
HAL Id: hal-03714998
https://hal.science/hal-03714998v1

Submitted on 6 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generic approach to model generation operations
Mathias Kleiner, Marcos Didonet del Fabro

To cite this version:
Mathias Kleiner, Marcos Didonet del Fabro. A generic approach to model generation operations.
Journal of Systems and Software, 2018, 142, pp.136-155. �10.1016/j.jss.2018.04.053�. �hal-03714998�

https://hal.science/hal-03714998v1
https://hal.archives-ouvertes.fr

A generic approach to model generation operations

Mathias Kleinera, Marcos Didonet Del Fabrob

aLSIS, Arts et Mtiers, Aix-en-Provence, France
bC3SL Labs, Informatics department, Federal University of Parana, Curitiba, Brazil

Abstract

Model generation operations are important artifacts in MDE applications. These approaches can be used for model
verification, model finding, and others. In many scenarios, model transformations can as well be represented by a model
generation operation. This often comes with the advantage of being bidirectional and supporting increments. However,
most part of model generation approaches do not target several operation kinds, but narrower scenarios by mapping
the generation problem into solver specific problems. They are efficient, but often don’t have a supporting framework.
In this paper, we present an approach and framework that allows to specify and to execute model operations that can
be represented in terms of model generation operations. We first introduce a model search layer that can be used with
different solvers. We illustrate this layer with a driving example implemented using Alloy/SAT solver. On top of this, we
introduce a transformation layer, which specification are translated into the model search layer, independently from any
solver. The solution is natively bidirectional, incremental and it is not restricted to one-and-one scenarios. The approach
is illustrated by two use cases and with 3 different scenarios, backed by a full, extensible and free implementation.

Keywords: Model Search, Model Transformations, Alloy

1. Introduction

In Model-Driven Engineering (MDE) approaches, stud-
ied or developed systems are captured through a set of
models representing different structural and behavioural
points of view. A model must comply to constraints which
may be either generic rules that apply to any models of
its kind (the language syntax and semantics), or system-
specific considerations that stem from the user objectives.
Therefore one kind of model operation is the ability to
(semi)-automatically generate or complete a given par-
tial (possibly empty) model. This operation, here called
model generation, has different uses: model verification,
language testing, use cases generation or user assistance
in defining the system. Given the graph-like structure and
mostly discrete properties of meta-languages, existing ap-
proaches to model generation usually rely on combinato-
rial techniques such as constraint programming solvers.
The process thus consists in mapping the model genera-
tion problem to a solver-specific problem definition where
resolution is achieved, and then mapping the solution(s)
(if any) back to the modeling world. This approach is
used for instance in [17, 30, 37]. The main drawbacks are
the limitations of the chosen solver. Indeed, the nature of
meta-languages yields hard combinatorial problems that
may require solvers to deal with solutions of a priori un-
known size, a mix of discrete and continuous variables, or

Email addresses: mathias.kleiner@ensam.eu (Mathias Kleiner
), marcos.ddf@inf.ufpr.br (Marcos Didonet Del Fabro)

complex strings manipulation. Therefore different prob-
lems might require different solvers, and often need to be
simplified in order to be turned into viable specifications.

Additionally, the different models of a system are usu-
ally related, meaning that some, if not all, of a given model
elements can be deduced from the others. This yields a sec-
ond kind of operation, here called model transformation,
where the goal is to obtain a set of (target) models from a
set of (source) models. A first set of approaches that rely
on rules and pattern matching [11] have been successful
for a large number of use cases. However, the system de-
velopment process is rarely linear, meaning that existing
models may be modified and should still be kept consis-
tent. These use cases have outlined the unidirectional and
non-incremental limitations of most of these approaches,
leading to studies in novel transformation techniques hav-
ing bidirectional and incremental properties [21]. Some of
these approaches, such as JTL [13], MOMoT [15] or Echo
[34], propose to represente model transformations in terms
of a model generation problem. However, the support for
multiple kinds of generation operations could be improved.

In this article we present a generic approach and frame-
work to specify and to execute model operations that can
be represented in terms of model generation operations.
This article re-founds and extends work presented in pre-
vious conference papers [30, 31]. The approach has the
following main highlights.

Model search: we present a layer called model search
(MS), which handles the model generation process. This
layer is broke down into solver-specific and solver-

Preprint submitted to Elsevier April 24, 2018

independent components. The solver-specific ones pro-
vide the extraction/injection of the input and output mod-
els into/from the solver format. The solver independent
parts are the remaining components. We provide a com-
pletely rewritten open source implementation based on the
Eclipse Modeling Framework (EMF) [11], where the exe-
cuted chain can be easily adapted, improving considerably
its applicability. We also provide a fully operational ex-
ample implementation of the generic approach that targets
the Alloy/SAT solver [21].
Multi-level transformations: we provide a generic bridge

between the modeling problem and solver technical spaces,
through the implementation of reflexive model transfor-
mation, called multi-level transformations. The transfor-
mations are implemented using only the metametamodels
elements. They discover the metamodel and model ele-
ments during execution time. This enables having one
single transformation for any input metamodels and their
corresponding models, and without relying on an unifica-
tion format. The same is valid for the output models.
Model transformations as search (TAS): we present a

TAS layer that is independent from the underlying solver,
conceptually and practically. This means that a model
transformation specification is defined using only modeling
components. These are transformed into a model search
problem and solutions are then mapped back to the result-
ing models. In addition, the approach is not restricted to
one-to-one transformation scenarios, it is multi-directional
and incremental. We have developed as well a set of com-
ponents to develop model transformations and to interact
with the model search layer.
Unified formalism: finally, we revisited and provided an

integrated conceptual view from both model and transfor-
mation as search.

Plan of the article. Section 2 provides the theoretical
background. In Section 3, we formally define the model
search layer, theoretically and with a practical guiding ex-
ample. In Section 4 we describe the transformation and
synchronization layer. We provide experimental results
and analyse the strengths and drawbacks of the approach
with additional comments on two examples from the lit-
erature and the industry. Section 5 presents the related
work. Finally, we conclude in Section 6.

2. Context

2.1. Brief introduction to modeling and model transforma-
tion

Model Driven Engineering (MDE) considers models,
through multiple abstract representation levels, as a unify-
ing concept. The central concepts used in such approaches
are terminal model, metamodel, and metametamodel. A
terminal model is a representation of a system. It captures
some characteristics of the system and provides knowledge
about it. MDE tools act on models expressed in precise

modeling languages. The abstract syntax of a modeling
language, when expressed as a model, is called a meta-
model. The relation between a model and the metamodel
of its language is called conformance. Metamodels are in
turn expressed in a modeling language for which concep-
tual foundations are captured in an auto-descriptive model
called metametamodel. There are multiple model defini-
tions in the literature (see [32] for a deep study), we re-
fine in this article the ones introduced in [24] since simple
graph-based definitions will prove useful in our context.

Definition 1 (model). A model M is a triple <
G,ω, µ > where:

• G is a directed labelled multigraph,

• ω (called the reference model of M) is either another
model or M itself (i.e., self-reference)

• µ is a function associating nodes and edges of G to
nodes of Gω (the graph associated to its reference
model ω)

Definition 2 (conformance). The relation between a
model and its reference model is called conformance and
denoted conformsTo or c2.

Definition 3 (metametamodel). A metametamodel is
a model that is its own reference model (i.e., it
conformsTo itself).

Definition 4 (metamodel). A metamodel is a model
such that its reference model is a metametamodel.

Definition 5 (terminal model). A terminal model is a
model such that its reference model is a metamodel.

Although the presented work may be adapted to other
metalanguages, we will assume in the following the use
of ECORE (an implementation of OMG’s EMOF) as the
metametamodel [12], since it is supported by a wide set
of modeling tools. The main way to automate MDE is
by executing operations on models. For instance, the pro-
duction of a model Mb from a model Ma by a transfor-
mation Mt is called a model transformation. The OMG’s
Query View Transformation (QVT) [40] defines a set of
useful model operations languages. In particular, it defines
a language called QVT-operational which is restricted to
unidirectional transformations scenarios, and a language
called QVT-relational which can be used for bidirectional
and synchronization scenarios.

2.2. Constrained metamodels

The notion of constraints is closely coupled to MDE. En-
gineers have been using constraints to complete the defi-
nition of metamodels for a long time, as it can be found in
implementations combining UML/OCL (e.g., [1]). Con-
straints can be, for instance, checked against one given
model in order to validate it. In our approach we will
always consider metamodels with potential constraints at-
tached. We first formally define the combination:

2

Definition 6 (constrained metamodel). A con-
strained metamodel CMM is a pair < MM,C > where
MM is a metamodel and C is a set (a conjunction) of
predicates over elements of the graph G associated to
MM . We will consider an oracle that, given a model M ,
returns true (noted M ∈ C(MM) where C(MM) is the
set of all valid models) iff M satisfies all predicates from
C.

The conformance relation between a model and its refer-
ence is then naturally extended to constrained metamod-
els.

Definition 7 (constrained conformance). A model
M conformsTo a constrained metamodel CMM iff it
conformsTo MM and M ∈ C(MM).

Many languages can be used to define predicates (i.e.,
constraints) with different levels of expressiveness. In
this article, we will assume the use of OCL, though the
presented work may be adapted to other constraint lan-
guages. Indeed, OCL is widespread, well integrated in
modeling technologies, and expressive (it supports opera-
tors on basic datatypes, sets and relations as well as uni-
versal/existential quantifiers and various iterators).

2.3. Brief introduction to model finding

We call model finding the problem of finding and ex-
hibiting a model (in its broad mathematical acceptance)
from a given definition. Computational techniques for
such problems is a vast area of theoretical and applied
research and relates to various types of decision, satis-
faction and optimization problems. Obviously, finding a
model (in its MDE acceptance) that complies to a con-
strained metamodel is a model finding problem, in which
the search space is implicitly defined by the set of poten-
tial well-formed models. Although this work does not as-
sume any particular model finding technique, focus will be
put on constraint programming (CP), the usual approach
in modeling environments. CP is a declarative program-
ming technique to solve combinatorial (usually NP-hard)
problems. A constraint, in its wider sense, is a predicate
on elements (represented by variables). A CP problem is
thus defined by a set of elements and a set of constraints.
The objective of a CP solver is to find an assignment (i.e.,
a set of values for the variables) that satisfies all the con-
straints. There are several CP formalisms and techniques
[23] which differ by their expressiveness, the abstractness
of the language and the solving algorithms. For instance,
the SAT (boolean SATisfiability problem) formalism. A
SAT problem is to decide if, for a given boolean formula,
each boolean variable can be given an assignment such
that the formula evaluates to true. SAT is known as being
a NP-complete problem [8], and as such any CP problem
can be reduced into SAT
Since SAT is a low-level formalism, manipulating only

boolean variables, higher-level languages have been pro-
posed to ease real problems specifications. One of those

is Alloy [22], an expressive relational language that uses
a built-in compiler (KodKod) to produce SAT problems.
The Alloy tool offers to solve using several underlying SAT
engines and translates solutions back to its relational id-
iom.

3. Model search

We consider the operation that aims at generating a
complete and valid model of a constrained meta-model,
starting with an incomplete (possibly empty) model. We
first propose a formal model-based definition of such a task
as a first-class model operation called model search. We
then describe an example process as a generic pattern for
solver-specific implementations. Finally, we describe a de-
tailed example implementation using Alloy/SAT together
with experiments.

3.1. Model search definition

In order to formally define model search, let us first de-
fine a set of notions that relate to constrained metamodels.

Relaxed metamodels and partial models.

Definition 8 (relaxed metamodel). Let CMM =<
MM,C > (with MM =< G,ω, µ >) be a constrained
metamodel. CMMr =< MMr, Cr > (with MMr =<
Gr,ω, µ >) is a relaxed metamodel of CMM (noted
CMMr ∈ Rx(CMM)) if and only if GMMr

⊆ GMM and
Cr ⊆ C.

