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aLIS, Aix-Marseille Université, CNRS, and Université de Toulon
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Abstract. Recently, Armstrong, Guzmán, and Sing Long (2021), presented an optimal O(n2) time algorithm for

strict circular seriation (called also the recognition of strict quasi-circular Robinson spaces). In this paper, we give a

very simple O(n logn) time algorithm for computing a compatible circular order for strict circular seriation. When

the input space is not known to be strict quasi-circular Robinson, our algorithm is complemented by an O(n2) time

verification of compatibility of the returned order. This algorithm also works for recognition of other types of strict

circular Robinson spaces known in the literature. We also prove that the circular Robinson dissimilarities (which are

defined by the existence of compatible orders on one of the two arcs between each pair of points) are exactly the

pre-circular Robinson dissimilarities (which are defined by a four-point condition).

1. Introduction

A major issue in classification and data analysis is to visualize simple geometrical and relational
structures between objects based on their pairwise distances. The classical seriation problem (called
also the matrix reordering problem), introduced by Robinson [22], asks to find a simultaneous
ordering (or permutation) of the rows and the columns of the dissimilarity matrix so that its values
increase monotonically in the rows and the columns when moving away from the main diagonal in
both directions. The permutation which leads to a matrix with such a property is called a compatible
order and dissimilarity matrices admitting a compatible order are called Robinson matrices. The
Robinson matrices can be thus characterized by the existence of a compatible order < and the
3-point condition d(x, z) ≥ max{d(x, y), d(y, z)} for any three points x, y, z such that x < y < z. If
this inequality is strict, then such a matrix is called strict Robinson.

Due to the importance in seriation and classification, the algorithmic problem of recognizing
Robinson dissimilarities/matrices attracted the interest of many authors. The existing recognition
algorithms can be classified into combinatorial and spectral. All combinatorial algorithms use the
correspondence between Robinson dissimilarities and interval hypergraphs. The main difficulty
arising in recognition algorithms is the existence of several compatible orders. The first recognition
algorithm by Mirkin and Rodin [18] consists in testing if the hypergraph of balls is an interval
hypergraph and runs in O(n4) time. Chepoi and Fichet [6] gave a simple divide-and-conquer
algorithm running in O(n3) time. Seston [23] presented another O(n3) time algorithm, by using
threshold graphs. In [24], he improved the complexity of his algorithm to O(n2 log n) by using a
sorting of the data and PQ-trees. Finally, in 2014, Préa and Fortin [20] presented an algorithm
running in optimal O(n2) time. The efficiency of the algorithm of [20] is due to the use of the PQ-
trees of Booth and Lueker [3] as a data structure for encoding all compatible orders. Even if optimal,
the algorithm of [20] is far from being simple. Subsequently, two new recognition algorithms were
proposed by Laurent and Seminaroti: in [14] they presented an algorithm of complexity O(α · n)
based on classical LexBFS traversal and divide-and-conquer (where α is the depth of the recursion
tree, which is at most the number of distinct elements of the input matrix), and in [15] they
presented an O(n2 log n) algorithm, which extends LexBFS to weighted matrices and is used as a
multisweep traversal. More recently, in [5] we gave a simple and practical O(n2) divide-and-conquer
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algorithm based on decompositions of dissimilarity spaces into mmodules. The spectral approach
was introduced by Atkins et al. [2] and was subsequently used in numerous papers. The method
is based on the computation of the second smallest eigenvalue and its eigenvector of the Laplacian
of a similarity matrix and also uses PQ-trees to represent the compatible orders.

A natural generalization of Robinson dissimilarities and compatible orders is to consider a circular
order instead of a linear one. This is often referred to as the circular seriation problem. For origins of
circular seriation see the papers [9, 10, 11] and for recent applications of circular seriation in planar
tomographic reconstruction, gene expression, DNA replication and 3D conformation, see the papers
[7, 17, 16]. For a spectral approach to circular seriation, see the papers [8, 13, 21]. At the difference
of the classical seriation, where the notion of Robinson dissimilarity is a well-established standard,
in circular seriation there are several non-equivalent notions of circular Robinson dissimilarities.
Hubert, Arabie, and Meulman [10] were the first to define circular Robinson dissimilarities via a
4-point condition. Brucker and Osswald [4] undertaken a systematic study of various definitions
of circular Robinson dissimilarities from the point of view of classification and combinatorics. In
Robinson dissimilarity spaces, the sets of balls, of 2-balls (intersections of two balls), and of clusters
(maximal cliques in the threshold graphs) are all interval hypergraphs. Hypercycles, introduced and
investigated by Quillot [19], are the circular analogs of interval hypergraphs and are the hypergraphs
whose hyperedges can be represented as circular intervals (arcs). In case of circular Robinson
dissimilarities, requiring that the ball, the 2-ball, or the cluster hypergraphs are hypercycles lead to
three different classes of dissimilarities. Their structural properties have been thoroughly studied
by Brucker and Osswald [4]. The dissimilarities whose ball hypergraph is a hypercycle is the most
general one and was characterized via a simple 4-point condition: there exists a circular order ⋖
such that if x ⋖ y ⋖ z ⋖ t, then d(x, z) ≥ min{d(x, y), d(x, t)}. We call such dissimilarities quasi-
circular Robinson. Recently, Armstrong, Guzmán, and Sing Long [1] presented an optimal O(n2)
time algorithm for the recognition of strict quasi-circular Robinson dissimilarities, i.e., for which
the ball hypergraph is a hypercycle and x ⋖ y ⋖ z ⋖ t implies that d(x, z) > min{d(x, y), d(x, t)}.
Among other tools, their algorithm uses PQ-trees. Finally, to characterize the dissimilarities for
which the 2-ball hypergraphs are hypercycles, Brucker and Osswald [4] introduced the notion of
pre-circular Robinson dissimilarities: these are the dissimilarities which admit a circular order ⋖
such that x⋖ y ⋖ z ⋖ t implies that d(x, z) ≥ min{max{d(x, y), d(y, z)},max{d(x, t), d(t, z)}}.

In this paper, we give a very simple O(n log n) time algorithm which builds a compatible circular
order for all versions of strict circular Robinson dissimilarities, introduced and investigated in the
papers [1, 4, 10]. Then the adjunction of a verification step gives an optimal O(n2) time algorithm
to recognize these dissimilarities. Our second main result is proving that the pre-circular Robinson
dissimilarities are exactly the dissimilarities for which there exists a circular order ⋖ such that for
each pair (x, y), the restriction of d to one of the two arcs between x and y is a Robinson dissimilarity
(in the usual sense) and ⋖ is its compatible order. To our knowledge, prior to our work no results
of this kind for circular seriation were known. Our result shows that in fact pre-circular Robinson
spaces should be called circular Robinson spaces. Finally, the simplicity of our algorithm led us
to other structural properties of strict circular Robinson spaces, in particular we show that they
admit only one or two compatible circular orders and their opposites.

