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For a class of reaction diffusion equations in a bounded domain under dissipative dynamical time lateral boundary conditions, the occurence of blow up phenomena is shown by comparison of solutions, as well as by energy and spectral methods. Moreover, the dependence of the blow up time on different boundary conditions is investigated, where the dynamical boundary condition interpolates between the Neumann boundary condition and a certain Dirichlet boundary condition related to the initial condition. Some of the techniques presented here apply also to certain parabolic equations with degenerate principal part.

Introduction

The aim of this paper is to investigate the occurence of blow up phenomena for the nonlinear parabolic problem    ∂ t u = ∆u + f (u) in Ω for t > 0, B σ (u) := σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C( Ω) [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF] 1 in a bounded domain Ω ⊂ R n , where as a distinctive feature a dynamical condition on the time lateral boundary relating the outer normal derivative to the time derivative is imposed. Especially, we shall be interested in the model problem

   ∂ t u = ∆u + u p
in Ω for t > 0, σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C( Ω) [START_REF] Below | An existence result for semilinear parabolic network equations with dynamical node conditions[END_REF] with 1 < p ∈ R. Moreover, some of the techniques developed for Problem [START_REF] Below | An existence result for semilinear parabolic network equations with dynamical node conditions[END_REF] will apply also to the degenerate problem    ∂ t u = div (u m ∇u) + u p in Ω for t > 0, σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C( Ω) [START_REF] Below | Parabolic network equations[END_REF] with 1 < p ∈ R and 1 ≤ m ∈ N.

Of special interest will be the comparison of classical solutions under different boundary conditions, especially the Neumann and Dirichlet case versus the dissipative dynamical one σ > 0. It will be shown that the blow up time depends in a monotonically increasing manner on the coefficient σ, which in turn will also illustrate the damping effect of the dissipative dynamical boundary condition on the solutions. Moreover, lower and upper bounds of the blow up time will be derived, by comparison techniques (Section 2), by energy methods (Section 3), and by spectral comparison (Section 4). The latter technique will apply also to the special case p = m + 1 of Problem [START_REF] Below | Parabolic network equations[END_REF]. In doing so, we refine some of the known estimates under homogeneous Dirichlet conditions, e.g. Ball's estimate of the blow up time [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF]. Following the techniques developed for homogeneous Dirichlet conditions by Friedman and McLeod [8], we show in Section 5 that the blow up set becomes at most a singleton in the one-dimensional case if the initial data is a one hump function and either symmetric or strictly asymmetric. Finally, we show that classical solutions of Problem [START_REF] Below | Parabolic network equations[END_REF] with nonvanishing initial data always blow up due to a simple general energy estimate of the blow up time from above (Section 6). For the reader's convenience, we cite some qualitative results from [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] in Section 7. As for blow up results under dynamical boundary conditions for parabolic equations containing a gradient term or including a time degeneracy, we refer to [START_REF] Mailly | Explosion des solutions de problèmes paraboliques sous conditions au bord dynamiques, Thèse doctorale à l'Université du Littoral Côte d'Opale[END_REF]. As for some modellings including dynamical boundary conditions in conductor physics and chemical kinetics, we refer to Chapter 21 of [START_REF] Below | Parabolic network equations[END_REF] and [START_REF] Slinko | Methoden und Programme zur Berechnung chemischer Reaktoren[END_REF].

We suppose that the boundary ∂Ω is of class C 2 . The outer normal unit vector field is denoted by ν : ∂Ω → R n and the outer normal derivative by ∂ ν .

In view of the results in [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF], the general homogeneous dynamical linear boundary condition is written in the form B σ (u) = 0, since a vanishing coefficient of the outer normal derivative therein corresponds essentially to a constant Dirichlet condition for continuous solutions. Throughout, we shall assume the dissipativity condition [START_REF] Below | Dynamical interface transition in ramified media with diffusion[END_REF] σ ≥ 0 on ∂Ω × (0, ∞)

and, dealing with classical solutions,

(5) σ ∈ C 1 (∂Ω × (0, ∞)).
Without condition (4) nonuniqueness of solutions can occur as well as blow up phenomena in the linear case, see [START_REF] Below | Parabolic network equations[END_REF] - [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF]. Unless otherwise stated, the nonlinearity and the initial values are supposed to fulfil the following conditions:

(6) f ∈ C 1 (R). (7) f ≥ 0 in [0, ∞). (8) ϕ ∈ C( Ω), ϕ ≥ 0, ϕ = 0.

Comparison of solutions and of blow up times

In this section we shall assume in addition that

(9) ϕ ∈ C 2 (Ω), ∆ϕ + f (ϕ) ≥ 0 in Ω,
and that σ does not depend on time:

(10) σ ∈ C 1 (∂Ω).
We compare classical solutions of Problem (1) for different coefficients σ among themselves and with solutions fulfiling certain Dirichlet conditions on the time lateral boundary. For that purpose, the following lemma will be useful.

Lemma 2.1 A solution u ∈ C 2,1 Ω × [0, τ ] of Problem (1) satisfies ∂ t u ≥ 0 in Ω × [0, τ ].
Proof. Note first that u > 0 for t > 0 by [START_REF] Escher | Quasilinear parabolic systems with dynamical boundary conditions[END_REF], ( 8), Corollary 7.3 and Theorem 7.6. Moreover, by classical regularity results [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF]

, u ∈ C 2,2 Ω × [0, τ ] . Therefore, y := ∂ t u ∈ C 2,1 Ω × [0, τ ] satisfies ∂ t y = ∆y + f (u)y in Ω × [0, τ ] and B σ (y) = 0 on ∂Ω × (0, τ ].
Finally, Corollary 7.

3 yields y ≥ 0 in Ω × [0, τ ].
Recall that the blow up time T of a classical solution u is defined as

T = inf s > 0 lim t s sup{|u(x, t)| x ∈ Ω} = ∞ .
Thus, T is just the maximal existence time. Let

u σ ∈ C Ω × [0, T ) ∩ C 2,1 Ω × (0, T )
denote the maximal solution of (1) with blow up time T = T (σ, ϕ). We first show that T (σ, ϕ) is increasing with respect to σ.

