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Qualitative results for parabolic equations
involving the p–Laplacian under dynamical

boundary conditions

Joachim von Below Mabel Cuesta Gaëlle Pincet Mailly

Abstract
We discuss comparison principles, the asymptotic behaviour, and the occurrence

of blow up phenomena for nonlinear parabolic problems involving the p–Laplacian
operator of the form

∂tu = ∆pu+ f(t, x, u) in Ω for t > 0,
σ∂tu+ |∇u|p−2∂νu = 0 on ∂Ω for t > 0,

u(0, ·) = u0 in Ω,

where Ω is a bounded domain of RN with Lipschitz boundary, and where

∆pu := div
(
|∇u|p−2∇u

)
is the p–Laplacian operator for p > 1. As for the dynamical time lateral boundary
condition σ∂tu + |∇u|p−2∂νu = 0 the coefficient σ is assumed to be a nonnega-
tive constant. In particular, the asymptotic behaviour in the large for the parameter
dependent nonlinearity f(·, ·, u) = λ|u|q−2u will be investigated by means of the
evolution of associated norms.
Keywords: nonlinear degenerate parabolic problems, p–Laplacian, dynamical bound-
ary conditions, blow up, comparison principles.

1 Introduction
This paper deals with the behaviour of solutions of nonlinear parabolic problems of the
form

(Pσ,f )

{
∂tu = ∆pu+ f(t, x, u) in Ω for t > 0,

σ∂tu+ |∇u|p−2∂νu = 0 on ∂Ω for t > 0,
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where Ω is a bounded domain of RN , N ≥ 1, with Lipschitz boundary, and where

∆pu := div
(
|∇u|p−2∇u

)
is the well known p–Laplacian operator defined in W 1,p(Ω) in a weak setting in the usual
way for any real number p > 1. Another distinctive feature in the present context is the
dynamical boundary condition imposed on the time lateral boundary relating the outer
normal derivative to the time derivative. For the sake of simplicity, the dynamical coeffi-
cient σ is assumed to be a nonnegative constant.

Of particular interest will be the Cauchy problem

(Pσ,fλ,q ,u0)


∂tu = ∆pu+ λ|u|q−2u in Ω for t > 0,

σ∂tu+ |∇u|p−2∂νu = 0 on ∂Ω for t > 0,

u(0, ·) = u0 in Ω,

where λ is a real parameter and q > 1.
The classical heat equation, i.e. p = 2, and reaction–diffusion equations under dy-

namical boundary conditions have been intensively studied on Lq-spaces or spaces of
continuous functions, see e.g. [BBR, BD, BP, H, P, VV] and the references therein. We
refer also to [E], where Escher proves that the heat equation generates a strongly continu-
ous analytic semigroup on Lq(Ω)×W 1−1/q,q(∂Ω) for q > N for more general quasilinear
equations.

Some special cases of (Pσ,f ) for p > 1 have been considered recently by Gal [G], Gal
and Warma [GW] and Showalter [Sw], where the generation of the corresponding C0-
semigroups is shown. In fact, generation of C0-semigroups in L2(Ω) of the p-Laplacian
heat equation under Dirichlet, Neumann and Robin boundary conditions was already stud-
ied by J.L.Lions [Ls]. Boundedness and higher Hölder–regularity have been extensively
treated by DiBenedetto [Di] in the homogeneous case, i.e. f ≡ 0. Recently, Cipriani and
Grillo [CG] have shown generation ofC0–semigroups for the p–Laplacian under Dirichlet
boundary conditions on Lq–spaces and have obtained some ultracontractivity properties
of the associated semigroups.

Beyond the approaches to local existence and higher regularity of weak solutions, the
existence or exclusion of global solutions, as well as the occurrence of blow up phenom-
ena for problem (Pσ,f ) are of particular interest. In the works [BBR, BP, P] the authors
dealt with the linear principal part, i.e. p = 2, and with different nonlinearities f . A main
aim in the present paper is to generalize some of the results from these references to the
p–Laplacian heat equation under dynamical boundary conditions. We also prove some
ultra conductivity bounds of the solutions for problem (Pσ,0) that seem not to be available
in the literature yet. Moreover, the absence of general boundedness result for weak solu-
tions of (Pσ,f ) is one of the major difficulties in establishing the qualitative properties that
we present in this work. Unfortunately, the existing results as e.g. the aforementioned
ones [E, G, GW] do not apply to the equations considered here. More recent existence
results by Li and You, see [LY] and the references therein, can be applied to some of the
problems (Pσ,f ). However, as it stands, the aim of the present paper is not to deal with
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existence results, but to detail qualitative properties of solutions.

The present paper is organized as follows. In Section 2 the notion of weak solutions
and of upper and lower weak solutions is made precise. Moreover, weak comparison
principles are shown under a generalized one–sided Lipschitz condition imposed to f
given in Definition 2.4 and involving a Lipschitz constant that can depend on the solutions.
In particular, it will be shown in Theorem 2.9 that a weak lower solution u1 of (Pσ,f,u1

0
)

and a weak upper solution u2 of (Pσ,f,u2
0
) whose initial data satisfy u1

0 ≤ u2
0 a.e. in Ω and

on ∂Ω, maintain the same inequality for t > 0. We also compare solutions under different
boundary conditions, namely homogeneous Dirichlet boundary conditions vs. dynamical
ones, see e.g. Theorem 2.12.

Sections 3 and 4 are devoted to the evolution of associated norms and energy function-
als. For time independent nonlinearities f under a specific Lipschitz condition (3.3), the
energy of weak solutions u of (Pσ,f,u0), EF (u) = 1

p
‖∇u‖pp −

∫
Ω

∫ u
0
f(·, z) dz dx will be

shown to fulfill an identity of the form

− d

dt
EF (u(t, ·)) = ‖∂tu(t, ·)‖2

2 + σ‖∂tu|∂Ω
(t, ·)‖2

2,∂Ω. (3.4)

For the special case f = fλ,q = λ|u|q−2u with λ < 0, the evolution of the L2–norms in Ω
and on ∂Ω, can be completely controlled leading to limt→∞ ‖u(t, ·)‖X 2 = 0. In particular,
for p < 2, the solutions vanish to 0 in finite time, see Theorem 4.1.

In Section 5 the behaviour in the large of weak solutions u of (Pσ,fλ,q ,u0) with λ ≤ 0
is investigated. For λ < 0 and p > 2, it turns out that an analogue to Berryman and
Holland’s asymptotic result for the porous media equation [BH] holds, i.e. there is a
sequence of time steps (tn)n∈N tending to∞ such that

lim
n→∞

‖(1 + (p− 2)tn)
2
p−2u(tn, ·)− w‖X 2 = 0, (Theorem 5.1)

where w ∈ W 1,p(Ω) is the solution of the elliptic equation −∆pw − λ|w|p−2w = w
under the Robin–Steklov boundary condition stemming from the dynamical one. Another
distinctive asymptotic result in this section deals with the solutions for the homogeneous
problem (Pσ,0,u0) and says that

lim
t→∞

u(t, ·) =

∫
Ω
u0 dx+ σ

∮
∂Ω
u0 dρ

|Ω|+ σ|∂Ω|
(Theorem 5.2)

in W 1,p(Ω). Note that this asymptotic formula is exactly the same as for the classical
Laplacian [BBR], i.e. p = 2, established via Fourier expansion of the initial data, that,
however, does not apply for p 6= 2. For initial data belonging to W 1,p(Ω) this holds
also with respect to the L∞–norm, see Theorem 5.3, and will be very useful in order to
guarantee strict positivity a.e. in finite time, e.g. when showing the exclusion of global
existence, see Theorem 6.1 without using a strong parabolic minimum principle. It turns
out that λ = 0 plays the same role under dynamical boundary conditions as the first
eigenvalue λ1 does for homogeneous Dirichlet boundary conditions as it has been shown
in [LX]. For short, for λ ≤ 0 the weak solutions are bounded for each t > 0, while for
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λ > 0 blow up occurs for q = p > 2 and for q > max {2, p}. Closing this section,
we deduce global existence close to an equilibrium fulfilling f ′(B) < 0 in the general
autonomous case ∂tu = ∆pu+ f(u), see Theorem 5.5.

Section 6 deals with the occurrence of blow up phenomena with respect to the L∞–
norm. First, we generalize the result on the non existence of global solutions from [BBR]
to the p–Laplacian with nonlinearities f(t, x, u) = m(t, x)g(u) under the same assump-
tions as in [BBR], see Theorem 6.1. As for Problem (Pσ,fλ,q ,u0) with λ > 0 and q > 2,
it remains to determine the behaviour in the large. In fact, for p = q and for initial
energy 1

p

∫
Ω

(|∇u0|p − |u0|p) dx < 0 it will be shown that solutions blow up in finite
time, see Theorem 6.4. For q > max {2, p} we first adopt a technique developed in
[Ba, BP] in order to establish an upper bound for the blow up time under homogeneous
Dirichlet boundary conditions for initial data 0 6= u0 ∈ W 1,p

0 (Ω) ∩ L∞(Ω) with en-
ergy 1

p

∫
Ω
|∇u0|p dx − λ

q

∫
Ω
|u0|q dx ≤ 0, see Theorem 6.5. Then the comparison tech-

niques from Section 2 apply in order to establish the occurrence of blow up under dy-
namical boundary conditions too, see Theorems 6.6 and Corollary 6.7 for nonlinearities
satisfying f(·, ·, z) ≥ λ|z|q−2z. In the latter one it will be shown that for initial data
u0 ∈ W 1,p

0 (Ω) ∩ L∞(Ω; [0,∞)) with nonpositive energy the L2–norm of the weak solu-
tion of (Pσ,f,u0) blows up at the latest at time T with

Tmax(u) ≤ T ≤ q

λ(q − 2)(q − p)
|Ω|

q−2
2

(∫
Ω

|u0|2 dx
) 2−q

2

, (Corollary 6.7)

where Tmax(u) is the maximal existence time with respect to the L∞–norm. Finally, we
present an optimal upper bound for the blow up time under the Neumann boundary con-
dition based on the evolution of the L1–norm.

We close this introduction with some notations and the abstract formulation of the evo-
lution problem. We shall denote by dρ the restriction to ∂Ω of the (N − 1)–dimensional
Hausdorff measure, which coincides with the usual Lebesgue hypersurface measure, since
∂Ω is supposed to be Lipschitz. Moreover, we shall denote by ν = ν(x) its outer normal
vector field at x ∈ ∂Ω defined ρ-a.e. in ∂Ω.

The Lebesgue norm of Lq(Ω) will be denoted by ‖ · ‖q, and the Lebesgue norm of
Lq(∂Ω, ρ) by ‖ · ‖q,∂Ω, for q ∈ [1,∞]. The scalar product of L2(Ω) will be denoted by
〈·, ·〉 and the scalar product of L2(∂Ω, ρ) will be denoted by 〈·, ·〉0 :

〈u, v〉 =

∫
Ω

uv dx, 〈u, v〉0 =

∮
∂Ω

uv dρ.

The conjugate of any r ∈ [1,∞] will be denoted by r′. The critical Sobolev exponent
for the embedding W 1,p(Ω) ↪→ Lq(Ω) will be denoted by p∗ := pN

N−p if 1 < p < N , and
by p∗ =∞ otherwise. It is worth noting that

W 1,p(Ω) ↪→ L2(Ω)⇐⇒ p ≥ p0 :=
2N

N + 2
.