2. Preliminaries

2.1. Dissimilarity spaces. Let X = {x1, . . . , xn} be a set of n elements, called points. A dis-
similarity on X is a symmetric function d from X2 to the nonnegative real numbers such that
d(x, y) = d(y, x) ≥ 0 and d(x, y) = 0 if and only if x = y. Then d(x, y) is called the dis-
tance between x, y and (X, d) is called a dissimilarity space. The ball (respectively, the sphere)
of radius r ≥ 0 centered at x ∈ X is the set Br(x) := {y ∈ X : d(x, y) ≤ r} (respectively,
Sr(x) := {y ∈ X : d(x, y) = r}). The eccentricity of a point x is rx := max{d(x, y) : y ∈ X}. Given
a point x ∈ X, a point y ∈ X is called a furthest neighbor of x if d(x, y) = rx. Denote by Fx the set
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of all furthest neighbors of x and note that Fx = Srx(x). The distance between two subsets A,B
of X is d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}.

2.2. Compatible orders and Robinson spaces. A partial order on X is called linear if any two
elements of X are comparable. A dissimilarity d and a linear order < on X are called compatible
if x < y < z implies d(x, z) ≥ max{d(x, y), d(y, z)}. If d and < are compatible, then d is also
compatible with the linear order <op opposite to <. If a dissimilarity space (X, d) admits a
compatible order, then d is said to be Robinson and (X, d) is called a Robinson space. Equivalently,
(X, d) is Robinson if its distance matrix D = (d(pi, pj)) can be symmetrically permuted so that its
elements do not decrease when moving away from the main diagonal along any row or column. Such
a dissimilarity matrix D is said to have the Robinson property. From the definition of a Robinson
dissimilarity follows that d is Robinson if and only if there exists an order < on X such that all balls
Br(x) of (X, d) are intervals of <. Moreover, this property holds for all compatible orders. Basic
examples of Robinson dissimilarities are the ultrametrics, thoroughly used in phylogeny. Recall,
that d is an ultrametric if d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ X. Another example of a
Robinson space is provided by the standard line-distance between n points p1 < . . . < pn of R. Any
line-distance has exactly two compatible orders: the order p1 < . . . < pn defined by the coordinates
of the points and its opposite.

2.3. Compatible circular orders and circular Robinson spaces. Informally speaking, a cir-
cular order on a finite set X is obtained by arranging the points of X on a circle C. Formally, a
circular order is a ternary relation β on X where β(u, v, w) expresses that the directed path from u
to w passes through v. This relation is total, asymmetric, and transitive, which can be formulated
in terms of Huntington’s axioms [12]: for any four points u, v, w, x of X,

(CO1) if u, v, w are distinct, then β(u, v, w) or β(w, v, u),
(CO2) β(u, v, w) and β(w, v, u) is impossible,
(CO3) β(u, v, w) implies β(v, w, u),
(CO4) β(u, v, w) and β(u,w, x) imply β(u, v, x).

It follows from this definition that only triplets of distinct points can be in the relation β and
that the reverse relation βop defined by βop(u, v, w) exactly when β(w, v, u) is also a circular order.
Since X is finite, the circular orders on X are just the orientations of the circle C with points
of X located on C. We will suppose that β corresponds to the counterclockwise order of C and
βop to the clockwise order of C. Given a circular order β and three distinct points u, v, w, we
will write u ⋖ v ⋖ w if β(u, v, w) holds. For a sequence of points x1, x2, . . . , xk containing at least
three distinct points, we will write x1 ⋖ x2 ⋖ . . . ⋖ xk if for any i < j < k with xi, xj , xk distinct,
β(xi, xj , xk) holds. Notice that in that case, if xi = xj , then xk = xi for each k ∈ {i, . . . , j}, and
that x2 ⋖ x3 ⋖ . . .⋖ xk ⋖ x1.

We say that a nonempty proper subset A of X is an arc of a circular order β on X if there are
no four distinct points u, v ∈ A and x, y ∈ X \ A such that u ⋖ x ⋖ v ⋖ y. If A is an arc, then

so is X \ A. For two points x, y ∈ X, consider the arcs Xβ
xy = {t ∈ X : β(x, t, y)} ∪ {x, y} and

Xβ
yx = {t ∈ X : β(y, t, x)}∪ {x, y}. Notice that Xβ

xy ∪Xβ
yx = X and Xβ

xy ∩Xβ
yx = {x, y}. Moreover,

if x⋖ y ⋖ z, then Xβ
xy ⊂ Xβ

xz and Xβ
yz ⊂ Xβ

xz. For x, y ∈ X and Z ⊂ X, we write x⋖ y ⋖ Z if for
all z ∈ Z we have x⋖ y ⋖ z. Arcs are for circular orders what intervals are for linear orders. The
intersection of two arcs is not necessarily an arc but we have the following elementary observation:

Lemma 1. Let A and B be two arcs of a circular ordered set (X,β). If there exists x ∈ X \(A∪B),
then A ∩B is an arc. If there exist x ∈ B \A, then A \B is an arc or is empty.

Let (X, d) be dissimilarity space, β be a circular order onX and x, y, z, t ∈ X such that x⋖y⋖z⋖t.

• The points x, y, z, t are one-side Robinson, and we denote it by cR(x, y, z, t), if d(x, z) ≥
min{max{d(x, y), d(y, z)},max{d(x, t), d(t, z)}}.
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• The points x, y, z, t are strictly one-side Robinson, and we denote it by scR(x, y, z, t), if
d(x, z) > min{max{d(x, y), d(y, z)},max{d(x, t), d(t, z)}}.

• The points x, y, z, t are quasi one-side Robinson, and we denote it by qcR(x, y, z, t), if
d(x, z) ≥ min{d(y, z), d(t, z)}.

• The points x, y, z, t are strictly quasi one-side Robinson, and we denote it by sqcR(x, y, z, t),
if d(x, z) > min{d(y, z), d(t, z)}.

Notice that the conditions cR(x, y, z, t) and qcR(x, y, z, t) trivially hold if x = y⋖z⋖t or x⋖y⋖z = t.
For x, y, z, t ∈ X such that x⋖ y ⋖ z ⋖ t, the following implications hold:

scR(x, y, z, t) cR(x, y, z, t)

sqcR(x, y, z, t) qcR(x, y, z, t)

A dissimilarity space (X, d) is called pre-circular Robinson if there exists a circular order β, which
is said to be a compatible order, such that for all x, y, z, t ∈ X, if x ⋖ y ⋖ z ⋖ t then cR(x, y, z, t)
holds. The strictly pre-circular Robinson, quasi-circular Robinson, and strictly quasi-circular Robin-
son spaces are defined in a similar way by using conditions scR(x, y, z, t), qcR(x, y, z, t), and
sqcR(x, y, z, t), respectively. Finally, a dissimilarity space (X, d) is called circular Robinson if

there exists a circular order β, called a compatible order such that for all x, y ∈ X, either (Xβ
xy, d)

or (Xβ
yx, d) is a Robinson space and the restriction of ⋖ to the arc Xβ

xy or respectively Xβ
yx is a

(linear) compatible order. If (X, d) is a circular (respectively, pre-circular) Robinson space with a
compatible circular order β, we say that (X, d) is a circular (respectively, pre-circular) Robinson
space. Notice also that for all definitions, if a circular order β is compatible, then βop is also com-
patible. A set X of n points on a circle C in R2 endowed with the arc distance or with the chord
(i.e., Euclidean) distance is a basic example of a strict circular Robinson space.

