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In this paper we consider p-Laplacian boundary value problem on a half line. Using critical point theory and Mountain Pass Theorem, we prove the existence of nontrivials solutions.

Introduction

This paper is concerned with the following p-Laplacian boundary value problem on the half-line

                
ρ(t)Φ p (u (t)) + s(t)Φ p (u(t)) = f (t, u(t)), t = t j , a.e. t > 0, ∆ ρ(t j )Φ p (u (t j )) = I j (u(t j ))h(t j ), j = 1, 2, 3, ..., u (0 + ) = u(0) = 0, u (+∞) = u(+∞) = 0 (1.1) where Φ p u = |u| p-2 u, p > 1, s ∈ L ∞ [0, +∞) with ess inf [0,+∞) s(t) > 0, ρ be a continuously differentiable and bounded function such that max ρ L 1 , ρ L q < +∞,

1 p + 1 q = 1, inf [0,+∞)
ρ(t) > 0, Here t 0 = 0 < t 1 < t 2 < . . . < t j < . . . < t m → +∞, as m → ∞, are the impulse points, while the impulsive functions I j : R -→ R are assumed continuous. Finally ∆ ρ(t j )Φ p (u (t j )) = ρ(t + j )Φ p (u (t + j ))ρ(t - j )Φ p (u (t - j )) j = 1, 2, 3, ..., where u (t + j ) = lim t→t + j u (t) and u (t - j ) = lim t→t - j u (t) stand for the right and the left limits of u at t j , respectively. As for h : [0, +∞) -→ [0, +∞), it is a continuous function that satisfies ∑ +∞ j=1 h(t j ) < +∞.

and f : [0, +∞) × R -→ R is a Carathéodory function, i.e. (i) f (., u) is measurable, for each u ∈ R, (ii) f (t, .) is continuous, for a.e. t ∈ [0, +∞). Some of the ideas used in this paper are motivated by the work in [START_REF] Shi | Infinitely many solutions for a p-Laplacian boundary value problem with impulsive effects[END_REF][START_REF] Shi | Multiple solutions for p-Laplacian boundary value problems with impulsive effects[END_REF], and also we mention [START_REF] Heidarkhani | Some multiplicity results to the existence of three solutions for a Dirichlet boundary value problem involving the p-Laplacian[END_REF][START_REF] Huang | Solutions to Periodic BVP for Second Order Impulsive Differential Equation with a p-Laplacian Operator[END_REF][START_REF] Lin | Infinitely many homoclinic orbits of second-order p-Laplacian systems[END_REF][START_REF] Lu | Existence of periodic solutions of a p-Laplacian neutral functional differential equation[END_REF][START_REF] Ma | Existence of infinitely many periodic solutions for ordinary p-Laplacian systems[END_REF][START_REF] Tian | Periodic solutions of non-autonomous second-order systems with a p-Laplacian[END_REF][START_REF] Xu | Some existence results on periodic solutions of ordinary p-Laplacian systems[END_REF][START_REF] Xu | Existence of weak solutions for p-Laplacian probem with impulsive effects[END_REF], was studied the existence of solutions in a bounded interval [a, b]. This paper is devted to the generalization of problem in [START_REF] Shi | Infinitely many solutions for a p-Laplacian boundary value problem with impulsive effects[END_REF][START_REF] Shi | Multiple solutions for p-Laplacian boundary value problems with impulsive effects[END_REF], when we consider the problem in the half-line.