The trace u|∂Ω
of any function u ∈ W 1,p(Ω) is well defined since ∂Ω is regular enough.

We recall that, if γ denotes the trace operator, then γ(W 1,p(Ω)) = W 1−1/p,p(∂Ω, ρ).
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Moreover, the trace operator W 1,p(Ω) → Lq(∂Ω, ρ) is continuous if and only if 1 ≤ q ≤
p∗ if p 6= N and for 1 ≤ q < ∞ if p = N . Recall that p∗ := p(N−1)

N−p if 1 < p < N ,
and that p∗ = ∞ if p ≥ N . Note that for q = 2, the trace operator is well–defined and
continuous under the following condition:

W 1,p(Ω)→ L2(∂Ω, ρ) ⇐⇒ p ≥ p1 :=
2N

N + 1
.

Finally, for a reflexive Banach space (V, ‖ · ‖V ) and r ∈ [1,∞), the classical Bochner
space Lr((0, T );V ) will be endowed with the norm

‖u‖Lr((0,T );V ) :=

(∫ T

0

‖u‖rV dt
)1/r

.

2 Weak solutions, comparison principles and uniqueness
results

Throughout this paper, unless otherwise stated, we shall assume that p > p1 and p 6= 2.
The case 1 < p < p1 is a bit more involved, as one has to work with functions belonging to
W 1,p(Ω)∩L2(Ω) havingL2(∂Ω, ρ)–trace instead ofW 1,p(Ω). The case p = p1 should also
be treated separately, as the Sobolev embedding W 1,p(Ω) → Lp∗(∂Ω, ρ) is not compact
bearing in mind that here p∗ = 2.

Set X q = Lq(Ω)× Lq(∂Ω, ρ), for 1 ≤ q ≤ ∞, and

U = (u, ϕ) ∈ X q, ‖U‖X q :=
(
‖u‖qq + σ‖ϕ‖qq,∂Ω

)1/q
,

and for q = 2 and U = (u, ϕ), V = (v, ψ) ∈ X 2

〈U, V 〉X 2 := 〈u, v〉+ σ〈ϕ, ψ〉0.

Identifying each element u ∈ W 1,p(Ω) with the vector U = (u, u|∂Ω
), the space W 1,p(Ω)

can be regarded as a subspace of X s for any 1 ≤ s < p∗. Moreover, X s and Ls(Ω, dτ)
can be identified in a natural way for s ≥ 1, where the measure dτ = dx|Ω ⊕ dρ|∂Ω

is
defined for any measurable set A ⊂ Ω by τ(A) = |A|+ ρ(A∩ ∂Ω). We will agree that A
is measurable if A∩Ω is Lebesgue measurable and A∩ ∂Ω is measurable with respect to
the (N − 1)-Hausdorff measure ρ.

For any T > 0, let us denote ΩT = (0, T ) × Ω. Let us recall the definition of a local
weak solution of the evolution problem (Pσ,f ). Let f : ΩT × R → R be a Carathéodory
function.

Definition 2.1. A function u : ΩT → R is called a weak solution of problem (Pσ,f ) if

(i) u ∈ Lp((0, T );W 1,p(Ω)) ∩ C([0, T ];X 2),

(ii) ∂tu ∈ L2((0, T );L2(Ω)); ∂tu|∂Ω
∈ L2((0, T );L2(∂Ω, ρ)),
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(iii) f̃ := f(·, ·, u(·, ·)) ∈ L2((0, T );L2(Ω)),

(iv) for any ϕ ∈ W 1,p(Ω) and for almost all t ∈ [0, T ] it holds

〈∂tu, ϕ〉+ 〈|∇u|p−2∇u,∇ϕ〉 − 〈f(t, x, u), ϕ〉+ σ〈∂tu|∂Ω
, ϕ〉0 = 0.

Clearly, in (ii) the notation ∂tu (resp. ∂tu|∂Ω
) stands for the weak temporal derivative of

u(resp. of u|∂Ω
).

By writing u ∈ X q we mean that u : Ω → R is such that u|Ω ∈ Lq(Ω) and also
u|∂Ω
∈ Lq(∂Ω, ρ).

Definition 2.2. For given u0 ∈ X 2 a function u : ΩT → R is called a weak solution of
the Cauchy problem (Pσ,f,u0)

(Pσ,f,u0)


∂tu = ∆pu+ f(t, x, u) in Ω for t > 0,

σ∂tu+ |∇u|p−2∂νu = 0 on ∂Ω for t > 0,

u(0, ·) = u0 in Ω,

if u is a weak solution of (Pσ,f ) in the sense of Definition 2.1 and if, in addition,

u(0, ·) = u0 τ–a.e. in Ω.

Let us also recall the definition of upper and lower solution for our evolution problem.
Writing (u, ϕ) ≤ (v, ψ) for functions belonging to X s means that u ≤ v a.e. in Ω and
that ϕ ≤ ψ ρ-a.e. on ∂Ω.

Definition 2.3. For given u0 ∈ X 2, a function u : ΩT → R satisfying (i)-(iii) from
Definition 2.1 is called a weak lower solution of (Pσ,f,u0) if for all ϕ ∈ W 1,p(Ω) with
ϕ ≥ 0, and for almost all t ∈ [0, T ]

〈∂tu, ϕ〉+ 〈|∇u|p−2∇u,∇ϕ〉 − 〈f(t, x, u), ϕ〉+ σ〈∂tu, ϕ〉0 ≤ 0,

u(0, ·) ≤ u0 τ–a.e. in Ω,

in its interval of existence. Similarly, a weak upper solution is defined by reversing the
last two inequalities.

In order to compare two different solutions of the evolution equations, it is necessary to
require some Lipschitz condition on f with respect to the variable u and with respect to
the pair (u1, u2) ∈ L2(ΩT )2. This is the motivation of the following definition.

Definition 2.4. A function f is said to satisfy the following one-sided Lipschitz condition
for the pair (u1, u2) ∈ L2(ΩT )2 if

∃l ∈ L1 ((0, T ); [0,∞)) such that for a.a. (t, x) ∈ ΩT ,

[f(t, x, u1(t, x))− f(t, x, u2(t, x))− l(t)(u1(t, x)− u2(t, x))]
(
u1(t, x)−u2(t, x)

)+ ≤ 0.
(2.1)
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Observe that no ordered between u1 and u2 is assumed here and that (2.1) is in fact a
condition for the set of (t, x) ∈ ΩT for which u1(t, x) ≥ u2(t, x). At the end of this
section, we shall give some special cases where (2.1) is satisfied, c.f. Remark 2.15. Let
us prove the following comparison result.

Theorem 2.5. Let u1
0, u

2
0 ∈ X 2 be given, let u1 be a weak lower solution of (Pσ,f,u1

0
) and

let u2 be a weak upper solution of (Pσ,f,u2
0
). Assume that the pair (u1, u2) satisfies (2.1)

and let us denote v := u1 − u2, v0 := u1
0 − u2

0. Then

(i) ‖v+(t, ·)‖2
X 2 ≤ e2L(t)‖v+

0 ‖2
X 2 for all t ∈ [0, T ], with L(t) :=

∫ t
0
l(s) ds.

(ii) Moreover, there exists a constant C = C(p,N, T, ‖l‖1) > 0 such that

‖∇v+‖pLp(ΩT ) ≤


C‖v+

0 ‖2
X 2 if p ≥ 2,

C‖v+
0 ‖

p
X 2

(
‖∇u1‖Lp(ΩT ) + ‖∇u2‖Lp(ΩT )

)p(1− p
2

) if p < 2.
(2.2)

Proof. (i) Fixing t ∈ [0, T ] and taking ϕ = v+(t, ·) as a test function in the differential
inequalities satisfied by u1 and u2, subtracting them and integrating over Ω yield

〈∂tv, v+〉+ σ〈∂tv, v+〉0 ≤
−〈|∇u1|p−2∇u1 − |∇u2|p−2∇u2,∇(u1 − u2)+〉+ 〈f(t, x, u1)− f(t, x, u2), v+〉. (2.3)

Here Conditions (i)-(iv) from Definition 2.1 assure that all the above integrals are finite.
By convexity of the function z 7→ |z|p in RN the first term of the r.h.s. is negative, while
the second term is bounded from above by l(t)〈v(t, ·), v+(t, ·)〉 using (2.1). Moreover, we
deduce for almost all t that

〈∂tv, v+〉 =
1

2

d

dt
‖v+‖2

2,

〈∂tv, v+〉0 =
1

2

d

dt
‖v+‖2

2,∂Ω.

These identities and the existence of the derivatives on the r.h.s. are justified, see e.g. [Sw,
Chapter III, Proposition 1.2]. It follows that

d

dt
‖v+‖2

2 + σ
d

dt
‖v+‖2

2,∂Ω ≤ 2l(t)‖v+‖2
2,

and therefore, by the Bellman–Gronwall Inequality [Bel]

‖v+(t, ·)‖2
X 2 ≤ e2L(t)‖v+

0 ‖2
X 2

for all t ∈ [0, T ].
(ii) We apply the following inequality from [Si] : ∃C = C(p,N) > 0∀z1, z2 ∈ RN :
〈|z1|p−2z1 − |z2|p−2z2, z1 − z2〉RN ≥ C|z1 − z2|pRN , if p ≥ 2,

〈|z1|p−2z1 − |z2|p−2z2, z1 − z2〉RN ≥ C(|z1|RN + |z2|RN )p−2|z1 − z2|2RN , if 1 < p ≤ 2
(2.4)
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In order to bound from above the first term of the r.h.s. of (2.3) by C‖∇v+(t, ·)‖pp if p ≥ 2
or by C

∫
Ω

(|∇u1(t, x)| + |∇u2(t, x)|)p−2|∇v+(t, x)|2 dx if p < 2. Therefore we deduce
for almost all t that

1

2

d

dt
‖v+(t, ·)‖2

X 2 + Ca(t) ≤ l(t)‖v+(t, ·)‖2
X 2 ,

where we abbreviate

a(t) =


‖∇v+(t, ·)‖pp, if p ≥ 2,∫

Ω
(|∇u1(t, ·)|+ |∇u2(t, ·)|)p−2|∇v+(t, ·)|2 dx, if 1 < p ≤ 2.

Integrating over [0, T ] and using the estimate (i) we obtain

1

2
(‖v+(T, ·)‖2

X 2 − ‖v+(0, ·)‖2
X 2) + C

∫ T

0

a(t) dt ≤ ‖l‖1e
2L(T )‖v+

0 ‖2
X 2

i.e. ∫ T

0

a(t) dt ≤ 1

C

(
‖l‖1e

2L(T ) +
1

2

)
‖v+

0 ‖2
X 2 .