Circular Robinson spaces introduced by Hubert et al. [10] generalize classical Robinson spaces
and are particular pre-circular Robinson spaces (for their definition, see [4, 10]). That Robinson
spaces are circular Robinson can be seen by arranging the points of X on a circle C according to
a compatible order of (X, d). Then for all x, y ∈ X, if x < y in the compatible order, then d is

Robinson on the arc Xβ
xy. (Strictly) circular Robinson spaces are (strictly) quasi-circular Robinson

spaces. However not any circular order β satisfying sqcR(x, y, z, t) for all quadruplets x⋖ y⋖ z⋖ t
also satisfies scR(x, y, z, t). Such an example is provided in Figure 1.

x

z

ty

3

3 1

1
2

2
x
y
z
t

x y z t
0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

Figure 1. A strict quasi-circular Robinson space (X = {x, y, z, t}, d) with a
compatible circular order β. The quadruplet x ⋖ y ⋖ z ⋖ t satisfies sqcR(x, y, z, t)
but not scR(x, y, z, t). Notice that the circular order obtained by reversing z and t,
i.e., such that x⋖ y ⋖ t⋖ z, satisfies the condition scR for all quadruplets.
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3. Pre-circular Robinson spaces are circular Robinson

In this section, we characterize pre-circular Robinson spaces. Instead of relying directly on the
condition cR(x, y, z, w), some proofs will use the following consequence of the definition of pre-

circular Robinson spaces, stating intuitively that for any pair u,w, one of the arcs Xβ
u,w, X

β
w,u has

only chords shorter than d(u,w).

Lemma 2. Let (X, d) be a pre-circular Robinson space with a compatible circular order β and
points u⋖ y ⋖ y′ ⋖ w ⋖ z ⋖ z′, where u and w are distinct. Then d(u,w) ≥ min{d(y, y′), d(z, z′)}.
Moreover, if (X, d) is strictly pre-circular Robinson, then this inequality is strict.

Proof. We present the proof for the non-strict case, the strict case being slightly simpler. For sake
of contradiction, assume u ⋖ y ⋖ y′ ⋖ w ⋖ z ⋖ z′ is a counterexample with a minimum number of
distinct points, implying that d(u,w) < d(y, y′) and d(u,w) < d(z, z′). By cR(u, y, y′, w),

d(u, y′) ≥ min{max{d(u, y), d(y, y′)},max{d(y′, w), d(w, u)}}
≥ min{d(y, y′), d(w, u)}
= d(w, u).

If d(u, y′) = d(w, u), then u ⋖ y ⋖ w ⋖ w ⋖ z ⋖ z′ is a counterexample. If d(u, y′) > d(w, u),
then u ⋖ u ⋖ y′ ⋖ w ⋖ z ⋖ z′ is a counterexample. By the minimality of our counterexample, we
conclude that either u = y or w = y′. Symmetrically, either z = w or z′ = x. We also have that
{y, y′} ≠ {u,w}. Hence, let y′′ ∈ {y, y′} \ {u,w} and z′′ ∈ {z, z′} \ {u,w}. By cR(u, y′′, w, z′′),

d(u,w) ≥ min{max{d(u, y′′), d(y′′, w)},max{d(w, z′′), d(z′′, u)}}
≥ min{d(y, y′), d(z, z′)},

since {y, y′} is either {u, y′′} or {y′′, w}, and {z, z′} is either {w, z′′} or {z′′, u}. This is in contra-
diction with the minimality of the counterexample. □

As a consequence we have:

Lemma 3. Let (X, d) be a pre-circular Robinson space with a compatible circular order β and
x, y, z be three arbitrary points of X such that x ⋖ y ⋖ z. If d(x, z) < max{d(x, y), d(y, z)}, then
(Xβ

zx, d) is a Robinson space.

Proof. Let y′, y′′ ∈ {x, y, z} be such that d(x, z) < d(y′, y′′) and x ⋖ y′ ⋖ y′′ ⋖ z . Pick any

points u, v, w ∈ Xβ
zx such that z ⋖ u ⋖ v ⋖ w ⋖ x (we may have u = z or w = x) and suppose

by way of contradiction that d(u,w) < max{d(u, v), d(v, w)}, let v′, v′′ ∈ {u, v, w} be such that
u⋖v′⋖v′′⋖w and d(u,w) < d(v′, v′′). If d(u,w) ≤ d(x, z), then d(u,w) < d(y′, y′′), and by Lemma 2
on w ⋖ y′ ⋖ y′′ ⋖ u ⋖ v′ ⋖ v′′, this is a contradiction. If d(u,w) > d(x, z), then d(x, z) < d(v′, v′′),
and by Lemma 2 on x⋖ y′ ⋖ y′′ ⋖ z ⋖ v′ ⋖ v′′ we obtain again a contradiction. □

Now, we can prove our first main result:

Theorem 1. A dissimilarity space (X, d) is pre-circular Robinson if and only if (X, d) is circular
Robinson.

Proof. To prove the theorem, first suppose that (X, d) is a circular Robinson space and β is a
compatible circular order on X. Pick any x, y, z, t ∈ X such that x⋖y⋖z⋖ t. By definition of β, ⋖
is a compatible linear order on the arc Xβ

xz or X
β
zx. In the first case, since y ∈ Xβ

xz, we have d(x, z) ≥
max{d(x, y), d(y, z)}. In the second case, since t ∈ Xβ

zx, we have d(x, z) ≥ max{d(x, t), d(t, z)}.
Consequently, d(x, z) ≥ min{max{d(x, y), d(y, z)},max{d(x, t), d(t, z)}}, establishing that (X, d) is
a pre-circular Robinson space.

Conversely, let (X, d) be a pre-circular Robinson space and β be a compatible circular order.

Pick any pair of points a, b of X. If (Xβ
ab, d) is not a Robinson space, then there exists three points
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x, y, z ∈ Xβ
ab such that x ⋖ y ⋖ z and d(x, z) < max{d(x, y), d(y, z)}. By Lemma 3, (Xβ

zx, d) is a

Robinson space. Since Xβ
ba ⊂ Xβ

zx, this proves that (X
β
ba, d) is Robinson, establishing that (X, d) is

a circular Robinson space and β is a compatible circular order. □

As a consequence, we say that (X, d) is a strictly circular Robinson space if it is a strictly
pre-circular Robinson space.

4. Properties of quasi-circular and strict circular Robinson spaces

In this section, we present several properties of (strict) quasi-circular and circular Robinson
spaces. We also show how to verify if a dissimilarity space is (strictly) quasi-circular Robinson or
(strictly) circular Robinson with respect to a given circular order.

4.1. Properties of (strictly) quasi-circular Robinson spaces. In this subsection, we recall
or present some properties of (strictly) quasi-circular Robinson spaces. We start with the following
characterization of quasi-circular Robinson spaces of [4]:

Proposition 1. [4] A dissimilarity space (X, d) is quasi-circular Robinson if and only if there
exists a circular order β such that any x ∈ X and r ∈ R+, the ball Br(x) and its complement
X \Br(x) = {t ∈ X : d(x, t) > r} are arcs of β.