Preliminaries

The functional framework

Symbol L p (0, +∞) for p > 1 means the space of such measurable real valued functions defined on [0, +∞) that ∞ 0 |u (t)| p dt < +∞. Solutions to (1.1) will be considered in the space W 1,p 0,ρ,s (0, +∞) which is defined as follows. We say that u ∈ W 1,p 0,ρ,s (0, +∞) if u ∈ L p (0, +∞) and if there exists a function g ∈ L p (0, +∞), called a weak derivative, and such that

+∞ 0 u(t)ϕ (t)dt = - +∞ 0 g(t)ϕ(t)dt for all ϕ ∈ C ∞ c (0, +∞), where C ∞ c (0, +∞) is the space of compactly supported func- tions from C ∞ ([0, +∞)), R). We denote g := u . We endow the space W 1,p 0,ρ,s (0, +∞) with its norm u = +∞ 0 ρ(t)|u (t)| p + s(t)|u(t)| p dt 1 p ,
or the equivalent norm

u p = p √ ρu L p + p √ su L p .
Let the spaces C l,ρ [0, +∞) be defined by

C l,ρ [0, +∞) = u ∈ C([0, +∞), R) : lim t→+∞ ρ(t)u(t) exists endowed with the norm u ∞,ρ = sup t∈[0,+∞) ρ(t)|u(t)|.
Moreover the space W 1,p 0,ρ,s (0, +∞) is reflexive. We have:

Lemma 2.1. (a) The operator T : W 1,p 0,ρ,s (0, +∞) -→ T(W 1,p 0,ρ,s (0, +∞)) ⊂ L p (0, +∞) × L p (0, +∞) : = L P 2 (0, +∞) u -→ T(u) = p √ su, p √ ρu is an isometric isomorphism. (b) W 1,p 0,ρ,s (0, +∞) is a reflexive space.
Proof. (a) It is clear that T is a linear operator and that T conserves norms, i.e.,

∀ u ∈ W 1,p 0,ρ,s (0, +∞), Tu L p 2 = u p . Indeed Tu L p 2 = p √ su, p √ ρu L p 2 = p √ ρu L p + p √ su L p = u p .
(b) Since L p (0, +∞)) is a reflexive Banach space, the cartesian product L 2 p (0, +∞)) is also a reflexive Banach space with respect to the norm

u L p 2 = u 1 L p + u 2 L p , where u = (u 1 , u 2 ) ∈ L p 2 (0, +∞).
From part (a), T(W 1,p 0,ρ,s (0, +∞)) is a closed subspace of L p 2 (0, +∞); then by [5, Theorem 4.10.5], the space T(W 1,p 0,ρ,s (0, +∞)) is reflexive. Consequently W 1,p 0,ρ,s (0, +∞) is also reflexive. Lemma 2.2. [START_REF] Corduneanu | Intergral Equations and Stability of Feedback Systems[END_REF] Let D ⊂ C l,ρ ([0, +∞), R) be a bounded set. Then D is relatively compact if the following conditions hold: (a) D is equicontinuous on any compact sub-interval of R + , i.e.

∀ J ⊂ [0, +∞) compact, ∀ ε > 0, ∃ δ > 0, ∀ t 1 , t 2 ∈ J : |t 1 -t 2 | < δ =⇒ |ρ(t 1 )u(t 1 ) -ρ(t 2 )u(t 2 )| ≤ ε, ∀ u ∈ D, (b) D is equiconvergent at +∞ i.e., ∀ ε > 0, ∃ T = T(ε) > 0 such that ∀ t : t ≥ T(ε) =⇒ |ρ(t)u(t) -ρ(+∞)u(+∞)| ≤ ε, ∀ u ∈ D.

Critical point theory

Now we recall some essential facts from critical point theory (see [START_REF] Badiale | Semilinear Elliptic Equations for Beginners[END_REF][START_REF] Prodi | A Primer of Nonlinear Analysis[END_REF]). Definition 2.3. Let (X, • ) be a Banach space, Ω ⊂ X an open subset, and J : Ω -→ R a functional. We say that J is Fréchet differentiable at u ∈ Ω if there exists an operator A ∈ X such that lim

v∈Ω, v →0 J(u + v) -J(u) -Av v = 0.
The operator A, which is unique, is called the Fréchet differential of J at u and is denoted by A = J F (u) or A = J (u).