Theorem 2.2 Suppose that the functions 0 ≤ σ 1 ≤ σ 2 satisfy [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF]. Then

u σ 1 ≥ u σ 2 in Ω × [0, T (σ 1 , ϕ)) and T (σ 1 , ϕ) ≤ T (σ 2 , ϕ).
Proof. By Lemma 2.1 we have ∂ t u σ ≥ 0, thus

B σ 2 (u σ 1 ) = σ 2 ∂ t u σ 1 + ∂ ν u σ 1 = B σ 1 (u σ 1 ) + (σ 2 -σ 1 )∂ t u σ 1 ≥ 0.
Then the comparison principle 7.1 yields

u σ 1 ≥ u σ 2 .
Furthermore, Theorem 7.1 yields that the blow up time is decreasing with respect to the initial data, also without conditions ( 9) and [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF].

Corollary 2.3 Suppose ϕ 1 , ϕ 2 ∈ C( Ω). Then 0 ≤ ϕ 1 ≤ ϕ 2 =⇒ T (σ, ϕ 1 ) ≥ T (σ, ϕ 2 ).
The dynamical boundary condition interpolates between the Neumann boundary condition and a certain Dirichlet boundary condition. Writing B σ (u) = 0 in the form ∂ t u + 1 σ ∂ ν u = 0, shows that in the limit case σ ≡ ∞, u does not depend on the time t on ∂Ω for t > 0. By continuity for t = 0, this condition corresponds to the Dirichlet condition u = ϕ on ∂Ω for t > 0.

In fact, we can compare the solutions u σ with the maximal solution

v ∈ C Ω × [0, T ) ∩ C 2,1 Ω × (0, T ) of the problem    ∂ t v = ∆v + f (v) in Ω × (0, T ) v(•, 0) = ϕ in Ω v = ϕ on ∂Ω × (0, T ) (11) 
where T = T (∞, ϕ) is the corresponding blow up time. Moreover, for

(12) ψ ∈ C( Ω), ψ = 0 on ∂Ω, ψ ≤ ϕ, let w ∈ C Ω × [0, T 0 (∞, ψ)) ∩ C 2,1 Ω × (0, T 0 (∞, ψ)) be the maximal solu- tion of the problem    ∂ t w = ∆w + f (w) in Ω × (0, T 0 (∞, ψ)) w(•, 0) = ψ in Ω w = 0 on ∂Ω × (0, T 0 (∞, ψ)) (13) 
Finally, let z ∈ C 1 ([0, t 0 )) denote the maximal solution of the IVP

ż = f (z) in [0, t 0 ), z(0) = ϕ ∞ . (14) 
Note that z is just the maximal solution of Problem (1) with the special choice σ = 0 and constant initial data u(•, 0) = ϕ ∞ so that

T (0, ϕ ∞ ) = t 0 .
All these solutions and their blow up times are related as follows.

Theorem 2.4 Under the aforementioned hypotheses, then we have

z ≥ u 0 ≥ u σ ≥ v ≥ w
in the domain of definition of z, u 0 , u σ , and v respectively, and

t 0 ≤ T (0, ϕ) ≤ T (σ, ϕ) ≤ T (∞, ϕ) ≤ T 0 (∞, ψ).
Proof. The first two inequalities are special cases of Theorem 2.2 and Corollary 2.3 respectively, while the third one is due to Lemma 2.1 and Theorem 7.1. Again, Theorem 7.1 in the case ∂ 1 Ω = ∂Ω shows the last one.

Note that due to Corollary 7.3, the inequalities u σ ≥ w and T (σ, ϕ) ≤ T 0 (∞, ψ) hold also without conditions ( 9) and [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF].

In fact, the above results enable to show local existence of classical solutions for Problem (1) under the assumptions (4) -( 8) and the additional hypothesis ϕ = 0 on ∂Ω. For that purpose, we first note that the existence of the solutions u 0 and v of Problem (1) with σ = 0 and Problem [START_REF] Lishang | Blow-up of solutions of a class of nonlinear parabolic equations[END_REF] respectively in the class C Ω × [0, t 0 ) ∩ C 2,1 Ω × (0, t 0 ) is well established by classical results, see e.g. [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF]. Next, we observe that u 0 is an upper solution of Problem (1), since B σ (u 0 ) ≥ 0 by Lemma 2.1, while v is a lower one, since B σ (v) = ∂ ν v ≤ 0 owing to v ≥ 0 by Corollary 7.3. Thus, Problem (1) with the dynamical boundary condition possesses a solution

u σ ∈ C Ω × [0, t 0 ) ∩ C 2,1 Ω × (0, t 0 )
by the method of upper and lower solutions developed in [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF], that is unique by Corollary 7.2. For other and more general existence results we refer to [START_REF] Below | An existence result for semilinear parabolic network equations with dynamical node conditions[END_REF], [START_REF] Below | Parabolic network equations[END_REF], [START_REF] Below | Dynamical interface transition in ramified media with diffusion[END_REF], [START_REF] Escher | Quasilinear parabolic systems with dynamical boundary conditions[END_REF] and [START_REF] Hintermann | Evolution equations with dynamic boundary conditions[END_REF].

Using a well known ODE formula, the lower bound t 0 for the blow up time can be determined explicitly.

Proposition 2.5 If, in addition to the above hypotheses, f (u) > 0 for u > 0, then the blow up time of u σ satisfies

(15) T (σ, ϕ) ≥ t 0 = ∞ ϕ ∞ 1 f (η) dη.
Proof. Note that z exists globally iff the integral diverges. If it converges then

∞ ϕ ∞ 1 f (η) dη = t 0 < ∞
since, by separation of variables,

t = t 0 ż(s) f (z(s)) ds = z(t) ϕ ∞ 1 f (η)
dη.