If p ≥ 2, then the statement (ii) is clear. Consider p < 2. First, Hölder’s inequality leads
to

‖∇v+‖pp ≤ a(t)
p
2

(∫
Ω

(|∇u1|+ |∇u2|)p dx
)1− p

2

≤ 2(p−1)(1− p
2

)a(t)p/2
(
‖∇u1‖pp + ‖∇u2‖pp

)1− p
2 ,

since 1 < p < 2. Then, we use Hölder’s inequality with respect to the dependence on t
and obtain

‖∇v+‖pLp(ΩT ) ≤ 2(p−1)(1− p
2

)

(∫ T

0

a(t) dt

)p/2 (
‖∇u1‖pLp(ΩT ) + ‖∇u2‖pLp(ΩT )

)1− p
2

≤ 2(p−1)(1− p
2

)

(∫ T

0

a(t) dt

)p/2 (
‖∇u1‖Lp(ΩT ) + ‖∇u2‖Lp(ΩT )

)p(1− p
2

)
.

Immediate consequences of the previous theorem are given by the following corollaries.

Corollary 2.6. Let f1, f2 : ΩT → R be two measurable functions such that f1 ≤ f2 a.a.
(t, x) ∈ ΩT . Let u1

0, u
2
0 ∈ X 2 be given, let u1 be a weak lower solution of (Pσ,f1,u1

0
) and

let u2 be a weak upper solution of (Pσ,f2,u2
0
). Then the conclusions (i) and (ii) hold with

l ≡ 0.

Corollary 2.7. Let u0 ∈ X 2 be given. Let u1 and u2 be two weak solutions of (Pσ,f,u0).
Assume that the pair (u1, u2) satisfies the Lipschitz condition:

∃l ∈ L1(0, T ), l ≥ 0, such that for a.a. (t, x) ∈ ΩT ,

[f(t, x, u1(t, x))− f(t, x, u2(t, x))− l(t)(u1(t, x)− u2(t, x))]
(
u1(t, x)−u2(t, x)

)
≤ 0.

(2.5)

Then for all t ∈ [0, T ], u1(t, ·) = u2(t, ·) a.e. in Ω.



Qualitative results for parabolic p–Laplacian equations 9

Note that (2.5) implies (2.1) for both (u1 − u2)+ and (u1 − u2)−, which means that
uniqueness is plain. For the Lipschitz case we can state the following

Corollary 2.8. Assume that f satisfies the following Lipschitz condition (2.6) with respect
to the variable u:

∃l ∈ L1(0, T ), l ≥ 0, such that for a.a. (t, x) ∈ ΩT , for all (u1, u2) ∈ R2,

[f(t, x, u1)− f(t, x, u2)− l(t)(u1 − u2)]
(
u1 − u2

)
≤ 0. (2.6)

Let u0 ∈ X 2. Let (u0
n)n∈N be a sequence inX 2 such that limn→∞ ‖u0

n−u0‖X 2 = 0. Let un
be a weak solution of (Pσ,f,u0

n
) and u a weak solution of (Pσ,f,u0). Then un(t, ·)→ u(t, ·)

in X 2 and un → u in Lp((0, T );W 1,p(Ω)).

Proof. The convergence in X 2 follows readily from (i) of Theorem 2.5. From (ii), if
p > 2, we have directly that there exists a constant C = C(p,N, T, ‖l‖1) > 0 such that

‖∇un −∇u‖pLp(ΩT ) ≤ C‖u0
n − u0‖2

X 2 .

If p < 2 we have

‖∇un −∇u‖pLp(ΩT ) ≤ C‖u0
n − u0‖pX 2

(
‖∇un‖Lp(ΩT ) + ‖∇u‖Lp((ΩT )

)p(1− p
2

)
.

Since ‖u0
n − u0‖X 2 → 0, the latter inequality yields that the sequence ‖∇un‖Lp(ΩT ) is

bounded and therefore ‖∇un −∇u‖pLp(ΩT ) → 0.

Another consequence of Theorem 2.5 is the following standard comparison principle.

Theorem 2.9 (Weak comparison principle with dynamical boundary condition). Let u1
0, u

2
0

∈ X 2 satisfy u1
0 ≤ u2

0 τ–a.e. in Ω. Let u1 be a weak lower solution of (Pσ,f,u1
0
) and let u2

be a weak upper solution of (Pσ,f,u2
0
). Assume that the pair (u1, u2) satisfies (2.1). Then

u1(t, ·) ≤ u2(t, ·) τ–a.e. in Ω.

Proof. By hypothesis

‖(u1(0, ·)− u2(0, ·))+‖2 = ‖(u1
0 − u2

0)+‖2 = 0

and
‖(u1(0, ·)− u2(0, ·))+‖2

2,∂Ω = ‖(u1
0 − u2

0)+‖2,∂Ω = 0.

Hence, from Theorem 2.5 (i) it follows that (u1(t, ·) − u2(t, ·))+ = 0 a.e. in Ω, which
permits to conclude.

In Section 5 we need to compare a weak solution of a parabolic problem with dy-
namical boundary condition with a solution of the analogous parabolic problem under
homogeneous Dirichlet boundary condition for the forcing term

f(t, x, u) = fλ,q(u) := λ|u|q−2u



10 Joachim von Below, Mabel Cuesta, Gaëlle Pincet Mailly

with λ > 0 and q > max{2, p}. Let us consider here a more general parabolic problem
for the p-Laplacian under Dirichlet boundary condition

∂tv = ∆pv + f(t, x, v) in Ω for t > 0,
v = 0 on ∂Ω for t > 0,
v(0, ·) = v0 in Ω,

(2.7)

for an initial value v0 ∈ L2(Ω). A function v : [0, T ] × Ω → R is called a weak solution
of (2.7) if v ∈ Lp((0, T );W 1,p

0 (Ω))∩C([0, T ];L2(Ω)), ∂tv ∈ L2(ΩT ), v(0, ·) = v0 a.e. in
Ω and for any test function ϕ ∈ W 1,p

0 (Ω) we have

〈∂tv, ϕ〉+ 〈|∇v|p−2∇v,∇ϕ〉 − 〈f(t, x, v), ϕ〉 = 0

for a.a. t ∈ (0, T ). Correspondingly, we define upper and lower solutions for Problem
(2.7). For the sake of completeness let us state the following Weak Comparison Principle
for Problem (2.7), though the result is partially known, namely for the special case f ≡ 0,
c.f. [Di].

Theorem 2.10 (Weak Comparison Principle with Dirichlet boundary condition). Let v1

be a lower weak solution of (2.7) with initial data v1
0 ∈ L2(Ω) and let v2 be an upper

weak solution of (2.7) with initial data v2
0 ∈ L2(Ω), satisfying v1

0 ≤ v2
0 a.e. in Ω. As-

sume further that the pair (v1, v2) satisfies the one-sided Lipschitz condition (2.1). Then
v1(t, ·) ≤ v2(t, ·) a.e. in Ω, for all t ∈ [0, T ].

Proof. Fix t ∈ [0, T ]. The choice of ϕ ≡ (v1(t, ·)− v2(t, ·))+ leads to

〈∂t(v1 − v2), (v1 − v2)+〉 = −
∫

Ω

(|∇v1|p−2∇v1 − |∇v2|p−2∇v2) · ∇(v1 − v2)+ dx

+

∫
Ω

(f(t, x, v1)− f(t, x, v2))(v1 − v2)+ dx.

Thus, by convexity of the function z ∈ RN 7→ |z|p and by Condition (2.1),

〈∂t(v1 − v2), (v1 − v2)+〉 ≤ l(t)‖(v1 − v2)+‖2
2 .

As in the proof of the Theorem 2.9 we can conclude

2

∫ s

0

l(t)‖(v1(t, ·)− v2(t, ·))+‖2
2 dt ≥

∫ s

0

d

dt
‖(v1(t, ·)− v2(t, ·))+‖2

2 dt =

‖(v1(s, ·)− v2(s, ·))+‖2
2 − ‖(v1(0, ·)− v2(0, ·))+‖2

2.

By the Bellman–Gronwall Inequality and that (v1(0, ·)− v2(0, ·))+ = (v1
0 − v2

0)+ = 0 a.e.
in Ω, it follows that ‖(v1(s, ·) − v2(s, ·))+‖2

2 ≤ e2L(s)‖(v1(0, ·) − v2(0, ·))+‖2
2 = 0 for all

s ∈ [0, T ], which permits to conclude.

As a consequence of the previous theorem we have



Qualitative results for parabolic p–Laplacian equations 11

Proposition 2.11 (Weak Maximum Principle with Dirichlet boundary condition). Let v
be a weak upper solution of (2.7) with initial data v0 ∈ L2(Ω) satisfying v0 ≥ 0 a.e. in Ω.
Assume further that f(·, ·, 0) ≥ 0 and that the pair (0, v) satisfies the one-sided Lipschitz
condition (2.1). Then v satisfies v(t, ·) ≥ 0 a.e. in Ω, for all t ∈ [0, T ].

Finally, we compare solutions of parabolic problems under dynamical boundary condi-
tions and nonnegative solutions of parabolic problems under Dirichlet boundary condi-
tions. For that purpose, the solution v of (2.7) is required to fulfill v(t, ·) ∈ C1(Ω), since
we shall need some estimates of the gradient of the solution v(t, ·) on ∂Ω. See also the
Remark 2.13 below about the regularity of weak solutions of Problem (2.7).

Theorem 2.12. Assume that ∂Ω is of class C2. Let u be a weak lower solution of Problem
(Pσ,f,u0) with initial data u0 ∈ X 2. Let v be the weak solution of Problem (2.7) with initial
data v0 ∈ L2(Ω), satisfying v0 ≥ 0 a.e. in Ω. Assume that

(i) f(·, ·, 0) ≥ 0,

(ii) the pair (0, v) satisfies the one-sided Lipschitz condition (2.1),

(iii) the pair (v, u) satisfies the one-sided Lipschitz condition (2.1),

(iv) for all t ∈ (0, T ), v(t, ·) ∈ C1(Ω).

If, in addition,
u0 ≥ v0 ≥ 0 a.e. in Ω, u0 ≥ 0 ρ–a.e. in ∂Ω, (2.8)

then u(t, ·) ≥ v(t, ·) a.e. in Ω, for all t ∈ [0, T ].