In other words, a relaxed metamodel is a less constrained
(and possibly smaller) metamodel. A simple one can
be straightforwardly obtained by the removal of all con-
straints: structural (making references and attributes op-
tional) and external (removing predicates). Computing
such a relaxed metamodel, a simple operation, is called
relaxation in the following. In many frameworks, includ-
ing ECORE-based ones, the relaxed metamodel does not
need to be an additional concrete artifact, since the imple-
mentation is flexible enough to support it.

Definition 9 (partial model, p-conformsTo). Let
CMM =< MM,C > be a constrained metamodel and
Mr a model. Mr p-conformsTo CMM iff it conforms
to a metamodel CMMr such that CMMr is a relaxed
metamodel of CMM (CMMr ∈ Rx(CMM)). Mr is
called a partial model of CMM .

Informally, a partial model is simply understood as being
an incomplete or faulty model.

Model search.

Definition 10 (model search). Let CMM =<
MM,C > be a constrained metamodel, and
Mr =< Gr,MMr, µr > a partial model of CMM .
Model search is the operation of finding a (finite) model

3

Ms =< Gs,MM,µs > such that Gr ⊆ Gs, µr ⊆ µs

(embedding i.e., ∀x ∈ Gr, µs(x) = µr(x)), and Ms

conformsTo CMM .

Informally, model search extends a partial modelMr into a
modelMs conforming to its constrained metamodel CMM
(or generates one when no Mr is given). In the following,
Mr is called the request model, andMs the solution model.
The restriction that Gr is included in Gs could be removed
if the solver supports removal of elements, or this could
be circumvented by re-generating a complete new model,
without the deleted elements.
This operation is illustrated in Figure 1. In other words,

we consider model search as a operation where the re-
quest (metamodel and model) is an instance of a non-
deterministic (often combinatorial) problem and the so-
lution model is one of the results (if any exists). From the
solver point of view, the request metamodel acts as the
problem definition whereas the request model is a given
partial assignment.

ECORE
C2

M3

CMM

C2C2

Model Search

M2

M1

relaxation

p-conformsTo

r M
(request)

CMMr

s M
(solution)

Figure 1: the model search operation

3.2. Model search process

We provide below an example generic process, indepen-
dently of any solver, to explain the usual steps involved
when implementing model search in a modeling environ-
ment. This software chain is illustrated in Figure 2, where
dark gray squares are solver-specific parts. It is composed
of 5 main tasks.
1) Problem definition generation: this task, illus-

trated by the CMM2SP transformation, expresses the
constrained metamodel as a solver problem definition.
However, the CMM2SP arrow is a simplified view of
the operation, since there are actually two source mod-
els as input to the transformation. Figure 3 shows the
actual transformation and its simplified view. The meta-
modelMM contains the structural constraints, which may
be expressed, for instance, by ECORE. However, typical
model search applications require more complex domain

constraints (e.g., to set up a maximum cardinality value
for an attribute). These domain constraints are expressed
in the constraint model C, which can, for instance, con-
form to the OCL metamodel. The constraints refer to the
elements of MM . Thus, a combination of ECORE+OCL
could be one pair of input models.

The difficulty of expressing a constrained metamodel as
a solver problem is highly dependent on the abstraction
level and the basic elements offered by the target solver.
Some implementation issues will be discussed in Subsec-
tion 3.4.

2) Partial assignment generation: this task is illus-
trated by the M2SP transformation. It takes the request
Mr as input and generates the corresponding partial as-
signment for the solver. Here the main difficulty is that
the input metamodel MM is domain dependent, which
means it may be different according to the search problem
being considered. Since many transformation languages
consider the input metamodel as un-changeable, it would
imply writing a different transformation M2SP for every
considered metamodel MM . Clearly, this is undesirable.
We propose a solution using multi-level transforma-
tions. A multi-level transformation is a model transfor-
mation that takes as input the domain model M and also
the domain metamodel MM and that produces as output
the solver partial assignment. This transformation is im-
plemented using reflection. More detailed explanations on
this multi-level transformation are given together with an
implementation in Section 3.4.

It is important to note that many solvers do not separate
the problem definition and the partial assignment: they
are usually expressed using the same language/code. For
that reason, both share the same “solver problem” meta-
model. When this is not the case, the process is easily
adapted by separating the partial assignment metamodel
from the problem definition metamodel.

3) Engine program extraction: this task extracts
the solver problem model into its parsable or executable
format. Any classic model-to-text or model-to-code mod-
eling technologies can be used here.

4) Solver execution: the generated solver
file/program is executed in order to obtain solutions.
When the search succeeds (i.e., there is at least one
solution), we obtain a solution in the solver export
format. The most common are XML or grammar-based
text files.

5) Solution injection: this last task converts the so-
lution(s) produced by the solver as model(s) of the orig-
inal search metamodel MM . It is natural to decompose
the operation into two sub-tasks: injecting the solution
into the modeling environment based on the solver output
format, then transforming to a model conforming to the
original search metamodel MM . We have considered in
this example process that the engine generates an XML
file. Therefore we first do a straightforward injection of
the XML solution in the modeling environment. If the
solver rather produces grammar-based files, this can be

4

ECORE
C2

modeling

CMM

solver
solution

C2

M2SP

CMM

C2

solver problem
metamodel

solver
problem

C2

CMM2SPC2

SS2M

EBNF
C2

solver

SP.g

SP

C2

C2

SS.g

SS

C2

run

Relaxation

Model Search

model transformation

multi-level model transformation

model projection

C2

 solver solution
metamodel

r M
(request)

C2 C2

s

r

 M
(solution)

search
options

Figure 2: Model search example implementation process in a modeling environment

ECORE
C2

real view

OCL

C

C2

C2

CMM

C2

solver problem
metamodel

problem
definition

C2

MM

C2

ap
pli

es
To

CMM2SP

simplified view

C2

CM
M

2S
P

C2

satisfies

ECORE
C2

ECORE
C2

s M
(solution)

s M
(solution)

Figure 3: Generation of the problem definition

replaced by a classic text-to-model parser-based injection.
Then we transform the output to a model conforming to
MM (M2SS in Figure 2). For the same reasons as the
M2SP transformation, SS2M is a multi-level transfor-
mation: it takes MM as additional input and generates
a model Ms. Again, more detailed explanations on this
unusual multi-level transformation will be given in the ex-
ample implementation.

3.3. Implementation of the generic part of the process

This part of the implementation regroups all the model
search software parts (UI and API) that are solver-
independent. This is of primary importance so that other
model operations, presented in Section 4, can be defined
independently from any solver-specific implementation.
The implementation is distributed under the EPL license
as a set of Eclipse plugins that are available for download
at the MOS GitLab1. It is completely modular and exten-
sible: the alternative solver-specific implementations are
discovered through Eclipse’s extension point mechanism.
The plugins are divided in 4 main components:

1MOS GitLab: https://gitlab.massidia.net/mos/software

1. Launch configuration: creates a launch configuration
to set up the running parameters, which are the input
and output models, metamodels and constraints.

2. SolverChain: it is the main API, which provides a set
of classes and extension points for all the transforma-
tions of the chain, which need to be executed in the
chain order. When the solvers need additional spe-
cific parameters for execution, they can be forwarded
through a property/value list, called model search op-
tions, and then handled by the transformation.

3. Solution explorer : many existing solvers may produce
more than one solution as output after the execu-
tion of the transformation chain, in other words, en-
abling several executions of the 4th task (solver ex-
ecution). This component targets this kind of fea-
ture: it takes the result from the transformation chain
and navigates through the generated solutions. It
deals with the common fact that the solvers may
produce zero, one or more solutions, and allows the
user to create/browse through different solutions un-
til a satisfying one is found. An initial pool of solu-
tions (if any, and possibly just the first) is considered.
If the underlying solver chain is incremental, it will
be asked to produce additional solutions dynamically
when needed.

4. Standalone launch: set of plug-ins to enable the stan-
dalone execution of the chain, i.e., from command line
and without the need to launch Eclipse.

The SolverChain (2) contains the core implementation
of the approach. The Launch configuration (1), Solu-
tion Explorer (3) and Standalone launch (4) components
compose the technical backup for the interaction with
users/developers.

3.4. Example implementation of the solver-specific part
using Alloy/SAT

In order to highlight the main challenges that may arise
when implementing a solver chain, we provide an example

5

using Alloy/SAT as the solver language/engine. In the fol-
lowing, each step of the process implementation is detailed
and inherent issues are discussed. Additionally, the clear
separation in different steps allows a modular reuse of our
implementation. To this aim, the presented software chain
is provided as a set of freely-available independent Eclipse
plugins. If a different solver would be used, all the steps
in this section should be implemented. 2

3.4.1. Alloy/SAT

The SAT paradigm has clear limitations: it requires a
finite set of boolean variables and only offers a low-level
predicate language (only negation, disjunction and con-
junction are supported). However, [22] introduced an ex-
pressive relational language (Alloy) with a built-in compi-
lation (KodKod engine) that allows the use of many recent
SAT solvers. We will thus use Alloy as our target search
engine language in order to ease the transformation defi-
nition.

Alloy allows for expressing complex predicates using
atoms (un-dividable elements), sets (of atoms), relations,
quantifiers (universal or existential), operators for rela-
tions traversal, etc. However, due to the properties of SAT
problems, Alloy cannot be considered as a true first-order
logic solver. Indeed, to be able to translate the problem
into SAT, a scope needs to be given to each typed set,
which limits the number of atoms that can be contained
in the set.

In Alloy every element is either an atom or a relation,
but the language is exclusively based on relations. A re-
lation is a set of tuples, which indicates how atoms are
related, with a given arity. Indeed, there is no notion of a
set: a set is represented by an atom, which has a relation
that maps to the contents of the set. The main artifacts
that we will manipulate in the Alloy language are:

• Signatures, declarations of sets, for which the body
may contain fields as relations to other signatures.
Attributes are treated the same as any relation.
Scalars, similar to signatures, are treated as sets of
atoms. Signatures also support a form of single in-
heritance.

• Facts, declarations of predicates, with quantifiers and
an important number of logical, scalar and set opera-
tors available.

• Functions, which are specific implementations of Al-
loy built-in functions, such as max, min or plus. The
functions may have a direct transformation from the
input models, or may need a specific transformation.

2We have implemented in [30] translation from the ILOG/CP
solver. Despite being based on different concepts, it provided a high-
level language abstracting the solver implementation, thus many of
the transformation rules had similar structure.

3.4.2. Alloy metamodel and extractor

We developed a metamodel of the Alloy language, which
an excerpt is represented in Figure 4 as an ECORE dia-
gram (we have omitted part of the references to improve
readability). It is the target metamodel for the gener-
ation of the problem definition (task 1) and the partial
assignment (task 2). This metamodel shows that an Alloy
program is composed by a Module, which is composed by
a set of declarations. These declarations may be special-
ized into: 1) types, where a Signature is a type, composed
by Fields, 2) functions, with its corresponding parameters
and 3) facts, which are used to express the problem con-
straints. These facts are written using different kinds of
expressions.

We also developed an extractor allowing to produce Al-
loy textual files from Alloy models (task 3). The generated
files help to prototype and to find for errors in the interme-
diate models. It is implemented using the Acceleo tool3.
A different option would be to use directly the Alloy Java
library, without files generation.

3.4.3. Generation of the problem definition

We divided task 1 into two transformations, respectively
from ECORE and OCL, to our Alloy metamodel. They are
fully declarative and implemented using ATL [25], which
is a framework and language for developing and executing
model transformations, transforming source models into
target models.

The ECORE to Alloy (ecore2msalloy.atl) transforma-
tion aims at expressing the structural constraints of a
metamodel. An excerpt of the mapping is presented in
Table 1.