Definition 2.4. Let X be a Banach space, Ω ⊂ X an open subset, and J : Ω -→ R a functional. We say that J is Gâteaux differentiable at u ∈ Ω if there exists A ∈ X such that lim t→0 J(u + tv) -J(u) t = Av, for all v ∈ X. The operator A, which is unique, is denoted by A = J G (u) or merely J when there is no confusion.

The mapping which sends to every u ∈ Ω the mapping J G (u) is called the Gâteaux differential of J and is denoted by J G . Proposition 2.5. [START_REF] Prodi | A Primer of Nonlinear Analysis[END_REF] Let X be a Banach space, Ω ⊂ X an open subset, and J : Ω -→ R a Gâteaux differentiable functional at some point u ∈ Ω. If J G is continuous at u, then J is Fréchet differentiable at u and J F (u) = J G (u).

We say that J ∈ C 1 if J G is continuous at every u ∈ Ω. Definition 2.6. Let X be a Banach space, Ω ⊂ X an open subset, and

J : Ω -→ R a Gâteaux differentiable functional. A point u ∈ Ω is called a critical point of J if J (u) = 0, i.e., J (u)v = 0, for every v ∈ X. If further J(u) = c, we say that u is a critical point of J at level c.
Clearly, every point of a local minimum of a Gâteaux differentiable functional J is a critical point J.

Definition 2.7. Let X be a Banach space. A functional J : X -→ R is called coercive if, for every sequence (u k ) k∈N ⊂ X, u k → +∞ =⇒ J(u k ) → +∞.
Definition 2.8. Let X be a Banach space. A functional J : X -→ (-∞, +∞] is said to be sequentially weakly lower semi-continuous (swlsc for short) if

J(u) ≤ lim inf n→+∞ J(u n ), as u n u in X, when n → ∞.
Then we have Lemma 2.9. [START_REF] Brezis | Analyse Fonctionnelle. Th Ì Ąeorie et Applications[END_REF] [Minimization Principal] Let X be a reflexive Banach space and J a functional defined on X such that

(1) lim u →+∞ J(u) = +∞ (coercivity condition), (2) 
J is sequentially weakly lower semi-continuous.

Then J is lower bounded on X and achieves its lower bound at some point u 0 .

Definition 2.10. Let X be a real Banach space, J ∈ C 1 (X, R). If any sequence (u n ) ⊂ X for which (J(u n )) is bounded in R and J (u n ) -→ 0 as n → +∞ in X possesses a convergent subsequence, then we say that J satisfies the Palais-Smale condition, (PS) condition for brevity. Let X be a Banach space and let J ∈ C 1 (X, R) satisfy J(0) = 0. Assume that J satisfies (PS) and there exist positive numbers ρ and α such that

(1) J(u) ≥ α if u = ρ,
(2) there exists u 0 ∈ X such that u 0 > ρ and J(u 0 ) < α.

Then there exists a critical point. Furthermore it is characterized by

J (u) = 0, J(u) = inf γ∈Γ max t∈[0,1] J(γ(t)),
where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u 0 }.

Some embedding results

Lemma 2.12. W 1,p 0,ρ,s (0, +∞) embeds continuously in C l,ρ [0, +∞).