For the model problem (2) we obtain ( 16) 

z(t) = 1 p -1 1 p-1 1 t 0 -t 1 p-1 with (17) t 0 = 1 (p -1) ϕ p-1
T (σ, ϕ) ≥ T (0, ϕ) ≥ T (0, ϕ ∞ ) = 1 (p -1) ϕ p-1 ∞ . For the maximal solution u σ ∈ C Ω × [0, T (σ, ϕ)) ∩ C 2,1 Ω × (0, T (σ, ϕ)) of (2) we deduce (18) u σ (•, t) ≤ z(t) f or t ∈ [0, t 0 ).
One might think that a similar estimate holds in [0, T (σ, ϕ)), but, surprisingly enough, this is quite delicate: Set 17). Thus, by the comparison principle Theorem 7.1, we get the following Theorem 2.7 Introduce

ζ(t) = d (T (σ, ϕ) -t) -1 p-1 . Then ∂ t ζ -∆ζ - ζ p ≥ 0 for t ∈ [0, T (σ, ϕ)) iff d ≤ 1 p-1 1 p-1 . Obviously B σ (ζ) ≥ 0. If, in addition, one requires ζ(0) ≥ ϕ ∞ , then necessarily d = 1 p-1 1 p-1 and t 0 = T (σ, ϕ) by (
ζ(t) = 1 p -1 1 p-1 1 T (σ, ϕ) -t 1 p-1 . Then (19) u σ ≤ ζ in Ω × [0, T (σ, ϕ)) ⇐⇒ t 0 = T (σ, ϕ),
and for t 0 < T (σ, ϕ), either there exists t ∈ (0, T (σ, ϕ)) such that

u σ ≤ ζ in Ω × [ t, T (σ, ϕ)), or u(•, t) ∞ > ζ(t) f or t ∈ [0, T (σ, ϕ)).
Nevertheless, the growth order of solutions of (2) amounts to -1 p-1 when approaching the blow up time.

Theorem 2.8 Suppose that ξ ∈ (0, t 0 2 ] with t 0 from (17). Then there exists δ > 0 such that

(20) ∂ t u σ ≥ δu p σ in Ω × [ξ, T (σ, ϕ)).
Proof. We can follow Friedman's and McLeod's proof of Theorem 6.2 in [START_REF] Friedman | Blow up of positive solutions of semilinear heat equations[END_REF] bearing in mind that the lower solution z mentioned there in fact vanishes.

Set u = u σ and T = ξ 2 . As u(•, T ) ∈ C 2 Ω , classical regularity results [10] yield u ∈ C 2,2 Ω × [ T , T (σ, ϕ)) . By the strong minimum principle 7.6 u > 0 in Ω × [ T , T (σ, ϕ)). As σ is constant in time, y := ∂ t u is the solution of    ∂ t y = ∆y + pu p-1 y in Ω × [ T , T (σ, ϕ)) y(•, T ) = ∂ t u(•, T ) ≥ 0 in Ω B σ (y) = 0 on ∂Ω × [ T , T (σ, ϕ)) Note that y = ∂ t u ≥ 0 in Ω × [ T , T (σ, ϕ)) by Lemma 2.1.
Again, the strong minimum principle 7.6 applied to y and

∂ t y -∆y ≥ 0 yields y > 0 in Ω × [ T , T (σ, ϕ)).
Thus there is some constant c > 0 such that

y ≥ c > 0 in Ω × [ξ, T (σ, ϕ)). Now, introduce J = ∂ t u -δu p
with δ > 0 is sufficiently small such that J(•, ξ) ≥ 0. Then

∂ t J -∆J -pu p-1 J = δ p(p -1)u p-2 ∇u 2 2 ≥ 0. Moreover, J satisfies the boundary condition B σ (J) = 0, because B σ (J) = σJ t + J ν = B σ (y) -pδu p-1 B σ (u) = 0. Finally, by Corollary 7.3, we conclude J ≥ 0 in Ω × [ξ, T (σ, ϕ)).
Theorem 2.9 There exists a positive constant C such that

u σ (•, t) ∞ ≤ C (T (σ, ϕ) -t) 1/p-1 f or t ∈ [0, T (σ, ϕ)).
Proof. By (18) it suffices to show the estimate

u σ (•, t) ∞ for t ∈ [ t 0 2 , T (σ, ϕ)). For each x ∈ Ω the integral T t ∂ t u σ (x, s) u p σ (x, s) ds = uσ(x,T ) uσ(x,t) 1 η p dη converges as T T (σ, ϕ). By (20) u 1-p σ (x, T (σ, ϕ)) -u 1-p σ (x, t) 1 -p ≥ δ (T (σ, ϕ) -t) ,
and, if x is a blow up point, then

u σ (x, t) ≤ ((p -1)δ) 1 1-p (T (σ, ϕ) -t) 1 p-1 .
Thus we can choose C = (p -1)

1 1-p max δ 1 1-p , 2T (σ,ϕ) t 0 -1 1 p-1 .
We close this section with an example displaying a strict delay of the blow up time.

Example 2.10 We want to show that blow up time for dynamical condition with σ > 0 can be strictly greater than the one under the Neumann boundary condition. Suppose n = 1, Ω = (-1, 1) and that σ is a non-negative constant. Using the above notations, let

u σ ∈ C Ω × [0, T ) ∩ C 2,1 Ω × (0, T ) denote the maximal solution of the IBVP    ∂ t u = ∆u + u 2 in Ω for t > 0, σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) ≡ 1 (21)
with blow up time T = T (σ, 1). Thus, for σ = 0 with ( 16) and (17) u 0 (x, t) = z(t) = (1 -t) -1 and T (0, 1) = t 0 = 1. For σ > 0 we make the ansatz

(22) u σ (x, t) = z (t -ψ(x, t)) , with some function ψ ∈ C Ω × [0, T ) ∩C 2,1 Ω × (0, T ) satisfying ψ(•, 0) = 0 and (23) 0 < ψ(•, t) ≤ t for t ∈ (0, T (σ, 1)].
The partial derivatives of u σ become

