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The amount of scientific conferences and journal articles continues to increase and new approaches are required to support users in finding relevant publications. This study investigates to what extent a new machine learning (ML) pipeline may preferentially identify links between similar scientific articles. The characteristics of intersections and unions of keywords, contextualized keywords (i.e., synsets) and neighbors are computed and used to train a ML model. Automated machine learning (AutoML) is then applied to ease the search for a new pipeline. Extensive experiments demonstrated that a newly designed ML model achieves an accuracy of 90% on a dataset of approximately 120,000 article pairs. These results suggest that application of ML for proposing new recommendation systems could have in the long term a positive impact in the literature.

I. INTRODUCTION

The explosive growth in the number of scientific articles presents a challenge to the search for relevant literature and might hinder access to the right papers [START_REF] Hey | The Data Deluge: An e-Science Perspective[END_REF]. In these circumstances, most researchers have to commit their time to search for recent findings which is labor-intensive. Scientific recommender systems (SRS) benefit the researchers to be well aware of most recent works in their community with the crucial aim of saving their precious time [START_REF] Bai | Scientific paper recommendation: A survey[END_REF], [START_REF] Sharma | Concept-based approach for research paper recommendation[END_REF]. They do so by considering the necessary information extracted from an input source. This might include profiles of users, keywords, citation analysis, a single paper, online behaviors, and so on. The main idea has become very popular since the introduction of the famous "Customers who bought this item also bought..." from Amazon, or other Netflix movie recommendation systems.

Co-occurrence-based, collaborative filtering and contentbased approaches are among the main groups of recommendation algorithms applied to scientific literature. In the first case, the goal is to find relatedness between articles, sometimes from textual co-occurrences, often relying on the citations graphassuming that two articles having references in common are somehow related. An illustrative example is described in [START_REF] Hamedani | SimCC: A novel method to consider both content and citations for computing similarity of scientific papers[END_REF], where a citations graph is used to identify the similarity between two articles. The main drawback of this approach is that a citation might be generic (or even unrelated) or from negative sentiment (e.g., "Authors made the wrong assumption that..."). Alternatively, collaborative filtering approaches have emerged [START_REF] Matsatsinis | A system based on multiple criteria analysis for scientific paper recommendation[END_REF], [START_REF] Mcnee | On the recommending of citations for research papers[END_REF]. In these methods, users are the center of interest and suggestions are usually based either on their readings or ratings. Consequently, only accessed or rated articles can be suggested to a user. Matsatsinis [START_REF] Matsatsinis | A system based on multiple criteria analysis for scientific paper recommendation[END_REF] tackled this problem by forcing the users to set up their profile first in order to get any related suggestions. Meanwhile, these approaches suffer from the cold start problem (i.e., a lack of data when launching the algorithm or when a new article is added), or from low rating participation. Finally, the last group incorporates also article metadata such as abstracts, titles, and keywords. These content-based recommendation systems are the most used approaches in the community; based on Beel's survey [START_REF] Beel | Research-paper recommender systems: a literature survey[END_REF]. In the case of SRS, the content is represented by text and information retrieval (IR) methods are applied to find the most relevant piece of information. Among many techniques, classical retrieval models (e.g., Boolean, TFIDF, vector models) and enhanced probabilistic models (e.g., BM25) are widely applied in the literature [START_REF] Manning | Introduction to information retrieval[END_REF]. Although the generalpurpose probabilistic models have been successfully embedded in SRS [START_REF] Beel | Research-paper recommender systems: a literature survey[END_REF], they are often considered as "black boxes" from which retrieval details or suggestion failures are difficult or even impossible to understand. Therefore, improving or correcting recommendations obtained from these approaches is a tedious task, and recurrent errors tend to happen.

To the best of our knowledge, there is no work on applying machine learning methods for IR of SRS which is the main contribution of this paper. The proposed approach resolves ambiguous keywords, expand those and creates features for potential use in ML methods. To be effective in practice, several AutoML algorithms are used to automatically tune and design a new model for the problem at hand. We propose to measure the similarity of scientific articles based on two pre-processing steps, namely categorization and data augmentation. Those respectively disambiguate keywords by finding common categories among the potential senses and augment the data by retrieving every related neighbor. As the features given to the adopted methods are directly inherited from these two steps, they can be enhanced, modified, or adapted if critical errors are detected. This also provides the possibility of showing to the users how and why articles are suggested as related articles. Therefore, a user can judge whether or not a recommendation is correct before accessing it.

