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ABSTRACT
Several application domains, including healthcare, smart building,

and traffic monitoring, require the continuous publishing of data,

also known as time series. In many cases, time series are geotagged

data containing sensitive personal details, and thus their processing

entails privacy concerns. Several definitions have been proposed

that allow for privacy preservation while processing and publishing

such data, with differential privacy being the most prominent one.

Most existing differential privacy schemes protect either a single

timestamp (event-level), or all the data per user (user-level), or per

window (𝑤-event-level) in the time series, considering however all

timestamps as equally significant. In this work, we define a novel

configurable privacy notion, landmark privacy, which differentiates

events into significant (landmarks) and regular, achieving to provide
better data utility while preserving adequately the privacy of each

event. We propose three schemes that guarantee landmark privacy,

and design an appropriate dummy landmark selection module to

better protect the actual temporal position of the landmarks. Finally,

we provide a thorough experimental study where (i) we study the

behavior of our framework on real and synthetic data, with and

without temporal correlation, and (ii) demonstrate that landmark

privacy achieves generally better data utility in the presence of

landmarks than user-level privacy.
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1 INTRODUCTION
The plethora of sensors currently embedded in personal devices and

numerous crowdsensing services (e.g., Ring [1], TousAntiCovid [2],

Waze [3], etc.) based on the collected personal, and usually geo-

tagged and timestamped data. User–service interactions gather per-

sonal event-like data, which are tuples of an identifying attribute

of an individual and the—possibly sensitive—information with a

timestamp e.g., (‘Quackmore’, ‘dining’, ‘Canal Saint-Martin’, 17:00).
When the interactions are performed in a continuous manner, we

obtain time series of events. Depending on the duration, we dis-

tinguish the interaction/observation into finite, when taking place

during a predefined time interval, and infinite, when taking place in

an uninterrupted fashion. Example 1.1 demonstrates a user–service

interaction that results in retrieving location-based information or

reporting user-state at various locations.

Example 1.1. Figure 1 shows a finite sequence of spatiotemporal
data, generated by Quackmore, during an interval of 8 timestamps.
Events in gray correspond to significant events, which Quackmore
has defined beforehand, because they are related to his home (around
Élysée), his workplace (around the Louvre), and his hangout (around
Canal Saint-Martin).

Figure 1: A time series with landmarks (highlighted in gray).

The regulation regarding the processing of user-generated data

sets [34] requires the provision of privacy guarantees to the users.

To accomplish this, various privacy techniques perturb the original

data or their statistical output at the expense of the overall utility of

the final output. Meanwhile, it is essential to provide data of high

utility to the final consumers of the privacy-preserving process. A

widely recognized method that introduces probabilistic randomness

to the original data, while quantifying with a parameter 𝜀 (‘privacy

budget’ [28]) the privacy/utility ratio, is 𝜀-differential privacy [13].

Event, user [14], and 𝑤-event [22] comprise the possible levels of

privacy protection. Event-level limits the protection to any single
event, user-level protects all the events of any user, and 𝑤-event

provides protection to any sequence of 𝑤 events. In every case,

privacy protection boils down to allocating to events an overall

privacy budget that does not exceed 𝜀.

The privacy mechanisms for the aforementioned levels assume

that in a time series any single event, or any sequence of events, or

the entire series of events respectively is equally privacy-significant

for the users. In reality, this is an assumption that deteriorates un-

necessarily the utility of the released data. The significance of an
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event is related to certain user-defined privacy criteria, or to its

adjacent events, as well as to the entire time series. We term signif-

icant events as landmark events or simply landmarks. Identifying
landmarks can be done in an automatic or manual way; this is an

orthogonal problem to the one presented here and thus it is out

of scope of this work. For example, in spatiotemporal data, places
where an individual spent some time denote points of interest (POIs)
also known as stay points [25]. Such events, and more particu-

larly their spatial attribute values, can be less privacy-sensitive,

e.g., parks, theaters, etc., if the user visits them few times, but if

individuals frequent them, they can reveal supplementary informa-

tion, e.g., residences (home addresses), places of worship (religious

beliefs) [30], etc. Another example is the detection of user interac-

tions by contact tracing applications. This can be helpful in epidemic

control, similar to the recent outbreak of the Coronavirus disease

2019 (COVID-19) epidemic [4]; however, the user may distinguish

among contacts that are more privacy-sensitive than others. Last

but not least, landmarks in smart grid electricity usage patterns

may not only reveal the energy consumption of a user, but also

information regarding activities, e.g., ‘at work’, ‘sleeping’, etc., or

types of appliances already installed or recently purchased [23].

Example 1.2. Continuing Example 1.1, Quackmore cares about
protecting his landmarks (𝑝1, 𝑝3, 𝑝5, 𝑝8) along with every release that
he makes, however he is not equally interested for the other regular
events in his trajectory. More technically, he cares about allocating a
total budget of 𝜀 on any set of timestamps containing the landmarks
and one regular event. Event-level protection is not suitable for this
case, since it can only protect one event at a time. So, let us assume
that we apply user-level privacy1, by distributing equal portions of
𝜀 to all the events, i.e., 𝜀

8
to each one (see Figure 2). Indeed, we have

protected the landmark points plus one regular event at any release
as expected; we have allocated a total of 5𝜀

8
< 𝜀 to these 5 events.

Figure 2: User-level and landmark 𝜀-differential privacy pro-
tection for the time series of Figure 1.

However, perturbing by 𝜀
8
each one of the regular points deteriorates

the data utility unnecessarily; any budget less than or equal to 4𝜀
8

would be sufficient for covering the user privacy requirements. On the
other hand, our proposed privacy model, landmark privacy, directly
considers only the 5 events of interest (4 landmarks +1 current event)
in every release, and thus changing the scope from all the time series
to a significant subset of events. Subsequently, it allocates 𝜀

5
to each

one of these events. Consequently, we still achieve to protect all the
significant events, while the utility of a perturbed event is greater
than in the case of user-level privacy ( 𝜀

5
> 𝜀

8
).

1
In this scenario, in order to protect all the landmarks from timestamp 1 to 8, 𝑤 must

be set to 8, which makes 𝑤-event privacy equivalent to user-level.

Motivation. We argue that protecting only landmark events

along with any regular event is sufficient for the user privacy

protection, while it improves data utility with respect to the

conventional user-level privacy. Considering landmarks can

prevent over-perturbing the data in the benefit of their final utility.

Revisiting the scenario in Figure 2, if we want to protect the

landmark points, we have to allocate at most a budget of 𝜀 to the

landmarks, while saving some for the release of regular events.

Essentially, the more budget we allocate to an event the less we

protect it, but at the same time the more we maintain its utility.

With landmark privacy we propose to distribute the budget by

accounting only for the landmarks when we release an event of

the time series, i.e., allocating
𝜀
5
(4 landmarks + 1 regular point)

to each event (see Figure 2). This way, we still guarantee that the

landmarks are adequately protected, as they receive a total budget

of
4𝜀
5
< 𝜀. At the same time, we avoid over-perturbing the regular

events, as we allocate to them a higher total budget (
4𝜀
5
) than in

user-level (
𝜀
2
), and thus less noise. Hence, at any timestamp we

achieve an overall privacy protection bounded by 𝜀 in the event set

consisting of the released event and the landmarks.

Contributions. In this work, we formally define a novel privacy

notion that we call landmark privacy. We apply this privacy notion

to finite time series consisting of landmarks and regular events,

and we design and implement three landmark privacy schemes. We

further enhance our proposal by protecting the temporal position of

the landmarks in the time series. We investigate landmark privacy

under temporal correlation, which is inherent in time series pub-

lishing, and discuss how landmarks can affect the propagation of

temporal privacy loss. Finally, we evaluate landmark privacy with

real and synthetic data sets, in settings with or without temporal

correlation, showcasing the validity of our proposal.