ECORE concept Alloy concept

EPackage Module
EDataType ExternalType and ExternalModule

EClass Signature
EAttribute Field
EReference Field

EStructuralFeature multiplicity Multiplicity and/or Fact
EReference containment Fact

EReference opposite Fact

Table 1: Excerpt of the mapping from ECORE concepts to Alloy
concepts

In this transformation, ECORE classes are mapped to
Alloy signatures. Alloy has direct support for abstract
and (single only) inheritance. ECORE attributes and ref-
erences are mapped to Alloy fields. Alloy’s fields only sup-
port four multiplicity declarations: lone (0-1), one (1-1),
some (1-*) and set (0-*). Therefore, other multiplicity
lower/upper bounds are turned into corresponding cardi-
nality facts. References properties are turned into facts
(i.e., a predicate for the containment or opposite con-
straint). Finally, attribute’s data types are turned into
the corresponding Alloy type. Alloy directly supports
booleans, integers and strings. Though strings have some

3http://eclipse.org/acceleo

6

Figure 4: Excerpt of the Alloy metamodel

basic support in Alloy, it comes with several limitations
due to the fact that they are treated as scalars: any string
usable value must be declared (i.e, Alloy will never gener-
ate a string value by itself), and only the equality oper-
ation is supported. This solver-specific limitation will be
further discussed in Section 3.5.
The OCL/Alloy transformation (oclmdt-

pivot2msalloy.atl) aims at expressing metamodel in-
variants as Alloy facts. Concretely, we use the OCL
parser offered by the Eclipse project and run the trans-
formation on the resulting OCL Pivot model. An excerpt
of the mapping is presented in Table 2, with the corre-
sponding concrete syntax. The output Alloy expression
is a composition of concepts; the right column shows
only the top-level one. We do not map the entire OCL
specification, but only the features that are supported by
the Alloy specification. In other words, the input language
expressiveness is limited by the solver capabilities. While
this may be undesirable, a complete mapping would
only be possible if both languages would have equivalent
semantics.
The combination of these two (ECORE/Alloy,

OCL/Alloy) transformations corresponds to the CMM2SP
transformation in Figure 2.

3.4.4. Generation of the partial assignment

When the model search chain is ran on a non-empty
request Mr, this model has to be turned into a partial as-
signment for the solver. Here again, we developed a rule-
based transformation implemented using ATL. The main

difficulty is that the source (search) metamodel MM is
unknown to the transformation developer. However, the
structural semantics of the model do not depend on this
metamodel: they are solely based on the fact that the
model contains objects of ECORE classes and may op-
tionally have their structural features (partially) defined.
In other words, the type of solver instances and concepts
that are created do not depend on the original metamodel.
This allows to write metamodel-independent rules in what
we called multi-level transformation. Its main principles
are shown in Figure 5.

The transformation (model2msalloy.atl) has three in-
puts: the (request) model, its (search) metamodel, and the
problem definition conforming to the solver metamodel.
The latter one is required since the partial assignment is
obviously related to its problem definition.

The implementation of this transformation is done using
ATL lazy and imperative rules and by accessing the meta-
model and model elements using reflection. This is neces-
sary because we do not know the type of the input elements
in advance. We are not aware of any technique allowing to
implement matched rules (declarative) and that are cou-
pled with reflection, nor of any declarative transformation
language supporting this specific matching together with
our requirements.

Consider for instance the necessity to transform an input
model element into a Signature in Alloy. Since we do not
know the domain, we develop a transformation rule that
transforms an EObject into a Signature. We list an excerpt
of the transformation below with its main aspects.

7

OCL Pivot main concept [concrete syntax] Alloy main concept [concrete syntax]

CollectionLiteralExp [Set”a”] SetExpression [”a”]
IteratorExp (collect) [source->collect(exp)] NavigationExpression [source.exp]

IteratorExp (forall) [source->forAll(i [: B]| P)] QuantificationExpression [all i:source | [i in B and] P]
IteratorExp (exists) [source->exists(i [: B]| P)] QuantificationExpression [some i:source | [i in B and] P]

IteratorExp (one) [source->one(i [: B]| P)] QuantificationExpression [one i:source | [i in B and] P]
IteratorExp (any) [source->any(i [: B]| P)] ComprehensionExpression [i:source | P]

IteratorExp (closure) [x->closure(p)] NavigationExpression [(x.*p)]
OperationCallExp (oclAsType) [x.oclAsType(T)] OperationExpression [x :> T]
OperationCallExp (oclAsType) [x.oclIsTypeOf(T)] ComparisonExpression [x in T]

OperationCallExp (includes) [x->includes(y)] ComparisonExpression [y in x]
OperationCallExp (union) [x->union(y)] ComparisonExpression [x + y]
OperationCallExp (size) [exp->size()] SetCardinalityExpression [#exp]
OperationCallExp (min) [A.i -> min()] IntegerSetFunctionExpression [min[A.i]]

OperationCall (unknown) ExternalFunction

Table 2: Excerpt of the mapping from OCL to Alloy

ECORE
C2

M3

MM
solver problem

metamodel

partial
assignment

C2C2

M2

M1

multi-level
transformation

(m2sp)

problem
definition

C2

basedOn

basedOn

r M
(request) appliesTo

Figure 5: Principles of the multi-level transformation applied to the
partial assignment generation

unique lazy rule EObject2Sig {
from

o: ECORE!EObject
using {

attNavExp: MSAlloy!NavigationExpression = OclUndefined;
attExp: MSAlloy!Expression = OclUndefined;

}
to

oSig: MSAlloy!Signature (
id <- o.eClass().name +

thisModule.classObjectsCounter.get(o.eClass()).toString(),
-- setting up unique signatures and extending the input class
multiplicity <- #one,
"extends" <- MSAlloy!Signature.allInstancesFrom(’MMA’)->

select(s | s.id = o.eClass().name)->first()
do { -- obtaining a given structural feature

for(att in o.eClass().eAllAttributes) {
if(not o.refGetValue(att.name).oclIsUndefined()) {

attNavExp <- thisModule.EStructuralFeature2NavExp(oSig, att);
if(att.eAttributeType.name = ’EInt’)

attExp <- thisModule.EIntAttribute2EqualsExp(o,att,attNavExp);
thisModule.CreateFact(attExp);

}
}
-- creates a navigation expression for a pair
-- (object)signature / structural feature
-- i.e. someObjectSignature.someStructuralFeature
rule EStructuralFeature2NavExp(oSig: MSAlloy!Signature,

sf: ECORE!EStructuralFeature) {
to

navExp : MSAlloy!NavigationExpression (
leftExp <- objectIDExp,
rightExp <- sfNameExp

),
objectIDExp: MSAlloy!VariableExpression (

variable <- oSig.id
),
sfNameExp: MSAlloy!VariableExpression (

variable <- sf.name
)

do {
navExp;

}
}

-- creates a comparison expression, to set up the property value
-- i.e. someObjectSignature.someIntegerAttribute =

ObjectAttributeIntegerValue
rule EIntAttribute2EqualsExp(o: ECORE!EObject,

att: ECORE!EAttribute,
attNavExp: MSAlloy!NavigationExpression) {

to
equalsExp: MSAlloy!ComparisonExpression (

comparisonOp <- ’=’,
leftExp <- attNavExp,
rightExp <- attValueExp

),
attValueExp: MSAlloy!IntegerValue (

value <- o.refGetValue(att.name)
)
do {

equalsExp;
}

}

It contains 3 rules, one for the current element, one cre-
ating a navigation expression and one for the specific data
type found. The Alloy language does not have dedicated
constructs enabling the declaration of a partial assignment,
i.e., it does not allow to directly define sets of atoms (to
account for existing objects) or relations tuples (to account
for existing structural features values). However, this can
be circumvented using respectively unique signatures and
facts.

Singleton signatures are sets that can only contain one
atom. For each source object, we thus create a unique
signature (multiplicity equals to 1) that extends the ob-
ject’s class corresponding signature (shown in the extends
assignment). A unique name has to be generated for each
object’s signature, so we use its class name followed by an
object counter.

We then create facts (CreateFact rule) to account for
structural features and its values (this rule is not presented
at the transformation excerpt, since its implementation is
simple). It receives a navigation expression that depends
on the input object type. But, for a given object, we do
not know the names of its structural features, so it is nec-
essary to create a loop over all the attributes and to obtain
their values through reflection (refGetValue method). We
create an equality navigation expression: the left side has
the object variable and its attribute name (EStructuralFea-
ture2NavExp rule); the right side has the given attribute

8

value, which can be any data type. In this example code,
we show the conditional expression for an Integer value
(EInt type), where we call a specific lazy rule (EIntAt-
tribute2EqualsExp). Each kind of attribute need to have
one lazy rule (e.g., for EString, EBoolean or other objects).
The same kind of loop is implemented for the object ref-
erences.

Additionally, the transformation accepts a model search
option that allows to freeze structural features of objects.
This is realized by creating an additional constraint on
the field for the object’s corresponding unique signature,
which cardinality must then be equal to the number of
actual values in the original structural feature.

Similarly to task 1, the resulting partial assignment is
processed by our Alloy extractor which generates its cor-
responding Alloy file.

3.4.5. Solver execution

Now that the problem definition and optionally a partial
assignment have been generated, we may ask the solver en-
gine to calculate solutions (if any). For this, we generate
a master Alloy file containing the Alloy command to be
executed, and the necessary imports to all previously gen-
erated files. The solver execution in Alloy needs 4 model
search options: scope: the amount of used elements; SAT
solver : the SAT solver to be used, e.g., SAT4J ; Bitwidth:
the integers allowed range and generate a single module:
to generate only one Alloy module with all the specifica-
tions. If any scope was given, its class bounds are added
to the command parameters as specified by the Alloy lan-
guage. Otherwise, Alloy will use its default global bound.
Depending on the used solver, its solving capacities may
differ according to the implementation. For instance, a
specific solver could provide support to (non)monotonic
operations.

3.4.6. Generation of the solution model

A model search user expects the output(s) as model(s)
conforming to the original search metamodel MM . The
generation of these solution model(s) corresponds to task
5 of our example process.

The Alloy/SAT solver may generate more than one so-
lution, depending on the specified models and constraints.
When this happens, we take the first generated solution
to generate the solution model. However, the user may
iterate over any of the generated solutions, and generate
the corresponding solution models. Each time the solver
generates a new solution, task 5 is divided into two sub-
tasks (as shown in Figure 2). First we use EMF’s built-in
features to generate a model conforming to Alloy’s XML
schema metamodel.

The second subtask (SS2M) in Figure 2 is the transfor-
mation of the resulting model into a solution model con-
forming to MM . Again, we implemented it using ATL
(MSAlloyInstance2Model.atl). Similarly to the partial as-
signment generation task, the difficulty here is that the

target metamodel is unknown to the transformation de-
veloper. We therefore apply again the multi-level trans-
formation technique used for task 2. Its application to
the generation of a solution model, independently from a
specific solver, is illustrated in Figure 6. It receives as pa-
rameters the solver solution model and also the metamodel
of the output solution, in order to discover the type of the
elements that need to be generated.

ECORE
C2

M3

solver solution
metamodel

solver
solution

C2C2

M2

M1

multi-level
transformation

(ss2m)

MM
basedOn

basedOn

s M
(solution)

Figure 6: Principles of the multi-level transformation applied to the
solution model generation

We need to consider two types of elements from the in-
put model: atoms and relations tuples. Atoms, when they
belong to the set of a signature that was generated from
a class, yield class objects. Other atoms can be either
datatype values (which use a specific signature) or built-in
elements from the Alloy specification.

Relation tuples yield the assignment of an object’s struc-
tural feature value, which name is the relation name. The
first element of the tuple is always an atom that corre-
sponds to the source object. The second element can be
either a class object atom (in the case of a reference tar-
get), or a datatype value atom (in the case of an attribute
value).

As a side implementation note, it can be noted that the
first rule creates an object whose type can only be known
during rule execution. The second rule assigns a structural
feature value to an object created by another rule. ATL
matched rules do not support creating an object with a
dynamically computed class, nor does it support assigning
properties to objects created in another rule. Therefore we
again use some ATL imperative constructs in the transfor-
mation. To the best of our knowledge, there is no existing
declarative transformation language supporting these fea-
tures.