II. RELATED WORKS

In recent years, a number of surveys have been presented to provide a review of related works on ML-based recommendation systems [START_REF] Zhang | Deep learning based recommender system: A survey and new perspectives[END_REF], [START_REF] Nawrocka | Application of machine learning in recommendation systems[END_REF], [START_REF] Portugal | The use of machine learning algorithms in recommender systems: A systematic review[END_REF], [START_REF] Wu | Recurrent recommender networks[END_REF]. Accordingly, we can see that there are very few works which well shape the application of ML for SRS. In [START_REF] Lee | Scalable deep learning-based recommendation systems[END_REF], authors introduced a collaborative filtering method based on deep neural networks. They trained a neural network using normalized user-rating and normalized item-rating vectors. Ebesu and Fang [START_REF] Ebesu | Neural citation network for context-aware citation recommendation[END_REF] proposed a flexible encoder-decoder architecture capable of incorporating author meta-data for context-aware citation recommendation. Experimental results on the large-scale CiteSeer dataset show that the proposed method has a significant improvement over its competitive baselines. In another work [START_REF] Dong | A hybrid collaborative filtering model with deep structure for recommender systems[END_REF], a collaborative model based on an extension of the stacked denoising autoencoder is proposed. The authors show that the new model is able to jointly learn users and items' latent factors from both side information and the rating matrix by conducting some experiments on two datasets containing ratings from users on movies and books. Cai et al. [START_REF] Cai | Generative adversarial network based heterogeneous bibliographic network representation for personalized citation recommendation[END_REF] put forward a generative adversarial network-based heterogeneous bibliographic network representation to design a personalized citation recommendation system. Interestingly, Wang et al. [START_REF] Wang | Dynamic attention deep model for article recommendation by learning human editors' demonstration[END_REF] proposed to use the convolutional neural networks for the editor article recommendation task. Moreover, Bansal et al. [START_REF] Bansal | Ask the gru: Multi-task learning for deep text recommendations[END_REF] incorporated recurrent neural networks to represent text items in a collaborative filtering method, considering the task of scientific article recommendation. Altogether, these success stories of ML for SRS motivated us to investigate the efficiency of a new ML pipeline model for IR of scientific articles.

III. MATERIALS AND METHODS

In the context of ML-based IR, the main focus should be on building a high-quality ML pipeline. This is due to the fact that there is no universal approach and new ML pipelines have to be constructed for each new data set [START_REF] Zöller | Survey on automated machine learning[END_REF]. The pipeline is a linear sequence of machine learning techniques (usually data cleaning, feature selection, and modeling) that transforms an input vector x ∈ X into a target value y ∈ Y. This task can be based on the structure of the pipeline and the choice of the ML algorithms and their hyperparameters.

Definition 1 (Pipeline Creation Problem): Given a set of algorithms A and their associated hyperparameters Λ, a training set D train and a validation set D valid such that D train ∩ D valid = ∅, the pipeline creation problem (PCP) can be defined as a joint algorithm and hyperparameter selection minimization problem using a loss function L [START_REF] Zöller | Survey on automated machine learning[END_REF]:

g * , A * , λ * ∈ arg min g∈G,A∈A + ,λ∈Λ L P g,A,λ (D train ), D valid (1) 
Here, g is a directed acyclic graph (DAG) that denotes the structure of the pipeline P g,A,λ . In g, the nodes (consisting of the selected algorithm A and its associated hyperparameters λ) represent an arbitrary machine learning process and edges represent the flow of an input. The performance of the configuration (g, A, λ) should be evaluated using the validation set D valid .

In this work, the pipeline structure g is supposed to have a fixed shape which eliminates the complexity of creating a DAG graph. Figure 1 introduces the general workflow of our pipeline. The first node exploits the keywords of the article and finds common categories among those (Section III-A). This categorization also validates the context of the keywords. After this disambiguation phase, data is augmented (Section III-B) by adding semantic neighbors (i.e., synonyms, hypernyms, hyponyms, etc.). From these two steps, different types of variables can be used to connect two scientific articles. Indeed, common keywords or neighbors can be shared among those, in different proportions. Thereafter, a set of five state-of-theart optimization techniques are used to automatically build a superior ML model for the problem at hand. Here, different hyperparameter optimization (HPO), neural architecture search (NAS), and combined algorithm selection and hyperparameter optimization (CASH) problem formulations are used. Accordingly, we will have an ensemble of five ML models where only the best one is allowed to exist among those alternatives.