2 BACKGROUND AND RELATEDWORK
This section provides the background knowledge that is essential to

the presentation of this paper and discusses the related work. Land-

mark privacy is based on 𝜀-differential privacy, and hence we revisit

its definition and important properties in Section 2.1 before moving

on to the main ideas of this paper. Although, its local variant [12]

is more compatible with microdata, which is our use case, for the

sake of simplicity in presentation we use its standard version. Still,

all discussed notions apply for local differential privacy. Section 2.2

surveys implementations of differential privacy in scenarios of con-

tinuous data publishing, and Section 2.3 describes how it behaves

under the presence of temporal correlation.

2.1 Differential privacy
Differential privacy [13] is a property of a privacy mechanismM
processing a set of privacy-sensitive personal data 𝐷 , while provid-
ing quantifiable privacy and utility guarantees.

Definition 1. [13] A privacy mechanismM, with domain D
and range O, satisfies 𝜀-differential privacy, for a given privacy

budget 𝜀, if for every pair of neighboring data sets 𝐷,𝐷′ ∈ D and

all sets 𝑂 ⊆ O

Pr[M(𝐷) ∈ 𝑂] ≤ 𝑒𝜀 Pr[M(𝐷′) ∈ 𝑂]



The privacy budget 𝜀 is a positive real number that represents

the user-defined privacy goal [28].M achieves stronger privacy

protection for lower values of 𝜀. Indeed, for lower values of 𝜀,

the neighboring data sets 𝐷 and 𝐷′ (i.e., they differ by one tu-

ple) have greater chances to produce the same output.M is cho-

sen based on the range and sensitivity of the query function 𝑓 ,

the results of which it perturbs. We define the sensitivity of a

query function 𝑓 for all neighboring data sets 𝐷 , 𝐷′ ∈ D as Δ𝑓 =

max𝐷,𝐷 ′∈D ∥ 𝑓 (𝐷) − 𝑓 (𝐷′)∥1.

2.1.1 Popular privacy mechanisms. A typical example of a differen-

tial privacy mechanism, for any function with range the set of real

numbers, is the Laplace mechanism [15]. It draws randomly a value

from the probability distribution of Laplace(𝜇, 𝑏), where 𝜇 stands
for the location parameter and 𝑏 > 0 is the scale parameter. In our

case, 𝜇 is the original output value of 𝑓 , and 𝑏 is
Δ𝑓
𝜀 . A specializa-

tion of this mechanism for location data, based on a multivariate

Laplace distribution, is the Planar Laplace mechanism [6].

For query functions that do not return a real number, e.g., ‘What

is the most visited country this year?’, or in cases where perturbing

the value of the output will completely destroy its utility, e.g., ‘How

many patients in the ICU?’, most works use the Exponential mecha-
nism [27]. Initially, a utility function 𝑢, with sensitivity Δ𝑢, maps

pairs of the input value 𝑥 and output value 𝑟 to utility scores. There-

after, the mechanismM selects an output value 𝑟 from a set of

possible outputs 𝑅 with probability proportional to exp( 𝜀𝑢 (𝑥,𝑟 )
2Δ𝑢 ).

Another technique for differential privacy mechanisms is the

randomized response [39]. It is a privacy-preserving survey method

that introduces probabilistic noise to the statistics of a research by

randomly instructing respondents to answer truthfully or ‘Yes’ to a

sensitive, binary question. Based on this methodology, the Random
response mechanism [36] returns the true or flipped answer value

with a probability proportional to the privacy budget 𝜀.

2.1.2 Composition. Any combination of a set of independent differ-

ential privacy mechanisms satisfying a corresponding set of privacy

guarantees shall satisfy differential privacy as well, i.e., provide a

differentially private output. When we apply a series of indepen-

dent (i.e., in the way that they inject noise) differential privacy

mechanisms on independent data, we can quantify the privacy of

the resulting output by summing up the privacy loss of each indi-

vidual mechanism [28]. However when the data sets are disjoint,

the final output’s privacy loss equals the maximum privacy loss of

the independent mechanisms.

2.1.3 Post-processing. Every time a data publisher interacts with

(any part of) the original data set, it is mandatory to consume

some of the available privacy budget according to the composition

property of differential privacy (Section 2.1.2). However, the post-
processing of a perturbed data set can be done without using any

additional privacy budget as outlined in Theorem 1.

Theorem 1. [28] The post-processing of the output of a differ-

ential privacy mechanism does not change its privacy guarantee.

2.2 Differential privacy in time series
In privacy-preserving continuous data publishing [21], we con-

sider the protection level with respect to not only the users, but

also to the events occurring in the data. An event is a tuple of an

identifying attribute of an individual and the sensitive data (includ-

ing contextual information), and we can see it as corresponding

to a record in a database where each individual may participate

once. Data publishers typically release events in the form of se-

quences of data items, usually indexed in time order (time series)

and geotagged, e.g., (‘Daisy’, ‘at home at Montmartre at 𝑡1’), . . . ,

(‘Donald’, ‘dining at Opera at 𝑡1’). We use the term ‘users’ to refer

to the individuals, also known as participants, who are referenced

in the processed and published data. Therefore, they should not be

confused with the consumers of the released data sets. We further

define the three levels of privacy provided to users, and highlight

some works implementing them.

Event-level [14] limits the privacy protection to any single event in
a time series, providing high data utility. Wang and Zu [35] defined

Correlated Time Series Differential Privacy, which guarantees that

the correlation between the perturbation that is introduced by a

Correlated LaplaceMechanism (CLM), and the original time series is

indistinguishable. Chen et al. [11] developed PeGaSus, an algorithm

for event-level differentially private stream processing that supports

different categories of stream queries (counts, sliding window, and

event monitoring) over multiple stream resolutions. Al-Dhubhani

and Cazalas [5] proposed an adaptive privacy-preserving technique

based on geo-indistinguishability, which adjusts the amount of

noise required to obfuscate an individual’s location based on its

correlation level with the previously published locations.

User-level [14] protects all the events in a time series, providing

high privacy protection. Fan et al. designed FAST [16], an adaptive

system that allows the release of real-time aggregate time series

by implementing sampling, perturbation, and filtering. Chen et

al. [10] and Hua et al. [20] exploited a text-processing technique,

the n-gram model, i.e., a contiguous sequence of 𝑛 items from a

given data sample, to release sequential data without releasing the

noisy statistics (counts) of all of the possible sequences. Contrary to

this approach, Li et al. [24] focus on publishing a set of trajectories,

where each one is considered as a single entry in the data set.

Farokhi [17], based on the discounted utility theory in economics,

proposed temporally discounted differential privacy, a relaxation

of the user-level protection that assigns different weights to the

privacy budgets that have been invested in previous timestamps.

𝑤-event-level [22] provides privacy protection to any sequence
of 𝑤 events in a time series. Based on the notion of decayed pri-

vacy [7], Kellaris et al. [22] proposed two mechanisms (Budget

Distribution and Budget Absorption) following a sliding window

methodology, which effectively distribute the privacy budget (expo-

nentially fading and uniformly) to sub-mechanisms applied on the

data of a window of the stream. Cao et al. [8] developed a frame-

work that achieves l-trajectory privacy protection by dynamically

adding noise at each timestamp, which exponentially fades over

time. Wang et al. [37] presented DP-PSP which segments trajecto-

ries by taking into account points of interest in road networks and

publishes privacy-preserving statistics.

Contrary to event-level, which provides privacy guarantees for

a single event, user- and𝑤-event-level offer stronger privacy pro-

tection by protecting a series of events. Event- and𝑤-event-level

better fit to scenarios of infinite data observation, whereas user-

level is more appropriate when the span of data observation is

finite. 𝑤-event- is narrower than user-level protection due to its



sliding window processing approach. In the extreme cases where

𝑤 is equal either to 1 or to the length of the time series,𝑤-event-

matches event- or user-level protection, respectively.

