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VANISHING ASYMPTOTIC MASLOV INDEX FOR

CONFORMALLY SYMPLECTIC FLOWS

MARIE-CLAUDE ARNAUD:,;,˝, ANNA FLORIO˚,˝, VALENTINE ROOS`,˝

Abstract. Motivated by Mather theory of minimizing measures for symplec-

tic twist dynamics, we study conformally symplectic flows on a cotangent
bundle. These dynamics are the most general dynamics for which it makes

sense to look at (asymptotic) dynamical Maslov index. Our main result is the

existence of invariant measures with vanishing index without any convexity
hypothesis, in the general framework of conformally symplectic flows. A de-

generate twist-condition hypothesis implies the existence of ergodic invariant

measures with zero dynamical Maslov index and thus the existence of points
with zero dynamical Maslov index.

1. Introduction and Main Results.

This study mainly concerns conformally symplectic flows that are defined on
the cotangent bundle M “ T˚M of a closed manifold M , where M is endowed
with its tautological 1-form λ, its symplectic form ω “ ´dλ and we denote by
π : T˚M ÑM the usual projection.

Symplectic dynamics have been intensively studied because they model conser-
vative phenomena, but a lot of phenomena are dissipative, e.g. mechanical systems
with friction. Some of these dissipative dynamics are conformally symplectic : a
diffeomorphism f : M ý is conformally symplectic if for some constant a, we have
f˚ω “ aω. When a “ 1, the diffeomorphism is symplectic. A complete vector field
X on M is conformally symplectic if LXω “ αω, where LX is the Lie derivative,
for some α P R.

When dimM ě 2 and M is connected, we have also the following characteri-
zation of conformally symplectic dynamics of M : a diffeomorphism f : M ý is
conformally symplectic if and only if the image by Df of any Lagrangian subspace
in TM is Lagrangian. The existence of a conformal factor at every point is a result
of [LW98] and the independence of this factor from the point is a result of [Lib59].

In the symplectic setting, an inspiring example is the completely integrable
Hamiltonian case. Then the manifold is foliated by invariant Lagrangian graphs.
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This example is of course very specific.
However, several authors found some traces of integrability in many non integrable
cases. Aubry-Mather theory in the case of exact symplectic twist maps and its vast
extension by Mañé and Mather to the case of Tonelli Hamiltonian systems are such
results.
In both settings, the method is variational and the “ghosts” of invariant submani-
folds are filled by minimizing orbits. A cotangent bundle has a natural Lagrangian
foliation given by its vertical fiber and a feature of the minimizing orbits is that
they have vanishing Maslov index with respect to this foliation.
Here, in a more general setting, our goal is to prove the existence of a large set of
points with vanishing dynamical Maslov index. We recall that the Maslov index
MIpΓq of a piece of arc of Lagrangian subspaces Γ “ pΓtqtPI of TM is the algebraic
number of intersection of this arc with the Maslov singular cycle of the vertical
foliation, i.e. the Maslov index gives more or less the number of times when the
arc is non transverse to the vertical foliation. See Subsection 2.2. The dynamical
Maslov index of a Lagrangian subspace L of TM for some time interval I and some
flow pφtq whose differential preserves Lagrangian subspaces, which is denoted by
DMIpL, pφtqtPIq, is then the Maslov index MIppDφtpLqqtPIq. The precise definitions
are given in Section 2.

We begin with a preliminary statement, that is the key result for finding invariant
measures with vanishing asymptotic Maslov index.

Theorem 1.1. Let L Ă M be a Lagrangian graph. Let pφtq be an isotopy of
conformally symplectic diffeomorphisms of M such that φ0 “ IdM. Then there
exists a smooth closed 1-form η : M Ñ M and a Lipschitz function u : M Ñ R
that is C1 on an open subset U ĂM of full Lebesgue measure such that

@q P U, p :“ φ´1
1 pηpqq ` dupqqq P L and DMI

´

TpL, pφsqsPr0,1s
¯

“ 0.

This theorem has important consequences concerning the so-called asymptotic
Maslov index.