Proof. For u ∈ W 1,p 0,ρ,s (0, +∞) , we have

|ρ(x)u(x)| = |ρ(x)u(x) -(pu)(0)| = x 0 (ρu) (t)dt ≤ x 0 ρ (t)u(t)dt + x 0 ρ(t)u (t)dt = x 0 ρ (t) p s(t) p s(t)u(t)dt + x 0 q ρ(t) p ρ(t)u (t)dt ≤ 1 inf [0,+∞) p s(t)   +∞ 0 ρ (t) q dt   1 q   +∞ 0 s(t)|u| p (t)dt   1 p +   +∞ 0 ρ(t)dt   1 q   +∞ 0 ρ(t)|u | p (t)dt   1 p ≤ M 1   +∞ 0 s(t)|u| p (t)dt   1 p + M 2   +∞ 0 ρ(t)|u | p (t)dt   1 p ≤ max M 1 , M 2 u p ≤ 2 max M 1 , M 2 u . Therefore, we obtain u ∞,ρ ≤ k u , where k = 2 max M 1 , M 2 , M 1 = 1 inf [0,+∞) p s(t) ρ L q (0, +∞) , M 2 = ρ L 1 (0, +∞) Lemma 2.13. W 1,p 0,ρ,s (0, +∞) embeds continuously in L p [0, +∞). Proof. For u ∈ W 1,p 0,ρ,s (0, +∞) , we have u p L p (0,+∞) = +∞ 0 |u(t)| p dt ≤ 1 inf [0,+∞) s(t) +∞ 0 s(t)|u(t)| p dt ≤ 1 inf [0,+∞) s(t) +∞ 0 s(t)|u(t)| p dt + 1 inf [0,+∞) s(t) +∞ 0 ρ(t)|u (t)| p dt = 1 inf [0,+∞) s(t) u p Lemma 2.14. The embedding W 1,p 0,ρ,s (0, +∞) → C l,ρ [0, +∞) is compact. Proof. Let D ⊂ W 1,p
0,ρ,s (0, +∞) be a bounded set. Then Lemma 2.12 establishes the boundedness of D in C l,ρ [0, +∞). Let R > 0 be such that for all u ∈ D, u ≤ R. We will check the conditions in Lemma 2.2. (i) D is equicontinuous on every compact sub-interval of [0, +∞).

Let u ∈ D and x 1 , x 2 ∈ J ⊂ [0, +∞) where J is a compact sub-interval, we have

|ρ(x 2 )u(x 2 ) -ρ(x 1 )u(x 1 )| = x 2 x 1 (ρu) (t)dt = x 2 x 1 ρ (t)u(t) + ρ(t)u (t) dt ≤ x 2 x 1 ρ (t)u(t)dt + x 2 x 1 ρ(t)u (t)dt = x 2 x 1 ρ (t) p s(t) p s(t)u(t)dt + x 2
x 1 q ρ(t) p ρ(t)u (t)dt by using the Hölder's inequality, we obtain

|ρ(x 2 )u(x 2 ) -ρ(x 1 )u(x 1 )| ≤ 1 inf [0,+∞) p s(t)   x 2 x 1 ρ (t) q dt   1 q   x 2 x 1 s(t)|u| p (t)dt   1 p +   x 2 x 1 ρ(t)dt   1 q   x 2 x 1 ρ(t)|u | p (t)dt   1 p ≤ max     1 inf [0,+∞) p s(t)   x 2 x 1 ρ (t) q dt   1 q ,   x 2 x 1 ρ(t)dt   1 q     u p ≤ 2R max     1 inf [0,+∞) p s(t)   x 2 x 1 ρ (t) q dt   1 q ,   x 2 x 1 ρ(t)dt   1 q     → 0, as |x 2 -x 1 | → 0, ∀u ∈ D.
(ii) D is equiconvergent at +∞. 

|ρ(x)u(x) -ρ(+∞)u(+∞)| ≤ 1 inf [0,+∞) p s(t)   +∞ x ρ (t) q dt   1 q   +∞ x s(t)|u| p (t)dt   1 p +   +∞ x ρ(t)dt   1 q   +∞ x ρ(t)|u | p (t)dt   1 p ≤ max     1 inf [0,+∞) p s(t)   +∞ x ρ (t) q dt   1 q ,   +∞ x ρ(t)dt   1 q     u p ≤ 2R max     1 inf [0,+∞) p s(t)   +∞ x ρ (t) q dt   1 q ,   +∞ x ρ(t)dt   1 q     → 0,
when x tends to +∞, ∀u ∈ D.