All of the aforementioned privacy protection levels consider all

events as equally significant in terms of privacy, and hence cannot

be applied to scenarios that require configurability. Furthermore,

they cannot be easily modified to differentiate among events and

adapt to the notion of landmarks. To fill this gap, we propose the

novel privacy notion of landmark privacy, which guarantees differ-

ential privacy while accounting for landmarks.

2.3 Privacy loss under temporal correlation
Cao et al. [9] proposed amethod for computing the temporal privacy

loss (TPL) of a differential privacy mechanism in the presence

of temporal correlation and background knowledge. The goal of

their technique is to guarantee privacy protection and to bound

the overall privacy loss at every timestamp under the assumption

of independent data releases. It calculates TPL as the sum of the

backward and forward temporal privacy loss, 𝛼𝐵𝑡 and 𝛼𝐹𝑡 , minus the

default privacy loss 𝜀 of the mechanism (because it is counted twice

in the aforementioned entities). This calculation is done for each

individual included in the original data set and the overall TPL is

equal to the maximum calculated value at every timestamp. 𝛼𝐵𝑡 (or

𝛼𝐹𝑡 ) at any timestamp depends on the𝛼𝐵𝑡 (or𝛼𝐹𝑡 ) at the previous/next

timestamp, the backward/forward temporal correlation, and 𝜀 as

described in Definition 2.

Definition 2. [9] The potential privacy loss of a privacy mech-

anism at a timestamp 𝑡 ∈ 𝑇 due to a series of outputs (𝑜𝑜𝑜𝑖 )𝑖∈𝑇 and

temporal correlation in its input 𝐷𝑡 with respect to any adversary,

targeting an individual with potential data items 𝑥𝑡 (or 𝑥 ′𝑡 ) and
having knowledge D𝑡 equal to 𝐷𝑡 − {𝑥𝑡 } (or 𝐷′𝑡 − {𝑥 ′𝑡 }), is

𝛼𝑡 = sup

𝑥𝑡 ,𝑥
′
𝑡 ,(𝑜𝑜𝑜𝑖 )𝑖∈𝑇

ln

Pr[(𝑜𝑜𝑜𝑖 )𝑖∈𝑇 |𝑥𝑡 ,D𝑡 ]
Pr[(𝑜𝑜𝑜𝑖 )𝑖∈𝑇 |𝑥 ′𝑡 ,D𝑡 ]

(1)

By analyzing Equation 1 we get the following

(1) = sup

𝑥𝑡 ,𝑥
′
𝑡 ,(𝑜𝑜𝑜𝑖 )𝑖∈ [min(𝑇 ),𝑡 ]

ln

Pr[(𝑜𝑜𝑜𝑖 )𝑖∈[min(𝑇 ),𝑡 ] |𝑥𝑡 ,D𝑡 ]
Pr[(𝑜𝑜𝑜𝑖 )𝑖∈[min(𝑇 ),𝑡 ] |𝑥 ′𝑡 ,D𝑡 ]︸                                                          ︷︷                                                          ︸

Backward privacy loss (𝛼𝐵
𝑡 )

+ sup

𝑥𝑡 ,𝑥
′
𝑡 ,(𝑜𝑜𝑜𝑖 )𝑖∈ [𝑡,max(𝑇 ) ]

ln

Pr[(𝑜𝑜𝑜𝑖 )𝑖∈[𝑡,max(𝑇 ) ] |𝑥𝑡 ,D𝑡 ]
Pr[(𝑜𝑜𝑜𝑖 )𝑖∈[𝑡,max(𝑇 ) ] |𝑥 ′𝑡 ,D𝑡 ]︸                                                          ︷︷                                                          ︸

Forward privacy loss (𝛼𝐹
𝑡 )

− sup

𝑥𝑡 ,𝑥
′
𝑡 ,𝑜𝑜𝑜𝑡

ln

Pr[𝑜𝑜𝑜𝑡 |𝑥𝑡 ,D𝑡 ]
Pr[𝑜𝑜𝑜𝑡 |𝑥 ′𝑡 ,D𝑡 ]︸                        ︷︷                        ︸

Present privacy loss (𝜀𝑡 )

(2)

The intuition behind [9] is that a stronger temporal correlation

results in higher privacy loss. When the transition matrix becomes

sufficiently large, then the loss decreases due to the fact that larger

matrices result in more uniform distributions. The authors investi-

gate briefly all of the possible privacy levels; however, the solutions

that they propose are applied only on the event-level.

3 LANDMARK PRIVACY
In this section, we introduce a new privacy definition, motivate its

importance, and propose the methodology for achieving it.

3.1 Problem description and definition
Users generate a finite series of sensitive data over time, which are

processed in batch mode in a secure and private way locally (or by

a trusted curator) and are later published in order to be consumed

by potentially adversarial data analysts. Data are produced as a

series of events, which we call time series.

We argue that in continuous user-generated data publishing,

events are not equally significant in terms of privacy. We term a

significant event—according to user- or data-related criteria—as

a landmark event. The identification of landmark events can be

performed manually or automatically, and is an orthogonal prob-

lem to ours. First, we consider the landmark timestamps, i.e., their

position in time, non-sensitive and provided by the user as input

along with the privacy budget 𝜀. For example, events 𝑝1, 𝑝3, 𝑝5,

𝑝8 in Figure 1 are landmark events. In Section 3.4, we extend our

privacy framework to protect landmark timestamps when they are

considered privacy-sensitive.

Definition 3 extends the notion of neighboring data sets (see

Section 2.1) to the context of landmarks.

Definition 3. Two time series 𝑆𝑇 , 𝑆 ′𝑇 of the same length |𝑇 |, with
common starting and ending timestamps, are L-landmark neighbor-

ing with respect to a set of timestamps 𝐿 ⊆ 𝑇 when
(i) for each 𝑆𝑇 [𝑖], 𝑆 ′𝑇 [𝑖] with 𝑖 ∈ 𝑇 and 𝑆𝑇 [𝑖] ≠ 𝑆 ′

𝑇
[𝑖], it holds that

𝑆𝑇 [𝑖], 𝑆 ′𝑇 [𝑖] are neighboring, and
(ii) for each 𝑖 ∈ 𝐿 ∪ {𝑡} such that 𝑡 ∈ 𝑇 , we have that 𝑆𝑇 [𝑖], 𝑆 ′𝑇 [𝑖]

are neighboring.

Intuitively, 𝑆𝑇 , 𝑆
′
𝑇
are pairwise, i.e., at the same timestamps, equal

or neighboring and their neighboring elements are on common

landmarks and/or at most on one regular event. Definition 3 allows

us to guarantee at any timestamp 𝑡 that, given a set of landmark

timestamps 𝐿 in a time series, all data sets corresponding to 𝐿 ∪
{𝑡} are protected. Thus, we proceed to define landmark privacy
(Definition 4), a configurable variation of differential privacy for

time series with significant events.

Definition 4 (Landmark privacy). LetM be a privacy mech-
anism with range O and domain S𝑇 being the set of all time series
with length |𝑇 |, where 𝑇 is a sequence of timestamps, and 𝐿 ⊆ 𝑇 be a
set of landmark timestamps.M satisfies (𝜀, 𝐿)-landmark privacy if
for all sets 𝑂 ⊆ O, and for every pair of L-landmark neighboring

time series 𝑆𝑇 , 𝑆 ′𝑇 , it holds that

𝑃𝑟 [M(𝑆𝑇 ) ∈ 𝑂] ≤ 𝑒𝜀𝑃𝑟 [M(𝑆 ′𝑇 ) ∈ 𝑂]

User-level privacy can achieve landmark privacy, but it over-

perturbs the final data by not distinguishing between landmark

and regular events. Theorem 2 states how to achieve the desired

privacy goal for the landmarks and any event, i.e., a total budget

less than 𝜀, and at the same time provide better utility overall.

