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ABSTRACT 

 
Recently, deep learning methods that integrate image features 

gradually became a hot development trend in fusion of multispectral 

and hyperspectral remote sensing images, aka multi-sharpening. 

Fusion of a low spatial resolution hyperspectral image (LR-HSI 

datacube) with its corresponding high spatial resolution 

multispectral image (HR-MSI datacube) to reconstruct a high spatial 

resolution hyperspectral image (HR-HSI) has been a significant 

subject in recent years. Nevertheless, it is still difficult to achieve a 

high quality of spatial and spectral information fusion. In this paper, 

we propose a Deep Multi-Scale Learning Model (called DeepSen3) 

of spatial-spectral information fusion based on multi-scale inception 

residual convolutional neural network (CNN) for more efficient 

hyperspectral and multispectral image fusion from ESA remote 

sensing satellite missions (Sentinel-2 and Sentinel-3 images). The 

proposed DeepSen3 fusion network was applied to Sentinel-2 MSI 

(13 spectral bands with a spatial resolution ranging from 10, 20 to 

60 m) and Sentinel-3 OLCI (21 spectral bands with a spatial 

resolution of 300 m) images. Extensive experiments demonstrate 

that the proposed DeepSen3 network achieves the best performance 

(both qualitatively and quantitatively) compared with recent state-

of-the-art deep learning approaches. 

 

Index Terms— Deep Learning, Residual Convolutional 

Neural Network (ResNet-CNN), Multi-Scale Inception, Feature 

Extraction, Spatial-Spectral Image Fusion, Sentinel-2 and Sentinel-

3 Remote Sensing Images, HyperSpectral Images (HSI), Multi-

Spectral Images (MSI)  

 

1. INTRODUCTION 
 
Most remote sensing applications require images at the highest 

resolution both in spatial and spectral domains, which is impossible 

very hard to achieve by a single sensor. To alleviate this problem, 

many optical Earth observation satellites—such as Sentinel-2, 

Sentinel-3, Landsat 8, and MODIS—carry optical sensors, acquiring 

multi-modal data with different but complementary characteristics 

(spectral, spatial). In particular, a multi-spectral sensor acquires high 

spatial resolution images, while a hyperspectral sensor acquires low 

spatial resolution images with multiple bands (datacube). These 
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modalities are known as hyper/multi-spectral images (datacubes). In 

remote sensing applied to watercolor extraction and marine 

application, Sentinel-2 MSI and Sentinel-3 Ocean and Land Color 

Instrument (OLCI) are extensively used. Respectively, they have 

13—with 10, 20, or 60 m spatial resolution—and 21 usable spectral 

bands—with 300 m spatial resolution—in the visible and near-

infrared range. The technique to fuse these images is called multi-

sharpening or image fusion [1, 2, 3]. It consists of combining 

relevant information from two or more MSI/HSI images into a single 

image with complementary spatial and spectral resolution 

characteristics. To that end, several methods have been proposed in 

the literature and are based on, e.g., component substitution—using, 

e.g., Gram-Schmidt [4], the Sylvester equation [5], or Principal 

Component Analysis [6]—coupled Nonnegative Matrix/Tensor 

Factorization (NMF/NTF)—e.g., [1, 2, 7, 8]—and more recently on 

deep learning, e.g., in [9]. Indeed, even if in [10], the authors 

suggested a method for the fusion of data from Sentinel-2 and 

Sentinel-3, they proposed in practice an approach to combine 

Sentinel-2 and Moderate Resolution Imaging Spectroradiometer 

(MODIS) images. The fusion of Sentinel-2 and Sentinel-3 data is let 

for future work in the conclusion of [10]. However, we have tested 

some of these methods to fuse Sentinel-2 MSI and Sentinel-3 OLCI 

images in [1]. 

