Clearly, (13) and (15) imply∫
∂�

∂νu ψ ds = 0,
∫
∂�

u ∂νψ ds ≤ 0. (18)

Thus Green’s Formula leads to∫
�

1u ψ dx =

∫
�

u1ψ dx +

∫
∂�

(∂νu ψ − u ∂νψ) ds ≥ −λ

∫
�

u ψ dx .

Since u ≥ 0, by the assumptions on k and p, we have exp(ku) ≥ u and ψ p/k
≤ ψ . Then

Ṁ ≥ −λ

∫
�

exp(ku)ψ dx + c
∫
�

exp(pu)ψ p/k dx .

Hölder’s inequality implies∫
�

exp(pu)ψ p/k dx ≥ |�|
(k−p)/k M p/k .

Thus

Ṁ ≥ −λM + αMβ
= αM(Mβ−1

− δ)

with

α = c|�|
(k−p)/k, β =

p
k

and δ =
λ

α
.

Integration between 0 and t > 0 yields

αt ≤

∫ M(t)

M(0)

1
η(ηβ−1 − δ)

dη =
1
δ

{∫ M(t)

M(0)

ηβ−2

ηβ−1 − δ
dη −

∫ M(t)

M(0)

dη
η

}
and

1
β − 1

∫ M(t)β−1

M(0)β−1

dξ
ξ − δ

−

∫ M(t)

M(0)

dη
η

≥ λt. (19)
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M is increasing with respect to t since Ṁ = k
∫
�

exp(ku)ψ∂t u dx ≥ 0 by Lemma 2. Then (17) implies M(t) >
δ1/(β−1) for t ≥ 0 and (19) yields

ln
M(t)β−1

− δ

M(0)β−1 − δ
− ln

M(t)β−1

M(0)β−1 ≥ (β − 1)λt.

We obtain

1 >
M(t)β−1

− δ

M(t)β−1 ≥ (1 − δM(0)1−β) exp ((β − 1)λt) > 0.

M becomes infinite iff the ratio above approaches unity, i.e., iff

t =
1

(β − 1)λ
ln

1
1 − δM(0)1−β

= t3.

Then u blows up at the latest for t = t3 and T ≤ t3. �

3. Polynomial time degeneracy

This section is devoted to the blow up behaviour of solutions of Problem (2) and Problem (3), including a
polynomial time degeneracy. In the case where p ≤ 2k + 1, we can establish an a priori bound for these problems
thanks to Theorem 1 from [2] and show global existence. Indeed, the solutions grow at most exponentially because
for any τ > 0

max
�×[0,τ ]

|u| ≤ e2/(2k+1)τ max
{

max
�

ϕ, 1
}
.

First, we consider Problem (2). For p > 2k +1, we derive upper bounds for the blow up times under homogeneous
Dirichlet boundary condition and Neumann boundary condition, by using an energy type method. Introduce the energy
functional E : H1(�) ∩ L p+1(�) → R, defined by

E(u) =
1
2

∫
�

‖∇u‖
2
2 dx −

1
p + 1

∫
�

|u|
p+1 dx .

We have the following

Lemma 8. The function t 7→ E(u(·, t)) is decreasing if u ∈ C(� × [0, τ ]) ∩ C2,1(� × (0, τ ]) is a solution of
Problem (2) under Neumann boundary condition or Dirichlet boundary condition.

Proof. First, note that under the Dirichlet boundary condition u = ϕ on ∂� for t > 0 and under Neumann boundary
condition, we have∫

∂�

∂t u ∂νu ds = 0.

Then, thanks to Green’s formula

d
dt

E(u(t)) =

∫
�

(∂t∇u,∇u) dx −

∫
�

u|u|
p−1 ∂t u dx

= −

∫
�

∂t u1u dx +

∫
∂�

∂t u ∂νu ds −

∫
�

u|u|
p−1∂t u dx

and
d
dt

E(u(t)) ≤ −(2k + 1)
∫
�

u2k(∂t u)2 dx ≤ 0. �

Theorem 9. Suppose ϕ ∈ H1
0 (�) ∩ C(�) and E(ϕ) ≤ 0. Let

u ∈ C(�× [0, T )) ∩ C2,1(�× (0, T ))
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be a maximal solution of(u
2k+1)t = 1u + u|u|

p−1 in �× (0, T ),
u(·, 0) = ϕ in �,
u = 0 on ∂�× (0, T ).

(20)

Then u blows up in finite time T satisfying

T ≤
(p + 1)(2k + 1)

(p − 1)(p − 2k − 1)
|�|

(p−2k−1)/(2k+2)
(∫

�

ϕ2k+2(x) dx
)(2k+1−p)/(2k+2)

=: t4.