Theorem 2. LetM be a mechanism with input a time series 𝑆𝑇 ,
where 𝑇 is the set of the involved timestamps, and 𝐿 ⊆ 𝑇 be the set
of landmark timestamps.M is decomposed to 𝜀-differential private



sub-mechanisms M𝑡 , for every 𝑡 ∈ 𝑇 , which apply independent
randomness to the event at 𝑡 . Then, given a privacy budget 𝜀, M
satisfies (𝜀, 𝐿)-landmark privacy if for any 𝑡 it holds that∑︁

𝑖∈𝐿∪{𝑡 }
𝜀𝑖 ≤ 𝜀

Proof. All mechanisms use independent randomness, and there-

fore for a time series 𝑆𝑇 = (𝐷𝑖 )𝑖∈𝑇 and outputs (𝑜𝑜𝑜𝑖 )𝑖∈𝑇 ∈ 𝑂 ⊆ O it

holds that

𝑃𝑟 [M(𝑆𝑇 ) = (𝑜𝑜𝑜𝑖 )𝑖∈𝑇 ] =
∏
𝑖∈𝑇

𝑃𝑟 [M𝑖 (𝐷𝑖 ) = 𝑜𝑜𝑜𝑖 ]

Likewise, for any landmark-neighboring time series 𝑆 ′
𝑇
of 𝑆𝑇

with the same outputs (𝑜𝑜𝑜𝑖 )𝑖∈𝑇 ∈ 𝑂 ⊆ O

𝑃𝑟 [M(𝑆 ′𝑇 ) = (𝑜𝑜𝑜𝑖 )𝑖∈𝑇 ] =
∏
𝑖∈𝑇

𝑃𝑟 [M𝑖 (𝐷′𝑖 ) = 𝑜𝑜𝑜𝑖 ]

According to Definition 3, there exists 𝐿 ∪ {𝑡} ⊆ 𝑇 such that

𝐷𝑖 = 𝐷′
𝑖
for 𝑖 ∈ 𝐿 ∪ {𝑡}. Thus, we get

𝑃𝑟 [M(𝑆𝑇 ) = (𝑜𝑜𝑜𝑖 )𝑖∈𝑇 ]
𝑃𝑟 [M(𝑆 ′

𝑇
) = (𝑜𝑜𝑜𝑖 )𝑖∈𝑇 ]

=
∏

𝑖∈𝐿∪{𝑡 }

𝑃𝑟 [M𝑖 (𝐷𝑖 ) = 𝑜𝑜𝑜𝑖 ]
𝑃𝑟 [M𝑖 (𝐷′𝑖 ) = 𝑜𝑜𝑜𝑖 ]

𝐷𝑖 and 𝐷′
𝑖
are neighboring for 𝑖 ∈ 𝐿 ∪ {𝑡}.M𝑖 is differential

private and from Definition 1 we get that
𝑃𝑟 [M𝑖 (𝐷𝑖 )=𝑜𝑜𝑜𝑖 ]
𝑃𝑟 [M𝑖 (𝐷 ′𝑖 )=𝑜𝑜𝑜𝑖 ]

≤ 𝑒𝜀𝑖 .

Hence, we can write

𝑃𝑟 [M(𝑆𝑇 ) = (𝑜𝑜𝑜𝑖 )𝑖∈𝑇 ]
𝑃𝑟 [M(𝑆 ′

𝑇
) = (𝑜𝑜𝑜𝑖 )𝑖∈𝑇 ]

≤
∏

𝑖∈𝐿∪{𝑡 }
𝑒𝜀𝑖 = 𝑒

∑
𝑖∈𝐿∪{𝑡 } 𝜀𝑖

For any 𝑂 ∈ O we get
𝑃𝑟 [M(𝑆𝑇 ) ∈𝑂 ]
𝑃𝑟 [M(𝑆 ′

𝑇
) ∈𝑂 ] ≤ 𝑒

∑
𝑖∈𝐿∪{𝑡 } 𝜀𝑖

. If the for-

mula of Theorem 2 holds, then we get
𝑃𝑟 [M(𝑆𝑇 ) ∈𝑂 ]
𝑃𝑟 [M(𝑆 ′

𝑇
) ∈𝑂 ] ≤ 𝑒𝜀 . Due to

Definition 4 this concludes our proof. □

3.2 Achieving landmark privacy
In this section, we present schemes to achieve landmark privacy.

(a) Uniform

(b) Skip

Figure 3: Application scenario of the (a) Uniform and (b) Skip
landmark privacy schemes on a time series.

Uniform. Figure 3a shows the implementation of the baseline

landmark privacy scheme for Example 1.2 which distributes uni-

formly the available privacy budget 𝜀. In this case, it is enough

to distribute at each timestamp the total privacy budget divided

by the number of timestamps corresponding to landmarks, plus

one, i.e.,
𝜀
|𝐿 |+1 . Consequently, at each timestamp we protect every

landmark, while reserving a part of 𝜀 for the current timestamp.

Skip. One might argue that we could skip the landmark data

releases as we demonstrate in Figure 3b, by republishing previous,

regular event releases. This would result in preserving all of the

available privacy budget for regular events, equivalently to event-

level protection, i.e., 𝜀𝑖 = 𝜀, ∀𝑖 ∈ 𝑇 \ 𝐿.
In practice, however, this approach can eventually pose arbitrary

privacy risks, especially when dealing with geotagged data. Partic-

ularly, sporadic location data publishing or misapplying location

cloaking could result in areas with sparse data points, indicating

privacy-sensitive locations [19, 31]. We study this problem and

investigate possible solutions in Section 3.4.

Adaptive. Next, we propose an adaptive privacy scheme

(Figure 4) that accounts for changes in the sequence of sensitive

data sets (𝐷𝑖 )𝑖∈𝑇 by analyzing the respective private data releases

(𝑜𝑜𝑜𝑖 )𝑖∈𝑇 , and thus exploiting the post-processing property of

differential privacy (Theorem 1).

Figure 4: Concept of Adaptive landmark privacy.

Initially, the budget management component reserves uniformly

the available privacy budget 𝜀 for each future release o. At each
timestamp, the processing component decides to either sample from

the time series the current input and publish it with noise or release

an approximation based on previous releases. In the case when

it publishes with noise the original data, the analysis component

estimates the data trends by calculating the difference between

the current and the previous releases and compares the difference

with the scale of the perturbation, i.e.,
Δ𝑓
𝜀 [22]. The outcome of this

comparison determines the adaptation of the sampling rate of the

processing component for the next events: if the difference is greater

it means that the data trends are evolving, and therefore it must

increase the sampling rate. When the mechanism approximates a

landmark (but not a regular timestamp), the budget management

component distributes the reserved privacy budget to the next



timestamps. Due to Theorem 1, the analysis component does not

consume any privacy budget allowing for better data utility.

3.3 Landmark privacy under temporal
correlation

From the discussion so far, it is evident that for the budget distribu-

tion it is not the positions, but rather the number of the landmarks

that matters. However, this is not the case under the presence of

temporal correlation.

The Hidden Markov Model scheme (as used in [9]) stipulates two

important independence properties: (i) the future (or past) depends

on the past (or future) via the present, and (ii) the current observa-

tion is independent of the rest given the current state. Hence, there

is independence between an observation at a specific timestamp

and previous/next data sets under the presence of the current in-

put data set. Intuitively, knowing the data set at timestamp 𝑡 stops

the propagation of the Markov chain towards the next or previous

timestamps in the time series.