With the rapid development of deep learning methods—especially 

convolutional networks (CNN) [11, 12, 13, 14]—these types of 

methods have become a growing trend in LR-HSI and HR-MSI 

image fusion [13, 16], super-resolution [15, 18, 19], and 

hyperspectral image pansharpening [14, 17, 20]. Deep learning 

methods show excellent performance on LR-HSI and HR-MSI 

fusion. It is still challenging to efficiently enhance the performance 

of image fusion in a learnable manner across new hyperspectral data 

sets such as Sentinel-2 and Sentinel-3, which is crucial for 

improving their fusion quality. 

In order to provide more detailed spectral and spatial feature 

extraction for the spatial-spectral reconstruction hyperspectral 

images, we introduce multi-scale residual and inception 

convolutional blocks in feature extraction and one convolutional 

block in residual module which was used in super-resolution [15, 18, 

19], pan-sharpening hyperspectral image [14, 17, 20] and image 

fusion [13, 16]. 
The remainder of the paper reads as follows. In Section 2, we briefly 

introduce our proposed method. Section 3 then presents experiments 

on real dataset and the reached multi-sharpening performance our 

method compared with recent state-of-the-art hyperspectral and 



multispectral fusion image approaches. Finally, we conclude and 

discuss about future work in Section 4. 

 

2. PROPOSED METHOD DEEPSEN3: DEEP MULTI -

SCALE LEARNING MODEL FOR SPATIAL -

SPECTRAL FUSION 
 

In this paper, we establish a novel deep multi-scale residual and 

inception CNN network for hyperspectral and multispectral fusion 

image (see Figs. 1 and 2). The main contributions of our proposed 

method can be summarized as follows. Firstly, inspired by the 

ResNet [13, 15, 19, 20], multi-scale [14, 16] and Inception network 

architectures [14, 17, 18], we propose a deep multi-scale residual 

inception CNN network in our DeepSen3 method (see Figs. 2 and 

3), with three modules of residual multi-scale and inception with 

feature extraction layers to reconstruct the desired HR-HSI (the 

fused image). Secondly, we introduce a new multi-scale residual 

inception CNN architecture to effectively boost the spatial-spectral 

feature extraction of the HR-HSI fused image. The multi-scale 

inception module consists of three branches with two convolution 

layers and the activation function LeakyRelu. Indeed, we use three 

local residual modules (refer to residual modules 1, 2, 3 in Fig. 3) 

for feature extraction and fusion feature maps and one residual 

module global to reconstruct the high quality of the HR-HSI fused 

image. 

 

 
 

Fig. 1. Schematic diagram of hyperspectral and multispectral image 

fusion: hyperspectral resolution on an image from Sentinel-3 (LR-

HSI), and multi-spectral image from Sentinel-2 (HR-MSI). The 

right image is the fused image HR-HSI. 

 

2.1. Method Overview: DeepSen3  
 

We design the DeepSen3 method to fuse two HR-MSI and LR-HSI 

datacubes with two distinct spatial and spectral resolutions. 

Firstly, we up-sample hyperspectral images by the bi-cubic 

interpolation method. Then, we concatenate the up-sampled LR-HSI 

with HR-MSI to be the input of our proposed DeepSen3 network. 

DeepSen3 consists of three multi-scale inception and residual 

modules for feature extraction with only trainable convolution 

layers without pooling layers. These modules are divided into three 

main components: (i) multi-scale inception module for feature 

extraction and spatial-spectral fusion, (ii) residual modules for 

spatial-spectral fusion, and (iii) residual module global and multi-

scale residual inception module for reconstruction image. In Fig. 3, 

we provide the overall structure of our proposed DeepSen3 method. 

The following section describes its network architecture in detail. 

 
 

Fig.2. Workflow of the proposed method DeepSen3 

 

 
 

Fig. 3. DeepSen3 Architecture - Deep Multi-Scale Learning Model 

for Spatial-Spectral Fusion Remote Sensing Image 

 

2.2. Multi-Scale Inception and Residual Modules for 

Feature Extraction 
 

Following the principle of multi-scale residual block proposed in 

[13–20], and inspired by the hybrid dilated convolution (HDC) 

module proposed in [17] and Inception Block [18], we used three 

multi-scale Inception modules and three residual modules. Multi-

Scale Inception module consists of three branches of two 

convolution layers with different kernel sizes is 3×3, 5×5 with 

different numbers (16, 32, 64 and 48) of channels to extract the 

feature maps of source images, where the activation function Leaky 

ReLU follows convolution layers. The feature maps of these 

convolution layers of multi-scale Inception modules are added 

through the residual module with identity mapping to generate the 

multi-scale residual inception features, and then to reconstruct the 

fused image. 