∂ t u σ = (1 -∂ t ψ) ż(t -ψ) = (1 -∂ t ψ)z 2 (t -ψ), ∂ x u σ = -∂ x ψz 2 (t -ψ), ∂ 2 x u σ = -∂ 2 x ψz 2 (t -ψ) + 2(∂ x ψ) 2 z 3 (t -ψ).
Thus, u σ satisfies (21) iff ψ is a solution of

               ∂ t ψ = ∂ 2 x ψ - 2(∂ x ψ) 2 1 -t + ψ in Ω for t > 0, σ∂ t ψ + ∂ ν ψ = σ on ∂Ω for t > 0, ψ(•, 0) ≡ 0 (24)
By the results of Section 4 in [START_REF] Below | Dynamical interface transition in ramified media with diffusion[END_REF], Problem (24) admits a local solution

ψ σ belonging to C (Ω × [0, τ ); H 1 (Ω))∩C 1 (Ω × (0, τ ); L 2 (Ω)). Since n = 1 and the coefficients are constant, ψ σ belongs in fact to C Ω × [0, τ ) ∩C 2,1 Ω × (0, τ ) .
Note that for σ > 0, u σ cannot blow up on the boundary of Ω, and that ψ σ can only attain its minimum in Ω. Thus, by definition of the blow up time,

T (σ, 1) = inf {τ > 0 ∃x ∈ Ω : 1 = τ -ψ σ (x, τ )} .
Therefore u σ blows up at x ∈ Ω iff (25) 1 + ψ σ (x, T (σ, 1)) = T (σ, 1). By Corollary 7.3 and Theorem 7.1, we conclude ψ σ ≥ 0 and ψ σ (•, t) ≤ t for t > 0, respectively. Thus ψ σ is globally bounded and in fact a solution of Problem (24) in Ω × [0, T (σ, 1)), which in turn shows also the existence of u σ . Moreover, ψ σ is unique in that class. Next, for any τ ∈ (0, T (σ, 1)) we apply the strong minimum principle for gradient dependent nonlinearities Theorem 2.8 in [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] in Ω × [0, τ ], since therein

∂ t ψ -∂ 2 x ψ = -2(∂ x ψ) 2 (1 -t + ψ) -1 ≥ -C|∂ x ψ|
with some positive constant C. Accordingly, ψ σ > 0 in Ω × (0, τ ], since ψ σ > 0 on ∂Ω × (0, T (σ, 1)) by the dynamical condition in (24). Moreover, ψ σ cannot attain a local minimum in any Ω×(0, τ ]. Thus, an argument similar to the one showing Lemma 2.1, yields ∂ t ψ σ ≥ 0 for t ∈ (0, T (σ, 1)). Further note that ψ σ is a weak solution in Ω × [0, T (σ, 1)] of the parabolic equation from (24). Thus,

ψ σ ∈ C Ω × [0, T (σ, 1)
] by the regularity result Theorem V.1.1 in [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF]. This shows that ψ σ (•, T (σ, 1)) > 0 and (23). As u σ (•, t 0 ) is bounded, we conclude (26) T (σ, 1) > T (0, 1) for σ > 0.

Upper bounds for the blow up time by energy methods

In this section we consider essentially the model problem [START_REF] Below | An existence result for semilinear parabolic network equations with dynamical node conditions[END_REF]. We estimate the blow up time T = T (σ, ϕ) from above by using an energy type method related to certain norms. Introduce the energy functional E :

H 1 (Ω) ∩ L p+1 (Ω) → R, defined by 
E(u) = 1 2 Ω ∇u 2 2 dx - 1 p + 1 Ω u p+1 dx
and suppose that the initial data satisfy

(27) ϕ ∈ H 1 0 (Ω) ∩ C( Ω). Lemma 3.1 If u ∈ C(Q τ ) ∩ C 2,1 (Q τ ) is a solution of Problem (2), then the function t → E(u(•, t)) is decreasing. Proof. d dt E(u(t)) = Ω (∂ t ∇u, ∇u) dx - Ω u p ∂ t u dx = - Ω ∆u∂ t u dx + ∂Ω ∂ t u∂ ν u ds - Ω u p ∂ t u dx
using Green formula. Thus,

d dt E(u(t)) = - Ω (∂ t u) 2 dx -σ ∂Ω (∂ t u) 2 ds ≤ 0.
Let us recall the fundamental estimate by Ball of the blow up time under homogeneous Dirichlet condition.

Theorem 3.2 (Ball [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF]) Suppose ( 27) and E(ϕ) ≤ 0. Then the solution of Problem (2) under homogeneous Dirichlet boundary condition blows up in finite time T 0 (∞, ϕ) satisfying

T 0 (∞, ϕ) ≤ p + 1 (p -1) 2 |Ω| p-1 2 Ω ϕ 2 dx 1-p 2 =: t 2 .
In fact, the proof by Ball remains valid under the Neumann boundary condition, see the proof of Theorem 3.4, but a simple estimate of the L 1 -norm yields a better upper bound under Neumann condition.

Theorem 3.3 Suppose σ = 0. Then the maximal solution u 0 of Problem (2) blows up in finite time T (0, ϕ) satisfying

T (0, ϕ) ≤ 1 p -1 |Ω| p-1 Ω ϕ dx 1-p =: t 1 .
Proof. Set M (t) = Ω u(x, t) dx. Then Ṁ = Ω u p dx owing to

Ω ∆u dx = ∂Ω ∂ ν u ds = 0.
Hölder's inegality Ω u p dx

1 p |Ω| p-1 p ≥ Ω u dx, yields Ṁ ≥ |Ω| -(p-1) M p
and, integrating between 0 and t > 0

M (t) ≥ M (0) (1-p) + t(1 -p)|Ω| 1-p 1 1-p .
Thus T (0, ϕ) ≤ t 1 .