In Section 2.3 we showed that the temporal privacy loss 𝛼𝑡 at a

timestamp 𝑡 is calculated as the sum of the backward and forward

privacy loss, 𝛼𝐵𝑡 and 𝛼𝐹𝑡 , minus the privacy budget 𝜀𝑡 , to account

for the extra privacy loss due to previous and next releases 𝑜𝑜𝑜 ofM
under temporal correlation. By Theorem 2, at every timestamp 𝑡

we consider the data at 𝑡 and at the landmark timestamps 𝐿. When

sequentially composing the data releases for each timestamp 𝑖 in 𝐿∪
{𝑡} we consider the previous releases in the whole time series until

the timestamp 𝑖− that is exactly before 𝑖 in the ordered 𝐿 ∪ {𝑡}, and
the next data releases in the whole time series until the timestamp

𝑖+ that is exactly after 𝑖 in the ordered 𝐿∪{𝑡}. Figure 5 illustrates 𝑖−
and 𝑖+ in Example 1.1, while we formalize the landmark temporal

privacy loss in Definition 5.

Figure 5: The timestamps exactly before (−) and after (+)
every timestamp, where that is applicable, for the calculation
of the temporal privacy loss.

Definition 5. Given a landmark set 𝐿 in a set of timestamps 𝑇 ,
the potential overall temporal privacy loss of a privacy mechanism
M at any timestamp in 𝐿 ∪ {𝑡} is∑︁

𝑖∈𝐿∪{𝑡 }
𝛼𝑖

where for 𝑖−, 𝑖+ ∈ 𝐿 ∪ {𝑡} being the timestamps exactly before and
after 𝑖 , 𝛼𝑖 is equal to

ln

Pr[(𝑜𝑜𝑜)𝑖∈[𝑖−+1,𝑖 ] |𝐷𝑖 ]
Pr[(𝑜𝑜𝑜)𝑖∈[𝑖−+1,𝑖 ] |𝐷′𝑖 ]︸                        ︷︷                        ︸

𝛼𝐵
𝑖

+ ln
Pr[(𝑜𝑜𝑜)𝑖∈[𝑖,𝑖+−1] |𝐷𝑖 ]
Pr[(𝑜𝑜𝑜)𝑖∈[𝑖,𝑖+−1] |𝐷′𝑖 ]︸                        ︷︷                        ︸

𝛼𝐹
𝑖

− ln Pr[𝑜𝑜𝑜𝑖 |𝐷𝑖 ]
Pr[𝑜𝑜𝑜𝑖 |𝐷′𝑖 ]︸         ︷︷         ︸

𝜀𝑖

(3)

As presented in [9], the temporal privacy loss of a time series

(without landmarks) can be bounded by a given privacy budget

𝜀. Intuitively, by Equation 3 the temporal privacy loss incurred

when considering landmarks is less than the temporal loss in the

case without the knowledge of the landmarks. Thus, the temporal

privacy loss in landmark privacy can be also bounded by 𝜀.

3.4 Protecting landmarks
So far, we assumed that the timestamps in the landmark set 𝐿 are

not privacy-sensitive, and therefore we used them in our schemes

as they were. This may pose a direct or indirect privacy risk to

the users. For the former, we consider the case where we desire

to publish 𝐿 as complimentary information to the release of the

event values. For the latter, a potentially adversarial data analyst

may infer 𝐿 by observing the values of the privacy budget, which is

usually an inseparable attribute of the data release as an indicator

of the privacy guarantee to the users and as an estimate of the data

utility to the analysts. Hence, in both cases, a user-defined 𝐿, which

is supposed to facilitate the configurable privacy protection of the

user, could end up posing a privacy risk to them.

In Example 3.1, we demonstrate the extreme case of the applica-

tion of the Skip landmark privacy scheme from Figure 3b, where

we approximate landmarks with the latest data release and invest

all of the available privacy budget to regular events.

Example 3.1. Figure 6 shows the privacy risk that the application
of a landmark privacy scheme that nullifies or approximates outputs,
similar to Skip, might cause. We point out in red the details that
might cause indirect information inference. In this extreme case, the
minimization of the privacy budget in combination with nullifying
the output (either by not publishing or by adding a lot of noise) or
approximating the current output with previously released outputs
might hint to any adversary that the current event is a landmark.

Figure 6: The privacy risk (highlighted in red) that the appli-
cation of the landmark privacy Skip scheme might pose.

Apart from the privacy budget that we invested at landmarks,
we can observe a pattern for the budgets at regular events as well.
Therefore, an adversary who observes the values of the privacy budget
can easily infer not only the number but also the exact temporal
position of the landmarks.

The main idea of the privacy-preserving dummy landmark selec-

tion module is to privately select extra landmark event timestamps,



i.e., dummy landmarks, from the set of timestamps𝑇 \𝐿 of the time

series 𝑆𝑇 and add them to the original landmark set 𝐿. Selecting

extra events, on top of the actual landmarks, as dummy landmarks,

can render the actual ones indistinguishable. The goal is to create a

new set 𝐿′ such that 𝐿 ⊂ 𝐿′ ⊆ 𝑇 .
First, we generate a set of dummy landmark set options by adding

regular event timestamps from 𝑇 \ 𝐿 to 𝐿 (Section 3.4.1). Then, we

utilize the exponential mechanism, with a utility function that

calculates an indicator for each of the options in the set, based on

how much it differs from the original landmark set 𝐿, and randomly

select one of the options (Section 3.4.2). This process provides an

extra layer of privacy protection to landmarks, and thus allows the

processing, and thereafter releasing, of landmark timestamps.

3.4.1 Dummy landmark selection.

Optimal. The Optimal algorithm generates every possible com-

bination (options) of landmark sets 𝐿′ containing one set from every

possible size, i.e, |𝐿 | +1, |𝐿 | +2, . . . , |𝑇 |. Each 𝐿′ contains the original
landmarks along with timestamps of regular events from 𝑇 \ 𝐿
(dummy landmarks). Then, it evaluates each option by comparing

each of its sets with the original landmark set 𝐿 and estimating an

overall similarity score for each option. We discuss possible utility

score functions later on in Section 3.4.2. The goal of this process

is to select the option that contains the combination of dummy

landmark sets that achieve the best score.

This procedure guarantees to return the optimal option with

regard to the original set 𝐿. However, it is rather costly in terms

of complexity. In more detail, given |𝑇 \ 𝐿 | regular events and a

combination of size 𝑟 , it requires𝑂 (𝐶 ( |𝑇 \ 𝐿 |, 𝑟 ) + 2𝐶 ( |𝑇 \𝐿 |,𝑟 ) ) time

and𝑂 (𝑟 ∗𝐶 ( |𝑇 \𝐿 |, 𝑟 )) space. Next, we present a Heuristic solution
with improved time and space requirements.

Heuristic. The Heuristic algorithm follows an incremental

methodology and at each step it selects a new timestamp, corre-

sponding to a regular event from 𝑇 \ 𝐿′. In this case, the elements

of 𝐿′ at each step differ by one from the one that the algorithm

selected in the previous step. Similar to the Optimal, it selects a
new set based on a predefined similarity metric until it selects a set

that is equal to the size of the series of events, i.e., 𝐿′ = 𝑇 .

In terms of complexity, given |𝑇 \ 𝐿 | regular events, the

Heuristic requires 𝑂 ( |𝑇 \ 𝐿 |2) time and space. Note that the

reverse process, i.e., starting with 𝑇 landmarks and removing until

|𝐿′ | = |𝐿 | + 1, performs similarly.

Partitioned. We improve the complexity of the Heuristic
algorithm by partitioning the landmark timestamp sequence 𝐿.

The novelty of this algorithm lies in the fact that it deals with

the event series as a histogram which allows it to take advantage

of its relevant features and methodology. Particularly, it uses the

Freedman-Diaconis rule, which is resilient to outliers and takes into

account the data variability and data size [29], and generates a his-

togram from the landmark set 𝐿. This way, it achieves an improved

complexity, compared to the Heuristic, that is dependent on the

histogram’s bin size. Algorithm 1 demonstrates the overall process.