3.5. Example and results

To illustrate the model search process, we provide re-
sults on two use cases: a class diagram (CD) generation
example [34] and a hierarchical state machines (HSM) ex-
ample [35], where the specifications were adapted from

9

literature to be implemented in our framework. In both
cases, the goal is to set up a simple metamodel and then to
generate a solution with specific properties given by a set of
constraints written in OCL. There is only one possible so-
lution for a given number of classes/states. Our objective
here is not to study absolute performance but rather the
general behaviour: indeed our example Alloy/SAT solver
chain only illustrates the approach and does not include
any special solving optimization.
We show the class diagram metamodel in Figure 7. It

states that the generated solution will have only packages,
classes and attributes.

Figure 7: Class Diagram metamodel for Model Search

The additional OCL constraints for the instances gener-
ation are shown below. The goal is to generate attributes
with different names withing the same class, by numeri-
cally increasing the name of the attributes. The complete
Alloy program generated for this specification is listed in
Appendix A.

context Class inv differentNames:

Class.allInstances()->excluding(self)->

select(c | c.name = self.name)->size() = 0

context Class inv hasOneAttribute:

attributes->size() = 1

context Class inv noParentRelationship:

parent->size() = 0

context Attribute inv attributeName:

name = owner.name

context Attribute inv attributeNamePositive:

name >= 0

context Class inv classNamePositive:

name >= 0

We show in Figure 8 the metamodel used for the HSM
example. The metamodel is formed by a root state ma-
chine, which can be formed by simple or composed states.
They are connected by incoming or outgoing transitions.
Their corresponding constraints are illustrated in the

following. The constraints are more complex than in the
class diagram example, since they need to guarantee the
nested structure, the state machine and transition names,
and that transitions need to connect to one ongoing and
one outgoing state. The explanation of each constraint is
done in the code comments.

Figure 8: HSM metamodel for Model Search

-- prevent states self inheritance
context HState inv inheritance:

not self->closure(container)->excluding(self)->includes(self)

-- positive names
context HState inv positiveName:

name >= 0
-- names limited to overall number of states
context HState inv maxName:

name <= HState.allInstances()->size()
-- different names for all top states
context HState inv differentNames:

container->size() = 0 implies HState.allInstances()->excluding
(self)->select(s | s.container->size() = 0)->select
(s | s.name = self.name)->size() = 0

-- limit top-states name to number of top-states
context HState inv maxTopName:

container->size() = 0 implies name <= HState.allInstances()->
select(s | s.container->size() = 0)->size()

-- names of top states span over all integers
context HState inv incNames:

self.name > 0 implies HState.allInstances()->select
(s | s.container->size() = 0)->select(s | s.name = self.name-1)
->size() > 0

-- name = container -1 for non-top states
context HState inv nonTopNames:

self.container->size() = 1 implies name = container.name - 1
-- top-states (except first/last) are composite
context HState inv topIsComposite:

container->size() = 0 and self.name > 0 and HState.
allInstances()-> select(s | s.name> self.name)->size() > 0
implies HCompositeState.allInstances()->includes(self)

-- limit hierarchy size to state name
context HCompositeState inv limitHierarchySize:

self->closure(composedOfStates)->size()-1 <= name
-- all but last top-state must have full hierarchy
context HCompositeState inv setHierarchySize:

container->size() = 0 and HState.allInstances()->select(s |
s.name > self.name)->size() > 0 implies self->
closure(composedOfStates)->size()-1 = name

-- overall number of transitions
context HStateMachine inv nbTransitions:

HTransition.allInstances()->size() = HState.allInstances()->
size() - 2

-- prevent self transitions
context HTransition inv noSelfTransition:

not (self.source = self.target)
-- each state has at most one outgoing transition
context HState inv atMostOneOutgoingTransition:

outgoingTransitions->size() <= 1
-- transitions have source and target with same name
context HTransition inv equalST:

self.source.name = self.target.name - 1
-- transitions have source and target in different hierarchy
context HTransition inv differentHierarchy:

not self.source->closure(container)->includes(self.target)

These two examples are injected into the model search
chain to be executed by the solver. Note that for each
example, it is necessary to inject the metamodel and

10

its instances (partial assignment). The generic multi-
level transformation avoids having one transformation
CD2Alloy and another one HSM2Alloy.
As in the original example, we observe the computa-

tional behaviuor when gradually increasing the number of
elements (i.e., instances of the metamodel classes) in the
requested solution, from 2 to 32 (CD) or 26 (HSM) ele-
ments. Here we always start from the same initial model
containing only a root element. We first provide experi-
ments on the class diagram generation problem with differ-
ent global scopes (a mandatory parameter for Alloy and
most existing solvers) to observe the impact on perfor-
mance. Then we compare results on the same problem
using either the SAT4J or MiniSAT back-end.
In all these experiments we focus on the model finding

times, excluding the problem (resp. solution) generation
(resp. extraction). Indeed, due to exponential combina-
torial search, the former is a decisive factor in the over-
all computational behaviour. The latter, pseudo-linear in
practice, soon becomes negligible (plus the problem only
needs to be generated once). We provide the average val-
ues based on 20 runs of each problem on a 16Gb Xeon
3.3Ghz linux computer using Alloy 4.2. Results are sum-
marized in Figure 9. The examples and full experiments
are available for reproduction in [2].
The top figure presents results with different scopes us-

ing MiniSAT with a fixed integer bitwidth (5). The ratio
2:1 denotes that the global scope is set to twice the num-
ber of requested classes. These results show that the scope
has an important impact on the computation times. In-
deed a higher scope results in a higher number of boolean
variables in the generated SAT problem thus potentially
inducing a higher number of branches to explore (despite
mitigation by symmetry breaking). Although a smaller
scope is in general better for performance, our experience
shows that choosing the right scope is tedious and largely
problem-dependant. Similar effects can be observed on
problems with numerical constraints when varying the in-
teger bitwidth (which defines the range of integer values).
Since Alloy translates integers to sets of boolean (one for
each value), this again results in a higher number of vari-
ables and thus a similar combinatorial impact. Finally,
in most of our experiments, we can observe occasional
gaps (resp. peaks) caused by specific instances being eas-
ier (resp. harder) for the solvers built-in optimizations.
The bottom figure shows the results for our state machines
generation example. We defined complex constraints that
mix integer and set computations so that the hierarchy
size for top states increases with the problem size. We can
indeed observe a higher computational cost than for the
class diagrams generation example.
These experiments indicate that Alloy/SAT may not

be the best solver choice for a number of problems,
particularly those involving various numerical constraints
or those where it is hard to guess the approximate number
of instances in the solution. This confirms the interest
of having a solver-agnostic model search approach,

1/2 1/4 1/6 1/8 1/10 1/12 1/14 1/16 1/18 1/20 1/22 1/24 1/26 1/28 1/30 1/32

0

1000

2000

3000

4000

5000

6000

1:1 2:1 3:1 4:1

number of initial elements / number of final elements

tim
e

(m
s)

(a) Generation of class diagrams: varying scope ratio
(bitwidth=5, MiniSAT)

1/4 1/6 1/8 1/10 1/12 1/14 1/16 1/18 1/20 1/22 1/24 1/26

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

HSM

number of initial elements / number of final elements

tim
e

(m
s)

(b) Generation of state machines (fixed scope, MiniSAT)

Figure 9: Results on the generation problems

allowing users to select a method depending on their
problem characteristics. We believe that, generally, model
search would benefit from a solver that does not impose
scope restrictions. Unfortunately, efficient solvers which
allow on-the-fly instance creation are not convincingly
demonstrated in the literature. Finally, although this is
more obvious on complex problems or on large scales,
an exponential behaviour can always be observed when
the size of the problem grows. This is expected from
a combinatorial solver but limits usability when using
a SAT-based solver that can only cope with small to
medium size problems [22].

4. Transformation as search

In the following we present our generalization of model
search to model transformation/update operations by con-
sidering multiple metamodels (sources and/or targets) to-
gether with the transformation specification as a single
model search input. This operation is called transfor-
mation as search (TAS). The main idea is to define the
transformation/update as a set of relations and constraints
between elements of the metamodels that are to be re-

11

lated (these may be called weavings). All these artifacts
are then unified into a transformation metamodel. By ap-
plying model search on this unified metamodel, a model
which contains target model(s) is created. A major fea-
ture of the approach is that the operations which yield the
model search problem are completely solver-independent,
thus allowing to directly use any underlying model search
implementation. Additionally, since TAS solely uses basic
modeling elements (metamodels and constraints), no spe-
cific transformation language is introduced. However, one
could define a higher-level language to ease the writing of
specifications (or use an existing language) and them im-
plement a translation into a weaving metamodel and its
constraints.

Another important feature is that the operation is in-
herently bi-directional and incremental: the same spec-
ification can be used to generate any (or extend previ-
ously existing) weaved models. Indeed, in a TAS opera-
tion, source/target metamodels are treated equally in the
specification and only make sense once a given transfor-
mation scenario has been requested. In the following, we
will thus call the weaved metamodels input metamodels
instead of source/target metamodels. Finally TAS is not
restricted to one-and-one scenarios: any number of input
metamodels can be weaved within a single specification.

In the next subsections, we first introduce a running
example and three possible scenarios. We then formally
define the TAS operation and the different steps involved,
with illustrations on the first classical scenario (creation
of a target model from a source model). We then present
how TAS can be applied to the running example for the
two other scenarios: reverse transformations and updates.
Finally, we describe our TAS implementation and provide
some experimental results.

4.1. Running example

The chosen example is a transformation between a class
schema model (MMCS) and a relational schema model
(MMRS), known as the Class2Relational transformation.
We have chosen this use case as illustration because it
is well-known and rather simple (allowing the reader to
quickly grasp the involved domain concepts) and has been
studied in other works to demonstrate different aspects
about transformation languages (such as [40], [33], and
others). The transformation input metamodels are pre-
sented at both sides of Figure 10 (some elements have been
omitted to improve readability).

The first scenario is the traditional creation of a rela-
tional schema (the target model) from a class schema (the
source model). The second scenario is the reverse trans-
formation: creation of a class schema from a relational
schema. The third scenario is an update: both models
pre-exist, then the class schema is modified and the rela-
tional schema needs to be updated accordingly.

We will apply the scenarios on a “Family” class schema
illustrated at the top of Figure 11. The bottom part is a

relational schema created by the first scenario, and is also
the source for the second scenario.

4.2. Transformation as search process
The complete TAS process is illustrated in Figure 12. It

consists of three main steps: creating the model search
problem, running the search, then isolating the target
models from the solution model. Creating the model
search is itself composed of two subtasks: creating the
search metamodel (i.e., the problem definition, here called
the transformation metamodel) and creating the search
request (i.e., the partial assignment, here called the trans-
formation request). Each of these tasks is formally defined
and detailed in the following along with its illustration on
our example’s first scenario.

4.2.1. Obtaining the transformation metamodel by unifi-
cation

The first step is to obtain a transformation meta-
model, called CMMT , by unification of the input
({CMM0, . . . , CMMn}) and weaving (CMMW) meta-
models. This part of the process is independent from the
chosen transformation scenario.

In our example, these are respectively the class schema
structure (left part of Figure 10), the relational schema
structure (right part), and a set of weaving elements and
constraints (middle part, constraints are not shown in the
Figure). The application of this operation to our example
is illustrated in Figure 13. Its result is the whole Figure
10.

Metamodel unification is a simple operation, consisting
merely in copying and combining the inputs into a new
metamodel. Formal definitions of CMMW and CMMT

are given below:

Definition 11 (weaving metamodel). We call weav-
ing metamodel between {CMM0, . . . , CMMn}, a con-
strained metamodel CMMW defined by
CMMW =< MMW , CW >, where MMW and CW are
respectively a set of metamodel elements and constraints
that define the weaving relationships between the elements
of {CMM0, . . . , CMMn}.
In ECORE, the weaving metamodel targets the input
metamodels elements through the use of cross-model ref-
erences.