The computational nodes are fed with connectivity details obtained from the aforementioned two steps (see Section III-C) and trained to determine whether a pair of articles is similar or dissimilar. Given that no ground truth is available, the similarity is based on the assumption that articles belonging to journals along the same scope (or from the same journal) are similar. Figure 2 is a simplified illustration of the proposed approach. Articles go through the same categorization process and their degree of connections (see Sec. III-C) are used to predict their similarity.

A. Categorization

This approach disambiguates article keywords using the lexical knowledge database BabelNet [START_REF] Navigli | BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network[END_REF], assuming that the more keywords within the same article sharing categories in common, the higher the probability that the category is one contribution of the article. An enhanced n-gram approach splits multiple-word keywords when no data is found in the BabelNet ontology, and sub-keywords are exploited. In other words, BabelNet indexes are queried for every (sub-)keyword, and each request may return a list of synsets. 1Synsets have various metadata attached, such as categories, domains, neighbors, or translations obtained from Wikipedia, WordNet, and other knowledge databases, and these are merged into BabelNet. Domains are the highest level in the semantic tree, whereas categories (mainly obtained from Wikipedia) are much more specific2 . Then, three co-occurrences matrices-namely, categories per keywords, sub-keywords, and synsets-are created to avoid categories Fig. 1: Illustration of the adopted ML pipeline. First, the input data is used for feature extraction task. Then, DE, BOHB, Hyperband, Auto-Sklearn and Auto-Keras methods are applied to find a superior ML model. Accordingly, we will have five output models and the one with the highest accuracy will be selected for the problem at hand.

being selected when they are over-represented within a nonsignificant pool of synsets (e.g., when two synsets from the same keyword share the same category). Then, the Hadamard product of these three matrices is computed, and categories appearing in at least two different synsets from two distinct keywords are retained as potentially representative for the article. Finally, articles are categorized and keywords are disambiguated, as illustrated in Figure 3. In this example, the article had three keywords (i.e., "AIDS", "HIV", and "Cervical cancer"). BabelNet returned, respectively, 1, 3, and 1 synset(s) while searching for these. Given that the synset from "HIV" shared categories with synsets from both other keywords, the approach validated their related synsets sharing it and the article was categorized. Weight of two (i.e., the number of keywords sharing it) was allocated to these two categories. This weight will be used for the intersection confidence (Section III-C).

B. Data Augmentation

After categorizing articles, data is augmented, and, more precisely, semantic neighbors are retrieved. Neighbors are obtained from semantic relationships obtained from Wikipedia, WordNet [START_REF] Miller | WordNet: a lexical database for English[END_REF] and other sources merged into BabelNet. Hypernyms, hyponyms, homonyms and other semantically related words (i.e., other semantic relationships) are embedded into neighbors in BabelNet. However, synsets are too massively connected within the ontology tree, and some generic synsets may have a huge number of neighbors. For instance, the synset "Artificial Intelligence"3 has 1210 neighbors (from 2212 edges) involving 5483 categories. Retaining only expected categories (i.e., the article's categories) helps to focus on more targeted neighbors and avoid retrieving generic (or unrelated) neighbors. Considering the previous example, the "Artificial intelligence" synset has eight categories in BabelNet (e.g., "Artificial intelligence", "Computational neuroscience", "Cybernetics", and "Emerging technologies") obtained from Wikipedia. Then, filtering out all neighbors which do not belong to any of its eight synset categories removes 1127 unrelated neighbors, and only 83 neighbors are finally selected.

C. Article Connections

After these two steps, article keywords are disambiguatedat least the ones sharing categories in common-and neighbors matching categories are retrieved. Several semantic relationships can be obtained from these augmented data. Indeed, intersections and unions between the different sets may contribute to a new similarity metric, taking into account all of the following variables. Let K x be the sets of keywords, S x the synsets, and N x the neighbors of the article A x .

Keyword (K) relationships: The intersection and union cardinality of original keywords from both articles A 1 and

A 2 (respectively, |K 1 K 2 |, |K 1 K 2 |).
In other words, all keywords are taken into account, even those without synsets.