Function getHist generates a histogram with bins of size h for

a given time series timestamps 𝑇 and landmark set 𝐿. For every

new histogram version, the getDiff function (Line 11) finds the

difference from the original histogram; for this operation it utilizes

Algorithm 1: Partitioned landmark set options genera-

tion

Data: the time series timestamps 𝑇 , the landmark set 𝐿

Output: the selected landmark set options opts

1 hist, h← getHist(𝑇, 𝐿)

2 histCur← hist
3 opts← []
4 while sum(histCur) ≠ len(𝑇) do
5 diffMin←∞
6 opt← histCur
7 foreach h𝑖 in histCur do
8 if h𝑖 + 1 ≤ h then
9 histTmp← histCur

10 histTmp[𝑖]← histTmp[𝑖] + 1
11 diffCur← getDiff(hist, histTmp)
12 if diffCur < diffMin then
13 diffMin← diffCur
14 opt← histTmp
15 histCur← opt
16 opts← opt
17 return opts

the Euclidean distance (see Section 4.3.1 for more details). In Lines 7-

14, the algorithm checks every histogram version by incrementing

each bin by 1 and comparing it to the original (Line 12). In the

end, it returns opts which contains all the versions of hist that are
closest to the original hist for all possible bin sizes of hist.

3.4.2 Privacy-preserving option selection. The algorithms that we

presented in Section 3.4.1 return a set of possible versions of the

original landmark set 𝐿 by adding extra timestamps in it from the

series of events at timestamps 𝑇 \ 𝐿. In the next step, we randomly

select a set by utilizing the exponential mechanism (Section 2.1.1).

For this procedure, we allocate a small fraction of the available

privacy budget, i.e., 1% or even less (see Section 4.3.2 for more

details), which adds up to that of the publishing scheme according

to the sequential composition theorem.

Utility score function. Prior to selecting a landmark timestamp

set including the original along with dummy landmarks, the expo-

nential mechanism evaluates each set using a utility score function.

We present here two ways of doing so.

One way to evaluate each set is by taking into account the tem-

poral position of the events in the sequence. Events that occur at

recent timestamps are more likely to reveal sensitive information

regarding the users involved [22]. Hence, indicating the existence

of dummy landmarks nearby actual landmarks can increase the

adversarial confidence regarding the location of the latter within

a series of events. In other words, sets with dummy landmarks

with less average temporal distance from actual landmarks achieve

better utility scores.

Another approach for the utility score function is to consider the

number of events in each set. Sets with more dummy landmarks

may render actual landmarks more indistinguishable, and therefore

provide less utility. Consequently, more dummy landmarks lead



to distributing the privacy budget to more events, and therefore

leading to more robust overall privacy protection.

Option release. In the last step, the privacy-preserving dummy

landmark selection module releases a new landmark set (includ-

ing the original landmarks along with the dummy ones) from the

options that were generated in the previous step, by utilizing the

exponential mechanism.

The options generated by the Optimal and Heuristic algo-

rithms contain actual timestamps that can be utilized directly by

the landmark privacy schemes that we presented in Section 3.2.

However, the Partitioned algorithm returns histograms instead

of timestamps. Therefore, we need to process the result of the ex-

ponential mechanism further by sampling without replacement

from the set 𝑇 \ 𝐿 according to the selected histogram’s probability

density function.

4 EXPERIMENTAL EVALUATION
In this section we present the experiments that we performed in

order to evaluate landmark privacy on real and synthetic data sets.

Section 4.1 contains all the details regarding the data sets the we

used for our experiments along with the system configurations. Sec-

tion 4.2 evaluates the data utility of the landmark privacy schemes

that we designed in Section 3.2 in comparison to user and event level,

and investigates the behavior of the privacy loss under temporal

correlation for different distributions of landmarks. Section 4.3 jus-

tifies our decisions while designing the privacy-preserving dummy

landmark selection module in Section 3.4 and the data utility impact

of the latter.

4.1 Configurations and data sets
We implemented our experiments

2
in Python 3.9.7 and executed

them on a machine with an Intel i7-6700HQ at 3.5GHz CPU and

16GB RAM, running Manjaro Linux 21.1.5. We repeated each ex-

periment 100 times and we report the mean over these iterations.

4.1.1 Data sets.

Real data sets. For consistency, we sample from each of the fol-

lowing data sets the first 1, 000 entries that satisfy the configuration

criteria that we discuss in detail in Section 4.1.2.

Copenhagen [32] data set was collected via the smartphone

devices of 851 university students over a period of 4 week as part of

the Copenhagen Networks Study. Each device was configured to be

discoverable by and to discover nearby Bluetooth devices every 5

minutes. Upon discovery, each device registers (i) the timestamp in

seconds, (ii) the device’s unique identifier, (iii) the unique identifier

of the device that it discovered (−1 when no device was found or

−2 for any non-participating device), and (iv) the Received Signal

Strength Indicator (RSSI) in dBm. Half of the devices have registered

data at at least 81% of the possible timestamps. 3 devices (449, 550,

689) satisfy our configuration criteria (Section 4.1.2) within their

first 1, 000 entries. From those 3 devices, we picked the first one,

i.e., device with identifier ‘449’, and utilized its 1, 000 first entries

out of 12, 167 unique valid contacts.

2
Source code available at https://gitlab.com/crabbysalmon/codaspy22

HUE [26] contains the hourly energy consumption data of 22

residential customers of BCHydro, a provincial power utility in

British Columbia. The measurements for each residence are saved

individually and each measurement contains (i) the date (YYYY-

MM-DD), (ii) the hour, and (iii) the energy consumption in kWh.

In our experiments, we used the first residence, i.e., residence with

identifier ‘1’, that satisfies our configuration criteria (Section 4.1.2)

within its first 1, 000 entries. In those entries, out of a total of 29, 231

measurements, we estimated an average energy consumption equal

to 0.88kWh and a value range within [0.28, 4.45].
T-drive [40] consists of 15 million GPS data points of the tra-

jectories of 10, 357 taxis in Beijing, spanning a period of 1 week

and a total distance of 9 million kilometers. The taxis reported

their location data on average every 177 seconds and 623 meters

approximately. Each vehicle registers (i) the taxi unique identifier,

(ii) the timestamp (YYYY-MM-DD HH:MM:SS), (iii) longitude, and

(iv) latitude. These measurements are stored individually per vehi-

cle. We sampled the first 1000 data items of the taxi with identifier

‘2’, which satisfied our configuration criteria (Section 4.1.2).

Synthetic. We generated synthetic time series of length equal to

100 timestamps, for which we varied the number and distribution

of landmarks. In this way, we have a controlled data set that we

can use to study the behavior of our proposal. We take into account

only the temporal order of the points and the position of regular

and landmark events within the time series. In Section 4.1.2, we

explain in more detail our configuration criteria.

4.1.2 Configurations. In this section we discuss how we tune rel-

evant parameters of the problem for the experiments. First, we

vary the landmark percentage, i.e., the ratio of timestamps that we

attribute to landmarks and regular events, in order to explore the

behavior of our methodology in all possible scenarios. Second, for

each data set, we implement a privacy mechanism that injects noise

related to the type of its attribute values and we tune the parameters

of each scheme accordingly. Third, we explain how we generate

synthetic data sets with various degrees of temporal correlation so

as to observe the impact on the temporal privacy loss.

Landmark percentage. In the Copenhagen data set, a landmark

represents a timestamp at which a specific contact device is regis-

tered. After identifying the unique contacts within the sample, we

achieve each desired landmarks to regular events ratio by consid-

ering a list that contains a part of these contact devices. In more

detail, we achieve 0% landmarks by considering an empty list of

contact devices, 20% by extending the list with [3, 6, 11, 12, 25, 29,
36, 39, 41, 46, 47, 50, 52, 56, 57, 61, 63, 78, 80], 40% with [81, 88, 90,
97, 101, 128, 130, 131, 137, 145, 146, 148, 151, 158, 166, 175, 176], 60%
with [181, 182, 192, 195, 196, 201, 203, 207, 221, 230, 235, 237, 239,
241, 254], 80% with [260, 282, 287, 289, 290, 291, 308, 311, 318, 323,
324, 330, 334, 335, 344, 350, 353, 355, 357, 358, 361, 363], and 100%

by including all of the possible contacts.