Proof. First suppose that (X, d) is a quasi-circular Robinson space and β is a compatible circular
order. Let y ⋖ u ⋖ z ⋖ v be four distinct points with y, z ∈ Br(x). We may assume v ⋖ x ⋖ y
by symmetry. By qcR(x, u, z, v), r ≥ d(x, z) ≥ min{d(x, u), d(z, v)}, that is either u ∈ Br(x) or
v ∈ Br(x), proving that Br(x) is an arc. Conversely, suppose that there exists a circular order β
such that each ball Br(x) is an arc of β. Pick arbitrary points x, y, z, t ∈ X such that x⋖ y⋖ z⋖ t.
Let r = d(x, z). Since Br(z) is an arc of β and β(x, y, z), β(z, t, x) hold, either y or t must belong
to the ball Br(z). Consequently, d(x, z) ≥ min{d(y, z), d(t, z)}, establishing qcR(x, y, z, t). □

Let (X, d) be a quasi-circular Robinson space and β be a compatible circular order. For any
point x ∈ X, recall that Fx consists of all furthest neighbors of x and rx is the eccentricity of x. Let
Mx := X \ (Fx ∪ {x}). Since Mx ∪ {x} is the ball Br(x), where r is strictly smaller but sufficiently
close to rx, by Proposition 1, Mx ∪ {x} and Fx are complementary arcs of β. Consequently, the
set Mx is partitioned into two arcs Lx := {t ∈ Mx : x ⋖ t ⋖ Fx} and Rx := {t ∈ Mx : Fx ⋖ t ⋖ x}
(left and right arcs), where one of those arcs may be empty. Two points y, y′ ∈ Mx are called
x-separated if they belong to distinct arcs Lx and Rx.

Lemma 4. Let (X, d) be a quasi-circular Robinson space, β be a compatible circular order, and x
any point of X. If y, z ∈ Lx and x ⋖ y ⋖ z or y, z ∈ Rx and z ⋖ y ⋖ x, then d(x, y) ≤ d(x, z).
Moreover, if (X, d) is strict quasi-circular, then d(x, y) < d(x, z).

Proof. Let y, z ∈ Lx with x ⋖ y ⋖ z. Let t ∈ Fx. By qcR(x, y, z, t) and since d(x, z) < d(x, t), we
obtain that d(x, y) ≤ d(x, z). The proof for y, z ∈ Rx is similar. □

Lemma 5. Let (X, d) be a strict quasi-circular Robinson space, β be a compatible circular order,
and x any point of X. Then any sphere Sr(x) contains at most two points. Furthermore, if r < rx
and Sr(x) consists of two points y, y′, then y and y′ are x-separated.

Proof. Suppose by way of contradiction that there exist three points y, y′, y′′ ∈ Sr(x). We can
suppose, with no loss of generality, that x⋖y⋖y′⋖y′′. But this contradicts qcR(y′, y′′, x, y). Since
(X, d) is strict quasi-circular, by Lemma 4, |Sr(x) ∩ Lx| ≤ 1 and |Sr(x) ∩ Rx| ≤ 1, proving the
second assertion. □
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4.2. Properties of (strictly) circular Robinson spaces. In this subsection, we present some
properties of (strictly) circular Robinson spaces.

Proposition 2. Let (X, d) be a circular Robinson space with a compatible order β. Then for all
x, y ∈ X, x′ ∈ Fx, y

′ ∈ Fy with |{x, x′, y, y′}| ≥ 3, one of the following assertions holds:
(a) x⋖ y ⋖ x′ ⋖ y′,
(b) x⋖ y′ ⋖ x′ ⋖ y,
(c) {y, y′} ∩ Fx ̸= ∅ or {x, x′} ∩ Fy ̸= ∅.

Moreover if (X, d) is strictly circular Robinson, then either (a) or (b) holds.

Proof. Suppose first that (X, d) is strictly circular Robinson. For sake of contradiction, assume
none of these assertions holds. There are two cases depending on the order (up to reversal) of
x, y, x′, y′.

If x⋖ y ⋖ y′ ⋖ x′, by scR(x, y, y′, x′) and scR(y, y′, x′, x), and since x′ ∈ Fx, y
′ ∈ Fy, we get:

d(x, x′) ≥ d(x, y′)

> min{max{d(x, y), d(y, y′)},max{d(x, x′), d(x′, y′)}}
≥ min{d(y, y′),max{d(x, x′), d(x′, y′)}}
≥ min{d(y, y′), d(x, x′)},

d(y, y′) ≥ d(y, x′)

> min{max{d(y, y′), d(y′, x′)},max{d(y, x), d(x, x′)}}
≥ min{max{d(y, y′}, d(y′, x′)}, d(x, x′)}
≥ min{d(y, y′), d(x, x′)}.

From this, we get that d(x, x′) > d(y, y′) and d(y, y′) > d(x, x′), a contradiction.
If x⋖ y′ ⋖ y ⋖ x′, then by scR(x, y′, y, x′) and using that x′ ∈ Fx, y

′ ∈ Fy, we get:

min{d(x, x′), d(y, y′)} ≥ d(x, y)

> min{max{d(x, y′), d(y′, y)},max{d(x, x′), d(x′, y)}}
≥ min{d(y′, y), d(x, x′)},

a contradiction.
Suppose now that (X, d) is non-strictly circular Robinson. We follow the same argument. In the

first case, instead of a contradiction, we get that d(x, x′) = d(y, y′). Applying cR(x, y, y′, x′) and
cR(y, y′, x′, x), we conclude that y′ ∈ Fx and x′ ∈ Fy, implying (c). In the second case, we get that
d(x, y) = min{d(x, x′), d(y, y′)}, implying either y ∈ Fx or x ∈ Fy, that is (c). □

Now, we determine the conditions that make a circular order β, compatible with a quasi-circular
Robinson space (X, d), not compatible with respect to circular Robinson property of (X, d).

Proposition 3. Let (X, d) be a (strict) quasi-circular Robinson space and β a compatible order,
such that (X, d) is not (strict) circular Robinson with respect to β. Then there exist x, y ∈ X,
x′ ∈ Fx, y

′ ∈ Fy such that x⋖ x′ ⋖ y ⋖ y′ or x⋖ y′ ⋖ y ⋖ x′. Moreover, in the non-strict case, we
may also assume that x, x′ /∈ Fy and y, y′ /∈ Fx.

Proof. We first prove the strict case. Let x⋖ u⋖ y ⋖ v be such that scR(x, u, y, v) does not hold:

(1) d(x, y) ≤ min{max{d(x, u), d(u, y)},max{d(x, v), d(v, y)}}.
By sqcR(x, u, y, v) and sqcR(y, v, x, u), we get:

d(x, y) > min{d(x, u), d(x, v)},(2)

d(x, y) > min{d(y, u), d(y, v)}.(3)
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Combining these inequations, we get:

min{d(x, u), d(x, v)} < max{d(x, u), d(u, y)}, min{d(x, u), d(x, v)} < max{d(x, v), d(v, y)},
min{d(y, u), d(y, v)} < max{d(x, u), d(u, y)}, min{d(y, u), d(y, v)} < max{d(x, v), d(v, y)},

and then:

d(x, v) < d(x, u) ∨ d(x, u) < d(u, y), d(x, u) < d(x, v) ∨ d(x, v) < d(v, y),

d(y, v) < d(y, u) ∨ d(y, u) < d(x, u), d(y, u) < d(y, v) ∨ d(y, v) < d(x, v),

which is equivalent to the disjunction of these two symmetric assertions:
(i) d(x, v) < d(x, u), d(x, v) < d(v, y), d(y, u) < d(y, v), and d(y, u) < d(x, u),
(ii) d(x, v) > d(x, u), d(x, v) > d(v, y), d(y, u) > d(y, v), and d(y, u) > d(x, u).