Proof. By Theorem 2.10 and hypotheses (i) and (ii), the solution v is nonnegative in
[0, T ] × Ω. Since v(t, ·) ∈ W 1,p

0 (Ω) ∩ C(Ω), and since ∂Ω is of class C1, the solution
v has to vanish on ∂Ω for all t ∈ (0, T ). Thus, ∂νv(t, ·) ≤ 0 on ∂Ω for all t ∈ (0, T ),
and multiplying the differential equation of Problem (2.7) by any nonnegative function
ϕ ∈ W 1,p(Ω) and integrating over Ω yield

〈∂tv, ϕ〉 = −〈|∇v|p−2∇v,∇ϕ〉+ 〈|∇v|p−2∂νv, ϕ〉0 + 〈f(t, x, v), ϕ〉
≤ −〈|∇v|p−2∇v,∇ϕ〉+ 〈f(t, x, v), ϕ〉 . (2.9)

Although the test function ϕ used in the weak formulation of Problem (2.7) must belong
to W 1,p

0 (Ω), the above integration by parts is justified e.g. by Lemma A.1 from [CT].
Hence, ∂tv(t, ·) ≡ 0 on ∂Ω, (2.9), and the weak formulation of Problem (Pσ,f,u0) with the
test function w(t, ·) = (v(t, ·)− u(t, ·))+ yield that∫ s

ε

(〈∂tw,w〉+ σ〈∂tw,w〉0) dt ≤
∫ s

ε

〈|∇v|p−2∇v − |∇u|p−2∇u,∇w〉 dt

+

∫ s

ε

〈f(t, x, v)− f(t, x, u), w〉 dt.
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for any 0 < ε < s < T . By convexity of the function z 7→ |z|p in RN , the first integral on
the r.h.s. is seen to be positive, which implies in turn that

1

2

∫ s

ε

d

dt
‖w(t, ·)‖2

X 2 dt ≤
∫ s

ε

〈f(t, x, v)− f(t, x, u), w〉 dt

and

‖w(s, ·)‖2
X 2 − ‖w(ε, ·)‖2

X 2 ≤ 2

∫ s

ε

(∫
Ω

|f(t, x, v)− f(t, x, u)|w dx
)
dt

≤ 2

∫ s

ε

l(t)‖w(t, ·)‖2
2 dt. (2.10)

As w(ε, ·) = u−(ε, ·) ρ-a.e. in ∂Ω,

lim
ε→0
‖w(ε, ·)‖2

X 2 = ‖w(0, ·)‖2
2 + σ‖u−0 ‖2

2,∂Ω = 0

by (2.8). Thus (2.10) reduces to

‖w(s, ·)‖2
2 ≤ 2

∫ s

0

l(t)‖w(t, ·)‖2
2 dt.

As the function l(t) is integrable and nonnegative, the Bellman–Gronwall Inequality
yields

∀s ∈ [0, T ] : ‖w(s, ·)‖2
2 = 0.

Thus, we can conclude that v(s, ·) ≤ u(s, ·) a.e. in Ω for all s ∈ [0, T ].

Remark 2.13. Standard regularity results (c.f. [Li, Theorem 01]) imply that a weak
solution v of Problem (2.7) satisfies v ∈ C1((0, T ]×Ω) provided that v ∈ L∞((ε, T )×Ω)
for all ε ∈ (0, T ) and that ∂Ω is of class C1,α for some 0 < α < 1.

Remark 2.14. In order to assure the global boundedness in the large of any weak solution
v of Problem (2.7), that is, v ∈ L∞((ε, T )×Ω), one should impose to f a growth condition
with respect to the u-variable, say e.g.

|f(t, x, v)| ≤ A|v|q−1 for a.a.(t, x) ∈ (ε, T )× Ω,∀v ∈ R,

with q < pN+2
N

(c.f [Di, Theorem 3.2 Chapter V]).

Remark 2.15. In the special case f(t, x, u) = fλ,q(u), with q > 1

(i) Conditions (2.1) and (2.5) are trivially satisfied for any pair of functions (u1, u2) if
λ ≤ 0.

(ii) If λ > 0 and q > 2, the one-sided Lipschitz condition (2.1) is satisfied for any pair
and (u1, u2) ∈ L1((0, T );L∞(Ω))2 because∣∣fλ,q(u1(t, ·))− fλ,q(u2(t, ·))

∣∣ ≤ l(t)|u1(t, ·)− u2(t, ·)|

with l(t) := (q − 1)λmax{‖u1(t, ·)‖∞, ‖u2(t, ·)‖∞}q−2.
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(iii) Clearly, for q < 2 Condition (2.1) does not hold, and Theorem 2.9 does not apply.
In general, the solutions of (Pσ,fλ,q ,u0) are even not unique. Take e.g. σ = 0 and
q = 3

2
, then the continuum of nonnegative solutions of ż = λz

1
2 under z(0) = 0

furnishes also non unique solutions of (P0,f
λ, 32

,0) .

3 An energy identity
In this section we show an energy estimate for solutions of Problem (Pσ,f,u0) for time
independent nonlinearities:

∀(t, x, u) ∈ ΩT × R : f(t, x, u) = f(x, u). (3.1)

For any weak solution u of Problem (Pσ,f,u0) we introduce the energy EF by

EF (u(t, ·)) =
1

p
‖∇u(t, ·)‖pp −

∫
Ω

F (x, u(t, x)) dx (3.2)

with

F (x, s) :=

∫ s

0

f(x, z) dz.

The following energy identity for weak solutions of (Pσ,f,u0) will be shown as in the case
f ≡ 0, where the classical theory of maximal monotone operators [Br, Theorem 3.2] has
been applied.

Theorem 3.1. Let u : ΩT → R be a weak solution of Problem (Pσ,f,u0) with u0 ∈ X 2.
Assume that f satisfies (3.1) and that there exists a constant l ≥ 0 such that

[f(x, u(t, x))− f(x, u(s, x))− l(u(t, x)− u(s, x))] (u(t, x)− u(s, x)) ≤ 0 (3.3)

for a.a. t, s ∈ (0, T ] and for a.a. x ∈ Ω. Then for a.a. t ∈ (0, T ], the time derivative of
EF (u(t, ·)) exists and satisfies the identity

− d

dt
EF (u(t, ·)) = ‖∂tu(t, ·)‖2

2 + σ‖∂tu|∂Ω
(t, ·)‖2

2,∂Ω. (3.4)

For simplicity we shall abbreviate

〈∂tu(t, ·), ϕ〉X 2 := 〈∂tu(t, ·), ϕ〉+ σ〈∂tu|∂Ω
(t, ·), ϕ〉0,

for any ϕ ∈ W 1,p(Ω), and

‖∂tu‖2
X 2 := ‖∂tu(t, ·)‖2

2 + σ‖∂tu|∂Ω
(t, ·)‖2

2,∂Ω.

Note that we do not state here that ∂tu|∂Ω
(t, ·) is the trace of ∂tu(t, ·), since this function

is assumed only to belong to L2(Ω)!
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Proof. Recall the following basic convexity inequality, valid for any p > 1 and any x, y ∈
RN :

p|x|p−2x · (y − x) ≤ |y|p − |x|p. (3.5)

Fix t ∈ (0, T ) and h > 0 small and choose ϕ = u(t+h, ·)−u(t, ·) in the weak formulation
of (Pσ,f,u0) at time t. Then, using (3.5)

〈∂tu(t, ·), u(t+ h, ·)− u(t, ·)〉X 2

= −〈|∇u(t, ·)|p−2∇u(t, ·),∇u(t+ h, ·)−∇u(t, ·)〉+ 〈f(·, u(t, ·)), u(t+ h, ·)− u(t, ·)〉

≥ −1

p
(‖∇u(t+ h, ·)‖pp − ‖∇u(t, ·)‖pp) + 〈f(·, u(t, ·)), u(t+ h, ·)− u(t, ·)〉. (3.6)

Now take the test function ϕ again in the weak formulation of (Pσ,f,u0) at t+ h and get

〈∂tu(t+ h, ·), u(t+ h, ·)− u(t, ·)〉X 2

= −〈|∇u(t+ h, ·)|p−2∇u(t+ h, ·),∇u(t+ h, ·)−∇u(t, ·)〉
+ 〈f(·, u(t+ h, ·)), u(t+ h, ·)− u(t, ·)〉

≤ 1

p
(‖∇u(t, ·)‖pp − ‖∇u(t+ h, ·)‖pp) + 〈f(·, u(t+ h, ·)), u(t+ h, ·)− u(t, ·)〉. (3.7)

For s > 0, let us denote for the sake of simplicity

g(s) = 〈∂tu(t, ·), u(t+ s, ·)− u(t, ·)〉X 2 ,

e(s) =
1

p
(‖∇u(t+ s, ·)‖pp − ‖∇u(t, ·)‖pp),

k(s) = 〈f(·, u(t, ·)), u(t+ s, ·)− u(t, ·)〉,

d(s) = 〈∂tu(t+ s, ·)− ∂tu(t, ·), u(t+ s, ·)− u(t, ·)〉X 2

− 〈f(·, u(t+ s, ·))− f(·, u(t, ·)), u(t+ s, ·)− u(t, ·)〉.

Combining (3.6) and (3.7) yields

−g(h) + k(h) ≤ e(h) ≤ −g(h) + k(h)− d(h). (3.8)

The assertion of the proposition will follow from dividing (3.8) by h and passing to the
limit as h → 0. Let us study the existence of those limits. Inequality (3.8) implies in
particular that d(h) ≤ 0, which in turn in combination with (3.3) leads to

1

2

d

dt

(
‖u(t+ h, ·)− u(t, ·)‖2

X 2

)
− l‖u(t+ h, ·)− u(t, ·)‖2

2 ≤ d(h) ≤ 0,

and, after integrating over any interval [s1, s2] ⊂ (0, T ],

e−2ls2‖u(s2 + h, ·)− u(s2, ·)‖2
X 2 − e−2ls1‖u(s1 + h, ·)− u(s1, ·)‖2

X 2 ≤ 0.
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Dividing by h2 and letting h→ 0 we have then

e−2ls2‖∂tu(s2, ·)‖2
X 2 − e−2ls1‖∂tu(s1, ·)‖2

X 2 ≤ 0. (3.9)

Thus, we can conclude that there exists a constant M > 0 depending on u and t such that

βn := ‖∂tu(t+ hn, ·)‖2
X 2 ≤M,

where (hn)n∈N is any sequence of real numbers tending to 0. Since (βn)n∈N is bounded,
there exists some (ξ1, ξ2) ∈ X 2 such that, up to a subsequence, (∂tu(t+ hn, ·), ∂tu|∂Ω

(t+
hn, ·)) ⇀ (ξ1, ξ2) in X 2. Hence, by (3.8) and by u ∈ C([0, T ];X 2), g(s) and the r.h.s. of
(3.8) are bounded, as well as (u(t+ hn, ·))n∈N in W 1,p(Ω). Therefore there exists some
z ∈ W 1,p(Ω) such that, up to a subsequence, u(t+ hn, ·) ⇀ z in W 1,p(Ω), strongly in X 2

and simply a.e. in Ω. By continuity of t 7→ u(t, ·) in X 2 we must have z = u(t, ·).
Finally, we conclude that (ξ1, ξ2) = (∂tu(t, ·), ∂tu|∂Ω

(t, ·)) by the following argument.
In the weak formulation of (Pσ,f,u0) at time t+ hn we find, passing to the limit

〈ξ1, ϕ〉+σ〈ξ2, ϕ〉0 = −〈|∇u(t, ·)|p−2∇u(t, ·),∇ϕ〉+〈f(·, u(t, ·)), ϕ〉 = 〈∂tu(t, ·), ϕ〉X 2

for any ϕ ∈ W 1,p(Ω). The special choice of ϕ ∈ W 1,p
0 (Ω) implies that ξ1 = ∂tu(t, ·) and

consequently ξ2 = ∂tu|∂Ω
(t, ·). Hence, limh→0

g(h)
h

= ‖∂tu(t, ·)‖2
X 2 and limh→0

k(h)
h

=
〈f(·, u(t, ·)), ∂tu(t, ·)〉. This completes the proof.

Remark 3.2. One can readily see that the same arguments apply for the evolution equa-
tion under Dirichlet boundary conditions, i.e. for Problem (2.7) with f satisfying (3.3),
obtaining similarly for a.a. t ∈ (0, T ]

− d

dt
EF (u(t, ·)) = ‖∂tu(t, ·)‖2

2. (3.10)

Now, let us consider the particular case f = fλ,p, i.e.
∂tu = ∆pu+ λ|u|p−2u in Ω for t > 0,

σ∂tu+ |∇u|p−2∂νu = 0 on ∂Ω for t > 0,

u(0, ·) = u0 in Ω.