Existence of weak solutions

Take v ∈ W 1,p 0,ρ,s (0, +∞), multiply the equation in problem (1.1) by v, and then integrate over (0, +∞), we get

- +∞ 0 ρ(t)Φ p (u (t)) v(t)dt + +∞ 0 s(t)Φ p (u(t)) dt = +∞ 0 f (t, u(t))v(t)dt. The left-hand term is - +∞ 0 ρ(t)Φ p (u (t)) v(t)dt = - +∞ ∑ j=0 t j+1 t j ρ(t)Φ p (u (t)) v(t)dt = +∞ 0 ρ(t)Φ p (u (t))v (t)dt + +∞ ∑ j=1 I j(u(t j ))v(t j ) + ρ(0)ϕ p (u (0))v(0) + ρ(+∞)Φ p (u (+∞))v(+∞). I. Soufi Hence +∞ 0 ρ(t)Φ p (u (t))v (t) + s(t)Φ p (u(t))v(t) dt + +∞ ∑ j=1 I j (u(t j ))h(t j )v(t j ) = +∞ 0 f (t, u(t))v(t)dt.
This leads to the natural concept of weak solution for problem (1.1). Definition 3.1. We say that a function u ∈ W 1,p 0,ρ,s (0, +∞) is a weak solution of problem (1.1) if

+∞ 0 ρ(t)Φ p (u (t))v (t) + s(t)Φ p (u(t))v(t) dt + +∞ ∑ j=1 I j (u(t j ))h(t j )v(t j ) = +∞ 0 f (t, u(t))v(t)dt.
for all v ∈ W 1,p 0,ρ,s (0, +∞).

In order to study problem (1.1), we consider the functional J : W 1,p 0,ρ,s (0, +∞) -→ R defined by

J(u) = 1 p u p + +∞ ∑ j=1 h(t j ) u(t j ) 0 I j (t)dt - +∞ 0 F(t, u(t))dt, (3.1) 
where

F(t, u) = u 0 f (t, s)ds.

The sublinear case

Theorem 3.2. Suppose that the following conditions hold: (H 1 ) There exist a constant µ ∈ [0, p -1) and positive functions a (H 2 ) There exist constants k > 0 and γ ∈ [0, p -1) such that

1 , b 1 ∈ L 1 [0, +∞) such that | f (t, x)| ≤ a 1 (t)|x| µ + b 1 (t),
|I j (t)| ≤ d|t| γ , ∀ t ∈ R, ∀ j ∈ {1, 2, . . .}.
Then problem (1.1) has at least one weak solution.

Proof. Claim 1 The functional J is well defined. Given u ∈ W 1,p 0,ρ,s (0, +∞), Assumptions (H 1 ) and (H 2 ) guarantee that

|F(t, u(t))| ≤ a 1 (t) µ + 1 |u(t)| µ+1 + b 1 (t)|u(t)|. Hence +∞ 0 F(t, u(t))dt ≤ 1 µ + 1 +∞ 0 a 1 (t) (ρ(t)) µ+1 |ρu| µ+1 dt + +∞ 0 b 1 (t) ρ(t) |ρ(t)u(t)|dt ≤ 1 (µ + 1) inf [0,+∞) ρ(t) µ+1 u µ+1 ∞,ρ +∞ 0 a 1 (t)dt + 1 inf [0,+∞) ρ(t) u ∞,ρ +∞ 0 b 1 (t)dt ≤ k µ+1 (µ + 1) inf [0,+∞) ρ(t) µ+1 u µ+1 +∞ 0 a 1 (t)dt + k inf [0,+∞) ρ(t) u +∞ 0 b 1 (t)dt ≤ k µ+1 (µ + 1) inf [0,+∞) ρ(t) µ+1 u µ+1 a 1 L 1 + k inf [0,+∞) ρ(t) u b 1 L 1 and +∞ ∑ j=1 u(t j ) 0 h(t j )I j (τ)dτ ≤ dk γ+1 (γ + 1) inf [0,+∞) ρ(t) γ+1 u γ+1 +∞ ∑ j=1 h(t j ). Then |J(u)| ≤ 1 p u p + dk γ+1 (γ + 1) inf [0,+∞) ρ(t) γ+1 u γ+1 +∞ ∑ j=1 h(t j ) + k µ+1 (µ + 1) inf [0,+∞) ρ(t) µ+1 u µ+1 a 1 L 1 + k inf [0,+∞) ρ(t) u b 1 L 1 < ∞.
Claim 2 J is sequentially weakly lower semi-continuous.