Note that Theorem 3.3 is optimal. For a constant initial condition ϕ = c > 0, the upper bound t 1 is equal to the blow up time t 0 = T (0, c) = 1 p-1 c 1-p , while Theorem 3.2 yields only t 2 = p+1 p-1 t 1 > t 1 . But we can improve Ball's estimate also in the general case. Theorem 3.4 Suppose ϕ satisfies (27) and E(ϕ) ≤ 0. Let

u ∈ C Ω × [0, T ) ∩ C 2,1 Ω × (0, T )
be the maximal solution of the problem

   ∂ t u = ∆u + u p in Ω × (0, T ) u(•, 0) = ϕ in Ω u = 0 on ∂Ω × (0, T ) (28) 
Then the blow up time

T = T 0 (∞, ϕ) of u satisfies T 0 (∞, ϕ) ≤ t 2 -ϕ -2p ∞ [-E(ϕ)] |Ω| -1 p + 1 p(p -1) =: t 3 with t 2 as defined in Theorem 3.2. Proof. Define N (t) = u 2 2,Ω = Ω u 2 (x, t) dx. Then Ṅ = 2 Ω u∂ t u dx = 2 Ω u∆u dx + 2 Ω u p+1 dx.
Using Green's formula and the boundary zero condition, we obtain

Ṅ = -2 Ω ∇u 2 2 dx + 2 Ω u p+1 dx = -4E(u) + 2(p -1) p + 1 Ω u p+1 dx.
Thus, by Lemma 3.1,

Ṅ ≥ -4E(ϕ) + 2(p -1) p + 1 Ω u p+1 dx.
Hölder's inegality

Ω (u 2 ) p+1 2 dx 2 p+1 |Ω| p-1 p+1 ≥ Ω u 2 dx, yields (29) Ṅ ≥ α + kN β with k = 2(p -1) p + 1 |Ω| 1-p 2 , α = -4E(ϕ), and β = p + 1 2 .
In contrast to Ball's proof of Theorem 3.2, we do not replace α by 0. By Theorem 2.5, u is bounded from above by z given by ( 16) in Ω × [0, t 0 ). Thus

N (t) ≤ |Ω| c 1-p -(p -1)t -2 p-1 ,
where c := ϕ ∞ . As T 0 (∞, ϕ) ≥ t 0 = 1 (p-1)c p-1 thanks to Theorem 2.4 and Corollary 2.6, it suffices to integrate between 0 and t ≥ t 0 :

N (t) N (0) η -β dη ≥ kt + α t 0 N (s) -β ds ≥ kt + α|Ω| -β t 0 0 c 1-p -(p -1)s p+1 p-1 ds But 1 (p-1)c p-1 0 c 1-p -(p -1)s p+1 p-1 ds = 1 2p c -2p .
Thus

N (t) 1-β ≤ N (0) 1-β + (1 -β) kt + α|Ω| -β 1 2p c -2p
and, finally,

N (t) ≥ N (0) -p-1 2 - p -1 2 kt + α|Ω| -p+1 2 1 2p c -2p -2 p-1 .
As the term in brackets vanishes iff t = t 3 , where t 3 is defined as in the assertion, we conclude T 0 (∞, ϕ) ≤ t 3 .

As for the Problem (1), the last result shows thanks to Theorem 2.4

Corollary 3.5 Suppose f (u) ≥ u p for u ≥ 0 and ψ fulfils (27) and ψ ≤ ϕ.

Then the maximal solution u σ of Problem (1) blows up in finite time T (σ, ϕ) satisfying

T (σ, ϕ) ≤ p + 1 (p -1) 2 |Ω| p-1 2 ψ -(p-1) 2 -ψ -2p ∞ [-E(ψ)] |Ω| -1 p + 1 p(p -1) .
Remark 3.6 Using the above notation, the differential inequality (29) leads to

N (t) N (0) 1 η β + γ dη ≥ kt with γ = α k .
An upper bound for N depends strongly whether the l.h.s. integral can be solved for N (t). In general, this is quite cumbersome, though formulae for that integral are available. That is why we prefered to use the comparison with the solution under Neumann boundary condition in order to show Theorem 3.4. But in special cases, we can improve as follows. Suppose e.g. p = 3. Then β = 2,

1 η 2 +γ = 1 √ γ arctan η √ γ and N (t) ≥ √ γ tan t √ kα + arctan N (0) √ γ .
Thus, in this special case, the blow up time of the solution u of Problem ( 28) satisfies

(30) T 0 (∞, ϕ) ≤ |Ω| ε π 2 -arctan ϕ 2 2 ε|Ω| with ε := ϕ 4 4 -2 ϕ 2 H 1 0 (Ω) .
Remark 3.7 Though Theorem 3.3 improves the estimate (3.2), it is not yet optimal in the following sense. For all initial data ϕ with ( 8) and ( 9) and ψ with ( 12) and ( 27),

t 0 (ϕ) ≤ T (0, ϕ) ≤ T (σ, ϕ) ≤ T 0 (∞, ψ) ≤ t 3 (ψ)
by Theorem 2.4. But, for E(ψ) ≤ 0, we find by ignoring the H 1 0 (Ω)-term and by using

ψ p ≤ |Ω| 1 p ϕ ∞ that t 3 (ψ) t 0 (ϕ) ≥ p + 1 (p -1) |Ω| 1 2 ϕ ∞ ψ 2 p-1 - 1 p ψ p+1 |Ω| 1 p+1 ϕ ∞ p+1 ≥ 1 + p + 1 p(p -1) > 1.

An upper bound for the blow up time by spectral comparison

In this section we derive another upper bound for the blow up time due to a comparison with a suitable eigenfunction of the Laplacian in the domain. In fact, we investigate the eventual blow up of the first Fourier coefficent that in turn yields the desired upper bound thanks to Theorem 2.4. We start with the following general result that replaces the condition E(ϕ) ≤ 0 in Theorem 3.4 by a pure potential constraint. Henceforth, let λ denote the minimal eigenvalue of -∆ in H 1 0 (Ω) and ψ ∈ H 1 0 (Ω) an eigenfunction belonging to λ satisfying (31) 0 < ψ ≤ 1 in Ω.