Proof. Introduce

N (t) = |uk+1
|
2
2,� =

∫
�

u2k+2(x, t) dx .

Then

Ṅ =
2k + 2
2k + 1

∫
�

u(u2k+1)t dx

=
2k + 2
2k + 1

(∫
�

u1u dx +

∫
�

|u|
p+1 dx

)
.

Green’s formula and homogeneous Dirichlet boundary condition imply∫
�

u1u dx = −

∫
�

‖∇u‖
2 dx +

∫
∂�

u∂νu ds︸ ︷︷ ︸
=0

= −2E(u)−
2

p + 1

∫
�

|u|
p+1 dx . (21)

Thus, since by Lemma 8, E(u) ≤ E(ϕ) ≤ 0, we are led to

Ṅ ≥
(2k + 2)(p − 1)
(2k + 1)(p + 1)︸ ︷︷ ︸

:=α0

∫
�

|u|
p+1 dx > 0.

Since p > 2k + 1, Hölder’s inequality implies∫
�

|u|
p+1 dx ≥ |�|

(2k+1−p)/(2k+2)
(∫

�

u2k+2
)(p+1)/(2k+2)

,

thus

Ṅ ≥ α1 Nβ (22)

with α1 = α0|�|
(2k+1−p)/(2k+2) and β = (p + 1)/(2k + 2). Integration between 0 and t > 0 yields

N (t) ≥ (N (0)1−β
− α1(β − 1)t)1/(1−β).

The right hand side of the inequality becomes infinite iff t = t4, where t4 is defined as in the assertion. Then u blows
up at the latest for t = t4 and T ≤ t4. �

Since (21) remains valid for Neumann boundary condition instead of homogeneous Dirichlet boundary condition, we
obtain

Theorem 10. Suppose σ = 0, ϕ ∈ H1(�) ∩ C(�) and E(ϕ) ≤ 0. Let u be a maximal classical solution of
Problem (2), then u blows up in finite time T satisfying

T ≤ t4,

with t4 as defined in Theorem 9.
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Now, we are interested in Problem (3) including a possible degenerate principal part. Even if a comparison principle
does not hold because of the nonuniqueness of solutions, Theorems 2 and 4 from [2] imply the following qualitative
result

Theorem 11. Let τ > 0 be a real constant and u ∈ C(�× [0, τ ]) ∩ C2,1(�× (0, τ ]) a solution of(u
2k+1)t = div(um

∇u)+ |u|
p in �× (0, τ ],

Bσ (u) := σ∂t u + ∂νu = 0 on ∂�× (0, τ ],
u(·, 0) = ϕ ∈ C(�)

(23)

then u satisfies

u ≥ 0 in �× [0, τ ] and min
�×[0,τ ]

u = min
�

ϕ. (24)

We estimate the blow up times for different boundary conditions from above by spectral comparison. We use the
notations λ and ψ already introduced in Section 2. First, we study the special case p = m + 1 and we establish an
upper bound for the blow up times under the general boundary condition u ≥ 0.

Theorem 12. Suppose m ≥ max{2k, 1} and let

u ∈ C
(
�× [0, T )

)
∩ C2,1 (�× (0, T )

)
be a maximal solution of(u

2k+1)t = div(um
∇u)+ |u|

m+1 in �× (0, T ),
u ≥ 0 on ∂�× (0, T ),
u(·, 0) = ϕ in �.

(25)

If

λ < m + 1,

then

T ≤
(m + 1)(2k + 1)|�|

(m−2k)/(2k+1)

(m − 2k)(m + 1 − λ)

(∫
�

ϕ2k+1 ψ dx
)(2k−m)/(2k+1)

=: t5.

Proof. By (13) and (15), (18) remains valid for um+1 instead of u. Thus,∫
�

div(um
∇u) ψ dx =

1
m + 1

∫
�

1(um+1) ψ dx ≥ −
λ

m + 1

∫
�

um+1 ψ dx .

Introduce

M(t) =

∫
�

u2k+1(·, t) ψ dx,

then by (24) we obtain the differential inequality

Ṁ ≥
(m + 1 − λ)

m + 1

∫
�

um+1 ψ dx .

Moreover, Hölder’s inequality∫
�

u2k+1 ψ dx ≤ |�|
(m−2k)/(m+1)

(∫
�

um+1 ψ (m+1)/(2k+1) dx
)(2k+1)/(m+1)

(26)

and (14) imply

Ṁ ≥
(m + 1 − λ)

m + 1
|�|

(2k−m)/(2k+1)︸ ︷︷ ︸
:=C

M (m+1)/(2k+1).
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Integration leads to

M(t) ≥

(
M(0)(2k−m)/(2k+1)

−
m − 2k
2k + 1

Ct
)(2k+1)/(2k−m)

.