Let (u n ) ⊂ W 1,p 0,ρ,s (0, +∞) be a sequence such that u n u in W 1,p 0,ρ,s (0, +∞), as n → ∞. Then (u n ) converges uniformly to u on [0, +∞) and lim inf n→+∞ u n ≥ u .
The continuity of functions f and I j , j ∈ {1, 2, . . .} together with Lebesgue Dominated Convergence Theorem yield

lim inf n→+∞ J(u n ) = lim inf n→+∞ 1 p u n p + +∞ ∑ j=1 u n (t j ) 0 h(t j )I j (τ)dτ - +∞ 0 F(t, u n (t))dt ≥ 1 p u p + +∞ ∑ j=1 u(t j ) 0 h(t j )I j (τ)dτ - +∞ 0 F(t, u(t))dt = J(u).
Therefore, J is sequentially weakly lower semi continuous. Claim 3 J is coercive. In view of (H 1 ) and (H 2 ), Lemma 2.12 guarantees that

J(u) ≥ 1 p u p - dk γ+1 (γ + 1) inf [0,+∞) ρ(t) γ+1 u γ+1 +∞ ∑ j=1 h(t j ) - k µ+1 (µ + 1) inf [0,+∞) ρ(t) µ+1 u µ+1 a 1 L 1 - k inf [0,+∞) ρ(t) u b 1 L 1 . (3.2) Since µ < p -1 and γ < p -1, (3.2) implies lim u -→+∞ J(u) = +∞.
Lemma 2.9 guarantees that J has a local minimum which is a critical point of J.

Finally, it is easy to check that under (H 1 ), the functional J is Gâteaux differentiable and the Gâteaux derivative at a point u ∈ X is

J (u), v = +∞ 0 ρ(t)Φ p (u (t))v (t) + s(t)Φ p (u(t))v(t) dt + +∞ ∑ j=1 I j (u(t j ))h(t j )v(t j ) - +∞ 0 f (t, u(t))v(t)dt, (3.3) 
for all v ∈ W 1,p 0,ρ,s (0, +∞). Therefore u is a weak solution of problem (1.1).

Example 3.3.

                   -e -t u (t) + u(t) = ln(|x| + 1) 1 + t 2 a. e , t ≥ 0, t = t j , u(0) = u (0 + ) = 0, u(+∞) = u (+∞) = 0, ∆(e -j u (j)) = 1 2 j u(j), j ∈ {1, 2, 3, ...}. (3.4) 
It can be easily checked that all condition of Theorem 3.2 are satisfied with

f (t, x) = ln(|x| + 1) 1 + t 2 , p = 2, ρ(t) = e -t , s(t) = 1, a 1 (t) = 1 1 + t 2 , b 1 (t) = 2 1 + t 2 , µ = 1, d = 2, γ = 1, h(t) = 1 2 t , +∞ ∑ j=1 h(j) = 1, I j (s) = √ s.
Therefor problem (3.4) has at least one nontrivial solution. 

ρ(t) p u p +∞ 0 a 2 (t)dt + k inf [0,+∞) ρ(t) u +∞ 0 b 2 (t)dt ≤ k p p inf [0,+∞) ρ(t) p u p a 2 L 1 + k inf [0,+∞) ρ(t) u b 2 L 1 .
Then

J(u) ≥ 1 p     1 - k p inf [0,+∞) ρ(t) p a 2 L 1     u p - k inf [0,+∞) ρ(t) u b 2 L 1 - dk γ+1 (γ + 1) inf [0,+∞) ρ(t) γ+1 u γ+1 +∞ ∑ j=1 h(t j ). (3.5) Since a 2 L 1 < inf [0,+∞) ρ(t) p k p and γ < p -1, (3.5) implies that lim u -→+∞ J(u) = +∞.
Then Lemma 2.9 guarantees that problem (1.1) has at least one weak solution. x p = 0, uniformly in t ≥ 0. (H 6 ) There exist positive functions c 1 , c 2 ∈ L 1 ((0, +∞), [0, +∞)), and σ > p such that (a) F(t, x) ≥ c 1 (t)|x| σc 2 (t), for a.e. t ≥ 0 and all x ∈ R, (b) σF(t, x) ≤ x f (t, x), for a.e. t ≥ 0 and all x ∈ R \ {0}.