Definition 12 (transformation metamodel).
Let CMMW be a weaving metamodel and
{CMM0, . . . , CMMn} the set of weaved metamod-
els. We call transformation metamodel the constrained
metamodel CMMT defined by CMMT =< MMT , CT >,
where MMT = MM0 ∪ . . . ∪ MMn ∪ MMW and
CT = Ci ∪ . . . ∪ Cn ∪ CW . The operation consisting in
obtaining CMMT is called metamodel unification.

Obviously, in ECORE, metamodel unification turns cross-
model references in the weaving metamodel into intra-
model references in the transformation metamodel.

12

Figure 10: Extract of the running example transformation metamodel as an ECORE diagram. Input metamodels are on the sides, weaving
metamodel is in the middle.

Figure 11: Source and target models from the running example (sce-
nario 1) as instance diagrams

4.2.2. Creating the transformation request by unification

The next step is to define the transformation request
(which will act as the model search request). The request
depends on the chosen scenario, which is defined by set-
ting a behaviour on each model of the input metamodels.
Three behaviours are supported: generate, freeze and ex-
tend. These behaviours allow the selection of a scenario
by specifying which models are part of the request and
which should be generated. Also whether or not they can
be modified in the final solution. “generate” means that
the model does not yet exist and should be created by
the transformation. In other words, it is a target model

created from scratch. “freeze” means that the model ex-
ists and should not be modified by the transformation.
In other words, it is an immutable source model. Finally
“extend” means the model exists but may be modified by
the transformation. In other words, it is both a source
and a target model. The different combinations of these
behaviours give birth to the potential scenarios. In our ex-
ample’s first scenario, the classical Class2Relational trans-
formation, the class schema is set to “freeze” while the
relational schema is set to “generate”.

The transformation request is obtained by unification
of all source models and optionally a weaving model (the
latter is a previous transformation trace and can be used
for update scenarios).

Definition 13 (transformation request). Let
CMMT be a transformation metamodel created
from a set of input (and weaving) metamod-
els S = {CMM0, . . . , CMMn, CMMW }. Let
s = {M0, . . . ,Mp,MW } be a set of source (and weaving)
models (where ∀M i ∈ s, M i conforms to CMM i ∈ S).
We call transformation request for CMMT the model
MT

r defined by MT
r = M0∪ . . .∪Mp∪MW . The operation

consisting in obtaining MT is called model unification.

The definition above encompasses all scenarios to de-
pict the unification. However, some of the models can be
empty/absent, depending on the scenario. This means the
weaving model is optional when defining one new instance,
but it is always used or generated if not existing. In our
example’s first scenario, there is only one source model
and no previous trace, the transformation request there-
fore simply consists in a copy of the class schema model
elements, which is the “Family” class schema at the top of
Figure 11.

13

M

ECOREM3

CMMCMM

MM

M2

M1

r

r

TT

T T

CMM

 M

0..n

source
models(solution)

model search

TAS

model unification

input
metamodels

s
0..p

CMM

C2

W

W

 optional
original trace

o M
target
models

0..q

model separation

M
W

trace

t

metamodel unification

(request)

weaves

weaves

relaxation

Figure 12: Transformation as search process

ECOREM3

CMMM2 T

CMMCS

CMMW

weaves

weaves

unification

CMMRS

class schema
model

rel. schema
model

ClassAndRel
specification

Figure 13: Obtaining the example transformation metamodel by uni-
fication

4.2.3. Running model search

The next step is to run model search on the previ-
ously defined problem. From definition 10, a valid model
search request (here the transformation request) must be a
partial model of the search metamodel (here the transfor-
mation metamodel CMMT). For any TAS problem, this
property is ensured by the following proposition:

Proposition 1. Let CMMT be a transformation meta-
model. Any transformation request for CMMT is a par-
tial model of (or p-conformsTo) CMMT .

Proof 1. From definition 9 of p-conformsTo, it resolves
to finding a relaxed metamodel
CMMT

r =< MMT
r , CT

r >∈ Rx(CMMT) such that MT
r

conformsTo CMMT
r . From definition 7 of conformance,

this requires that (1) MT
r conformsTo MMT

r and (2)
MT

r ∈ C(MMT
r).

Let CMMT
r be the relaxed metamodel of CMMT such

that MMT
r = MMT and CT

r = ∅ (i.e., the one obtained

by removing all constraints). (2) is obviously true since
there are no predicates to satisfy. (1) requires that MMT

r

can be a reference model of MT
r , i.e., its graph GT

r con-
tains all nodes (meta-elements) targeted by the graph gTr
of MT

r . Let S = {MM0, . . . ,MMp,MMW } be the in-
put and weaving metamodels. (1) is clearly true since on
one hand, by definition 12 of CMMT we have ∀MM i ∈
S,MM i ⊂ MMT (in particular Gi ∈ GT), and on the
other hand MMT

r = MMT (in particular GT
r = GT).

In other words, since each input metamodel (as well as
the weaving metamodel) is a subset of the transformation
metamodel and each source model conforms to an input
metamodel, any transformation request p-conformsTo to
the latter.

The model search operation extends the transformation
request MT

r into a solution model MT
s that conforms to

CMMT (when there are solutions). By satisfying weaving
constraints, search thus produces a solution model which
contains both source/target model elements and weaving
model elements (these can be understood as the transfor-
mation traces). Additionally, model search ensures that
models satisfy their own metamodel constraints, effectively
preventing the creation of ill-formed target models. In our
example’s first scenario, the solution model, without the
transformation trace, is shown in Figure 11.

4.2.4. Obtaining the target models and transformation
trace by separation

The final step is to isolate the target models contained
in the solution model as independent models. This opera-
tion, the reverse of model unification, is similarly a simple
operation: for each target metamodel MM j , it suffices to
copy all elements from MT

s that are associated to MM j

into a new model. The same technique can be applied
to MMW in order to obtain the transformation trace as
an independent model. For the latter, in ECORE, weav-
ing’s intra-model references are therefore turned into cross-
model references targeting the previously separated target

14

models or the original source models.

In our example’s first scenario, a sample target model
result is the “Family” relational schema composed only of
the elements illustrated at the bottom of Figure 11.

4.2.5. Application on other scenarios

As previously mentioned, different scenarios are ob-
tained by varying the transformation request through the
possible combinations of models behaviours.

For our example’s reverse transformation scenario, be-
haviours are exchanged, i.e., the existing relational schema
is set to “freeze” (source model) and the class schema is
set to “generate” (target model). By applying the same
process, a class schema will be created. Note that depend-
ing on the transformation specifications, the operation is
not necessarily bijective since it is not even injective in the
general case. However the original class schema is neces-
sarily among the potential solutions.

For our example’s update scenario, the class schema is
set to “freeze” while the relational schema is set to “ex-
tend”. As a consequence, the relational schema will be
updated to maintain consistency with the class schema
based on the weaving constraints. If the original schemas
were obtained by a transformation, its trace can be pro-
vided, effectively forcing the transformation to maintain
previous mappings. If a trace is not provided, TAS will
recreate mappings for all elements. These may be differ-
ent ones if the specifications allow it, though again the
original mapping (if any existed) is necessarily among the
solutions.

Other scenarios are possible. By setting both models
to “freeze”, TAS checks whether it is possible to map two
given schemas and the potential mapping is provided in the
transformation trace. By setting two existing schemas to
“extend”, it will allow to recover consistency by modifying
any (or both) model(s).

Finally, we do not present an example with more than
two input metamodels (which means more than one source
or target model) since it does not introduce any difference
for the TAS process: any number of input metamodels can
be weaved by a specification while applying the exact same
process. In other words, TAS is not limited to one-and-one
transformations/updates.

4.3. Implementation

The transformation/synchronization (UI and API) soft-
ware parts implement the complete TAS chain illustrated
in Figure 12. Again, it is freely distributed as a set of
Eclipse plugins under EPL license [2].

The input, illustrated on the running example as a
UI screen-shot in Figure 14, is a TAS specification: the
weaving constrained metamodel, the involved constrained
metamodels, the optional input and trace models, and fi-
nally the choice of model behaviours (which define the sce-
nario being requested).

Figure 14: TAS launch configuration screenshot

The TAS designer, i.e., the user of the framework that
will execute a TAS operation, has to create a set of mini-
mal artifacts for performing model transformations, i.e., a
TAS specification. It needs to specify the source and tar-
get metamodels and the weaving metamodel, to be able to
create relationship between the elements. The metamod-
els need to be written in ECORE. In addition, it is also
necessary to create at least one source or target model, de-
pending on the direction of the transformation. The 3rd
scenario (synchronization) is also interesting for illustrat-
ing the multi-level transformation. Consider the need to
translate the instances of the Class and Relational meta-
models into the solver format: it is not necessary to de-
velop Class2Alloy or Relational2Alloy transformations.

Other artifacts may be created as well, to obtain a more
precise specification, such as the OCL constraints over the
source and target metamodels. Finally, an already existing
weaving model may also be set up as parameter, as in the
synchronization scenario. It will enforce the existence of
the already created relationships.

We have opted not to create a new transformation
language or to use existing ones, such as ATL or
QVT. The transformations are created only using mod-
els/metamodels and OCL constraints. However, these lan-
guages could be integrated into the framework, by develop-

15

ing the transformations for the ATL or QVT specifications
into our Model Search layer. To implement this, the trans-
formation language would need to have a transformation
model and a metamodel.

The TAS specification is then translated into a Model
Search problem following the metamodel and request
model unification steps previously presented: the search
metamodel (which yields the problem definition) is set to
the generated transformation metamodel, and the search
root model (which yields the partial assignment) is set
to the generated transformation request. These steps are
implemented using EMF’s Java API. Additionally, when
a model behaviour is set to ”freeze”, two elements are
added to the resulting model search specification. First,
the model search scope sets each class bound to the num-
ber of corresponding instances in the frozen source models.
However, this is not sufficient since structural features may
still be modified. A second option is set, presented in sub-
section 3.4.4, which freezes attributes and references of the
corresponding frozen parts of the root model.

In order to obtain the output(s), our TAS implemen-
tation provides a solution explorer interface that embeds
the model search solutions explorer. Each time a new so-
lution is requested, the underlying model search problem
is solved using the chosen solver chain. As previously pre-
sented, the solution (if any) is separated to obtain the tar-
get models and the transformation trace. Again, these
solver-independent steps are realized using EMF’s Java
API, similarly to (meta)model unification. The current
implementation saves all the intermediate files generated
during the process, such as the solver specifications, the
solution model, the transformation model and metamod-
els, and others. This enables a detailed analysis of each
execution step of the TAS chain.

4.4. Results

We provide results on the running example and an ad-
ditional specification taken from the literature. Experi-
mental conditions are the same as to the ones presented in
Subsection 3.5. Similarly, we do not aim at evaluating ab-
solute performance (which highly depends on the chosen
solver chain) but rather focus on the differences between
scenarii, specifications and problem instances. Therefore
we provide results with a fixed backend (Alloy/MiniSAT),
scope ratio (3:1), and bitwidth (5). All these experiments
are available for reproduction in [2].

4.4.1. Results on the running example

Scenarii, specifications and problem instances. We exe-
cuted 3 distinct scenarii:

• The forward transformation presented in the running
example (from class to relational). In this case, we
set to freeze the left model and to generate the right
model, which will be generated from scratch.

• the reverse transformation (from relational to class).
We configure to freeze the right model produced from
scenario 1, and we produce a new left model.

• a synchronization scenario (propagation of changes
from one model to another after adding one new el-
ement to the class metamodel). We set freeze to the
left model, extend to the right model, and provide the
trace from the first scenario as the starting weaving
model.