(3.11)

Throughout we shall denote

Eλ(u) =
1

p

∫
Ω

(|∇u|p − λ|u|p) dx. (3.12)

We can use the energy identity to prove the following result on the Rayleigh quotient

Eλ[u](t) :=

∫
Ω

(|∇u(t, ·)|p − λ|u(t, ·)|p) dx
‖u‖pX 2

. (3.13)

Here, we followed [SV] where a similar result was proved under Dirichlet boundary con-
ditions.
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Lemma 3.3. Let λ ∈ R and u 6≡ 0 be a solution of (Pσ,fλ,p,u0) with u0 ∈ X 2. In the case
λ > 0 assume further that u ∈ L∞(ΩT ). Then

(i) the function Eλ[u](t) defined in (3.13) is non increasing with respect to t ∈ (0, T ],

(ii) and the mapping t→ ‖u(t, ·)‖2−p
X 2 is concave if p > 2 and convex if p < 2.

Remark 3.4. Since Eλ[u](t) is only defined a.e. in (0, T ), one should understand the result
of (i) as follows: “there is an integrable function g with g = 0 a.e. such that Eλ[u] + g is
non increasing with respect to t”.

Proof. (i) We apply the energy identity 3.4 to f . Note that Condition (3.3) is always
satisfied for any function u if λ ≤ 0, whereas for λ > 0 it holds for u ∈ L∞(ΩT ).

On the one hand, multiplying the differential equation of (Pσ,fλ,p,u0) by u and integrat-
ing over Ω yield

pEλ(u(t, ·)) = −
∫

Ω

u∂tu dx− σ
∮
∂Ω

u∂tu|∂Ω
dρ = −1

2

d

dt
‖u(t, ·)‖2

X 2 (3.14)

and using Hölder’s inequality in (3.14),

p2Eλ(u(t, ·))2 ≤ ‖∂tu(t, ·)‖2
X 2‖u(t, ·)‖2

X 2 . (3.15)

On the other hand, by Theorem 3.1

d

dt
Eλ(u(t, ·)) = −‖∂tu(t, ·)‖2

X 2 ≤ 0 (3.16)

a.e. in (0, T ). Combining (3.15) et (3.16) we have

d

dt
Eλ(u(t, ·)) ≤ −p2Eλ(u(t, ·))2

‖u(t, ·)‖2
X 2

=
p

2
Eλ(u(t, ·))

d
dt
‖u(t, ·)‖2

X 2

‖u(t, ·)‖2
X 2

,

Hence, if Eλ(u) > 0,

d

dt

(
ln(Eλ(u(t, ·))− ln ‖u(t, ·)‖pX 2

)
≤ 0

and t 7→ lnEλ(u(t, ·)) − ln ‖u(t, ·)‖pX 2 is a non increasing function of t > 0 and the
conclusion follows. If Eλ(u) < 0, t 7→ ln |Eλ(u(t, ·))| − ln ‖u(t, ·)‖pX 2 is a non decreas-
ing function, which leads to the same conclusion. If Eλ(u(t, ·)) = 0, then, by (3.16),
Eλ(u(s, ·)) ≤ 0 for s > t and therefore, Eλ[u](s) ≤ 0 = Eλ[u](t).
(ii) Note that by (3.14), Eλ[u] = −1

2
dH
dt
H−

p
2 , where we have set H(t) = ‖u(t, ·)‖2

X 2 for
simplicity. It readily follows that

dEλ[u]

dt
≤ 0⇔

(
dH

dt

)2

≤ 2

p
H
d2H

dt2
⇔ sign

(
1− p

2

)
· d

2H1− p
2

dt2
≥ 0,

which shows (ii).
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4 Estimates of the X 2−norm
In this section we present some estimates of the X 2−norm of the solutions of Problem
(Pσ,fλ,q ,u0) for various cases of q and λ.

Proposition 4.1. Assume λ < 0 and let u be a weak solution of Problem (Pσ,fλ,p,u0) with
initial data u0 ∈ X 2.

(i) Assume p > 2. Then there exists a positive constant K depending only on p,Ω, λ,
and σ such that for all t ≥ 0,

‖u(t, ·)‖X 2 ≤
(
‖u0‖2−p

X 2 +K(p− 2)t
) 1

2−p . (4.1)

In particular, limt→∞ ‖u(t, ·)‖X 2 = 0.

(ii) In the case p < 2, the estimate (4.1) holds for 0 ≤ t ≤ T ∗ :=
‖u0‖2−pX2

K(2−p) and
‖u(t, ·)‖X 2 = 0 for all t ≥ T ∗.

Proof. Consider any t ≥ 0 in the maximal interval of existence containing 0. Multiplying
the differential equation by u yields

1

2p

d

dt
‖u(t, ·)‖2

X 2 = −Eλ(u(t, ·)).

By Sobolev’s classical embedding theorem there exists a constant K > 0 depending only
on p,Ω, λ, and σ such that for any u ∈ W 1,p(Ω),

Eλ(u) ≥ K‖u‖pX 2 .

Combining these two results leads to

d

dt
‖u(t, ·)‖2

X 2 ≤ −K‖u(t, ·)‖pX 2

and therefore,
1

2− p
(‖u(t, ·)‖2−p

X 2 − ‖u0‖2−p
X 2 ) ≤ −Kt. (4.2)

For p > 2 it follows that the solution exists for all t ≥ 0 and

‖u(t, ·)‖2−p
X 2 ≥ −K(2− p)t+ ‖u0‖2−p

X 2

and
‖u(t, ·)‖2

X 2 ≤
(
K(p− 2)t+ ‖u0‖2−p

X 2

) 2
2−p . (4.3)

In the case p < 2, the inequalities (4.2) and (4.3) hold only for 0 ≤ t ≤ T ∗. But, as the
r.h.s. in (4.3) vanishes at T ∗, we conclude that ‖u(t, ·)‖X 2 = 0 for t = T ∗, and, thereby,
‖u(t, ·)‖X 2 = 0 for all t ≥ T ∗.
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Remark 4.2. For Problem (2.7) with fλ,q ≡ 0, DiBenedetto [Di, Chapter VII, Proposition
2.1] proved that positive solutions extinct in finite time, i.e. there exists T∗ > 0 such that
u(t, ·) = 0 for t ≥ T∗ for 1 < p < 2. Here we proved that the same result holds for the
solutions of Problem (Pσ,fλ,p,u0) if λ < 0 and p1 < p < 2.

Next, we give a point–wise one–sided estimate of the solution u(t, ·) in the case of a
bounded initial data with definite sign:

Proposition 4.3. Suppose λ < 0 and u0 ∈ X∞ ∩W 1,p(Ω). Then the unique solution u of
(Pσ,fλ,p,u0) is globally bounded. Moreover, if p > 2 and supΩ u0 < 0, then

u(t, x) ≤ η(t) := −
(

(− sup
Ω

u0)2−p + (2− p)λt
) 1

2−p

.

Correspondingly, if p > 2 and infΩ u0 > 0, then

u(t, x) ≥ η̃(t) =

(
inf
Ω
u2−p

0 + (2− p)λt
) 1

2−p

for all t ≥ 0 and a.e. in Ω.

Proof. The boundedness follows straightforwardly from Remark 2.15 and Theorem 2.9
applied to u and the constant ±‖u0‖∞X . Now suppose that u0 ≤ 0 τ− a.e. in Ω. As λ < 0
and 2 < p, η(t) < 0 for t ≥ 0, and η clearly satisfies the ODE

η′ = λ|η|p−2η.

Moreover, observe that u0(x) ≤ η(0) τ -a.e. in Ω, and ση′(t) ≥ 0 on ∂Ω, since σ ≥ 0.
Then, again, Theorem 2.9 permits to conclude that u(t, ·) ≤ η(t) a.e. in Ω. Thus, we are
led to

−‖u0‖∞X = inf
Ω
u0 ≤ u(t, x) ≤ η(t)

for all t ≥ 0 and a.e. in Ω. The case u0 ≥ 0 is shown similarly.

For 1 < q < 2 and λ ≥ 0 the X 2–norm of a solution remains bounded on bounded
time intervals. This is part of the following result bearing in mind that for the present
case, the solutions of (Pσ,fλ,q ,u0) are not unique in general, see Remark 2.15 (iii).

Proposition 4.4. Suppose 1 < q ≤ 2 and λ ≥ 0. Let u0 ∈ X 2 be given. Then for any
weak solution of Problem (Pσ,fλ,q ,u0), the following estimate holds for all t ∈ [0, T ]:

‖u(t, ·)‖X 2 ≤

‖u0‖X 2 eλt for q = 2,(
‖u0‖2−q

X 2 + (2− q)λ|Ω| 2−q2 t
) 1

2−q
for 1 < q < 2.

(4.4)
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Proof. Set H(t) = ‖u(t, ·)‖2
X 2 . Multiplying the differential equation by u yields

dH

dt
= −2

∫
Ω

|∇u|p dx+ 2λ

∫
Ω

|u|q dx.

In the case q = 2, it follows readily that dH
dt
≤ 2λH . In the case 1 < q < 2, the inequality

dH

dt
≤ 2λ|Ω|

2−q
2

(∫
Ω

u2 dt

) q
2

≤ 2λ|Ω|
2−q

2 H
q
2

leads to the desired estimate.

5 Behaviour at infinity
In this section we investigate the behaviour and growth order estimates at infinity of solu-
tions of (Pσ,fλ,p,u0) in the case λ ≤ 0. The uniqueness of solutions of Problem (Pσ,fλ,p,u0)
stems from Theorem 2.9 and Remark 2.15. Our aim is to prove first some behaviour at
infinity in the spaces X 2 and W 1,p(Ω), c.f. Proposition 5.2. Secondly we shall give a
more precise rate of convergence at∞ of the X∞ norms, c.f. Proposition 5.3. Finally, we
give more precise informations about the behaviour of the solution of Problem (3.11) as
t→∞.

Theorem 5.1. Let λ < 0 and p > 2 and let u be a solution of Problem (Pσ,fλ,p,u0) with
initial data u0 ∈ X 2. Then there exists a sequence (tn)n∈N in R+ tending to ∞ and a
solution w ∈ W 1,p(Ω) of the elliptic problem with Robin–Steklov boundary condition{

−∆pw − λ|w|p−2w = w in Ω,
|∇w|p−2∂νw = σw on ∂Ω,

(5.1)

such that
lim
n→∞

‖(1 + (p− 2)tn)
2
p−2u(tn, ·)− w‖X 2 = 0.