In the multi-scale feature extraction stage, for inputs, a convolution 

layer with a kernel of size 3×3 is first used to extract low-level 

features of the source images. Convolution kernels of different sizes 

have different information perception capabilities and can extract 

detailed information at different scales. The convolution layers is 

followed by one common activation function Leaky ReLU (as 

shown in Fig. 4.). Leaky ReLU gives a better response than ReLU 

because it uses a learnable slope parameter instead of a constant 

slope parameter, which reduces the risk of over-fitting in the training. 

In order to obtain an accurate feature extraction map, it is necessary 

to take full advantage of the information of various scales in the 

input images. Therefore, in the part of the structure with residual 



inception modules (as shown in Fig. 4.), we use three different 

branches to extract the feature information of different scales in the 

image. The sizes of the used convolution kernels are 3×3, and 5×5 

with different channels (16, 32, and 64). Moreover, because the 

inception module can increase the width of the network and the 

adaptability to scales, we embed the multi-scale inception module in 

each branch of the residual module to improve the performance of 

the network fusion.  

Figure 4 illustrates the multi-scale inception module’s framework. 

On one hand, using the multi-scale inception module, convolution 

layers with different sizes of filters (such as 3×3 and 5×5) are used 

to extract detailed features at different scales. On the other hand, the 

3×3, 5×5 convolutions in the multi-scale inception, and 

1×1convolution and residual module global (as shown in Fig. 3) can 

superimpose more convolutions in the receptive field of the same 

size, and can extract richer features to fuse. At the same time, we 

use 1×1 convolution to reduce the dimensionality and the 

computational complexity. After extracting the feature information 

of different scales, we fuse them on the feature level and then use 

them as the input of the next convolutional layer. Figure 5 illustrates 

the main difference between residual blocks, inception module and 

multi-scale blocks with our Multi-scale-Residual-Inception Module 

proposed in our DeepSen3 architecture.  

 

 
Fig.4. Multi-Scale Inception Modules for Spatial-Spectral Feature 

Extraction and Fusion  

 

2.3 Model Implementation: Loss Function and Training Options 
 

It is very important to choose a suitable loss function to accurately 

reconstruct the fused image. The mean square error loss (MSE) 

calculation is convenient and the convergence speed is fast. 

Therefore, we choose the mean square error loss as a loss function, 

which represents the average of the squares of deviations between 

the predicted fused image and reference (target). The MSE is 

calculated by the following formula: 
 

 𝐿𝑜𝑠𝑠 =
1

𝑁
∑ ‖𝑌𝑖 −𝑀𝑖‖

2𝑁
𝑖=1 , 

 

where 𝑌𝑖 is the target HR-HSI reference, 𝑀𝑖 is the predicted image 

by DeepSen3, N denotes the sample numbers in 𝑌𝑖. We specify the 

size of the patch as 64 × 64 ×19 (width × height × (3 spectral bands 

of HR-MSI and 16 spectral bands of LR-HSI)). 

In the training process, we train DeepSen3 using nine images of 

Sentinel-2 (HR-MSI with size of: Width=1792, Height=1792, and 

number of spectral band=3) with resolution 60 meters, and nine 

images Sentinel-3 (LR-HSI with size of: width=358, height=358, 

and 16 spectral bands) with resolution 300 meters for two coastal 

areas, i.e., Venice and Bahamas. We choose to randomly partition 

these images into 4032 image patches to train DeepSen3. The 

standard back propagation with Adam optimization algorithm (as 

optimizer) is utilized to minimize the loss function. The initial 

learning rate of Adam was set to 3*10−4, β1=0.92, β2=0.95, and the 

decay of the learning rate was set to 10−9. The mini-batch size is set 

to 16.  