Nontrivial weak solution

(H 7 ) There exists 0 < γ ≤ p such that

γ x 0 I j (t)dt ≥ xI j (x) > 0, ∀ x ∈ R \ {0}, ∀ j ∈ {1, 2, . . .}.
Then problem (1.1) has at least one nontrivial weak solution.

Proof. Claim 1 Let 0 < ε < inf [0,+∞) s(t) p . From (H 5 ), there exists δ > 0 such that |x| ≤ δ =⇒ |F(t, x)| ≤ ε|x| p .
Using Lemma 2.13, we deduce that

+∞ 0 |F(t, u(t))dt| ≤ ε u p L p ≤ ε inf [0,+∞) s(t) u p , for a.e. t ≥ 0, whenever u ∞ ≤ δ. Let 0 < ρ ≤ δ k and α = 1 p - ε inf [0,+∞) s(t) ρ p . Then for u = ρ,
we have

J(u) = 1 p u p + +∞ ∑ j=1 u(t j ) 0 h(t j )I j (τ)dτ - +∞ 0 F(t, u(t))dt ≥ 1 p u p - +∞ 0 F(t, u(t))dt ≥ 1 p - ε inf [0,+∞) s(t) u p = α.
Assumption (1) in Lemma 2.11 is then satisfied. Claim 2 From (H 7 ), there exists c 3 > 0 such that

x 0 I j (t)dt ≤ c 3 |x| γ , for every x ∈ R.
Now (H 6 )(a) and Lemma 2.12 guarantee that for some

v 0 ∈ W 1,p 0,ρ,s (0, +∞), v 0 = 0, J(ξv 0 ) = 1 p ξ p v 0 p + +∞ ∑ j=1 ξv 0 (t j ) 0 h(t j )I j (τ)dτ - +∞ 0 F(t, ξv 0 (t))dt ≤ 1 p ξ p v 0 p + c 3 ξ γ k γ u 0 γ inf [0,+∞) ρ(t) γ +∞ ∑ j=1 h(t j ) -|ξ| σ +∞ 0 c 1 (t)|v 0 (t)| σ dt + +∞ 0 c 2 (t)dt.
Since σ > p ≥ γ, then for u 0 = ξv 0 , J(u 0 ) ≤ 0, as ξ → +∞. Thus Assumption (2) in Lemma 2.11 is satisfied.

Claim 3 J satisfies the (PS) condition. Notice first that by (H 3 ), J ∈ C 1 (W 1,p 0,ρ,s (0, +∞), R). Now, let (u n ) be a sequence in W 1,p 0,ρ,s (0, +∞) such that (J(u n )) is bounded and lim n→+∞ J (u n ) = 0. We shall prove that the sequence (u n ) is bounded. Using (H 6 )(b) and (H 7 ), there exists some K > 0 such that (3.9) If p ≥ 2, by the results of [START_REF] Shi | Multiple solutions for p-Laplacian boundary value problems with impulsive effects[END_REF], there exists c p > 0 such that |x| p-2 x -|y| p-2 y (xy) ≥ c p |x -y| p , p ≥ 2.

K ≥ σJ(u n ) -J (u n ), u n = σ p - 1 
Therefore, we obtain J (u n ) -J (u 0 ) u nu 0 ≥ c p u nu 0 p + +∞ ∑ j=1 h(t j ) I j (u n (t j )) -I j (u(t j )) u n (t j )u(t j ) -+∞ 0 f (t, u n )f (t, u 0 ) u nu 0 dt.
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  for a.e. t ∈ [0, +∞) and all x ∈ R.