Proof. We can follow the proof of [BH]. Set z(t, x) = (1 + (p − 2)t)
1
p−2u(t, x) for

t ≥ 0, x ∈ Ω. A simple calculation shows that z solves
(1 + (p− 2)t)∂tz = z + ∆pz + λ|z|p−2z in Ω for t > 0,

σ(1 + (p− 2)t)∂tz = −|∇z|p−2∂νz + σz on ∂Ω for t > 0,

z(0, ·) = u0 in Ω,

(5.2)

Consider the energy functional J associated to (5.2)

J(v) =
1

p

∫
Ω

(|∇v|p − λ|v|p) dx− 1

2

(∫
Ω

|v|2 dx+ σ

∮
∂Ω

|v|2 dρ
)

By Proposition 4.1, ‖z(t, ·)‖X 2 is uniformly bounded for t > 0 and thereby, using Lemma
3.3, ‖z(t, ·)‖W 1,p is uniformly bounded for t ≥ t0 > 0 for any t0 as well. A similar
reasoning as in the proof of Lemma 3.3, shows that

d

dt
J(z(t, ·)) = −(1 + (p− 2)t)‖∂tz(t, ·)‖2

X 2 < 0
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for a.a. t > 0. Thus, t 7→ J(z(t, ·)) is bounded from below and decreasing, and therefore
there exists a sequence (tn)n∈N with tn →∞ such that

lim
n→∞

d

dt
J(z(tn, ·)) = 0.

Set wn = z(tn, ·). By Lemma 3.3 the sequence (‖wn‖W 1,p)n∈N is bounded as well, thus
there exists a subsequence still denoted by (wn)n∈N, and a function w ∈ W 1,p(Ω) such
that wn ⇀ w weakly in W 1,p(Ω), strongly in X 2 and simply τ− a.e. in Ω. Then the l.h.s.
of the equations in (5.2) tend weakly to 0 in X 2 as n → ∞, while the r.h.s. tend weakly
in W 1,p(Ω) to ∆pw + λ|w|p−2w + w in Ω and to −|∇w|p−2∂νw + σw on ∂Ω.

In the case λ = 0 an asymptotic result holds that is analogous to Proposition 4.1 and
Theorem 5.1. Note that the asymptotic constant c0 defined in (5.3) is exactly the same
one as for the classical Laplacian, i.e. p = 2, see [BBR].

Theorem 5.2. Assume λ = 0 and let u0 ∈ X 2 be given. Let u be the weak solution of the
Cauchy problem (Pσ,0,u0) with initial data u0. Then

lim
t→∞

u(t, ·) = c0 in W 1,p(Ω)

with

c0 :=

∫
Ω
u0 dx+ σ

∮
∂Ω
u0 dρ

|Ω|+ σ|∂Ω|
. (5.3)

Moreover, for p < 2 there exists t∗ ≥ 0 such that u(t, x) = c0 for all (t, x) ∈ [t∗,∞[×Ω.
Furthermore

t∗ =
‖u0 − c0‖2−p

X 2

K (2− p)
> 0 (5.4)

with some constant K > 0 depending only on N, p, σ and Ω.

Proof. Integrating the differential equation leads to

0 =

∫
Ω

∂tu dx−
∮
∂Ω

|∇u|p−2∂νu dρ =

∫
Ω

∂tu dx+ σ

∮
∂Ω

∂tu dρ;

that is d
dt

( ∫
Ω
u dx+ σ

∮
∂Ω
u dρ

)
= 0 for any t ≥ 0. Writing α := |Ω|+ σ|∂Ω|, we have∫

Ω

u dx+ σ

∮
∂Ω

u dρ =

∫
Ω

u0 dx+ σ

∮
∂Ω

u0 dρ = c0α.

Again, integrating the differential equation multiplied by u leads to

E(u(t, ·)) = − 1

2p

d

dt
‖u(t, ·)‖2

X 2 , (5.5)

where E(u) := E0(u) = 1
p

∫
Ω
|∇u|p dx. Set v = u − c0 and v0 = u0 − c0 and observe

that
∫

Ω
v0 dx + σ

∮
∂Ω
v0 dρ = 0 and that v is a weak solution of Problem (Pσ,0,u0) for the
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initial data v0. Since v 7→ ‖∇v‖p defines an equivalent norm to the usual W 1,p(Ω)–norm
on the subspace H0 defined by

H0 =

{
v ∈ W 1,p(Ω)

∫
Ω

v dx+ σ

∮
∂Ω

v dρ = 0

}
, (5.6)

we infer from Sobolev’s embedding W 1,p(Ω) ↪→ X 2 that

E(v) ≥ K‖v‖pX 2

with some constant 0 < K = K(p,N, σ,Ω). Then we proceed as in the proof of Propo-
sition 4.1 in order to get the bound (4.1) for the function v. Thus, ‖v‖X 2 = 0 for all

t ≥ t∗ :=
‖v0‖2−pX2

K(2−p) if 2 < p. If p > 2, then limt→∞ ‖v(t, ·)‖X 2 = 0. Finally, Lemma 3.3

implies that the Rayleigh quotient E0[v](t) :=
∫
Ω(|∇v(t,·)|p

‖v‖p
X2

is non increasing with respect
to t for t > 0, that is

‖∇v(t, ·)‖p ≤
‖∇v(t0, ·)‖p
‖v(t0, ·)‖X 2

‖v(t, ·)‖X 2 for t > t0 > 0.

Then if p 6= 2, limt→∞ ‖∇v(t, ·)‖p = 0 and limt→∞ ‖v(t, ·)‖W 1,p(Ω) = 0 since v ∈ H0,
which permits to conclude that u(t, ·)→ c0 in W 1,p(Ω) as t→∞.

Next, we want to establish the L∞–convergence for the previous limit result c0 =
limt→∞ u(t, ·). The problem of the global boundedness of positive weak solutions for
the parabolic equation in (Pσ,fλ,p,u0) with Dirichlet or Neumann boundary conditions and
bounded initial data has been completely treated e.g. in [Di, Chapter V]. Later F. Cipri-
ani and G. Grillo [CG] gave the so called “ultraconductivity bounds” of the solutions of
the parabolic equation of (Pσ,fλ,p,u0) in the case 2 < p < N under Dirichlet boundary
conditions and initial data u0 ∈ Lq(Ω) with q sufficiently large. In the case λ = 0 under
dynamical boundary conditions such results seem to be unavailable yet in the literature.
Therefore we present the following one here.

Theorem 5.3. Let us assume λ = 0 and u0 ∈ W 1,p(Ω). Let u be a solution of (Pσ,0,u0)
with initial data u0 and let c0 be defined as in (5.3). Then the following estimates hold.

(i) If p < N and u0 ∈ X p∗ , then there exists 0 < d = d(p∗,Ω, σ) such that, for all
t > 0,

‖u(t, ·)− c0‖X∞ ≤ d t−
1

p∗−2‖u0 − c0‖
p∗−p
p∗−2

X p∗ . (5.7)

(ii) If p ≥ N and u0 ∈ X q then for some q > max{p, 2}, there exists 0 < d =
d(q,Ω, σ) such that, for all t > 0,

‖u(t, ·)− c0‖X∞ ≤ d t−
1
q−2‖u0 − c0‖

q−p
q−2

X q . (5.8)

In particular
lim
t→∞
‖u(t, ·)− c0‖X∞ = 0.
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Proof. We shall give only the proof in the case (i), as the proof of case (ii) is the same
provided p∗ is replaced by q. Let us assume first that u0 ∈ X∞ ∩W 1,p(Ω), we shall get
rid of this assumption at the end of the proof. As in the proof of Proposition 5.2, we shall
use v = u−c0 and v0 = u0−c0. Since v0 ∈ X∞, Theorem 2.9 gives readily the estimates

‖v‖∞,R+×Ω ≤ ‖v0‖∞,Ω, ‖v‖∞,R+×∂Ω ≤ ‖v0‖∞,∂Ω,

in particular for all t ≥ 0, v(t, ·) ∈ X∞. We can consider for any m ≥ 2 the test function
ϕ = |v|m−2v, yielding

d

dt
‖v(t, ·)‖mXm = −m(m− 1)

(
p

p+m− 2

)p ∫
Ω

∣∣∣∇|v(t, ·)|
m−2+p

p

∣∣∣p dx. (5.9)

Note that for any m ≥ 2, |v|
m−2
p v ∈ H , where H is defined in Lemma 5.4 below. Hence,

by combining (5.4) and trace embeddings we infer the existence of a constant C depend-
ing only on p∗,Ω, and σ such that∫

Ω

∣∣∣∇|v(t, ·)|
m−2+p

p

∣∣∣p dx ≥ C
∥∥∥|v(t, ·)|

m−2+p
p

∥∥∥p
X p∗

.

Then it follows from (5.9) that

d

dt
‖v(t, ·)‖mXm ≤ −Cm(m− 1)

(
p

p+m− 2

)p
‖v(t, ·)‖p+m−2

X
p∗
p (p+m−2)

.

Set r0 = p∗
p

, m0 = p∗ and for k ∈ N∗

mk = r0(p+mk−1 − 2) = rk+1
0

p∗ − 2

r0 − 1
− r0(p− 2)

r0 − 1
.

Now the previous inequality for m = mk reads

d

dt
‖v(t, ·)‖mkXmk ≤ −Cθk‖v(t, ·)‖

mk+1
r0

Xmk+1 , (5.10)

where θk := mk(mk − 1)
(

p
p+mk−2

)p
. Denote for simplicity Yk = ‖v‖mkXmk and fix t > 0

and k ∈ N∗. Define, for 0 ≤ j ≤ k,

s0 = t, sj − sj+1 =
µ

θk−jr
(p−1)(k−j)
0

for some µ > 0 to be chosen later. By integrating (5.10) between s1 and s0 we have, using
that t 7→ Yj(t) is a positive decreasing function,

Yk(s0)− Yk(s1) ≤ −Cθk(s0 − s1)Y
1
r0
k+1(t)

and
Yk+1(t) ≤ [Cµr

−(p−1)k
0 ]−r0Yk(s1)r0 . (5.11)
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Iterating k + 1 times leads to

Yk+1(t) ≤ αkβkY0(sk+1)r
k+1
0

with
αk := (µC)−

∑k
j=0 r

j+1
0 = (µC)

r0
r0−1

(1−rk+1
0 )

,

βk :=
k∏
j=0

r
(p−1)(k−j)rj+1

0
0 = r

(p−1)[−k r0
r0−1

+
r20

(r0−1)2
(rk0−1)]

0 .

Thus,

Y
1

mk+1

k+1 (t) ≤ α
1

mk+1

k β
1

mk+1

k Y0(sk+1)
rk+1
0

mk+1 . (5.12)

Now choose µ in such a way that limk→∞ sk = 0, i.e. µ = t∑∞
j=0 r

j(1−p)
0 θ−1

j

. Note that

the series in the denominator converges, since θj scales with (mj)
2−p and r(2−p)j

0 . More-

over, a simple calculation gives limk→∞
rk+1
0

mk+1
= (r0−1)

(p∗−2)r0
, limk→∞ α

1
mk+1

k = (µC)−
1

p∗−2 ,

limk→∞ β
1

mk+1

k = r
p−1

(p∗−2)(r0−1)

0 . Now, the estimate (5.7) follows by passing to the limit in
(5.12). Note that the convergence of Y0(sk+1) = ‖v(sk+1, ·)‖p∗p∗ to Y0(0) = ‖v0‖p∗p∗ follows
from the fact that v ∈ C([0, T ];L2(Ω)) by Definition 2.1 and by the boundedness of v.