Theorem 4.1 Let α > 0, T > 0 and p > 1 denote real constants and let

u ∈ C Ω × [0, T ) ∩ C 2,1 (Ω × (0, T ))
be a maximal solution of

   ∂ t u ≥ ∆u + αu p in Ω × (0, T ), u ≥ 0 on ∂Ω × (0, T ), u(•, 0) = ϕ ≥ 0, = 0. (32) If (33) λ α 1 p-1 |Ω| < Ω ϕψ dx, then T ≤ 1 λ(p -1) ln α α -λ|Ω| p-1 Ω ϕψ dx 1-p =: t 4 .
Proof. First note that the respective boundary behaviours imply

(34) ∂Ω ψ ∂ ν u ds = 0, ∂Ω u ∂ ν ψ ds ≤ 0.
Thus, by Green's formula,

Ω ψ ∆u dx = - Ω (∇u, ∇ψ) dx = -λ Ω u ψ dx - ∂Ω u ∂ ν ψ ds ≥ -λ Ω u ψ dx.
Set M (t) = Ω uψ dx. Then by the differential inequality

Ṁ ≥ -λ Ω u ψ dx + α Ω u p ψ dx.
By assumption, Ω u p ψ dx ≥ Ω (uψ) p dx, and by Hölder's inequality,

Ω (uψ) p dx ≥ |Ω| 1-p Ω uψ dx p .
Thus, we are lead to the ordinary differential inequality

Ṁ ≥ -λM + α|Ω| 1-p M p = kM M p-1 -δ . with k = α|Ω| 1-p and δ = λ k .
Integration between 0 and t > 0 yields

M (t) M (0) dη η (η p-1 -δ)
≥ kt and

M (t) p-1 M (0) p-1 dξ (p -1) (ξ -δ) - M (t) M (0) dη η = M (t) M (0) η p-2 η p-1 -δ - 1 η dη ≥ λt.
This leads to the inequality

1 ≥ M (t) p-1 -δ M (t) p-1 ≥ M (0) p-1 -δ M (0) p-1 exp ((p -1)λt) > 0,
where the last inequality is due to M (0) > 0. Under these constraints, M (t) becomes infinite iff

t = 1 λ(p -1) ln 1 1 -δM (0) 1-p = t 4 .
As M (t) ≤ |Ω| u(•, t) ∞ , u blows up at the latest for t = t 4 and T ≤ t 4 .

Again, Theorem 7.1 immediatly yields the Corollary 4.2 Suppose the above conditions on ϕ, α and p to be fulfilled and, in addition, f (u) ≥ αu p for u ≥ 0. Then the maximal solution u σ of Problem (1) blows up in finite time T (σ, ϕ) ≤ t 4 with t 4 as in Theorem 4.1.

Remark 4.3

The upper bound Theorem 4.1 is not optimal, since lim

β→∞ t 4 (βϕ) t 0 (βϕ) = |Ω| ϕ ∞ Ω ϕψ dx p-1 ≥ c(Ω) := min |Ω| Ω ψ dx p-1
, where the minimum is taken over all eigenfunctions satisfying (31). But for all dimensions n ∈ N * , the domain constant c(Ω) is strictly greater than 1, e.g. for n = 1, c(Ω) amounts to π/2.

The above spectral method can also be applied to the degenerate problem (3) with p = m + 1 and yields an upper bound whose form is even simpler than the result obtained above.

Theorem 4.4 Suppose λ = λ(Ω) < m + 1 and 1 ≤ m ∈ N. Let T > 0 and let u ∈ C Ω × [0, T ) ∩ C 2,1 Ω × (0, T ) be a maximal solution of    ∂ t u = div(u m ∇u) + u m+1 in Ω × (0, T ), u ≥ 0 on ∂Ω × (0, T ), u(•, 0) = ϕ ≥ 0, = 0. (35) Then T ≤ (m + 1)|Ω| m m(m + 1 -λ) Ω ϕψ dx m .
Proof. Note that (34) is still valid for u m instead of u. Thus, by Green's formula and by (31), we obtain

Ω ψ div(u m ∇u) dx = Ω ψ 1 m + 1 ∆(u m+1 ) dx = 1 m + 1 Ω u m+1 ∆ψ dx - 1 m + 1 ∂Ω u m+1 ∂ ν ψ ds ≥ - λ m + 1 Ω u m+1 ψ dx ≥ - λ m + 1 Ω u m+1 ψ m+1 dx.
Define M by

M (t) = Ω u(•, t)ψ dx, thus, Ṁ ≥ 1 - λ m + 1 Ω (uψ) m+1 dx .
Hölder's inequality implies,

Ṁ ≥ (m + 1 -λ)|Ω| -m m + 1 =:C Ω uψ dx m+1 .
Integration between 0 and t > 0 leads to the inequality

M (t) M (0) dη η m+1 ≥ Ct, and 
M (t) ≥ M (0) -m -mCt -1 m .
Then M becomes infinite iff

t = M (0) -m mC = t 5 ,
thus T ≤ t 5 .

Blow up points

According to a result by Friedman and McLeod [8], the blow up set under homogeneous Dirichlet boundary conditions is a compact subset of Ω. For Robin or dynamical boundary conditions this needs not to be true, since under the Neumann boundary condition, the blow up set can consist in the closure of the whole domain, take e.g. constant positive initial data.