In HUE, we consider as landmarks the events that have energy

consumption values below a certain threshold. More precisely, we

get 0%, 20% 40%, 60%, 80%, and 100% landmarks by setting the energy

consumption threshold at 0.28kWh, 1.12kWh, 0.88kWh, 0.68kWh,

0.54kWh, and 4.45kWh respectively.

https://gitlab.com/crabbysalmon/codaspy22


In T-drive, a landmark represents a location where a vehicle

stopped for some time. We achieved the desired landmark percent-

ages by utilizing the method of Li et al. [25] for detecting stay points

in trajectory data. In more detail, the algorithm checks for each data

item if each subsequent item is within a given distance threshold Δ𝑙
and measures the time period Δ𝑡 between the present point and the

last subsequent point. After analyzing the data and experimenting

with different pairs of distance and time period, we achieve 0%, 20%

40%, 60%, 80%, and 100% landmarks by setting the (Δ𝑙 in meters, Δ𝑡
in minutes) pairs input to the stay point discovery method as [(0,

1000), (2095, 30), (2790, 30), (3590, 30), (4825, 30), (10350, 30)].

We generated synthetic data with skewed (the landmarks are

distributed towards the beginning/end of the series), symmetric (in
the middle), bimodal (both end and beginning), and uniform (all over

the time series) landmark distributions. In order to get landmark

sets with the above distribution features, we generate probability

distributions with restricted domain to the beginning and end of the

time series, and sample from them, without replacement, the desired

number of points. For each case, we place the location, i.e., centre, of

the distribution accordingly. More precisely, for symmetric we put

the location in themiddle of the time series and for left/right skewed

to the right/left. For bimodal we combine two mirrored skewed

distributions. Finally, for the uniform distribution we distribute the

landmarks randomly throughout the time series. For consistency,

we calculate the scale parameter of the corresponding distribution

depending on the length of the time series by setting it equal to the

series’ length over a constant.

Privacy parameters. For all the real data sets, we implement 𝜀-

differential privacy by selecting a mechanism from those that we

described in Section 2.1.1 that is better suited for the type of its sen-

sitive attributes. To perturb the contact tracing data of the Copen-

hagen data set, we utilize the random response technique [38], and
at each timestamp we report truthfully, with probability 𝑝 = 𝑒𝜀

𝑒𝜀+1 ,
whether the current contact is a landmark or not. We randomize

the energy consumption in HUE with the Laplace mechanism [15].

For T-drive, we perturb the location data with noise that we sample

from the Planar Laplace mechanism [6].

We set the privacy budget 𝜀 = 1 for all of our experiments and,

for simplicity, we assume that for every query sensitivity it holds

that Δ𝑓 = 1. Note that changing the value of 𝜀 would not affect

the conclusions we drive from the experiments (even though the

range of the results would change). For the experiments that we

performed on the synthetic data sets, the original values to be

released are not relevant to what we want to observe, and thus we

ignore them.

Temporal correlation. Despite the inherent presence of temporal

correlation in time series, it is challenging to correctly discover

and quantify it. For this reason, and in order to create a more

controlled environment for our experiments, we chose to conduct

tests relevant to temporal correlation using synthetic data sets. We

model the temporal correlation in the synthetic data as a stochastic
matrix 𝑃 , using aMarkov Chain [18]. 𝑃 is an 𝑛×𝑛 matrix, where the

element 𝑃𝑖 𝑗 represents the transition probability from a state 𝑖 to

another state 𝑗,∀𝑖, 𝑗 ≤ 𝑛. It holds that the elements of every row 𝑗

of 𝑃 sum up to 1. We follow the Laplacian smoothing technique [33],

as utilized in [9], to generate the matrix 𝑃 with a degree of temporal

correlation 𝑠 > 0 equal to

(𝐼𝑛)𝑖 𝑗 + 𝑠∑𝑛
𝑘=1
((𝐼𝑛) 𝑗𝑘 + 𝑠)

where 𝐼𝑛 is an identity matrix of size 𝑛. The value of 𝑠 is compara-

ble only for stochastic matrices of the same size and dictates the

strength of the correlation; the lower its value, the stronger the

correlation degree. In our experiments, for simplicity, we set 𝑛 = 2

and we investigate the effect of weak (𝑠 = 1), moderate (𝑠 = 0.1),

and strong (𝑠 = 0.01) temporal correlation degree on the temporal

privacy loss.

4.2 Landmark events
In this section, we present the experiments that we performed, to

test the methodology that we presented in Section 3.2, on real and

synthetic data sets.

With the experiments on the real data sets (Section 4.2.1), we

show the performance in terms of data utility of our three landmark

privacy schemes: Skip, Uniform and Adaptive. We define data util-

ity as the mean absolute error introduced by the privacymechanism.

We compare with the event- and user-level differential privacy pro-

tection levels, and show that, in the general case, landmark privacy

allows for better data utility than user-level differential privacy

while balancing between the two protection levels.

With the experiments on the synthetic data sets (Section 4.2.2) we

show how the temporal privacy loss, i.e., the privacy budget 𝜀 with

the extra privacy loss because of the temporal correlation, changes

when tuning the size and statistical characteristics of the input land-

mark set 𝐿. We observe that a greater average landmark–regular

event distance in a time series can result into greater temporal

privacy loss under moderate and strong temporal correlation.

4.2.1 Landmark privacy schemes. Figure 7 exhibits the perfor-

mance (bars) of the three schemes, Skip, Uniform, and Adaptive
applied on the three data sets that we study. Notice that, in the

cases when we have 0% and 100% of the events being landmarks,

we get the same behavior as in event- and user-level privacy

respectively. This happens due the fact that at each timestamp we

take into account only the data items at the current timestamp

and ignore the rest of the time series (event-level) when there are

no landmarks. Whereas, when each timestamp corresponds to a

landmark we consider and protect all the events throughout the

entire series (user-level).

For the Copenhagen data set (Figure 7a), Adaptive has an overall
consistent performance and works best for 60% and 80% landmarks.

We notice that for 0% landmarks, it achieves better utility than the

event-level protection due to the combination of more available

privacy budget per timestamp (due to the absence of landmarks)

and its adaptive sampling methodology. Skip excels, compared to

the others, at cases where it needs to approximate 20%, 40%, or

100% of the times. In general, we notice that, for this data set and

due to the application of the random response technique, it is more

beneficial to either invest more privacy budget per event or prefer

approximation over introducing randomization.

The combination of the small range of measurements ([0.28,
4.45] with an average of 0.88kWh) in HUE (Figure 7b) and the
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Figure 7: The mean absolute error (a) as a percentage, (b) in
kWh, and (c) in meters of the released data, for different
landmark percentages. The markers indicate the correspond-
ing measurements with the incorporation of the privacy-
preserving dummy landmark selection module.

large scale in the Laplace mechanism, allows for schemes that favor

approximation over noise injection to achieve a better performance

in terms of data utility. Hence, Skip achieves a constant low mean

absolute error. Regardless, the Adaptive scheme performs by far

better than Uniform and balances between event- and user-level

protection for all landmark percentages.

In T-drive (Figure 7c), Adaptive outperforms Uniform by 10%–

20% for all landmark percentages greater than 40% and Skip by

more than 20%. The lower density (average distance of 623m) of

the T-drive data set has a negative impact on the performance of

Skip because republishing a previous perturbed value is now less

accurate than perturbing the current location.