The specifications, that is the three metamodels and
their constraints, are exactly the same for the three sce-
narii. In order to illustrate how transformations are speci-
fied in our approach, we provide below some example con-
straints that apply on the transformation together with a
brief explanation. These constraints, together with the in-
put metamodels and models are translated into an Alloy
program. The complete list of generated constraints, in
Alloy, are listed in Appendix B.

-- c.1

context Attribute inv:

owner.attr->forAll(a : Attribute |

not(self = a) implies not(name = a.name))

-- c.2

context Class inv ClassTable:

cat->size() = 1

-- r.1

context Table inv:

primaryKey->size() = 1

implies primaryKey.type.name = ’Integer’

-- c4r.1

context ClassAndTable inv:

class.name = table.name

-- c4r.2

context AttributeAndColumn inv:

attribute.owner.cat.table.col

->includes(column)

-- c4r.3

context AttributeAndTable inv:

sourceColumn.foreignKeyTo

= attribute.owner.cat.table

• c.1 : prevents a class from having several attributes
with the same name. Applies to any (source or target)
Class model;

• c.2 : specifies the cardinality of the link, i.e., that a
Class is linked with only one Table;

• r.1 : sets the type of a primary key column to ”In-
teger”. Applies to any (source or target) relational
model;

• c4r.1 : weaved classes and tables must have the same
name;

• c4r.2 : for single-valued attributes, weaved attributes
and columns must have the same owner, i.e., their
containing Class and Table;

16

• c4r.3 : the source column of an N-N relationship must
be a foreign key to the attribute’s owning class.

Writing OCL constraints for TAS specifications is very
different from writing classical rule-based transformations.
Indeed, the goal here is to narrow the set of possible solu-
tions to the acceptable ones by incrementally adding con-
straints. If one so wishes, it is possible to use a dedicated
language (such as QVT-R) that would then be translated
to a weaving constrained metamodel. Our approach is
very expressive, since the approach is not dependent of
the top transformation language, but on the definition of
the weaving models. The choice of a given transforma-
tion language, or a subset of it, is a trade-off between
expressiveness and usability. The iterative process of cre-
ating weaving specifications often shows the modeler that
source/target metamodel constraints had not been fully
specified, for instance by proving that badly-formed mod-
els can be created. However, discussing the details of this
implementation is out of scope of this paper.
Finally, we provide experiments on two different prob-

lems while gradually increasing the instances size: the in-
stances we previously generated using model search; and
the family-person custom diagram depicted in Figure 11
for which we gradually add attributes to one class.

Results. Figure 15 summarizes the results for this set of
experiments.
First, we can obviously note the difference of magni-

tude between the different scenarios. For the generated
diagrams, scenario 1 tops at 18s, scenario 2 at 113s and
scenario 3 at only 6s. The latter is easy to explain. In-
deed, while the global number of final elements is the same,
most of them already exist and are weaved in the original
trace (this can be seen by looking at the initial number
of elements, i.e, the given partial assignment size). Thus
only the added elements create search decisions resulting
in a slower computational increase along with the problem
size. This may indicate that the approach is particularly
fitted for the update scenario. The differences between the
first two scenarios are the result of the specifications pro-
ducing a higher number of possibilities to explore on the
reverse scenario. On these two scenarios the exponential
behaviour expected from combinatorial search is observed.
This again confirms[22] that the Alloy/SAT solver, at least
without any special optimizations, is only efficient on small
to medium problem sizes.
We can also observe that in every scenario the compu-

tation times are similar between the generated and man-
ual instances, though the latter only grows in the number
of attributes. This may indicate that difficulty depends
mostly on instance sizes and not on the particular shape
of instances.

4.4.2. Results on the literature state machines example

We adapt the example proposed by [35]. The example
involves transforming hierarchical state machines to non-
hierarchical ones using the OCL closure operator in the

2/6 4/12 6/18 8/24 9/27 10/30 12/36 13/39 14/42 16/48 18/54 19/57

0

5000

10000

15000

20000

25000

CD-generated CD-manual

number of initial elements / number of final elements

tim
e

(m
s)

(a) Scenario 1

2/
6

4/
12

6/
18

8/
24

9/
27

10
/3

0
12

/3
6

13
/3

9
14

/4
2

16
/4

8
18

/5
4

19
/5

7

0

20000

40000

60000

80000

100000

120000

CD-generated CD-manual

number of initial elements / number of final elements

tim
e

(m
s)

(b) Scenario 2

7/9 13/15 19/21 25/27 28/30 31/33 37/39 40/42 43/45 49/51 55/57 58/60

0

500

1000

1500

2000

2500

CD-generated CD-manual

number of initial elements / number of final elements

tim
e

(m
s)

(c) Scenario 3

Figure 15: Results on the running example

constraints. Figure 16 summarizes the results on the first
scenario so as to compare with the running example. As
can be seen on the Y-axis, the computational cost is much
lower than for the generation of relational databases from
class diagrams, topping at only 0.34s for the same number
of target elements. This confirms that difficulty is largely
dependent on the problem specifications. Indeed this sce-
nario only requires the solver to unfold the states hierarchy
while preserving existing transitions.

17

4/12 6/18 8/24 10/30 12/36 14/42 16/48 18/54 20/60
0

50

100

150

200

250

300

350

400

HSM-generated

number of initial elements / number of final elements

tim
e

(m
s)

Figure 16: Results on the state machines example

4.4.3. Results summary

The approach is functional but suffers from computa-
tional issues. Obviously, computation times are highly
impacted by the specifications. The running example
strongly constraints the result, while the state machines
example is clearly an easier problem. The instances size
and the chosen scenario are also an important factor. This
combinatorial approach seems generally more fitted for
synchronization than classical transformations or gener-
ations. Finally a number of limitations stem from the
chosen solver backend. Indeed, the Alloy/SAT combina-
tion shows its limits both in the size of problems it can
handle, which can be mostly tied to the required scope
issues, and in the types of operations that can be used in
the specifications. Indeed arithmetic operations are sup-
ported but costly, while string manipulations are strictly
limited to plain equality. We believe this confirms the rel-
evance of our solver-agnostic abstraction. On one hand it
eases the development of alternative backends since only
a part of the model search chain needs be defined. On the
other hand it allows the user to switch backends based on
specific needs or even break down problems into different
sub-parts and solvers.

5. Related work

We describe the related work classified into three
groups: first, the approaches focusing on model finding
and model generation; second, the ones focusing on
coupling transformations and optimization; finally, the
solutions covering model relations and transformations
as search, which are the closest to our approach. It is
important to note that the comparison and description of
approaches focuses on its overall components and chain,
the supporting framework and the interactions between
them, not on the specific details on the translation from
the input language (e.g., ECORE/OCL) to each solvers’
(e.g., Alloy/SAT) format.

Model finding/generation

Several works have studied the benefits of model find-
ing/generation within a modelling environment. Among
the first ones is USE [17], which applies a custom engine
on UML/OCL for validation and later use case generation
purposes. A large number of approaches, including ours,
follow the same principle of translating a given modeling
specification into the solver format, but applied in other
context and with distinct capabilities. Model repair ap-
proaches (see a survey in [38]), such as [19] use a similar
technique to decrease the number of inconsistencies in a
given model. A number of other solver-specific approaches
have followed: [6] transforms UML/OCL to a CSP solver
specification for validation, others target the Alloy/SAT
language/solver [4, 39, 37, 9].

In our approach, we explicitly describe the needed
chain of transformations implemented by the framework,
covering the injection/solving/extraction operations. We
also provide explicit definitions of partial, relaxed and
constrained metamodels/models, which are present on
related approaches but not always defined. The definitions
are adapted to represent enumerative solutions, where it
is necessary to have a pool of elements already existing.
The generative ones are also supported, following a more
typical modeling scenario. For instance, these definitions
handle the existence of ECORE models elements that do
not need to be connected and constrained by all the input
metamodel definition. The translation of ECORE/OCL
to Alloy from our solution is similar with previous work.
As drawback, we do not provide deeper studies on solver
specific characteristics that could improve performance
and quality of the solutions.

Transformations and optimization

A couple of solutions from this category have the final
goal similar to ours, which is to perform model transfor-
mations and model generation. However, the approaches
main contributions focus on using and/or improving op-
timization techniques in a MDE technical space, not on
providing a framework. [37] offers two notable features: a
measure of similarity to compare search solutions and an
automated reduction of the resulting Alloy Formulas to de-
crease computational cost. This is an efficient solver spe-
cific capability. The work from [43] proposes to use multi-
objective optimization for model generation. It focuses on
the size of the generated models, which has been a constant
concern on existing approaches. This feature and other al-
gorithm dependent approaches would be interesting to be
incorporated into a generic MS framework, adding value
to the result. Many other model finding techniques devel-
oped outside of a modeling framework [44, 48, 47] could
also be used as alternative model search implementations.

Approaches such as [29, 15] propose to integrate
MDE/transformations and optimization techniques. The
approach from [15] produces a model transformation,

18

which can be further executed. The major contribution
is not to provide a full translation between modeling and
solver technical spaces, but to find the best rule execution
sequence, from a set of existing rules. They also apply
different optimization algorithms to choose the best trans-
formation rules. The approach is extended in [14], con-
centrating on the quality of the solution and improving
the choice of the optimization algorithms. They use HOTs
(Higher Order Transformations) to infer information about
the transformations and to choose the algorithms.
Finding the most appropriate rules is also the focus from

[26], which applies combinatorial optimization techniques
for model transformations. The main contribution is to
find the transformation rules, based on an existing set of
examples. They give special attention on bringing search
based artifacts and algorithms, such as fitness functions,
into an MDE environment. In [28], they present MotoE,
which sees MT as a combinatorial optimization problem.
It is one of the first works where the transformation is ob-
tained from a set of examples. They use heuristic strate-
gies to build the transformation. One important difference
from rule based search approaches, such as ours, is that it
does not intend to produce the solver specification from
a given model transformation and the input models, but
it searches for the input transformation itself. In [27], the
authors present a solution adapted to model repair applied
to a transformation scenario. The changes between models
are expressed in terms of refactorings.
These approaches are relatively distant from ours on

their main goals and design choices, because in our TAS
approach the transformations are created individually,
according to the developer specification, thus being more
similar to rule-based specifications. In order to add
optimization functions, it would be necessary to add spe-
cific transformations handling the input transformation
language. Our approach loops over the set of the solutions
provided by the solver, but without (so far) support to
optimization.

Model relations and transformations as search

A number of studies have tackled establishing relations
(also referred as links or relationships) between model ele-
ments and to use them in a large variety of scenarios. The
utilization of these relationships for model transformations
and synchronization can be coupled with search based so-
lutions. Despite having different central goal, and some
distinct research issues, the architecture and core facilities
of such solutions can be related with a transformation as
search framework.
The survey from [10] presents several studies about

bidirectional model transformations. The work from [21]
presents a classification of features of bidirectional trans-
formations, though covering a larger scope, most of the
approaches not involving model finding. We concentrate
on the solutions that could be classified within a model
generation context.

Different works have tackled synchronization issues. A
number of incremental approaches [18, 5, 46] allow to up-
date a target model by taking into account incremental
changes on the source model. [41, 36, 45] handle synchro-
nization as well, with special focus on model inconsisten-
cies. These techniques inherit the deterministic behaviour
of rule-based transformations. [20] proposes, based on ab-
ductive reasoning, to reverse an unidirectional transfor-
mation in order to provide synchronization of the source
model with the previously obtained target model. In par-
ticular, it shares our ability to compute different alterna-
tive solutions through combinatorial logic inference. Here
again, additional specifications are always required for the
incremental/synchronization scenarios.