Synset (S) relationships: The intersection and union cardinality of disambiguated keywords (i.e., the selected synsets):

|S 1 S 2 |, |S 1 S 2 |.
Synset intersection confidence: Given that synsets may come from highly or poorly represented categories from the article categorization, the mean weighted category value of connected synsets can represent the confidence of these in regard to their best category occurrence.

conf (S1, S2) = s∈(S 1 ∩S 2 ) 1 2 * bestCat(A1, s) |S1| + bestCat(A2, s) |S2| , (2) 
where bestCat(A i , s) returns the highest category weight for s in A i . Synset-Neighbor (N ) relationships: The cardinality of intersection and union between synsets from the first article and neighbors of the second article:

|S 1 N 2 |, |S 1 N 2 |.
Neighbor-Synset relationships: The cardinality of intersection and union between neighbors from the first article (N 1 ) and synsets of the second article (S 2 ):

|N 1 S 2 |, |N 1 S 2 |.
Neighbor relationships: The cardinality of intersection and union between neighbors from both articles:

|N 1 N 2 |, |N 1 N 2 |.
Number of original keywords: The number of ambiguous keywords (i.e., authors' or computed keywords) for each article. This data might be used to determine whether the intersection per union ratio is representative of the overall number of keywords: 

|K 1 |, |K 2 |.

Data augmentation Categorization

Fig. 2: General workflow of our approach. Article keywords are first categorized, augmented and a neural network learns to predict similarity of article pairs. The validation is finally based on their journal belonging. 

Number of keywords with synsets:

The number of disambiguated keywords for each article. I.e., the number of keywords from which synsets sharing common categories have been found in the categorization step:

|S 1 |, |S 2 |.
All of these variables are the features passed to a neural network-a multilayer perceptron (MLP) -and the expected labels will be the journal matching. In other words, the MLP is expected to learn the prediction of a positive similarity classification for two articles within the same (or related) journal(s).

D. AutoML

AutoML, the end-to-end process of building ML models, can be applied to all components of the pipeline [START_REF] Zöller | Survey on automated machine learning[END_REF]. Our introduced pre-processing methods do not need to be configured and we define the performance of the pipeline as a function of its classification algorithms A and their hyperparameters Λ. Accordingly, the main part of our AutoML system has a significant overlap with HPO, CASH and NAS. These different problem formulations are characterized based on the complexity of the search space and search strategy.

HPO is equivalent to find an optimal hyperparameters configuration λ * based on a given ML algorithm A and its associated hyperparameters λ with domain λ . The search space of HPO is composed of continuous, integer, categorical, and conditional hyperparameters. From Figure 4, we can see how the values of the hyperparameters in support vector classifier (SVC) would first be treated, before the learning process begins 4 . In HPO, ML model selection and hyperparameter optimization are independent which divides the whole search space into subspaces and speeds up the optimization process. Fig. 4: An illustration of the associated hyperparameters with SVC in Sklearn software package. These hyperparameters must be chosen a priori and cannot be derived via training. The hyper-parameters in SVC have a hierarchy structure, which implies that some of them are conditioned on the value of others (denoted by blue boxes), e.g. degree of the polynomial kernel function will be ignored by all other kernels.

Hyperband [START_REF] Li | Hyperband: A novel bandit-based approach to hyperparameter optimization[END_REF], BOHB [START_REF] Falkner | BOHB: Robust and efficient hyperparameter optimization at scale[END_REF] and differential evolution (DE) [START_REF] Storn | Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[END_REF] are three HPO search strategies used in the AutoML component. Hyperband5 is an extension of SuccessiveHalving algorithm [START_REF] Jamieson | Non-stochastic best arm identification and hyperparameter optimization[END_REF] which: allocates a partial budget to a set of configurations, evaluates trained model on the full validation set, discards a set of worst configurations; enhances the budget and repeats until one configuration remains. The algorithm allocates resources to more favorable configurations as the optimization process goes on. This promising search strategy is embarrassingly parallel but does not take into account the useful information about the fitness landscape of the problem at hand which may lead to slow convergence rate. Hence, we used the BOHB6 to achieve both strong any time performance and final performance; as outlined in [START_REF] Falkner | BOHB: Robust and efficient hyperparameter optimization at scale[END_REF]. Moreover, an evolutionary algorithm called as DE [START_REF] Storn | Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[END_REF], is also used to enhance our chance on the very complex search spaces of candidate configurations 7 .