We may assume the first. Then d(x, v) = min{d(x, v), d(x, u)} < d(x, y) ≤ min{d(x, u), d(v, y)} ≤
d(x, u) (by Inequalities (1) and (2)), which implies by the strict unimodality of distances from x

that Fx ⊆ Xβ
uy. Similarly, d(y, u) < d(x, y) ≤ d(y, v) which implies that Fy ⊆ Xβ

vx. Consequently,
if x′ ∈ Fx and y′ ∈ Fy, then we get x⋖ x′ ⋖ y ⋖ y′, as expected.

In the non-strict case, Inequality (1) becomes a strict inequality, while Inequalities (2) and (3)
become non-strict inequalities. Combining these inequations, we get the same conclusion as in the
strict case. For example, in the first case we get that d(x, v) = min{d(x, v), d(x, u)} ≤ d(x, y) <
min{d(x, u), d(v, y)} ≤ d(x, u), yielding d(x, v) ≤ d(x, y) < d(x, u) and d(y, u) ≤ d(x, y) < d(y, v).

By unimodality of distances, we conclude that Fx ⊆ Xβ
uy and Fy ⊆ Xβ

vx. Consequently, if x′ ∈ Fx

and y′ ∈ Fy, then we get x ⋖ x′ ⋖ y ⋖ y′. Moreover, y /∈ Fx and x /∈ Fy. Since x ⋖ x′ ⋖ v ⋖ y′

and d(x, v) < d(x, x′), by qcR(x, x′, v, y′) we conclude that d(x, v) ≥ d(x, y′), yielding y′ /∈ Fx.
Analogously, one can show that x′ /∈ Fy. □

4.3. Verification of compatibility. In this subsection, given circular order β, we describe how
to verify in O(n2) if a dissimilarity space (X, d) on n points is (strictly) quasi-circular Robinson or
(strictly) circular Robinson with respect to β. This verification task can also be done in O(n2) for
strict circular Robinson spaces, as defined in [10].

To test whether (X, d) is (strictly) quasi-circular Robinson with respect to β, by Proposition 1
we have to test whether all balls of (X, d) are arcs of β. This can be done in the following way.
Let D be the distance matrix of (X, d) ordered according to the circular order β. The matrix
D is called unimodal if for each row i, when moving circularly from the element dii on the main
diagonal of D to the right until the last element din and then from the first element di1 until dii, the
elements first increase monotonically, stay at the maximal values, and then decrease monotonically.
Since D is symmetric, the same monotonicity property holds also for each column i: moving down
from dii until dni and then from d1i until dii, the elements first increase monotonically, stay at the
maximal value, and then decrease monotonically. We say that D is strictly unimodal if the values
strictly increase, have one or two maximal elements, and then strictly decrease. It was shown
in [1, Proposition 3.7] that β is a compatible circular order for a quasi-circular Robinson space
(respectively, strictly quasi-circular Robinson space) if and only if D is unimodal (respectively,
strictly unimodal). From the definition, testing if D is (strictly) unimodal can be easily done
in O(n2) time. In case of strict unimodality we also have to check that each row has at most
two maximal elements (this correspond to computing for each x ∈ X the set Fx and checking if
|Fx| ≤ 2). Notice that for strictly circular Robinson spaces defined in [10], this testing task can be
also done in O(n2) time.

Next, we consider the task of testing whether (X, d) is (strictly) circular Robinson with respect
to a circular order β. As (strictly) circular Robinson spaces are particular cases of (strictly) quasi-
Robinson spaces, the (strict) unimodality of the distance matrix D is a necessary condition for
compatibility. Under this condition, we can use Proposition 3. Namely, we compute the arc Fx for
each x ∈ X, and store the indices of its extremities. This can be done by dichotomy (using β) in
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O(n log n) total time. Then for each pair x, y ∈ X, we can check in constant time whether there
are x′ ∈ Fx, y

′ ∈ Fy as given in Proposition 3. If such elements exist, then by Proposition 2, (X, d)
is not (strictly) circular Robinson. Otherwise, (X, d) is (strictly) circular Robinson with respect to
β. This testing task can be done in O(n2) time. As a consequence, we have the following result:

Proposition 4. For a dissimilarity space (X, d) on n points and a circular order β on X, one can
check in O(n2) time whether, with respect to β, (X, d) is (1) (strictly) quasi-circular Robinson, (2)
(strictly) circular Robinson.

5. The recognition algorithm

In this section, we describe a simple but optimal algorithm to recognize strictly circular Robinson
spaces and strictly quasi-circular Robinson spaces. Our algorithm consists in partitioning X into
four sets with respect to any point x ∈ X and any x′ ∈ Fx. We prove that those four sets are
arcs in any compatible circular order β and that the restriction of β to each of these four sets is
obtained by sorting its points by distances to x. Concatenating these four arcs, we obtain two
circular orders. Finally, it suffices to verify that one of these circular orders is compatible. This
also shows that any strict circular Robinson space (in each of the three versions) has one or two
compatible circular orders and their opposites.

5.1. How to define arcs Xβ
xy metrically. Given a dissimilarity space (X, d) and two distinct

points x, y ∈ X, we set J◦(x, y) = {u ∈ X : d(x, y) > max{d(x, u), d(u, y)}} and J(x, y) =
J◦(x, y) ∪ {x, y}. In all results of this subsection, we assume that (X, d) is a strict quasi-circular
Robinson space and β is an arbitrary compatible circular order on X.

Lemma 6. Let x ⋖ y ⋖ z be three points of X such that d(x, y) ≤ min{d(x, z), d(y, z)}. Then

Xβ
xy = J(x, y).

Proof. First, let v ∈ Xβ
xy \ {x, y}, i.e., x ⋖ v ⋖ y. By sqcR(x, v, y, z) and since d(x, y) ≤ d(x, z),

we have d(x, v) < d(x, y). By sqcR(y, z, v, x) and since d(y, x) ≤ d(y, z), we have d(y, u) < d(y, x).

Hence Xβ
xy ⊆ J(x, y). To prove the converse inclusion, let u ∈ Xβ

yz \ {y, z}, that is y ⋖ u ⋖ z.
By sqcR(x, y, u, z), d(x, u) > min{d(x, y), d(x, z)} ≥ d(x, y), hence u /∈ J◦(x, y). Similarly if

u ∈ Xβ
zx \ {z, x}, applying sqcR(y, z, u, x) we also get u /∈ J◦(x, y). Consequently, (Xβ

yz ∪ Xβ
zx) ∩

J◦(x, y) = {x, y}, establishing the inclusion J(x, y) ⊆ Xβ
xy. Thus X

β
xy = J(x, y). □

Now, let x be an arbitrary point of X and x′ ∈ Fx. Let N = {u ∈ X : d(u, x) ≤ d(u, x′)} and
F = {u ∈ X : d(u, x) ≥ d(u, x′)}. Note that N ∪ F = X and x ∈ N \ F, x′ ∈ F \N .