Finally assume that u0 ∈ X p∗ and take a sequence (u0
n)n∈N in X∞ ∩ W 1,p(Ω) con-

verging to u0 in X p∗ . In particular c0
n := c0 (u0

n) → c0. Let un be the unique solution of
(Pσ,fλ,p,u0) for λ = 0 and initial data u0

n. Thus, (5.7) holds for each un. By Corollary 2.8,
for any t ∈ R, un(t, ·) → u(t, ·) in X 2 and therefore, for a.a. x ∈ Ω, un(t, x) → u(t, x),
which permits to conclude.

Lemma 5.4. Let 0 < q < p∗ be fixed and set

H :=

{
u ∈ W 1,p(Ω) ∃s ∈ (0, q] :

∫
Ω

|u|s−1u dx+ σ

∮
∂Ω

|u|s−1u dρ = 0

}
.

Then there exists a constant C = C(q) > 0 such that for all u ∈ H ,∫
Ω

|∇u|p dx ≥ C

∫
Ω

|u|p dx.

Proof. Assume by contradiction that there exists a sequence (un)n∈N in W 1,p(Ω) and a
sequence (sn)n∈N in (0, q] such that∫

Ω

|un|sn−1un dx+ σ

∮
∂Ω

|un|sn−1un dρ = 0, (5.13)

∫
Ω
|un|p dx = 1 and

∫
Ω
|∇un|p dx ≤ 1

n
. Choose a subsequence of (sn)n∈N denoted again

by (sn)n∈N, that is converging to some s0 ∈ [0, q]. As the sequence (un)n∈N is bounded
in W 1,p(Ω), there exists a subsequence of (un)n∈N, still denoted by (un)n∈N, converging
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weakly to some v0 ∈ W 1,p(Ω), strongly in Lp(Ω) ∩ X s0 and simply a.e. in Ω. Then v0

has to be constant, say c since∫
Ω

|∇v0|p dx ≤ lim
n→∞

∫
Ω

|∇un|p dx = 0.

But v0 = c 6= 0 a.e. in Ω by the strong convergence in Lp(Ω). On the other hand, by
letting n tend to ∞ in (5.13) and by the strong convergence in X s0 , we are led to the
contradiction

0 =

∫
Ω

|c|s0−1c dx+ σ

∮
∂Ω

|c|s0−1c dρ.

Remark 5.1. The existence of a solution of (Pσ,fλ,p,u0) in the case λ ≤ 0 in the sense
of distributions has been proved for instance in [Sw, p. 141] and in [Ls] in the case
λ = 0, that is readily extended to the case λ < 0. Note that our notion of a weak
solution in Definition 2.1 requires more regularity, since we impose ∂tu(t, ·) ∈ L2(Ω) and
∂tu|∂Ω

(t, ·) ∈ L2(∂Ω, ρ) for a.a. t ∈ [0, T ). This higher regularity is not a restriction since
distributional solutions of (Pσ,fλ,p,u0) with initial data u0 ∈ W 1,p(Ω) bear this property,
see e.g. [Sw, p.124] or [Br, Theorem 3.1]). Furthermore, following [Br, Theorem 3.2],
∂tu ∈ L∞(R+,X 2).

Closing this section we present the occurrence of global solution existence in the pres-
ence of a hyperbolic equilibrium for a reaction term f ∈ C1(R). Thus, the Cauchy prob-
lem in question reads

∂tu = ∆pu+ f(u) in Ω for t > 0,
σ∂tu+ |∇u|p−2∂νu = 0 on ∂Ω for t > 0,
u(0, ·) = u0 ∈ C(Ω).

(5.14)

We suppose that
(5.14) defines a local flow in X∞ ∩W 1,p(Ω) (5.15)

and that there are real numbers −∞ < A < B < C <∞ such that

f(A) = f(B) = f(C) = 0, f ′(B) < 0, f > 0 in (A,B), f < 0 in (B,C).
(5.16)

Introduce F (s) =
∫ s
A
f(η) dη, and recall that the energy functional EF : W 1,p(Ω) →

R is defined formally by EF (u) = 1
p

∫
Ω
|∇u|p dx −

∫
Ω
F (u) dx. Now we can state the

following.

Theorem 5.5. Under the conditions (5.15), (5.16), and u0 ∈ X∞ ∩W 1,p(Ω), any weak
solution of Problem (5.14) with initial condition fulfilling A ≤ u0 ≤ C τ–a.e. in Ω
exists globally in [0,∞) and satisfies A ≤ u ≤ C τ–a.e. in Ω for all t ≥ 0. Moreover,
the equilibrium B is stable in the class of functions from W 1,p(Ω) taking their values in
[A,C] τ–a.e. in Ω.
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Proof. If u0 takes its values in [A,B] or [B,C] τ–a.e. in Ω, then Theorem 2.9 for the
given σ permits to conclude that A ≤ u(t, ·) ≤ B or B ≤ u(t, ·) ≤ C respectively τ–a.e.
in Ω for all t ≥ 0. For an initial condition u0 satisfying A ≤ u0 ≤ C τ–a.e. in Ω Theorem
2.9 again applies to the solutions u, u, and u with respective initial data

u0 := min {u0, B} ≤ u0 ≤ max {u0, B} =: u0

and yields

∀t ≥ 0 : A ≤ u(t, ·) ≤ u(t, ·) ≤ u(t, ·) ≤ C τ–a.e. in Ω.

As for the last assertion, note that EF (u) defines a generalized Lyapunov function for
the equilibrium B in the class of functions from W 1,p(Ω) taking their values in [A,C]
τ–a.e. As above, the orbital derivative along solutions of (5.14) is nonpositive, since

d

dt
EF (u(t, ·)) = −

∫
Ω

(∂tu(t, ·))2 dx− σ
∮
∂Ω

(∂tu|∂Ω
(t, ·))2 ds ≤ 0.

Moreover, for functions belonging to the mentioned class the potential energy term is
bounded from below by −|Ω|F (B). Thus, the equilibrium B is stable, see e.g. [A,
Section 18].

We note in passing that by Lasalle’s Principle [A, Section 18], the trajectories of the
flow belonging to (5.14) have their ω–limits in the set of functions satisfying d

dt
EF (u) =

0. This yields another global existence proof. Moreover, attractivity properties of the
equilibrium B might be obtained by using similar arguments as in [Be, Theorem 17.31].
We omit the details here and mention only the following result under the Neumann bound-
ary condition.

Corollary 5.6. Under the hypotheses of Theorem 5.5 in the case σ = 0, any weak solution
of 

∂tu = ∆pu+ f(u) in Ω for t > 0,
∂νu = 0 on ∂Ω for t > 0,
u(0, ·) = u0 ∈ C(Ω)\ {A,C} ,

(5.17)

satisfies
lim
t→∞
‖u(t, ·)−B‖X∞ = 0.

Proof. Recall c0 :=
∫
Ω u0 dx+σ

∮
∂Ω u0 dρ

|Ω|+σ|∂Ω| and get by assumption that A < c0 < C. Using the
notations of Theorem 5.5, by Theorems 5.3 and 2.9 there exists tc ≥ 0 such that

∀t ≥ tc :
A+ c0

2
≤ v(t, ·) ≤ u(t, ·) ≤ u(t, ·) ≤ u(t, ·) ≤ v(t, ·) ≤ C + c0

2
τ–a.e. in Ω,

where v and v denote the solutions for f = 0 with initial conditions u0 and u0, respec-
tively. But the solutions z1 and z2 of{

ż1 = f(z1) for t ≥ tc,

z1(tc) = A+c0
2
,

{
ż2 = f(z2) for t ≥ tc,

z2(tc) = C+c0
2
,

tend both uniformly to B, while z1(t) ≤ u(t, ·) ≤ z2(t) τ–a.e. in Ω for all t ≥ tc by
Theorem 2.9.
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6 Blow up phenomena
This section is devoted to the occurrence of blow up for the solutions of Problem (Pσ,f,u0).
We note in passing, that among others, the recent rather general blow up results by Vulkov
[Vul] complement nicely the ones presented here, but do not include the latter ones. First,
we consider a rather general case of nonnegative source terms f(t, x, u) of the form (6.1).
Then we shall study a source term with a sign change of the form f = fλ,q, with q ≥ p
and λ > 0. For the first case, assume that f is of the form

f(t, x, u) = m(t, x)g(u), (6.1)

where g and m satisfy

g ∈ C1(R), g(s) > 0 for all s > 0, (6.2)

g(s) ≥ 0 for all s ∈ R, g′(s) ≥ 0 for all s > 0 (6.3)∫ ∞
s0

dη

g(η)
<∞ for some s0 > 0, (6.4)

m ∈ L1
loc(R+;L1(Ω)), m ≥ 0, (6.5)

and ∫ τ

0

(∫
Ω

m(t, x) dx

)
dt→∞ as τ →∞ (6.6)

We follow a technique developed in [BBR] to exclude the existence of global weak solu-
tion of Problem (Pσ,f,u0) for positive sources in the case p = 2. Unlike in that reference, it
is impossible to establish an expansion formula for the solution of the homogeneous linear
problem corresponding to (Pσ,f,u0) for p 6= 2. However, as a consequence of the asymp-
totic result Theorem 5.3 obtained for the homogeneous Problem (Pσ,0,u0), u is bounded
from below after a certain finite time. A main result of this section is the following.

Theorem 6.1. Assume (6.1)-(6.6) and let u0 ∈ X p∗ if p < N or u0 ∈ X q for some q > p
if p ≥ N . Assume that u0 fulfills∫

Ω

u0 dx+ σ

∮
∂Ω

u0 dρ > 0. (6.7)

Then there is no weak solution u of (Pσ,f,u0) existing for all times.

Proof. Suppose that u is a global weak solution of (Pσ,f,u0). First, we claim that there
exists t0 > 0 such that u(t, ·) ≥ c0

2
a.e. in Ω and for t ≥ t0, with c0 defined in (5.3). Let v

be the unique solution of the homogeneous problem (Pσ,0,u0) with initial data u0. Theorem
5.3 implies that there exists a t0 ≥ 0 such that for all t ≥ t0, c0

2
≤ v(t, ·) a.e. in Ω. As v is

a solution of (Pσ,0,u0) for t ≥ t0, Corollary 2.6 applies to f1 := 0 ≤ m(t, x)g(u) =: f2 by
(6.3) and yields u(t, ·) ≥ v(t, ·) a.e. in Ω for all t ≥ t0. Trivially, by (6.3), we also have
g(u(t, x)) ≥ g( c0

2
) a.e. in Ω for all t ≥ t0.
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Fix any t > t0 and any M > c0
2

and consider the test function defined by

ϕM(x) =


1

g(u(t,x))
if u(t, x) ≤M ;

1
g(M)

if u(t, x) > M.

Then ϕM is admissible in the formulation of a weak solution of (Pσ,f,u0), i.e. ϕM ∈
W 1,p(Ω). Thus,∫

Ω

∂tuϕM(u) dx+ σ

∮
∂Ω

∂tuϕM(u) dρ

−
∫
{x∈Ω|u(t,x)<M}

|∇u|p g
′(u)

g(u)2
dx︸ ︷︷ ︸

≥0

−
∫

Ω

m(x, t)g(u)ϕM(u) dx = 0,

so that∫
Ω

∂tuϕM(u) dx+ σ

∮
∂Ω

∂tuϕM(u) dρ ≥
∫

Ω

m(x, t)g(u)ϕM(u) dx ≥
∫

Ω

m(x, t) dx.