Alternatively, CASH formulation takes into account a mixture of the ML algorithms and their hyperparameters. Instead of selecting an algorithm and optimizing its hyperparameters, both steps are applied simultaneously. Needless to say, the search space of CASH formulation is larger because the algorithm selection itself is considered a hyperparameter. We employed Auto-sklearn [START_REF] Feurer | Efficient and robust automated machine learning[END_REF] as the search strategy for CASH problem which is already shown to perform favorably against the state-of-the-art methods in the literature 8 .

Finally, we embrace Auto-Keras which is an efficient automating architecture engineering framework for NAS [START_REF] Elsken | Neural architecture search: A survey[END_REF], [START_REF] Jin | Auto-keras; an efficient neural architecture search system[END_REF]. This approach provides functions to automatically search for architecture and hyperparameters of ML models. It employs a neural network kernel, a tree-structured acquisition function optimization algorithm, and the concept of the Network morphism to efficiently explore the search space 9 . It obtains already superior results over manually designed architectures on some tasks such as image classification and can be a potential candidate for the problem at hand.

IV. EXPERIMENTS

1) Experimental data: A total of 3,112 articles from four journals (Symmetry (725), Religions (684), Viruses (870), and Toxins (833)) were selected to evaluate our approach. All journals were distinct (i.e., not in relation) except Toxins and Viruses, which have related scopes. Therefore, our approach aims to predict the similarity for pairs of articles from the same journal or for pairs of articles from similar journals. The categorization step found connections among 2,668 unique synsets from 1,389 articles (45%), from which 14,149 unique synsets were added as neighbors. Finally, the dataset contained 119,874 article pairs having at least one intersection as described in Section III-C, involving keywords, synsets, or neighbors.

2) Experimental setup: We use the power of five different optimization approaches to find a superior model for scientific article recommendation. The configuration space for HPO search strategies is composed of DecisionTreeClassifier, KneighborsClassifier, RandomForestClassifier and MLPClassifier classifiers which results in total 31 hyperparameters. Moreover, the configuration space of Auto-sklearn is composed of 15 classifiers, 14 feature selectors, and 4 data preprocessors which results in a structured hypothesis space with 110 hyperparameters. Furthermore, Auto-Keras takes into account the highly popular computational modules as the basic components to build a graph-based ML model. These modules are Dense, Dropout, and activation functions (e.g., ReLU). The readers are referred to see the detailed principle about the conducted experiments, the computational resources, the configuration space, and the reported numerical results within the supplementary file made available online 10 .

For HPO-based search strategies, the number of function evaluations is limited to 550, while for Auto-Sklearn and Autokeras it is considered to be 5 days. To tackle the negative effects of the random initial configurations, each algorithm was run 15 times. In DE, population size is 50, F is 0.9, and CR is 0.5. In Auto-Sklearn, we sampled the hyperparameters space by using functions provided in its library. We limited the maximum training time of each model to one hour and its memory consumption to 3,072 Mb. To evaluate the performance of these methods, we decomposed our dataset into a training set containing 60% of the data (i.e., pairs of articles), a validation set representing 20% of the dataset and a test set containing the remaining 20%.

3) Classifier selection: The statistical results show that DE and Hyperband search strategies obtained 90% of accuracy, followed by BOHB(89%), Auto-Sklearn (89%), and Auto-Keras (89%). Although the difference between the best and worst-performing approach is less than 1%, we should note that the considered methods help ground the empirical results from 82% to 90%. We had to apply all the methods because there is no a single optimization algorithm that can be used for any given problem. Meanwhile, the HPO search algorithms achieve better performance and so more analysis is given in Figure 5 to verify this trend. Considering the convergence rate, this figure shows that DE has a better performance in comparison with the other HPO algorithms. The numerical results are given in supplementary file [START_REF] Nawrocka | Application of machine learning in recommendation systems[END_REF] (see Appendix II). Generally, these results offer an insight into the application of different search strategies for designing new ML-based IR systems which can be used in the future works.