Lemma 7. N and F are arcs of β.

Proof. It suffices to prove that N is an arc, as F = X \N and x′ ∈ F ̸= ∅. Let y, z ∈ X \ {x, x′}
be distinct points with x ⋖ y ⋖ z ⋖ x′ and z in N . We assert that y ∈ N . By sqcR(x, y, z, x′), we
have d(x, y) < d(x, z). By sqcR(x′, x′, y, z),

d(x′, y) > min{d(x′, z), d(x′, x)} ≥ min{d(x, z), (x, z)} = d(x, z) > d(x, y),

where the second inequality follows from that facts that z ∈ N and x′ ∈ Fx. This implies that
y ∈ N . Symmetrically, if z ⋖ y ⋖ x with z ∈ N , then y ∈ N . Hence, N is an arc of β. □

Lemma 8. If there exists y ∈ X with d(x, y) = d(y, x′), then J(x, y)∪J(y, x′) either coincides with

Xβ
xx′ when x⋖ y ⋖ x′ or with Xβ

x′x when x′ ⋖ y ⋖ x.

Proof. Suppose without loss of generality that x⋖ y⋖x′ (see Figure 2 (a)). Since d(x, y) = d(y, x′)

and d(x, y) ≤ d(x, x′), by Lemma 6 we conclude that Xβ
xy = J(x, y). By (CO3), we have y⋖x′⋖x.

From the choice of the points x′ ∈ Fx and y we have d(y, x′) ≤ min{d(x′, x), d(y, x)}. By Lemma 6
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Figure 2. Configurations occurring in (a) Lemma 8 and (b) Lemma 9. In (b), the
positions of z and z′ may be exchanged, as well as those of y and y′.

we conclude that Xβ
yx′ = J(y, x′). Finally, since x ⋖ y ⋖ x′, we have Xβ

xx′ = Xβ
xy ∪ Xβ

yx′ , yielding

Xβ
xx′ = J(x, y) ∪ J(y, x′). □

Consequently, if a point y with d(x, y) = d(y, x′) exists, then according to Lemma 8, the circular
order β such that x ⋖ y ⋖ x′ can be computed in O(n log n) time. This is done by computing

Xβ
xx′ = J(x, y) ∪ J(y, x′), then ordering the points of Xβ

xx′ and of its complement X \ Xβ
xx′ by

distances to x, by Lemma 4. Notice that it this case the compatible circular order β is unique up
to reversal. Thus, we may next assume that N ∩ F = ∅.

Lemma 9. If N ∩ F = ∅, then there exist z, z′ ∈ N and y, y′ ∈ F such that N = Xβ
zx ∪ Xβ

xz′

and F = Xβ
yx′ ∪Xβ

x′y′. The pairs {z, z′}, {y, y′} and the partition Xβ
zx ∪Xβ

xz′ ∪Xβ
yx′ ∪Xβ

x′y′ can be

computed in O(n) time.

Proof. Assume that N ̸= {x}, and let z ∈ N with d(x, z) maximal (see Figure 2 (b)). Then applying

Lemma 6 to x, z, x′, we have that J(x, z) is either Xβ
xz or Xβ

zx (depending of whether x⋖ z ⋖ x′ or
x′ ⋖ z ⋖ x). We denote N ′ = J(x, z). If N ′′ = N \N ′ ̸= ∅, let z′ ∈ N ′′ with d(x, z′) maximal. By

Lemma 6, J(x, z′) is either Xβ
xz′ or X

β
z′x. By Lemma 4, z and z′ are x-separated, that is:

• either J(x, z′) = Xβ
z′x and J(x, z) = Xβ

xz,

• or J(x, z) = Xβ
zx and J(x, z′) = Xβ

xz′ .

By the choice of z and z′, we conclude that N = J(x, z)∪J(x, z′). If z or z′ are not defined (because
N = {x} or N ′ = ∅), we may suppose them equal to x.

Pick any y ∈ F . Then d(x′, y) < d(y, x) ≤ d(x′, x). Thus we can also use Lemma 6 and get
similarly that there exist points y, y′ ∈ F (where y ∈ F with d(x′, y) maximal, F ′ = J(x′, y), and
y′ ∈ F ′′ = F \ F ′ with d(x′, y′) maximal) such that

• either J(x′, y′) = Xβ
y′x′ and J(x′, y) = Xβ

x′y,

• or J(x′, y) = Xβ
yx′ and J(x′, y′) = Xβ

x′y′ ,

and F = J(x′, y) ∪ J(x′, y′). From their definition, it immediately follows that the pairs {z, z′},
{y, y′} and the partition Xβ

zx ∪Xβ
xz′ ∪Xβ

yx′ ∪Xβ
x′y′ can be computed in O(n) time. □

Sorting by distances to x and to x′, we can find in O(n log n) time the linear orders of N and F
such that each of these orders is either as in β or in βop. It remains to determine whether the two
chosen linear orders are correctly merged in a circular order. This is done by the following result:

Lemma 10. Let N = {x1, x2, . . . , xk} and F = {y1, y2, . . . , yℓ} be such that

(a) either x1 ⋖1 x2 ⋖1 . . .⋖1 xk ⋖1 y1 ⋖1 y2 ⋖1 . . .⋖1 yℓ,
(b) or xk ⋖2 xk−1 ⋖2 . . .⋖2 x1 ⋖2 y1 ⋖2 y2 ⋖2 . . .⋖2 yℓ.

One can decide which of these two circular orders (possibly both) is compatible in O(n) time.
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Proof. Denote the circular order from (a) by β1 and the circular order from (b) by β2. Suppose
that β1 is not compatible, that is β2 is compatible. Then there is a quadruplet u⋖1 v⋖1w⋖1 z with
d(u,w) ≤ min{d(u, v), d(u, z)} or d(v, z) ≤ min{d(v, w), d(v, u)} or d(w, u) ≤ min{d(w, z), d(w, v)}
or d(z, v) ≤ min{d(z, u), d(z, w)}, say the first. Since β2 is a compatible circular order, we must
have u = xi, v = xi′ , w = yj , and z = yj′ with i < i′ and j < j′. If such a quadruplet exists, then
we may assume that j = 1 and j′ = 2. Indeed, the distances of the points of F from xi are strictly
increasing, then maximal, then strictly decreasing, thus by the existence of j and j′ the increasing
sequence is non-empty and d(xi, y1) < d(xi, y2). Moreover, d(xi, y1) ≤ d(xi, yj) < d(xi, xi′).