In this section, we consider Problem (1) in the one-dimensional case Ω = (-a, a) with a > 0 and follow the techniques developed in [START_REF] Caffarrelli | Blow-up of solutions of nonlinear heat equations[END_REF] and [START_REF] Friedman | Blow up of positive solutions of semilinear heat equations[END_REF] for one hump initial data. Throughout, we assume besides (4)-( 8) that σ is a constant satisfying (36) σ > 0, (37)

f > 0 in (0, ∞), (38) f ≥ 0 in (0, ∞),
and that there exists a function F ∈ C 2 ((0, ∞)) such that (39) 

F (u) > 0, F (u) > 0, F (u) > 0 in (0, ∞), (40) 
f F -f F ≥ c 0 F F in (0, ∞)
with some constant c 0 > 0. Set

G(u) = +∞ u ds F (s) .
For the initial data ϕ we require

ϕ ∈ C 2 (Ω), ∆ϕ + f (ϕ) ≥ 0 in Ω, (42) 
and that for some x 0 ∈ Ω ϕ (x) > 0 in (-a, x 0 ), ϕ (x) < 0 in (x 0 , a). Set T = T (σ, ϕ). First we note the following Lemma 5.2 There exists curves x = s ± (t), 0 < t < T , such that

∂ x u(x, t) > 0 iff -a ≤ x < s -(t), ∂ x u(x, t) < 0 iff s + (t) < x ≤ a.
Proof. By (36), Theorem 2.8, Corollary 7.3 and Theorem 7.6, it follows that

∂ t u > 0 in Ω × (0, T )
and, by the dynamical boundary condition,

∂ ν u < 0 on ∂Ω × (0, T ).
Now we can follow the proof of Lemma 5.2 of [START_REF] Friedman | Blow up of positive solutions of semilinear heat equations[END_REF].

Definition 5.3

s -= lim inf t→T s -(t) , s + = lim sup t→T s + (t).
First, we are interested in the case where the initial data ϕ satisfy the symmetry condition

(44) 0 < ϕ(x) = ϕ(-x) in [-a, a].
Then the solution of Problem (1) remains also symmetric.

Lemma 5.4 Under the additional condition (44),

u(x, t) = u(-x, t)
for -a ≤ x ≤ a and 0 < t < T .

Proof. In fact, v(x, t) := u(-x, t) for -a ≤ x ≤ a and 0 ≤ t < T defines a solution of (1). Thus (44) and Corollary 7.2 imply u = v in Ω × (0, T ).

Lemma 5.5 There exists a curve x = s(t), 0 < t < T , such that The above results apply especially to Problem [START_REF] Below | An existence result for semilinear parabolic network equations with dynamical node conditions[END_REF]. With the choice F (u) = u q with 1 < q < p, Conditions (37) -( 41) are satisfied for f (u) = u p . Thus, we can conclude Corollary 5.12 Under conditions (36), ( 42) and (43), blow up for the model problem (2) can only occur at x = 0 in the symmetric case, (44), and the blow up set can only consist of a single point in the strictly asymmetric case (46).

∂ x u(x, t) > 0 iff -a ≤ x < -s(t), ∂ x u(x, t) < 0 iff s(t) < x ≤ a.

Blow up for a degenerate problem

The estimate of the L 1 -norm used in order to show Theorem 3.3, yields a general bound from above for the blow up time of Problem (3) for any 0 ≤ σ ≤ ∞, p > 1 et m ≥ 1. First, we show a result for homogeneous Dirichlet boundary condition.

Theorem 6.1 The maximal classical solution v of the problem

       ∂ t v = div (v m ∇v) + v p in Ω for t > 0, v = 0 on ∂Ω for t > 0, v(•, 0) = ψ ∈ C 0 ( Ω), 0 ≤ ψ = 0, (47) 
blows up in finite time T satisfying

T ≤ 1 p -1 |Ω| p-1 Ω ψ dx 1-p =: t 6 .
Proof. Set M (t) = Ω v(x, t) dx. Then Ṁ = Ω u p dx, since m ≥ 1 and the lateral boundary condition imply

Ω div (v m ∇v) dx = ∂Ω v m ∂ ν v ds = 0.
Again, Hölder's inegality yields Ṁ ≥ |Ω| -(p-1) M p and

M (t) ≥ M (0) (1-p) + t(1 -p)|Ω| 1-p 1 1-p .
Thus T ≤ t 6 . 

Appendix: Qualitative results

We recall some of the qualitative results from [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] for mixed boundary conditions that extend some of the results in [START_REF] Walter | Differential and integral inequalities[END_REF] to dynamical boundary conditions. Suppose that the boundary of Ω is decomposed into two disjoint parts

∂Ω = ∂ 1 Ω ∂ 2 Ω,
where ∂ 2 Ω relatively open in ∂Ω. Note that we only need ∂ 2 Ω ∈ C 2 . For τ > 0 we set Q τ = Ω × [0, τ ] and define the parabolic interior Q τ and the parabolic boundary q τ by Q τ = (Ω ∪ ∂ 2 Ω) × (0, τ ] and

q τ = Q τ \ Q τ .
Suppose that (48)

F ∈ C 1 Q τ × R × R n × R n 2
is increasing with respect to q = D 2 u, not necessarily strictly, and set

F [u] := F x, t, u, ∇u, D 2 u .
It suffices in fact to impose a one-sided local Lipschitz condition with respect to u. Then the following theorems hold.

Theorem 7.1 (Comparison principle) Let u, v ∈ C(Q τ ) ∩ C 2,1 (Q τ ) satisfy    ∂ t u -F [u] ≤ ∂ t v -F [v] in Q τ , B σ (u) ≤ B σ (v) on ∂ 2 Ω × (0, τ ].
Then u ≤ v on q τ implies u ≤ v in Q τ . u| qτ = ψ ∈ C(q τ ).

Corollary 7.3 Under the additional hypothesis F (•, •, 0, 0, 0) ≥ 0, a solution

u ∈ C(Q τ ) ∩ C 2,1 (Q τ ) of            ∂ t u -F [u] ≥ 0 in Q τ , B σ (u) ≥ 0 on ∂ 2 Ω × (0, τ ],
u ≥ 0 on q τ , satisfies u ≥ 0 in Q τ .

6

 6 The blow up times of Problem (2) satisfy

Definition 5 . 1

 51 classical solution u = u σ of Problem (1), let us recall the definition of a blow up point. The blow up set S consists in those points x ∈ Ω such that there is a sequence (x n , t n ) n∈N in Ω × (0, T (σ, ϕ)) satisfying lim n→∞ x n = x, lim n→∞ t n = T (σ, ϕ), and lim n→∞ u(x n , t n ) = ∞

Proof. Lemmata 5 .Theorem 5 . 7

 557 2 and 5.4 show -s -(t) = s + (t) ≥ 0 for 0 < t < T . Definition 5.6 s = lim sup t→T s(t). Now we show that blow up can only occur in the interval [-s, s]. Under conditions (36) -(43), S ⊆ [-s, s] in the symmetric case (44).