3.2 The limit case

  µ = p -1 Assume that (H 2 ) holds both with (H 3 ) There exist positive functions a 2 , b 2 ∈ L 1 (0, +∞) with a 2 L 1 < ≤ a 2 (t)|x| p-1 + b 2 (t), for a.e. t ∈ [0, +∞) and all x ∈ R. Arguing as in the proof of Theorem 3.2, we can prove that J is sequentially weakly lower semi-continuous. In addition, under (H 2 ) and (H 3 ), we have the estimates:

	[0,+∞) Theorem 3.4. inf	ρ(t)	p
	and							k p
	| f (t, x)| Then problem (1.1) has at least one weak solution.
	Proof. |F(t, u(t))| ≤	a 2 (t) p	|u(t)| p + b 2 (t)|u(t)|,
	0	+∞	F(t, u(t))dt ≤	0	+∞	a 2 (t) p	|u(t)| p + b 2 (t)|u(t)| dt
			≤			k p	
				p inf [0,+∞)	

  Suppose that the following conditions hold: (H 4 ) There exist positive functions ϕ, g such that ϕ ∈ L 1 ((0, +∞), R) and g ∈ C(R, R) with | f (t, x)| ≤ ϕ(t)g(x), for a.e. t ∈ [0, +∞) and all x ∈ R.

	x→0 (H 5 ) lim	F(t,x)

Theorem 3.5.

  (t)dt -I j (u n (t j ))u n (t j )≥ σ p -1 u n p .Since σ > p, then the sequence (u n ) is bounded in W (0, +∞). Next, we prove that (u n ) converges strongly to some u in W (u n ) is bounded in the reflexive Banach space W 1,p 0,ρ,s (0, +∞), there exists a subsequence of (u n ) still denoted (u n ) such that (u n ) converges weakly to some u in W 1,p 0,ρ,s (0, +∞). Then (u n ) converges uniformly to u on [0, +∞) by Lemma 2.14. Thus )I j (u n (t j )) -I j (u(t j )) u n (t j )u(t j ) = 0 (3.6) Φ p (u 0 (t)) u n (t)u 0 (t) dt ) I j (u n (t j )) -I j (u(t j )) u n (t j )u(t j ) (t, u n )f (t, u 0 ) u nu 0 dt.

	+	+∞ ∑	u n h(t j ) σ p -u n (t j ) +∞ 0	σF(t, u n (t)) -f (t, u n (t))u n (t) dt
		j=1		
					1,p
					0,ρ,s 1,p 0,ρ,s (0, +∞).
		+∞		
	lim n→+∞ h(t j and ∑ j=1 +∞	
	lim n→+∞	0		
			+∞	
			+ h(t j -∑ j=1 +∞	f
			0	

0 I j Since f (t, u n (t))f (t, u(t)) u n (t)u(t) dt = 0. (

3.7)

Since lim n→+∞ J (u n ) = 0 and (u n ) converges weakly to some u, we see that

lim n→+∞ J (u n ) -J (u), u nu = 0. (3.8)

Calculating in (3.8) directly we see that

J (u n ) -J (u), u nu = +∞ 0 ρ(t) Φ p (u n (t)) -Φ p (u 0 (t)) u n (t)u 0 (t) dt + +∞ 0 s(t) Φ p (u n (t)) -

It follows directly that u n → u 0 in W 1,p 0,ρ,s (0, +∞). If 1 < p < 2, by the results of [START_REF] Bai | Three solutions for a p-Laplacian boundary value problem with impulsive effects[END_REF], there exists d p > 0 such that

It follows directly that u n → u 0 in W 1,p 0,ρ,s (0, +∞). Therefore, J satisfies the (PS) condition. All conditions of Lemma 2.11 are then fulfilled; as a consequence J has a critical point which is a nontrivial weak solution of problem (1.1). 

Example 3.6. Consider the boundary value problem