The term in brackets vanishes iff t = t5, with t5 as defined in the assertion. Then T ≤ t5 since M(t) ≤ |�| ×

‖u(·, t)‖2k+1
∞ . �

Note that Theorem 12 is valid in particular under Neumann, Dirichlet or dynamical boundary conditions. Furthermore,
in the general case where p > 2k + 1 and m ∈ N, we can derive an upper bound for the blow up times for Neumann
and homogeneous Dirichlet boundary conditions, thanks to the estimate of the L2k+1-norm.

Theorem 13. Suppose σ = 0. Let k,m ∈ N and 2k+1 < p ∈ R. Let u be a maximal classical solution of Problem (3).
Then u blows up in finite time T satisfying

T ≤
(2k + 1)|�|

(p−2k−1)/(2k+1)

(p − 2k − 1)

(∫
�

ϕ2k+1 dx
)(2k+1−p)/(2k+1)

=: t6.

Proof. Note that Neumann boundary condition implies∫
�

1(um+1) dx = (m + 1)
∫
∂�

um∂νu ds = 0. (27)

Define M by M(t) =
∫
�

u(·, t)2k+1 dx . Eqs. (24) and (27) and Hölder’s inequality yield

Ṁ =

∫
�

u p dx ≥ |�|
(2k+1−p)(2k+1)M p/(2k+1).

Integration between 0 and t > 0 implies

M(t) ≥

(
M(0)(2k+1−p)/(2k+1)

−
p − 2k − 1

2k + 1
|�|

(2k+1−p)/(2k+1)t
)(2k+1)/(2k+1−p)

.

Then u becomes infinite iff T ≤ t6, where t6 is defined as in the assertion. �

Since (27) is still valid for homogeneous Dirichlet boundary condition for m ≥ 1, we have

Theorem 14. Let T > 0 denote a real constant, k ∈ N, 1 ≤ m ∈ N and 2k + 1 < p ∈ R. Let

u ∈ C
(
�× [0, T )

)
∩ C2,1 (�× (0, T )

)
be a maximal solution of(u

2k+1)t = div(um
∇u)+ |u|

p in �× (0, T ),
u = 0 on ∂�× (0, T ),
u(·, 0) = ϕ ∈ C0(�), 0 ≤ ϕ 6= 0.

(28)

Then T ≤ t6, with t6 as defined in Theorem 13.

Of special interest is the occurrence of finite time blow up for Problem (3), in the case where a dynamical boundary
condition is imposed with 0 ≤ σ < ∞.

Theorem 15. Let p ∈ R, m ∈ N and k ∈ N with p > 2k + 1 > m + 1. If there exists c ∈ (0, 1) such that

λ ≤ (m + 1) c

(
|�|

−1
(

min
�

ϕ

)2k+1 ∫
�

ψ dx

)(p−m−1)/(2k+1)

(29)

then the maximal classical solutions of Problem (3) blow up at the latest for

t =
(2k + 1)|�|

(p−2k−1)/(2k+1)

(p − 2k − 1)(1 − c)

(∫
�

ϕ2k+1 ψ dx
)(2k+1−p)/(2k+1)

=: t7.
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Proof. Set M(t) =
∫
�

u2k+1(·, t) ψ dx then

Ṁ ≥ −
λ

m + 1

∫
�

um+1 ψ dx +

∫
�

u p ψ dx .

Note that for the moment it is not clear that Ṁ ≥ 0. Eq. (14) and Hölder’s inequalities yield∫
�

u p ψ dx ≥ |�|
(2k+1−p)/(2k+1)M p/(2k+1)

and ∫
�

um+1 ψ dx ≤ |�|
(2k−m)/(2k+1)M (m+1)/(2k+1).

Then

Ṁ ≥ −αMβ
+ δMγ

= δMγ
(

1 −
α

δ
Mβ−γ

)
with

α =
λ

m + 1
|�|

(2k−m)/(2k+1), β =
m + 1
2k + 1

, δ = |�|
(2k+1−p)/(2k+1) and γ =

p
2k + 1

.

By (24) and (29),

Mγ−β
≥
α

δ c
then we have

Ṁ ≥ (1 − c) δMγ > 0.

By integration,∫ M(t)

M(0)

dη
ηγ

≥ (1 − c) δt

and

M(t) ≥

(
M(0)1−γ

− (1 − c)(γ − 1) δt
)1/(1−γ )

.

Since γ > 1, the term in brackets vanishes iff t =
M(0)1−γ

(1−c)(γ−1) δ =: t7. �

Note that the upper bound t6, established under Neumann and homogeneous Dirichlet boundary conditions, satisfies
t6 < t7.
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