The JTL (Janus Transformation Language) [7] language
supports non-bijective transformations and change prop-
agation. The model transformations are translated into
an ASP (Answer Set Programming) program. The search
problem is generated from one source and one target mod-
els. The approach from [13] has the same core implemen-
tation of JTL, but extends it to support transformations
between ADLs (Architecture Description Languages). It is
one of the few approaches that have a detailed description
of all the chain, and it is also based on the concept of a
weaving model to set the links between source and target
models, placing the work close to ours. However, it focuses
on a star architecture and it provides only source-to-target
model relations. It has metamodel independent transla-
tions through a generic bridge between technical spaces.
They implemented Higher Order Transformations (HOTs)
that generate the input and output bridges. However, the
bridges need to be regenerated every time a source or tar-
get metamodel change. In our approach, we use only 2
reflexive transformations as bridges, one for input and an-
other for output. This prevents from (re)generating multi-
ple transformations that need to be managed. In addition,
HOTs are often difficult to implement and error-prone.

In PTL (Prolog-based Transformation Language) [3],
the authors translate a subset of ATL+OCL into Pro-
log, thus providing logical semantics for model transfor-
mations. Similar to our approach, it develops a transla-
tion from the modelings space to the solver space. They
focus in a 1-to-1 transformation scenario, without describ-
ing how extensible the approach is.

Triple graph grammars (TGGs) [42] share the use of
non-deterministic propagation mechanisms as foundations
for their bidirectional and synchronization capabilities
[16]. Their definition of a correspondence graph, though
not grounded on basic modeling elements, is similar to
our weaving and unification approach. Different specifi-
cations are suggested for the two scenarios as the gener-
ated language is further made deterministic through a set
of sufficient static conditions. Additionally, the nature of
triple graph rules restricts their use to one-and-one speci-
fications.

Finally, the ECHO framework [34, 36] supports bidi-
rectional model transformations. It provides a QVT-R

19

implementation that is transformed into Alloy. Here the
specifications are shared for both bidirectional and syn-
chronization scenarios, but the approach is inherently re-
stricted to the Alloy/SAT solver and one-and-one scenar-
ios. It provides a complete translation chain and frame-
work. As the authors stated, it is enumerative, though this
is hidden from the user. [35] extends this work, providing
a more detailed and complete implementation, handling
both QVT-R and ATL. ECHO and the solutions that are
implemented using solvers with monotonic behaviour cir-
cumvent the restriction of only extending a given model
by re-generating the target model even for synchroniza-
tion scenarios.

We provide a solver-independent specification of the
bi-directional and synchronization problems in terms of
model search. This means any specific problem that relates
2 or more models (synchronization, model repair, multi-
directional transformations, or others) can be mapped into
our TAS and then MS specification. As a consequence,
ECHO’s Alloy mapping, as any other approach from the
previous paragraph, could be ported as a model search al-
ternative implementation and would therefore be directly
usable for any scenario. Additionally, the implementa-
tion of QVT-R could be achieved through a mapping to a
corresponding weaving constrained metamodel. As draw-
back, application-specific aspects that can be related to the
solver, or to the user interaction as well, are not specifically
handled. This would require a per-approach study.

6. Conclusion

We presented a two-layer approach for implementing dif-
ferent kinds of model operations on terms of finite model
generation techniques. The model operations, which may
involve several input and output models, need to be trans-
lated into a model search problem, using only MDE arti-
facts and techniques. The model search specification is
then translated into a solver-specific problem, which is
translated back into the modeling world after resolution.
This process is divided in a chain of steps, which are di-
vided in solver-independent and solver-specific parts. The
separation between the search problem from the actual
solving means that depending on the solver, the domain
of reachable solutions may be different. However, the way
the problem is stated does not impose any restrictions on
solutions.

We formalized and detailed the model search layer,
which is a first-class operation independent from the solv-
ing back-end. We describe the chain of transformations
needed to implement the process. This layer is the corner-
stone for any other operation implementation. An exam-
ple implementation of the solver-specific parts is then il-
lustrated using the Alloy/SAT combination. This allowed
to emphasize the problems that naturally arise in such im-
plementations. A first set of experiments validated the
applicability but also showed the limitations of boolean

solvers for real engineering problems that include arith-
metic computations or string manipulations. We believe
that any model generation operation may be transformed
into a model search problem and that our solver-agnostic
approach will therefore ease the use and comparison of
different back-ends on different types of problems. The
solver-specific characteristics depend on the implemented
solution.

We defined the concept of multi-level transformations,
which are responsible for bridging between the modeling
and the solver technical spaces. They are transformations
implemented using reflection techniques, taking the meta-
model and model as input, without explicitly referring to
the elements of the input metamodels, allowing to realize
the whole chain without any problem-dependent transfor-
mations. This is important to avoid developing one new
transformation for each new input specification.

We then formalized and described the second layer,
transformation as search, which allows to turn any model
transformations and synchronization specifications into a
model search specification. It is important to note that
in transformation scenarios we have the source, target and
weaving models translated into a single model search prob-
lem, by applying an unification strategy. To the best of
our knowledge, the definitions of the unification strategy
couple with weaving models has not been explored deeply
in the literature. The implementation is completely in-
dependent from any solver and offers several advantages:
multi-directional, incremental, single specifications for all
scenarios, not limited to one-and-one operations. Our ex-
periments showed that it may be particularly fitted for
the synchronization scenario which is less impacted by the
inherent combinatorial explosion of the approach.

Ongoing and future work include developing search
chains that target different types of solvers to address spe-
cific computation needs (arithmetic, strings manipulation,
etc.). This would allow to compare different solvers charac-
teristics and to guide the choice of a given solver. Another
future work is to support higher-level transformation lan-
guage (such as QVT-R or ATL) to ease the writing of some
types of specifications. Finally, we have not tackled in this
paper the use of an optimization objective which may help
the user in discriminating between potential solutions.

References

[1] Eclipse OCL project: https://projects.eclipse.org/projects/
modeling.mdt.ocl, 2018.

[2] MOS: https://gitlab.massidia.net/mos/software, 2018.
[3] J. M. Almendros-Jimenez, L. Iribarne, J. Lopez-Fernandez, and

A. Mora-Segura. PTL: A model transformation language based
on logic programming. Journal of Logical and Algebraic Meth-
ods in Programming, 85(2):332 – 366, 2016.

[4] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On chal-
lenges of model transformation from UML to Alloy. Software
and System Modeling, 9(1):69–86, 2010.

[5] G. Bergmann, A. Ökrös, I. Ráth, D. Varró, and G. Varró. In-
cremental pattern matching in the Viatra model transformation
system. In proc. of 3rd International Workshop on Graph and

20

Model Transformations, pages 25–32, Leipzig, Germany, 2008.
ACM.

[6] J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool for the
formal verification of UML/OCL models using constraint pro-
gramming. In proc. of International Conference on Automated
Software Engineering, Atlanta, USA, 2007.

[7] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio.
JTL: A bidirectional and change propagating transformation
language. In proc. of 3rd International Conference on Software
Language Engineering, pages 183–202, Eindhoven, The Nether-
lands, 2010.

[8] S. A. Cook. The complexity of theorem-proving procedures.
In proc. of ACM Symposium on Theory of Computing, pages
151–158, Ohio, USA, 1971. ACM.

[9] A. Cunha, A. G. Garis, and D. Riesco. Translating between
Alloy specifications and UML Class diagrams annotated with
OCL. Software and System Modeling, 14(1):5–25, 2015.

[10] K. Czarnecki, J. N. Foster, Z. Hu, R.Lämmel, A. Schürr,
and J. F. Terwilliger. Bidirectional transformations: A cross-
discipline perspective. In proc. of International Conference on
Model Transformations, volume 5563, pages 260–283, Zurich,
Switzerland, 2009.

[11] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM Syst. J., 45:621–645, 2006.

[12] EMF: The Eclipse Modeling Framework :
http://www.eclipse.org/modeling/emf/, 2018.

[13] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione, and
A. Pierantonio. A Model-Driven approach to automate the
propagation of changes among architecture description lan-
guages. Software and Systems Modeling, 11(1):29–53, 2012.

[14] M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi.
Model transformation modularization as a many-objective op-
timization problem. IEEE Transactions on Software Engineer-
ing, 43(11):1009–1032, 2017.

[15] M. Fleck, J. Troya, and M. Wimmer. Search-based model
transformations. Journal of Software: Evolution and Process,
28(12):1081–1117, 2016.

[16] H. Giese and R. Wagner. From model transformation to in-
cremental bidirectional model synchronization. Software and
System Modeling, 8(1):21–43, 2009.

[17] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based
specification environment for validating UML and OCL. Science
of Computing Programming, 69(1-3):27–34, 2007.

[18] D. Hearnden, M. Lawley, and K. Raymond. Incremental model
transformation for the evolution of model-driven systems. In
proc. of Model Driven Engineering Languages and Systems, vol-
ume 4199 of LNCS, pages 321–335, Genova, Italy, 2006.

[19] A. Hegedüs, A. Horváth, I. Ráth, M. C. Branco, and D. Varró.
Quick fix generation for dsmls. In proc. of IEEE Symposium on
Visual Languages and Human-Centric Computing, pages 17–
24, Pittsburgh, PA, USA, 2011.

[20] T. Hettel, M. Lawley, and K. Raymond. Towards model round-
trip engineering: An abductive approach. In proc. of Interna-
tional Conference on Model Transformations, volume 5563 of
LNCS, pages 100–115, Zurich, Switzerland, 2009.

[21] S. Hidaka, M. Tisi, J. Cabot, and Z. Hu. Feature-based clas-
sification of bidirectional transformation approaches. Software
and System Modeling, 15(3):907–928, 2016.

[22] D. Jackson. Automating first-order relational logic. In proc.
of Foundations of Software Engineering, pages 130–139, San
Diego, California, USA, 2000.

[23] J. Jaffar and M. J. Maher. Constraint logic programming: A
survey. The Journal of Logic Programming, 19/20:503–581,
1994.

[24] F. Jouault and J. Bézivin. KM3: A DSL for metamodel spec-
ification. In proc. of Formal Methods for Open Object-Based
Distributed Systems,, pages 171–185, Bologna, Italy, 2006.

[25] F. Jouault and I. Kurtev. Transforming models with ATL.
In proc. of MoDELS Satellite Events, pages 128–138, Montego
Bay, Jamaica, 2005.

[26] M. Kessentini, P. Langer, and M. Wimmer. Searching models,

modeling search: On the synergies of sbse and mde. In proc. of
International Workshop on Combining Modelling and Search-
Based Software Engineering, pages 51–54, York, UK, 2013.

[27] M. Kessentini, U. Mansoor, M. Wimmer, A. Ouni, and K. Deb.
Search-based detection of model level changes. Empirical Soft-
ware Engineering, 22(2):670–715, April 2017.

[28] M. Kessentini, H. Sahraoui, M. Boukadoum, and O. B. Omar.
Search-based model transformation by example. Software and
Systems Modeling, 11(2):209–226, May 2012.

[29] M. Kessentini, H. A. Sahraoui, and M. Boukadoum. Model
transformation as an optimization problem. In proc. of Model
Driven Engineering Languages and Systems, pages 159–173,
Toulouse, France, 2008. Springer.

[30] M. Kleiner, M. Didonet Del Fabro, and P. Albert. Model search:
Formalizing and automating constraint solving in MDE plat-
forms. In proc. of European Conference on Modelling Founda-
tions and Applications, pages 173–188, Paris, France, 2010.

[31] M. Kleiner, M. Didonet Del Fabro, and D. De Queiroz Santos.
Transformation as search. In proc. of European Conference on
Modelling Foundations and Applications, pages 54–69, Mont-
pellier, France, 2013.

[32] T. Kühne. Matters of (meta-)modeling. Software and System
Modeling, 5(4):369–385, 2006.

[33] M. Lawley and J. Steel. Practical declarative model transfor-
mation with tefkat. In proc. of MoDELS Satellite Events, pages
139–150, Montego Bay, Jamaica, 2005.

[34] N. Macedo and A. Cunha. Implementing QVT-R bidirectional
model transformations using alloy. In proc. of International
Conference on Fundamental Approaches to Software Engineer-
ing, volume 7793, pages 297–311, Rome, Italy, 2013.