Theorem 6 . 2 , 1 . 6 . 3 Remark 6 . 5

 6216365 For any 0 ≤ σ ≤ ∞, p > 1 et m ≥ 1, the maximal classical solution u of Problem (3) blows up in finite time T (σ, ϕ) satisfying T (σ, ϕ) where ψ is an arbitrary nonvanishing function belonging to C 0 ( Ω) with 0 ≤ ψ ≤ ϕ. Proof. Corollary 7.3, Theorem 7.1, and Theorem 6.Corollary For nonvanishing initial data ϕ and for any p > 1 et m ≥ 1, classical solutions of Problem (3) fulfiling a dynamical boundary condition B σ (u) = 0, the Neumann boundary condition or any nonnegative Dirichlet boundary condition blow up in finite time.Remark 6.[START_REF] Below | Dynamical interface transition in ramified media with diffusion[END_REF] The above results improve and simplify the results by Lishang and Zhenbu[START_REF] Lishang | Blow-up of solutions of a class of nonlinear parabolic equations[END_REF] obtained for dimension 1. Moreover, they showed global existence in the case p < m + 1 for the Dirichlet condition u = 1 on the time lateral boundary (Theorem 1.1 l.c.). Evidently, this is incoherent with the results above. As it stands, the Leray-Schauder technique in their proof seems to be deficient. Note that for 0 ≤ p ≤ 1, the solutions of Problem (3) do not blow up. Thanks to Theorem 7.5, the solutions grow at most exponentially, since for any τ > 0, maxQ τ |u| ≤ e 2τ max max Ω |ϕ|, 1 .

Corollary 7 . 2 ∂

 72 The initial boundary value problem (49) admits at most one solution inC(Q τ ) ∩ C 2,1 (Q τ ): t u = F (x, t, u, ∇u, D 2 u) in Q τ , B σ (u) = 0 on ∂ 2 Ω × (0, τ ],
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Proof. By Lemma 5.4, it suffices to exclude blow up points in (s, a]. Suppose β ∈ (s, a) and choose T 0 < T sufficiently close to T such that s(t) < β for T 0 ≤ t < T . Introduce R 0 = (β, a] × (T 0 , T ) and J = ∂ x u + εdF with d(x) = x -β and with ε > 0 sufficiently small such that J < 0 in (β, a) × {T 0 } and ( 45)

Note that the first requirement is possible thanks to Lemma 5.2, while the second one is due to conditions (39) and (41). Moreover, since by classical interior regularity results [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF] and owing to the dimension 1 of Ω, u belongs to

and is a solution of

By definition of G and by integrating between x and y for β < x < y < a,

Note that G(∞) = 0. Thus, if y ∈ (β, a] is a blow up point, then G (u(x, t)) < 0 for x ∈ (β, y) and for t sufficiently close to T , which is a contradiction to G ≥ 0. Thus no point of (β, a] can be a blow up point. This permits to conclude.

Theorem 5.8 Under conditions (36) -(43), 0 is the only possible blow up point for Problem (1) in the symmetric case (44).

Proof. Using Theorem 5.7, we have to show that s = 0. Suppose that s > ε > 0 and that u blows up in [-s, s]. Set

By Theorem 5.7 there exists a constant C 0 > 0 such that

By Def. 5.6 and by Lemma 5.5 we find τ < T with T -τ sufficiently small and

for some x ∈ (y 0 , γ), where we have set

Furthermore, u(y 0 , t) < u(y 1 , t) for τ < t < T , thus

Thus, w ≥ 0 by Corollary 7.3. Therefore, in fact, δ ≥ 0 by (38), and w > 0 in (y 0 , γ) × (τ, T ) by the strong minimum principle 7.6 in the case ∂ 1 Ω = ∂Ω. Thus, γ > -s is impossible, since by Lemma 5.2, ∂ x u vanishes in each interval [-s(t), s(t)]. On the other hand, -s ≥ γ > -ε implies s ≤ ε, which is a contradiction to the choice of ε ∈ (0, s).

As a second case, we assume that the initial data ϕ satisfy the strict asymmetry condition

We first remark that the asymmetry is pertained for t > 0.

Lemma 5.9 Under the additional condition (46), u(x, t) < u(-x, t) for 0 < x < a and 0 < t < T .

Proof. The function

Then w ≥ 0 in (0, a] × (0, T ) by Corollary 7.3. Thus, in fact, δ ≥ 0 by (38), and, finally, w > 0 in (0, a] × [0, T ) by the strong minimum principle 7.6.

Lemma 5.10 Under the additional condition (46),

Proof. We suppose that s + > s -and we define ε and y 0 by

Then we can proceed as in the proof of Theorem 5.8.

Theorem 5.11 Under conditions (36) -( 43), the blow up set of (1) consists at most of a single point in the strict asymmetric case (46).

Proof. By Lemma 5.2 and Lemma 5.9, it follows that s + (t) ≤ 0 for 0 < t < T . First, we prove that blow up can not occur in the interval (s + , a]. Suppose x 1 ∈ (s + , a] is a blow up point. We choose ε > 0 and δ > 0 sufficiently small and x 2 ∈ (s + , x 1 ) such that x 2 > s + (t) for T -δ < t < T , and

with d(x) = x -x 2 , and such that H(u) as defined in (45) satisfies

Again, the two requirements are possible thanks to Lemma 5.2 and to Conditions (39) and (41). Now we can proceed as in the proof of Theorem 5.7 in order to conclude that there is no blow up point in (s + , a]. A similar reasoning excludes blow up points in [-a, s -). Finally, Lemma 5.10 permits to conclude that s -= s + is the only possible blow up point.

Theorem 7.4 (Weak maximum principle) Suppose

Then

where F fulfils an additional Osgood sign condition

Then max and if u attains its maximum M its minimum m at some point (x 0 , t 0 ) ∈ Q τ , then u = M u = m in Q t 0 .