Letting M tend to∞ implies∫
Ω

∂tu

g(u)
dx+ σ

∮
∂Ω

∂tu

g(u)
dρ ≥

∫
Ω

m(x, t) dx.

Setting h(s) =

∫ s

s0

dη

g(η)
and integrating between t0 and τ lead to

∫
Ω

(
h(u(τ, x))− h(u(t0, x))

)
dx+ σ

(∮
∂Ω

(
h(u(τ, r))− h(u(t0, r))

)
dρ(r)

)
≥
∫ τ

t0

∫
Ω

m(x, t) dx dt.

By (6.6), the r.h.s. tends to infinity as τ → ∞, whereas the l.h.s. remains bounded by
Hypothesis (6.4). This contradiction permits to conclude.

Remark 6.2. The result in Theorem 6.1 applies especially to reaction terms of the form
f = λ|u|q−1 with λ > 0 and q > 2 or of the form f(u) = eu.

In the sequel, Tmax(u) will denote the maximal existence time of the weak solution of
(Pσ,f ) with respect to the L∞(Ω)–norm, i.e.

Tmax(u)
def
= inf

{
s > 0 lim sup

t↗s
‖u(t, ·)‖∞ =∞

}
. (6.8)

In the case m ≡ 1 a lower bound for the maximal existence time can be obtained by
comparison with the solution of the ODE under an appropriate initial condition.



28 Joachim von Below, Mabel Cuesta, Gaëlle Pincet Mailly

Proposition 6.3. Let u0 ∈ X∞. Under (6.2) and (6.4), suppose that z is the solution of
the ordinary IVP ż = g(z), for 0 < t < t0 :=

∫ ∞
‖u0‖X∞

dη

g(η)

z(0) = ‖u0‖X∞ ,

Then any weak solution u of (Pσ,g,u0) satisfies either Tmax(u) = 0 or Tmax(u) ≥ t0 and
u(t, ·) ≤ z(t) for all t ∈ [0, Tmax(u)), a.e. in Ω.

Proof. Since g is of class C1, g and the pair (u, z) satisfy the one-sided Lipschitz condi-
tion (2.1) for 0 < t < Tmax(u), with l(t) = max{|g′(s)| | s ∈ [0,max{z(t), ‖u(t, ·)‖∞}]}
(c.f. Remark 2.15). Thus, by Theorem 2.9, for all t ∈ [0, Tmax(u)), u(t, ·) ≤ z(t) a.e. in
Ω. Note that by (6.4), the maximal existence time t0 of z satisfies∞ > t0 =

∫∞
‖u0‖X∞

dη
g(η)

,

since by separation of variables, t =
∫ t

0
ż(s)
g(z(s))

ds =
∫ z(t)
z(0)

dη
g(η)

.

Let us prove now three different blow up results for nonlinearities of the form f = fλ,q,
always assuming that λ > 0. We start with the particular case q = p > 2, i.e. with
Problem (Pσ,fλ,p,u0). We recall the definition of Eλ(u) := 1

p

∫
Ω

(|∇u|p − |u|p) dx. Note
that according to Proposition 4.4, blow up in finite time cannot occur for 1 < q ≤ 2.

Theorem 6.4. Suppose u0 ∈ W 1,p(Ω) ∩ L∞(Ω) satisfies Eλ(u0) < 0. Let u be a weak
solution of Problem (Pσ,fλ,p,u0) with λ > 0, p > 2 and initial data u0. Then Tmax(u) <∞.

Proof. Assume by contradiction that Tmax(u) = ∞. Then, for any s > 0 there exist
Ms, δs > 0 such that ‖u(t, ·)‖∞ < Ms for all t ∈ [s − δs, s]. Put δ0 = 0,M0 = ‖u0‖∞.
Hence, by a compactness argument, u ∈ L∞(ΩT ) for any T > 0, and the condition (3.3)
of Theorem 3.1 will be satisfied in [0, T ]. Using the results and notations of Lemma 3.3,
and the fact that Eλ(u0) < 0 and H(t) ≥ 0, it follows that Eλ(u(t, ·)) < 0 a.e. and
thereby, that H1− p

2 is decreasing. The continuity of H and the concavity of H1− p
2 will

imply that H1− p
2 vanishes in finite time, which leads to the desired contradiction.

Next, we shall prove that there is also blow up for solutions of Problem (Pσ,fλ,q ,u0) for
q > max{2, p} and for (sufficiently regular) positive initial data u0. We shall use in this
case the following parabolic equation under Dirichlet boundary conditions{

∂tu = ∆pu+ λ|u|q−2u in Ω for t > 0,
u(t, ·) = 0 on ∂Ω for t > 0.

(6.9)

The corresponding energy functional EF defined in (3.2) related to Problem (6.9) and to
(Pσ,fλ,q ,u0) will be denoted by Eλ,q:

Eλ,q(u) =
1

p

∫
Ω

|∇u|p dx− λ

q

∫
Ω

|u|q dx.

For any solution u of Problem (6.9) we will define Tmax(u) identically as in (6.8). We
have
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Theorem 6.5. Suppose that λ > 0 and q > max {2, p}. Let u0 ∈ W 1,p
0 (Ω)∩L∞(Ω) with

Eλ,q(u0) ≤ 0. Then any weak solution v of the Cauchy problem (6.9) with initial data u0

blows up in finite time with respect to ‖ · ‖2 at the latest at time T ∗ satisfying satisfying

Tmax(v) ≤ T ∗ ≤ q

λ(q − 2)(q − p)
|Ω|

q−2
2

(∫
Ω

|u0|2 dx
) 2−q

2

=: T2. (6.10)

Proof. According to the results of [J, Theorem 2.1], there exists a local solution of (6.9)
which is bounded. Thus, Tmax(v) > 0. Introduce

N(t) = ‖v(t, ·)‖2
2 =

∫
Ω

|v(t, x)|2 dx.

Multiplying the differential equation by v leads to∫
Ω

v∂tv dx = −
∫

Ω

|∇v|p dx+ λ

∫
Ω

|v|q dx = −pEλ,q(v) + λ
q − p
q

∫
Ω

|v|q dx.

Since by hypothesis q > 2, the function fλ,q satisfies the Lipschitz condition (3.3) in
t ∈ [0, T ], with any T < Tmax(v). Hence (3.10) implies that Eλ,q(v(t, ·)) is decreasing in
time and, since Eλ,q(u0) ≤ 0, we have Eλ,q(v(t, ·)) ≤ 0 for all t ∈ [0, T ]. Hence

dN(t)

dt
= 2

∫
Ω

v∂tv dx ≥
2λ(q − p)

q

∫
Ω

|v|q dx

and by Hölder’s inequality∫
Ω

|v|2 dx ≤ |Ω|
q−2
q

(∫
Ω

|v|q dx
) 2

q

,

we obtain
dN(t)

dt
≥ 2λ(q − p)

q
|Ω|

2−q
2 N(t)

q
2 =: αN(t)

q
2 .

Integration between 0 and t > 0 leads to

N(t) ≥
(
N(0)

2−q
2 − q − 2

2
αt

) 2
2−q

.

Since q > 2, N(t) becomes infinite at t = T2, with T2 as defined in the assertion. As
L∞(Ω) ⊂ L2(Ω), the inequality in (6.10) is plain.

By comparing positive solutions of parabolic problem with Dirichlet boundary condi-
tions with those of parabolic problem with dynamical boundary boundary conditions we
have the following result:

Theorem 6.6. Assume that ∂Ω is of class C2. Suppose that q > max {2, p} and λ > 0.
Let u0 ∈ W 1,p

0 (Ω) ∩ L∞(Ω), u0 ≥ 0 in Ω and Eλ,q(u0) ≤ 0. Then any weak solution of
the Problem (Pσ,fλ,q ,u0) u blows up at the latest for t = T2.
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Proof. Let us assume by contradiction that Tmax(u) > T2. Let v be the unique weak
solution of Problem (6.9) with initial data u0 (c.f. [J, Theorem 2.1]). As u0 ≥ 0, v ≥ 0
as well in [0, T ] with T < Tmax(v) ≤ T2 < Tmax(u). In particular, both solutions u and
v belong to L∞(ΩT ). Consequently, c.f. Remark 2.15, the hypotheses (ii) and (iii) of
the comparison result Theorem 2.12 are satisfied. Moreover, the regularity results already
cited in Remark 2.13 imply that v ∈ C1((0, T ]×Ω). Thus, the hypothesis (iv) is satisfied
too, and thereby, u(t, ·) ≥ v(t, ·) a.e. in Ω for all t ∈ [0, T ] and T2 < Tmax(u) ≤ Tmax(v).
This contradicts (6.10) and permits to conclude.

As for more general nonlinearities, we deduce the following result

Corollary 6.7. Under the hypothesis of Theorem 6.6, let u be a weak solution of (Pσ,f,u0)
with f satisfying

f(·, ·, z) ≥ λ|z|q−2z for all z ≥ 0.

Then u blows up at the latest at T2:

Tmax(u) ≤ T2.

Proof. Let ũ be a solution of Problem (Pσ,fλ,q ,u0) with initial data u0. As ũ is a weak lower
solution of Problem (Pσ,f,u0) and u(t, ·) is bounded for any t ∈ [0, Tmax(u)), then the
Lipschitz condition (2.1) applies to the pair (ũ, u) and Theorem 2.9 permits to conclude.

Finally, dealing with nonnegative solutions, we can derive another upper bound for
the blow up time under the Neumann boundary condition (σ = 0) for arbitrary p > p1

and arbitrary q > 2. Note that the upper bound T1 will be optimal, as readily follows by
choosing constant positive initial data.

Theorem 6.8. Suppose that q > 2 and λ > 0. Let u0 ∈ X 2 and u0 ≥ 0 a.e. in Ω, u0 6≡ 0.
Then a weak solution u of (P0,fλ,q ,u0) blows up in finite time with respect the L1-norm at
the latest at time T ∗∗ satisfying

Tmax(u) ≤ T ∗∗ ≤
(∫

Ω
|u0| dx

)2−q

(q − 2)λ|Ω|2−q
=: T1.

Proof. Assume by contradiction that Tmax(u) = ∞. First, note that by the aforemen-
tioned hypothesis on λ and u0, Theorem 2.9 implies that u ≥ 0 for all t ≥ 0 and a.e. in
Ω. Integrating the partial differential equation and using Hölder’s inequality yield∫

Ω

∂tu dx = λ

∫
Ω

uq−1 dx ≥ λ|Ω|2−q
(∫

Ω

u dx

)q−1

.

Set N(t) = ‖u(t, ·)‖1,Ω for t > 0, we are led to

dN(t)

dt
≥ λ|Ω|2−qN(t)q−1 (6.11)

and, integrating between 0 and t > 0, we obtain

N(t)2−q ≤
(
N(0)2−q − (q − 2)λ|Ω|2−qt

)
,

which implies that N becomes infinite at T1.
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Linéaires. Dunod, Paris (1969)

[P] Pincet Mailly, G.: Explosion des solutions de problèmes paraboliques sous condi-
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