The DeepSen3 model is implemented using Python programming 

language and Keras deep learning library with TensorFlow as 

computation backend. DeepSen3 model was trained on Dell 

Precision Workstation 7540 with Intel CPU CORE i9 and GPU 

NVIDIA Quadro RTX3000. 

 

 

 
 

Fig. 5. Comparison: (a) Residual and Inception blocks [18], (b) 

Multi-scale feature extraction block [17], (c) Multi-Scale 

Asymmetric CNN [16], (d) Multi-scale residual block [15], (e) 

Multi-scale convolutional layer block with a short-distance skip 

connection [14], with our proposed modules (Multi-scale-Residual-

Inception Module) in Fig. 4. and Fig .3.

(a) (b) 

(c) 

(d) 

(e) 

(c) 



 
(a) LR-HSI    (b) HR-MSI   (c) Bicubic HR-HSI       (d) SSR-Net               (e) MSDCNN 

 
(f) TFNet   (g) ResTFNet       (h) ConSSFCNN     (i) DeepSen3            (j) GT (HR-HSI) 

Fig. 6: Fusion results of different methods on LR-HSI (Sentinel-3) and HR-MSI (Sentinel-2) dataset, where ‘GT’ represents the ground-truth 

image. Figure 6 shows the R-G-B images (8-6-4 bands) of the fused HR-HSI. 

3. EXPERIMENTS & VALIDATION 

 
We now investigate the performance reached by DeepSen3 and 

on state-of-the-art deep learning methods on real Sentinel-2 and 

Sentinel-3 datasets (Fig. 6). The selected study area is located in 

the islands of The Bahamas in the Atlantic Ocean. The Tongue of 

the Ocean is a deep-water basin in the Bahamas that is surrounded 

to the East, West, and South by a carbonate bank known as the 

Great Bahama Bank. The deep blue water of the Tongue is a stark 

contrast to the shallow turquoise waters of the surrounding Bank. 

Generally, waters that are optically shallow (e.g., Grand Bahama 

Bank) appear blue–green due to high bottom reflectance 

contributions while optically deep waters appear dark blue. The 

center of the Bahamas image is located at the following 

coordinates: Lat-26◦ 35’58.50”N, and Lon-77◦ 28’29.93”W 

(DMS), Projection UTM, Zone 18 N, and World Geodetic System 

1984. 

 

In this study, we use one Sentinel-2 (S2B-MSI) and one Sentinel-

3 (S3A-OLCI) images taken on the same date (April, 22nd 2020) 

to evaluate DeepSen3. However, Sentinel-2 already has 3 

different spatial resolution at different wavelengths. One must 

thus choose a target spatial resolution among the three available, 

i.e., 10, 20, or 60 m. For these data, for watercolor extraction and 

marine application, we choose to fuse 16 spectral bands from 

Sentinel-3 (spatial resolution 300 meters) and 3 spectral bands of 

Sentinel-2 (resolution 60 meters). In addition, we have the size of 

the patch is 64×64×19 (width × height × (3 spectral bands of HR-

MSI/Sentinel-2 and 16 spectral bands of LR-HSI /Sentinel-3)). 

 

In this section, we evaluate the performance of hyperspectral and 

multispectral fusion methods. To that end, we consider classical 

and modern multi-sharpening techniques based on deep learning 

approaches in [11–14, 19, 20] for multi-/pan-sharpening, fusion 

and super-resolution hyperspectral image as in [1, 2, 3]. To that 

end, traditional methods of CNMF and others tested in [1, 2, 7], 

and deep learning methods such as SSR-NET [11], SSFCNN and 

ConSSFCNN [12], TFNet and ResTFNet [13], and MSDCNN [14] 

are selected as the comparison approaches to evaluate the 

performance of our proposed method DeepSen3 (see Table 1, and 

Figure 6). For the traditional methods, except data processing, all 

the parameters are set as the same as in the original literature. For 

all the deep learning models, the number of input and output 

channels are adapted to Sentinel-2 and Sentinel-3 datasets. 