V. RESULTS

A. Overall

Experiments described in Section IV highlighted that a random forest classifier is the best classifier for our dataset. Its optimized hyperparameters are obtained as follows: n_estimators=163, criterion=gini, I provides an overview of the article pairs grouped by their higher types of intersection found within the dataset, the size of the test set for each relationship, and the obtained accuracy for predicted pairs. Elements of K 1 K 2 are considered as semantically higher than S 1 S 2 ones, which are higher than elements of S 1 N 2 and N 1 S 2 , and finally N 1 N 2 are semantically the lowest type of intersections. Intersections inherited from elements of S 1 N 2 and N 1 S 2 are grouped because there is a huge overlap, hence it does not make sense to differentiate them.

An overall accuracy of 90% is obtained for the 29,975 pairwise similarity predictions from the test set. As expected, the keywords intersections are the safest ones (K 1 K 2 ), thus the easiest to predict (99% of accuracy). The same observation is obtained with synsets ones (S 1 S 2 ). The accuracy constantly decreases and predictions on intersections involving synsets and neighbors obtain an accuracy of 94% (S 1 N 2 ) (N 1 S 2 ) . Finally, the neighbors' intersections, which are the furthest semantical relationships obtain an accuracy of 87%.

Given that neighbors' intersections are the most represented pairwise elements within the dataset, their low accuracy signif-icantly affects the overall accuracy. To counter this, we plan to further investigate on the way to improve the classification of pairs exclusively connected by neighbors. An interesting lead would be to use a sigmoid function to return a similarity score normalized between 0 and 1. Therefore, a threshold might be heuristically defined in order to fit with the requirements in terms of precision and the number of articles proposed. Then, only pairs with a similarity score above this threshold will be considered as relevant.

B. Comparison with baseline

We proposed a baseline to estimate the added value of ML on this task. Accordingly, it computes the similarity score by realizing a weighted sum of Jaccard indexes of the sets of synsets (S 1 , S 2 ), neighbors (N 1 , N 2 ) and synset and neighbors (S 1 , N 2 and N 1 , S 2 ). Keywords relationships are therefore left away and do not influence the similarity score. Without ML, it obtains a general accuracy of 82% on the same test set when no threshold is applied to the similarity score and every pair having a distance is considered as a prediction 11 . In other words, ML improves by 8 points the accuracy of predictions which is probably inherited by the fact that there might be other more subtle relationships between the variables which are seen impossible to identify by human. In this paper, we proposed a new architecture to predict the similarity between pairs of scientific articles. The preprocessing steps combining categorization and data augmentation built a promising semantic base, which led to the creation of a precise classifier reaching an accuracy of 90%. In the future, we plan to compare the obtained results with other distance algorithms such as Word Mover Distance or Doc2Vec. To do so, a normalized distance might be returned from the network (i.e., before the activation function). This would provide further insights about the performance of our approach compared to other known approaches.
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 3 Fig.3: Keywords' senses are disambiguated by finding common categories shared among them. Here, all three keywords share categories in common.

Fig. 5 :

 5 Fig. 5: The convergence plot of the DE, BOHB and Hyperband HPO search strategies over 15 runs. In this figure, the variance of the algorithms is also depicted which indicates how sensitive they are to different random seeds.

TABLE I :

 I Distribution of article pairs according to their type of intersection in the dataset, size of the test set, and the corresponding accuracy.K 2 | |S 1 S 2 | |(S 1 N 2 ) (N 1 S 2 )| |N 1 N 2 |

	Number of pairs / type |K 1 in dataset Total 119,874 4,424	4,945	29,829	80,676
	in test set	23,975	889	981	6,024	16,081
	accuracy	0.9002	0.9775	0.9786	0.9429	0.8751
		VI. CONCLUSION			

A synset can be seen as a contextualized word with a specific sense or meaning, which will not have different meanings for homonyms.

There are only 26 domains, but around 290,000 categories.

https://babelnet.org/synset?word=bn:00002150n

Figure 4 is depicted based on SVC in Sklearn: https://github.com/scikitlearn/scikit-learn

https://github.com/zygmuntz/hyperband

https://github.com/automl/HpBandSter

http://www1.icsi.berkeley.edu/~storn/code.html

https://github.com/automl/auto-sklearn

https://github.com/keras-team/autokeras

https://tinyurl.com/rakhshani-wcci2020

A threshold of 0.002 drops the accuracy to 55% given that there are many small similarity scores and too many correct predictions are skipped.