Principally, we can claim that the Adaptive is the most reliable

and best performing scheme, if we consider the drawbacks of Skip,
particularly in spatiotemporal data, e.g., sporadic location data pub-

lishing or misapplying location cloaking, that could lead to the

indication of privacy-sensitive attribute values [19, 31]. Moreover,

implementing a more data-dependent sampling method that ac-

counts for changes in the trends of the input data and adapts its

rate accordingly, would result in a more effective budget allocation

that would improve the performance of Adaptive in terms of data

utility. We defer this study for the future.

4.2.2 Temporal distance and correlation. Figure 8 shows a com-

parison of the average temporal distance of the events from the

previous/next landmark or the start/end of the time series for vari-

ous distributions in our synthetic data. More specifically, we model

the distance of an event as the count of the total number of events

between itself and the nearest landmark or the time series edge.

We observe that the uniform and bimodal distributions tend to

limit the regular event–landmark distance. This is due to the fact
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Figure 8: Average temporal distance of regular events from
the landmarks for different landmarks percentages within a
time series in various landmark distributions.

that the former scatters the landmarks, while the latter distributes

them on both edges, leaving a shorter space uninterrupted by land-

marks. On the contrary, distributing the landmarks at one part of

the sequence, as in skewed or symmetric, creates a wider space

without landmarks. This study provides us with different distance

settings, to be used in the subsequent temporal privacy loss study.

Figure 9 illustrates a comparison among the aforementioned dis-

tributions regarding the temporal privacy loss under (a) moderate,

and (b) strong temporal correlation degrees. The line shows the

overall privacy loss—for all cases of landmark distribution—without

temporal correlation. The privacy loss under a weak correlation

degree converges with all possible distributions for all landmark

percentages, and thus we omit its presentation.
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Figure 9: The temporal privacy loss for different land-
mark percentages and distributions under (a) moderate, and
(b) strong degrees of temporal correlation. The line shows
the overall privacy loss without temporal correlation.

In combination with Figure 8, we conclude that a greater average

landmark–regular event distance in a distribution can result into

greater temporal privacy loss under moderate and strong tempo-

ral correlation. This is due to the fact that the backward/forward

privacy loss accumulates more over time in wider spaces with-

out landmarks (see Section 2.3). Furthermore, the behavior of the

privacy loss is as expected regarding the temporal correlation de-

gree: a stronger correlation degree generates higher privacy loss

while widening the gap between the different distribution cases.

On the contrary, a weaker correlation degree makes it harder to

differentiate among the landmark distributions.



4.3 Selection of dummy landmarks
In this section, we present the experiments on the methodology

for the dummy landmark selection presented in Section 3.4, on

the real and synthetic data sets. Due to the high complexity of the

Optimal and Heuristic algorithms, we choose to evaluate only

the Partitioned, which is the optimized solution that we designed.

With the experiments on the synthetic data sets (Section 4.3.1) we

show the normalized Euclidean and Wasserstein distance metrics

(not to be confused with the temporal distances in Figure 8) of

the time series histograms for various distributions and landmark

percentages. This allows us to justify our design decisions for our

concept that we showcased in Section 3.4. With the experiments

on the real data sets (Section 4.3.3), we show the performance in

terms of utility of our three landmark schemes in combination with

the privacy-preserving dummy landmark selection module, which

enhances the privacy protection that our concept provides.

4.3.1 Dummy landmark selection utility metrics. Figure 10 demon-

strates the normalized distance that we obtain when we utilize

either (a) the Euclidean or (b) the Wasserstein distance metric to

obtain a set of landmarks including regular events.
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Figure 10: The normalized (a) Euclidean, and (b) Wasserstein
distance of the generated landmark sets for different land-
mark percentages.

Comparing the results of the Euclidean distance in Figure 10a

with those of the Wasserstein in Figure 10b we conclude that the

Euclidean distance provides more consistent results for all possible

distributions. The maximum difference per landmark percentage is

approximately 0.2 for the former and 0.15 for the latter between the

bimodal and skewed landmark distributions. Overall, the Euclidean

distance achieves a mean normalized distance of 0.3, while the

Wasserstein distance a mean normalized distance that is equal to 0.2.

Therefore, and by observing Figure 10, Wasserstein demonstrates

a less consistent performance and less linear behavior among all

possible landmark distributions. Thus, we choose to utilize the

Euclidean distance metric for the implementation of the privacy-

preserving dummy landmark selection module in Section 3.4.

4.3.2 Privacy budget tuning. In Figure 11, we test the Uniform
mechanism in real data by investing different ratios (1%, 10%, 25%,

and 50%) of the available privacy budget 𝜀 in the dummy landmark

selection module and the remaining to perturbing the original data

values, in order to figure out the optimal ratio value. Uniform is

our baseline implementation, and hence allows us to derive more

accurate conclusions in this case. In general, we are expecting to

observe that greater ratios will result in more accurate, i.e., smaller,

landmark sets and less accurate values in the released data.
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Figure 11: The mean absolute error (a) as a percentage, (b) in
kWh, and (c) in meters of the released data for different land-
mark percentages. We apply the Uniform landmark privacy
mechanism and vary the ratio of the privacy budget 𝜀 that
we allocate to the dummy landmark selection module.

The randomized response mechanism is tolerant to the fluc-

tuations of the privacy budget, and hence its application to the

Copenhagen data set (Figure 11a) results in a constant performance

in terms of data utility. For HUE (Figure 11b) and T-drive (Fig-

ure 11c), we observe that our implementation performs better for

lower ratios, e.g., 0.01, where we end up allocating the majority of

the available privacy budget to the data release process instead of

the dummy landmark selection module. The results of this experi-

ment indicate that we can safely allocate the majority of 𝜀 to the

data publishing process, and therefore achieve better data utility,

while guaranteeing more robust privacy protection.

4.3.3 Privacy schemes and dummy landmark selection. Figure 7

exhibits the performance of Skip, Uniform, and Adaptive schemes

(presented in detail in Section 3.2) in combination with the dummy

landmark selection module (Section 3.4).

In comparison with the utility performance without the dummy

landmark selection module (solid bars), we notice a slight dete-

rioration for all three schemes (markers). This is natural since

we allocated part of the available privacy budget to the privacy-

preserving dummy landmark selection module, which in turn in-

creased the number of landmarks, except for the case of 100% land-

marks. Therefore, there is less privacy budget available for data

publishing throughout the time series. Skip performs best in our

experiments with HUE (Figure 7b), due to the low range in the

energy consumption and the high scale of the Laplace noise that it

avoids due to the employed approximation. However, for the Copen-

hagen data set (Figure 7a) and T-drive (Figure 7c), Skip attains high



mean absolute error, which exposes no benefit with respect to user-

level protection. Overall, Adaptive has a consistent performance

in terms of utility for all of the data sets that we experimented with,

and almost always outperforms the user-level privacy protection.

Thus, Adaptive is selected as the best scheme to use in general.

5 CONCLUSION
We presented landmark privacy for privacy-preserving time series

publishing, which allows for the protection of significant events

while improving the utility of the final result compared to user-

level differential privacy. We proposed three schemes for landmark

privacy, and quantified the privacy loss under temporal correlation.

Furthermore, we designed a module to enhance our privacy notion

by protecting the actual timestamps of the landmarks. The contri-

bution of the landmark privacy, and its best performing scheme,

Adaptive, is experimentally demonstrated on real and synthetic

data sets. The experiments showed that our dummy landmark selec-

tion module introduces a reasonable data utility decline to all of our

schemes, which is minimal for the Adaptive. In terms of temporal

correlation, we observe that under moderate and strong correlation,

greater average regular–landmark event distance causes greater

overall privacy loss. In the future, we aim to work on automatically

learning the initial landmark set by analyzing the input data sets,

semantics, and user preferences. We also plan to introduce learning

for the tuning of our Adaptive scheme parameters.
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