[35] N. Macedo and A. Cunha. Least-change bidirectional model
transformation with QVT-R and ATL. Software and Systems
Modeling, 15(3):783–810, July 2016.

[36] N. Macedo, A. Cunha, and T. Guimarães. Exploring scenario
exploration. In proc. of International Conference on Funda-
mental Approaches to Software Engineering, pages 301–315,
London, UK, 2015.

[37] N. Macedo, T. Guimarães, and A. Cunha. Model repair and
transformation with Echo. In proc. of International Confer-
ence on Automated Software Engineering, pages 694–697, Sili-
con Valley, CA, USA, 2013.

[38] N. Macedo, J. Tiago, and A. Cunha. A feature-based classifica-
tion of model repair approaches. IEEE Trans. Software Eng.,
43(7):615–640, 2017.

[39] S. Maoz, J. O. Ringert, and B. Rumpe. CD2Alloy: Class dia-
grams analysis using alloy revisited. In proc. of Model Driven
Engineering Languages and Systems, pages 592–607, Welling-
ton, New Zealand, 2011.

[40] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation (QVT) Specification, version 1.1,
2011.

[41] J. PinnaPuissant, R. Van Der Straeten, and T. Mens. Resolv-
ing model inconsistencies using automated regression planning.
Software and Systems Modeling, 14(1):461–481, Feb 2015.

[42] A. Schürr and F. Klar. 15 years of triple graph grammars. In
proc. of the International Conference on Graph Transforma-
tions, pages 411–425, Leicester, UK, 2008.

[43] O. Semeráth, A. Vörös, and D. Varró. Iterative and incremen-
tal model generation by logic solvers. In proc. of Fundamental
Approaches to Software Engineering, pages 87–103, Eindhoven,
The Netherlands, 2016.

[44] J. Slaney. FINDER: Finite domain enumerator system descrip-
tion. In proc. of International Conference on Automated De-
duction, pages 798–801, Nancy, France, 1994.

[45] R. Van Der Straeten, J. Pinna Puissant, and T. Mens. Assessing
the kodkod model finder for resolving model inconsistencies. In
proc. of European Conference on Modelling Foundations and
Applications, pages 69–84, Birmingham, UK, 2011.

[46] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker.
Incremental model synchronization for efficient run-time moni-
toring. In proc. of MoDELS Workshops, volume 6002 of LNCS,

21

pages 124–139, Denver, Colorado, USA, 2009.
[47] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and

A. Ruiz-Cortez. Automated diagnosis of product-line config-
uration errors in feature models. In proc. of Software Product
Lines Conference, September 8-12, Limerick, Ireland, 2008.

[48] J. Zhang and H. Zhang. System description generating models
by sem. In proc. of International Conference on Automated
Deduction, July 30 - August 3, pages 308–312, New Brunswick,
NJ, USA, 1996.

Appendix A. Model Search generated specifica-
tion

We list below the complete Alloy specification gener-
ated for the class diagram (CD) Model Search problem.
It contains the initial instance (module RootModel), the
metamodel specification (module CD) and additional con-
straints generated from OCL (module generation).

module RootModel
open CD

one sig Class0 extends Class {
}
one sig Package0 extends Package {
}
fact {
(Class0 in (Package0.classes))

}
fact {
((Package0.name) = "Top")

}
fact {
(Package0 in (Class0.package))

}
fact {
((Class0.name) = 0)

}

module CD
open util/integer
open util/integer

sig Package {
name: one String

, classes: set Class
}
sig Class {
attributes: set Attribute

, package: one Package
, children: set Class
, name: one Int
, parent: lone Class
}
sig Attribute {
name: one Int

, owner: one Class
}
fact structuralPropertiesForAttributeowner {
(owner = (~attributes))

}
fact structuralPropertiesForClasschildren {
(children = (~parent))

}
fact structuralPropertiesForClassattributes {
(((Class <: attributes) in Class lone -> Attribute) &&
(attributes = (~owner)))

}
fact structuralPropertiesForClassparent {
(parent = (~children))

}
fact structuralPropertiesForPackageclasses {
(((Package <: classes) in Package lone -> Class) &&
(classes = (~package)))

}
fact structuralPropertiesForClasspackage {
(package = (~classes))

}

module generation
open util/integer
open CD
open util/boolean

fact nonCircularInheritance {
(all self: Class | (((#(self.parent)) = 1) => (not(self in
((self.parent).(*parent))))))

}
fact differentNames {
(all self: Class | ((#{c: (Class - self) |
((c.name) = (self.name))}) = 0))

}
fact parentName {
(all self: Class | (((#(self.parent)) = 1) =>
(((self.parent).name) = ((self.name).minus[1]))))

}
fact attributeName {
(all self: Attribute | ((self.name) = ((self.owner).name)))

}
fact maxOneChild {
(all self: Class | ((#(self.children)) < 2))

}
fact hasOneAttribute {
(all self: Class | ((#(self.attributes)) = 1))

}
fact allButTopHaveAParent {
(all self: Class | ((not((self.name) = 0)) =>
((#(self.parent)) = 1))) }

Appendix B. Transformation as Search generated
specification

We list below the Alloy code of the weaving meta-
model (module Class4Relational) and the constraints from
the OCL specification (module C4TASMM) with the TAS
specification. The left (Class) and right (Relational) meta-
models, as well as the Root Model specifications are avail-
able for download in the prototype site.

module Class4Relational
open util/boolean
open Class
open Relational

sig ClassAndTable extends WLink {
table: one Table

, class: one Class
}
sig DataTypeAndType extends WLink {
type: one Type

, datatype: one DataType
}
abstract sig WLink {
}
sig AttributeAndColumn extends WLink {
attribute: one Attribute

, column: one Column
}
sig AttributeAndTable extends WLink {
table: one Table

, valueIsForeignKey: one Bool
, valueColumn: one Column
, sourceColumn: one Column
, attribute: one Attribute
}

module C4TASMM
open util/boolean
open Class4Relational
open util/integer
open Class
open Relational

fact ColumnWithDifferentName {
(all self: Column | (all c2: ((self.owner).col) | ((c2 in Column)
and ((not(self = c2)) => (not((self.name) = (c2.name)))))))

}

22

fact TableColumn {
(all self: Attribute | (((#(self.(~(AttributeAndColumn <:
attribute)))).plus[(#(self.(~(AttributeAndTable <: attribute))))])
= 1))

}
fact AttributeAndTableNames {
(all self: AttributeAndTable | (((self.attribute).name) =
((self.table).name)))

}
fact FKNotMultivaluedOrClass {
(all self: Column | (((#(self.foreignKeyTo)) = 1) =>
((((#(self.(~(AttributeAndColumn <: column)))) = 1) and
((((self.(~(AttributeAndColumn <:
column))).attribute).multiValued) = False)) or
(((#(self.(~(AttributeAndTable <:
sourceColumn)))).plus[(#(self.(~(AttributeAndTable <:
valueColumn))))]) = 1))))

}
fact TablesWithPrimaryKey {
(all self: Table | ((self.primaryKey) in (self.col)))

}
fact ForeignKeyColumn {
(all self: Column | (((((#(self.foreignKeyTo)) = 0) and
(not(((self.owner).primaryKey) = self))) and
((#(self.(~(AttributeAndTable <: valueColumn)))) = 0)) =>
((#(self.(~(AttributeAndColumn <: column)))) = 1)))

}
fact WeavedColumnForeignKey {
(all self: AttributeAndColumn | ((((self.attribute).type) in
Class) => (((self.column).foreignKeyTo) =
(((((self.attribute).type) :> Class).(~(ClassAndTable <:
class))).table))))

}
fact ClassAndTableNames {
(all self: ClassAndTable | (((self.class).name) =
((self.table).name)))

}
fact WeavedSourceForeignKey {
(all self: AttributeAndTable | (((self.sourceColumn).foreignKeyTo)
= ((((self.attribute).owner).(~(ClassAndTable <: class))).table)))

}
fact ForeignKeyValueColumn {
(all self: AttributeAndTable | (((self.valueIsForeignKey) = True)
=> (((self.valueColumn).foreignKeyTo) = (((((self.attribute).type)
:> Class).(~(ClassAndTable <: class))).table))))

}
fact NotMultivaluedAndWeavedType {
(all self: AttributeAndColumn | (((((self.attribute).type) in
DataType) and (((self.attribute).multiValued) = False)) =>
(((self.column).type) = (((((self.attribute).type) :>
DataType).(~(DataTypeAndType <: datatype))).type))))

}
fact {
(all self: Class | (all a1: (self.attr) | ((a1 in Attribute) and
(all a2: ((a1.owner).attr) | ((a2 in Attribute) and ((not(a1 =
a2)) => (not((a1.name) = (a2.name)))))))))

}
fact DataTypeAndTypeNames {
(all self: DataTypeAndType | (((self.datatype).name) =
((self.type).name)))

}
fact ValueSourceColumnDifferent {
(all self: AttributeAndTable | (not((self.sourceColumn) =
(self.valueColumn))))

}
fact ClassTable {
(all self: Class | ((#(self.(~(ClassAndTable <: class)))) = 1))

}
fact DataTypeType {
(all self: DataType | ((#(self.(~(DataTypeAndType <: datatype))))
= 1))

}
fact AttributeAndColumnNames {
(all self: AttributeAndColumn | (((self.attribute).name) =
((self.column).name)))

}
fact WeavedSourceBelongsWeavedTable {
(all self: AttributeAndTable | (((self.sourceColumn).owner) =
(self.table)))

}
fact MultiValuedWithWeavedOwner {
(all self: AttributeAndColumn | ((self.column) in
(((((self.attribute).owner).(~(ClassAndTable <:
class))).table).col)))

}

fact ValueColumnForeignKey {
(all self: AttributeAndTable | ((((self.attribute).type) in Class)
=> ((self.valueIsForeignKey) = True) else
((self.valueIsForeignKey) = False)))

}
fact WeavedValueBelongsWeavedTable {
(all self: AttributeAndTable | (((self.valueColumn).owner) =
(self.table)))

}
fact AttributeColumn {
(all self: Attribute | (((self.multiValued) = False) =>
((#(self.(~(AttributeAndColumn <: attribute)))) = 1)))

}
fact TypeDataType {
(all self: Type | ((#(self.(~(DataTypeAndType <: type)))) = 1))

}
fact WeavedSourceName {
(all self: AttributeAndTable | (((self.sourceColumn).name) =
"source"))

}
fact ValueColumnsWeavedType {
(all self: AttributeAndTable | (((self.valueIsForeignKey) = False)
=> (((#((self.valueColumn).foreignKeyTo)) = 0) and
(((self.valueColumn).type) = (((((self.attribute).type) :>
DataType).(~(DataTypeAndType <: datatype))).type)))))

}
fact PrimaryKeysIntegers {
(all self: Table | (((#(self.primaryKey)) = 1) =>
((((self.primaryKey).type).name) = "Integer")))

}
fact PrimaryKeyIsNotForeignKey {
(all self: Table | ((#((self.primaryKey).foreignKeyTo)) = 0))

}
fact TableAttribute {
(all self: Table | (((#(self.(~(AttributeAndTable <:
table)))).plus[(#(self.(~(ClassAndTable <: table))))]) = 1))

}
fact WeavedValueName {
(all self: AttributeAndTable | (((self.valueColumn).name) =
"target"))

}
fact AttributeTable {
(all self: Attribute | (((self.multiValued) = True) =>
((#(self.(~(AttributeAndTable <: attribute)))) = 1)))

}
fact Tablenames {
(all self: Table | (((self.primaryKey).name) = "ID"))

}
fact ForeignKeyTypeEqualsPrimaryKeyType {
(all self: Column | (((#(self.foreignKeyTo)) = 1) =>
(((#((self.foreignKeyTo).primaryKey)) = 1) and ((self.type) =
(((self.foreignKeyTo).primaryKey).type)))))

}

23

View publication statsView publication stats