 

In order to assess the sharpening performance, we use some 

classical quantitative measures [1, 2, 11, 12], i.e., (i) the Peak 

Signal-to-Noise Ratio (PSNR) in dB— which is the ratio between 

the highest possible signal energy and the noise energy—(ii) the 

Spectral Angle Mapper (SAM) in radian—which is a pixel wise 

measure of the angle (converted from degrees to radians) between 

the reference spectrum and the fused one. SAM values near zero 

indicate local high spectral quality and we use the average SAM 

value with respect to pixels for the quality index of the entire data 

set—(iii) the ERGAS measure, i.e., a normalized average error of 

each band of the processed image.  

 

According to the considered experiments presented in Figure 6 

and Table 1, DeepSen3 has a better performance compared with 

five deep learning methods (SSRNet, ConSSFCNN, MSDCNN, 

TFNet and ResTFNet. One advantage of our DeepSen3 method is 

that it can partially remove clouds from Sentinel-3, as also found 

in [1] for some non-deep-learning-based methods, i.e., CNMF 

and GSA. 

 

Perf. obtained with 60 m spatial resolution 
Method PSNR (dB) SAM (radian) ERGAS 

ConSSFCNN 28.9 3.84 7.90 
ResTFNet 27.8 4.58 13.35 
TFNet 27.9 4.67 9.37 

MSDCNN 32.6 2.67 7.41 
SSR-NET 32.5 2.42 7.40 

DeepSen3 43.8 0.11 5. 56 
 

TABLE 1. Comparison metric results of the proposed method 

DeepSen3 and state-of-the-art methods (SSR-NET [11], 

ConSSFCNN [12], TFNet and ResTFNet [13], and MSDCNN 

[14]) on Sentinel-2 and Sentinel-3 dataset. 

 



4. CONCLUSION AND PERSPECTIVES 

 
In this paper, we presented a deep multi-scale learning model to 

fuse Sentinel-2 and Sentinel-3 images. Based on the existing 

multi-/pan‐sharpening and super-resolution hyperspectral deep 

learning approaches, we designed multi-scale residual inception 

blocks to fuse these images in order to extract richer and more 

complete spatial and spectral information. A high quality fused 

image can be obtained with full consideration of different spectral 

and spatial characteristics. According to the considered 

experiments, DeepSen3 provides a better performance compared 

with state-of-art deep learning methods. 

 

In future work, we hope to propose a Deep Convolutional 

Generative Adversarial Networks (GAN) to fuse Sentinel-2 and 

Sentinel-3 images, and to compare it with an extension of 

DeepSen3 method to be able to take into account 11 bands of 

Sentinel-2 with atmospheric correction in order to provide a new 

super-resolution Sentinel-3 image which will also be 

atmospherically corrected. 

 

5. REFERENCES 

 
[1] A. Alboody, M. Puigt, G. Roussel, V. Vantrepotte, C. Jamet 

and T. K. Tran, "Experimental Comparison of Multi-Sharpening 

Methods Applied To Sentinel-2 MSI and Sentinel-3 OLCI 

Images," Proc. IEEE WHISPERS’21, pp. 1-5. 

[2] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyperspectral 

and multispectral data fusion: A comparative review of the recent 

literature,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 2, pp. 

29–56, 2017. 

[3] L. Loncan, L. B. De Almeida, J. M. Bioucas-Dias, X. Briottet, 

J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. 

Simoes, et al., “Hyperspectral pansharpening: A review,” IEEE 

Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 27–46, 2015. 

[4] C. A. Laben and B. V. Brower, “Process for enhancing the 

spatial resolution of multispectral imagery using pan-sharpening,” 

2000, US Patent 6,011,875. 

[5] Q. Wei, N. Dobigeon, and J.-Y. Tourneret, “Fast fusion of 

multi-band images based on solving a sylvester equation,” IEEE 

Trans. Image Process., vol. 24, no. 11, pp. 4109–4121, 2015.  