Furthermore, we may also assume that i′ = k. Indeed, if d(xi, xk) < d(xi, y1), then d(xi, xk) <
max{d(xi, x′i), d(xi, y2)}, which implies that xi ⋖2 xi′ ⋖2 xk ⋖2 y2 is a quadruplet violating com-
patibility of β2, a contradiction. This proves that d(xi, xk) ≥ d(xi, y1), hence xi, xk, y1, y2 is a
violating quadruplet. Thus, it is enough to check sqcR(xi, xk, y1, y2) and sqcR(xi, yl−1, yl, x1) for
every point xi, and sqcR(yj , yℓ, x1, x2) and sqcR(yj , xk−1, xk, y1) for every point yj . Obviously, all
these conditions can be tested in total O(n) time. □

5.2. The algorithm. The previous discussion leads to an algorithm for finding a compatible order,
presented in Algorithms 1 and 2. The function Sort(x, S) sorts S by increasing values of d(x, t)
for t ∈ S (we call this an x-sorting of the set S) and the function ReverseSort(S, x) sorts S by
decreasing values of d(x, t). The operator ++ between two sequences represents their concatenation
into a circular order. Notice that the same algorithm works for strictly circular and strictly quasi-
circular Robinson dissimilarities, and that the algorithm always outputs an ordering, which may
be arbitrary if the dissimilarity space is not strictly circular or strictly quasi-circular Robinson.

Algorithm 1 FindCompatibleOrder

Input: A dissimilarity space (X, d).
Output: A total ordering of X, compatible if (X, d) is (quasi-)circular Robinson.
1: let x ∈ X, x′ ∈ Fx

2: let N = {u ∈ X : d(u, x) ≤ d(u, x′)}
3: let F = {u ∈ X : d(u, x′) ≤ d(u, x)}
4: if N ∩ F ̸= ∅ then
5: let y ∈ N ∪ F
6: let X1 = J(x, y) ∪ J(y, x′)
7: let X2 = X \X1 \ {x, x′}
8: return Sort(x,X1) ++ReverseSort(x,X2)
9: else

10: let z = argmaxu∈N d(x, u) and y = argmaxu∈F d(x′, u)
11: let N ′ = J(x, z) and F ′ = J(x′, y)
12: let XN = ReverseSort(x,N \N ′) ++ Sort(x,N ′)
13: let XF = Sort(x′, F \ F ′) ++ReverseSort(x′, F ′)
14: if OrdersAgree(XN , XF ) then
15: return XN ++XF

16: else
17: return XN ++Reverse(XF )

Theorem 2. Algorithm 1 called to a strictly quasi-circular Robinson or a strictly circular Robinson
dissimilarity (X, d) on n points produces a compatible circular order in O(n log n) time.

Proof. The correction of the algorithm follows from Lemmas 7 to 10. Namely, Lemma 8 covers the
case N ∩ F ̸= ∅ (Lines 4 to 8), while Lemma 9 covers the case N ∩ F = ∅ (Lines 10 to 17). From
these lemmas and Lemma 7 it follows that the circular orders returned in Lines 8, 15 and 17 are
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Algorithm 2 OrdersAgree

Input: A dissimilarity space (X, d), a partition X = N ∪ F with N = {x1, . . . , xk} and F =
{y1, . . . , yℓ}

Output: whether the order N ++ F may be compatible based on Lemma 10
1: if k = 1 or ℓ = 1 then
2: return true
3: for all i ∈ {1, 2, . . . , k} do
4: if not sqcR(xi, xk, y1, y2) or not sqcR(xi, yℓ−1, yℓ−2, x1) then
5: return false
6: for all i ∈ {1, 2, . . . , ℓ} do
7: if not sqcR(yi, yℓ, x1, x2) or not sqcR(yi, xk−1, xk−2, y1) then
8: return false
9: return true

the only possible compatible circular orders for (X, d). Since (X, d) is strictly circular Robinson
or strictly quasi-circular Robinson, we can apply Lemma 10 to deduce that one of these circular
orders is indeed compatible. The complexity of the algorithm is dominated by the time to sort the
lists, as every other operation can easily be implemented in either constant or linear time. □

From Proposition 4 and Theorem 2 we immediately obtain the following result:

Corollary 1. For a dissimilarity space (X, d) on n points, one can decide in optimal O(n2) time
if (X, d) is strictly circular Robinson or strictly quasi-circular Robinson.

The complexity in Theorem 2 is dominated by the time to sort the points by their distances to
x or x′, and is actually tightly related to the complexity of sorting:

Proposition 5. The problem of sorting a set Y of n distinct integers reduces linearly to the problem
of finding a compatible circular order for a strictly quasi-circular Robinson dissimilarity.

Proof. Given a set Y ⊆ N, let X = Y ∪ {z} and let d be a dissimilarity on X defined by

d(y, z) = ∆+ 1 for all y ∈ Y,

d(y, y′) = |y − y′| for all y, y′ ∈ Y,

d(z, z) = 0,

where ∆ = maxY −minY . Then it can be readily checked that (X, d) is a strictly quasi-circular
Robinson dissimilarity, whose only two compatible orders induce an increasing or decreasing order-
ing of Y . This reduction is linear, as long as we encode the distance function d as an oracle, to
avoid the computation of Θ(n2) values. □

5.3. On the number of compatible circular orders. From Algorithm 1, we can derive the
following result about the number of compatible orders:

Proposition 6. A strict quasi-circular Robinson space (X, d) has one or two compatible orders
and their opposites. A strict circular Robinson space has one compatible order and its opposite.

Proof. The first assertion is a direct consequence of Algorithm 1 and the proof of Theorem 2. Now,
let (X, d) be a strict circular Robinson space with two compatible circular orders β and β′. Then
N ∩ F = ∅ and the arcs N and F are partitioned into N ′, N ′′ and F ′, F ′′, respectively (see the
proof of Lemma 9). Then the second compatible order β′ is built from β by reversing N ′ and N ′′.
If the set N is empty, then this reversal does not change the order, thus β′ = β. If F is empty, then
this reversal builds the opposite order of the original one, thus β′ = βop. So, we can suppose with
no loss of generality that there exist y ∈ N ′ and z ∈ F ′ and that the points y and z are on the same
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arc Xβ
xx′ of β. The arcs Xβ

xz and Xβ
yx′ are strictly Robinson, so d(y, z) < min{d(x, z), d(y, x′)}.

By scR(z, x, y, x′) applied to β′, we must have d(y, z) > d(x, z), which is in contradiction with
d(y, z) < min{d(x, z), d(y, x′)}, whence β and β′ cannot be both compatible. □

If a strict quasi-circular Robinson space has two compatible orders and their opposites, then
Algorithm 1 yields a bipartition of X into N ∪ F . Next we prove that this happens exactly when
there is a threshold value that clusters the dissimilarity space into two cliques:

Proposition 7. Let (X, d) be a strict quasi-circular Robinson space. Then (X, d) admits two
compatible orders and their opposites if and only if there exists a partition X = N ∪ F with
|N |, |F | > 1 and δ ∈ R+ such that for all u, v ∈ X, we have d(u, v) > δ if and only if |{u, v}∩N | = 1.

δN δF

x1

xk y1

yl
N F

linear
R
ob
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> δ

> δ

Figure 3. The structure of a strictly quasi-circular Robinson space with two non-
opposite compatible orders, with δ = max{δN , δF }, as shown by Proposition 7. N
and F have diameters δN and δF respectively, and all pairs between N and F have
distance greater than δ. The proof that N (symmetrically, F ) are linear Robinson
follows easily from sqcR(xi1 , xi2 , xi3 , y1) and sqcR(xi3 , y1, xi1 , xi2)

Proof. Suppose first that (X, d) admits two compatible orders and their opposites. By Lemmas 9
and 10, there is a bipartition N ∪ F with N = {x1, x2, . . . , xk} and F = {y1, y2, . . . , yℓ}, such
that the compatible orders are β (given by N ++ F ), β′ (given by N ++ Reverse(F)), and their
reverses. Notice that k > 1 and ℓ > 1. Let δN = d(x1, xk) and δF = d(y1, yℓ). Then for any distinct
j, j′ ∈ {1, 2, . . . , ℓ}, sqcR(xk, yj , yj′ , x1) (in β) and sqcR(xk, yj′ , yj , x1) (in β′) we have:

d(xk, yj′) > min{d(xk, x1), d(xk, yj)},
d(xk, yj) > min{d(xk, x1), d(xk, yj′)}.

Thus δN = d(x1, xk) < min{d(xk, yj), d(xk, yj′)}. Analogously, δN < min{d(x1.yj), d(x1, yj′)}.
Then for any i ∈ {2, 3, . . . , k − 1}, by sqcR(y, x1, xi, xk), d(xi, y) > min{d(y, x1), d(y, xk)} > δN .
This proves that min{d(x, y) : x ∈ N, y ∈ F} > δN .

Consequently, for any y ∈ F and i ∈ {1, 2, . . . , k − 1}, by sqcR(xk, y, x1, xi), δN = d(xk, x1) >
min{d(xk, y), d(xk, xi)}, which implies that d(xi, xk) < δN . For j ∈ {i + 1, i + 2, . . . , k − 1},
by sqcR(xi, xj , xk, y)), d(xi, xk) > min{d(xi, xj), d(xi, y)}, which implies that d(xi, xj) < δN , hence
max{d(u, v) : u, v ∈ N} = δN . Analogously, we have max{d(u, v) : u, v ∈ F} = δF and min{d(x, y) :
x ∈ N, y ∈ F} > δF . Thus taking δ = max{δN , δF } proves the assertion.

Conversely, suppose that (X, d) is a strictly quasi-circular Robinson space admitting such a
bipartition X = N ∪ F . Clearly N and F are balls of radius δ and thus, in any compatible order,
by Proposition 1, N and F are arcs. Let x1⋖x2⋖ . . .⋖xk⋖y1⋖y2⋖ . . .⋖yℓ be a compatible order
β, with N = {x1, x2, . . . , xk} and F = {y1, y2, . . . , yℓ}. Then, we can check that for any quadruplet
u⋖v⋖w⋖t of the circular order β′ induced by N++Reverse(F ), sqcR(u, v, w, t) holds. Indeed, the
only nontrivial case (where the circular order is distinct for β and β′ up to reversal) is when u, v ∈ N
and w, t ∈ F (up to symmetry). In that case, we have d(u,w) > β ≥ d(u, v) ≥ min{d(u, s), d(u, v)},
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that is sqcR(u, v, w, t). This implies that β′ is also compatible. Since k, ℓ > 1, β and β′ are not the
reverse of each other, proving the proposition. □

6. Circular spaces recognition

Lemma 11. Let (X, d) be a dissimilarity space and ⋖ a circular order such that for all x ∈ X,
y, z ∈ X \ (Fx ∪ {x}), if x⋖ y⋖ z⋖Fx or Fx ⋖ z⋖ y⋖ x, then d(x, y) ≤ d(x, z). Then (X, d,⋖) is
a circular space.

Proof. Suppose, by a way of contradiction, that there exists x ⋖ y ⋖ z ⋖ t such that d(x, z) <
min{max{d(x, y), d(y, z)},max{d(x, t), d(t, z)}}.

If z ∈ Fx, then d(x, z) ≥ d(x, y), d(x, t), and so d(x, z) < d(z, t), d(y, t). So x /∈ Fz. As Fz is an
arc, we have either z⋖Fz ⋖ z or x⋖Fx ⋖ z If x⋖Fz ⋖ z, then d(z, t) ≤ d(z, x) ; if z⋖Fz ⋖ x, then
d(z, y) ≤ d(z, x); In both case, we have a contradiction with d(x, z) ≥ d(x, y), d(x, t).

If z /∈ Fx, say x⋖z⋖Fx (the case x⋖Fx⋖z is similar), then d(x, y)⋖d(x, z). So d(x, z) < d(z, y)
and x /∈ Fz. By Proposition 2, we have x⋖ z ⋖ Fz, and thus d(z, y) ≤ d(z, x), a contradiction. □

Corollary 2. By repeating Algorithm 1 for each x ∈ X, one determine if (X, d) is a circular space.

Proposition 8. Let (X, d, β) be a circular space and A be an mmodule of (X, d). If A is made
of k arcs (for β), with k > 2, then X is made of 2 · k arcs I1, . . . I2k and for all i ̸= j, i′ ̸= j′,
d(Ii, Ij) = d(Ii′ , Ij′).

Proof. Suppose, by a way of contradiction, that A contains three arcs A1, A2 and A3 and let
x, y, z ∈ X \ A be such that x ⋖ A1 ⋖ y ⋖ A2 ⋖ z ⋖ A3. We have d(x, y) ≥ d(x,A), d(y,A),
d(x, z) ≥ d(x,A), d(z,A) and d(x,A) ≥ min{d(x, y), d(x, z)}. So d(x,A) = d(x, y) = d(x, z).
Similarly, d(y,A) = d(x, y) = d(y, z) and d(z,A) = d(x, z) = d(y, z). So X \A is an mmodule made
of three arcs A′

x, A
′
y, A

′
z and d(A′

x, A
′
y) = d((A′

x, A
′
z) = d(A′

y, A
′
z) = d(A,A′). By symmetry, we get

d(A1, A2) = d(A1, A3) = d(A2, A3) = d(A,A′). So X is made of six mmodules, each made of one
arc. □

7. Conclusion

In this paper, we presented a very simple algorithm which solves two variants of the strict
circular seriation problem in optimal O(n2) time. Notice that the O(n2) time is entirely due to the
verification of the result, while the computation of a compatible circular order (the main part of
the algorithm) is in O(n log n) time. In addition, using the algorithm we proved some structural
properties of strictly quasi-circular and strictly circular Robinson spaces. We also proved that any
quasi-circular Robinson space is circular Robinson, a result which can find further applications.

The starting point of this research was the attempt to use mmodules and copoint decompositions,
introduced in [5] for Robinson spaces, to recognize circular Robinson spaces. While for general
circular Robinson spaces it is not yet clear how to use this approach, in case of strict circular
Robinson spaces it turned out that mmodules, and, more generally, spheres Sr(x) have size at most
2 and if they have size two, then the two points of Sr(x) must be x-separated. However, some of the
used resultq are valid for non-strict circular seriation problem. Extending our algorithm together
with the tools developed in [5] to this problem will be the topic of future research.
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