[6] P. Kwarteng and A. Chavez, “Extracting spectral contrast in 

landsat thematic mapper image data using selective principal 

component analysis,” Photogramm. Eng. Remote Sens, vol. 55, 

no. 1, pp. 339–348, 1989.  

[7] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative 

matrix factorization unmixing for hyperspectral and multispectral 

data fusion,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, 

pp. 528–537, 2011. 

[8] S. Li, R. Dian, L. Fang, and J. M. Bioucas-Dias, “Fusing 

hyperspectral and multispectral images via coupled sparse tensor 

factorization,” IEEE Trans. Image Process., vol. 27, no. 8, pp. 

4118–4130, 2018. 

[9] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-

resolution using deep convolutional networks,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295–307, 2015. 

[10] A. Korosov and D. Pozdnyakov, “Fusion of data from 

Sentinel-2/MSI and Sentinel-3/OLCI,” in Living Planet 

Symposium, 2016, vol. 740, p. 405. 

[11] X. Zhang, W. Huang, Q. Wang and X. Li, “SSR-NET: 

Spatial–Spectral Reconstruction Network for Hyperspectral and 

Multispectral Image Fusion,” IEEE Trans. Geosci. Remote Sens., 

vol. 59, no. 7, pp. 5953-5965, July 2021. 

[12] X.-H. Han, B. Shi, and Y. Zheng, “SSF-CNN: Spatial and 

spectral fusion with cnn for hyperspectral image super-resolution,” 

in Proc. IEEE ICIP’18, 2018, pp. 2506–2510. 

[13] X. Liu, Q. Liu, and Y. Wang, “Remote sensing image fusion 

based on two-stream fusion network,” Information Fusion, vol. 

55, pp. 1–15, 2020. 

[14] Q. Yuan, Y. Wei, X. Meng, H. Shen and L. Zhang, "A Multi-

scale and Multi-depth Convolutional Neural Network for Remote 

Sensing Imagery Pan-Sharpening," in IEEE J. Sel. Topics Appl. 

Earth Observ. Remote Sens., vol. 11, no. 3, pp. 978-989, March 

2018. 

[15] L. Juncheng, F. Fang, K. Mei and G. Zhang, “Multi-scale 

Residual Network for Image Super-Resolution,” in Proc. ECCV, 

2018. 

[16] J. Wei, Y. Xu, W. Cai, Z. Wu, J. Chanussot and Z. Wei, "A 

Two-Stream Multiscale Deep Learning Architecture for Pan-

Sharpening," in IEEE J. Sel. Topics Appl. Earth Observ. Remote 

Sens., vol. 13, pp. 5455-5465, 2020. 

[17] L. Weisheng, X. Liang, and M. Dong, “MDECNN: A 

Multiscale Perception Dense Encoding Convolutional Neural 

Network for Multispectral Pan-Sharpening,” Remote Sensing 13, 

no. 3: 535, 2021. 
[18] Muhammad, W., Bhutto, Z., Ansari, A., Memon, M.L., 

Kumar, R., Hussain, A., Shah, S.A.R., Thaheem, I., Ali, S, 

“Multi-Path Deep CNN with Residual Inception Network for 

Single Image Super-Resolution,” Electronics, 2021. 

[19] J. -F. Hu, T. -Z. Huang, L. -J. Deng, T. -X. Jiang, G. Vivone 

and J. Chanussot, "Hyperspectral Image Super-Resolution via 

Deep Spatiospectral Attention Convolutional Neural Networks," 

in IEEE Trans. Neural Netw. Learn. Syst, pp.1-15, 2021. 

[20] L. He, J. Zhu, J. Li, A. Plaza, J. Chanussot and B. Li, 

"HyperPNN: Hyperspectral Pansharpening via Spectrally 

Predictive Convolutional Neural Networks," in IEEE J. Sel. 

Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 8, pp. 

3092-3100, Aug. 2019. 