Definition. Let pφtq be an isotopy of conformally symplectic diffeomorphisms of
M such that φ0 “ IdM.

(1) Let L Ă TM be a Lagrangian subspace that is transverse to the vertical
foliation. Whenever the limit exists, the asymptotic Maslov index of L for
pφtq is

DMI8pL, pφtqq :“ lim
tÑ`8

DMIpL, pφsqsPr0,tsq

t
.

We will prove (see Corollary 5.2) that if L,L1 Ă TxM then

DMI8pL, pφtqq “ DMI8pL
1, pφtqq.

This allows us to introduce the following.
(2) Let pφtq be an isotopy of conformally symplectic diffeomorphisms of M such

that φ0 “ IdM. Let x PM. Then the dynamical asymptotic Maslov index
at x for pφtq is denoted by DMI8px, pφtqq and is the asymptotic Maslov
index of L for every Lagrangian subspace L of TxM.
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The definition of (asymptotic) dynamical Maslov index first appears in the work
of Ruelle [Rue85]: the author introduced the notion of rotation number for surface
diffeomorphisms that are isotopic to identity and for 3-dimensional flows, and
generalized this to symplectic dynamics. He proves that if pφtq is an isotopy such
that φ0 “ IdM and φt`1 “ φt ˝ φ1, then for every probability measure µ invariant
by φ1 with compact support, DMI8px, pφtqq exists at µ-almost every point and
x ÞÑ DMI8px, pφtqq is a measurable and bounded function. Hence he defines the
asymptotic Maslov index of such a measure.

Definition. Let pφtq be a conformally symplectic isotopy of M such that φ0 “ IdM
and φt`1 “ φt ˝ φ1. Let µ be a φ1-invariant probability measure with compact
support. Then, the asymptotic Maslov index of µ for pφtq is

DMIpµ, pφtqq :“

ż

M
DMI8px, pφtqq dµpxq.

If µ is a φ1-invariant ergodic measure with compact support, then for µ-almost
every x PM it holds

DMI8px, pφtqq “ DMIpµ, pφtqq .

We will present in Proposition 5.2 a proof of these results that is a consequence
of a result of Schwartzman, [Sch57].

Our first corollary gives the existence of invariant probability measures with
vanishing asymptotic Maslov index. A priori, this doesn’t implies the existence of
points with vanishing dynamical Maslov index.

Corollary 1.1. Let pφtq be a conformally symplectic isotopy of M such that φ0 “

IdM and φt`1 “ φt˝φ1. Let L ĂM be a Lagrangian submanifold that is H-isotopic1

to a graph and such that
ď

tPr0,`8q

φtpLq is relatively compact. Then there exists at

least one φ1-invariant probability measure µ whose asymptotic Maslov index is zero
and whose support is in

č

TPr0,`8q

ď

tPrT,`8q

φtpLq.

Moreover, if pφtq is a flow, then µ can be chosen pφtq invariant.

This result applies in the autonomous conservative Tonelli case –where the
Hamiltonian is a proper first integral– or in the discounted autonomous case –
where there is a proper Lyapunov function defined in the complement on some
compact subset–.

As T2d can be obtained as the quotient of T˚Td by a discrete group of transfor-
mations, we obtain also a result for T2d. In the following statement, the leaves of
the reference Lagrangian foliation are the d-dimensional Lagrangian tori t0uˆTd.

Corollary 1.2. Let pφtq be a symplectic isotopy of T2d such that φ0 “ IdT2d and
φt`1 “ φt ˝ φ1. Then, there exists at least one φ1-invariant probability measure µ
whose asymptotic Maslov index is zero.

1A H-isotopy is a Hamiltonian isotopy.
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In the latter corollaries, we cannot ensure that the measure is ergodic and then
we don’t know if there is at least one point with zero asymptotic Maslov index.
Now we will give sufficient conditions to obtain such ergodic measures and such
points.

Definition. A Darboux chart F “ pF1, F2q : U ĂM Ñ Rd ˆ Rd is vertically
foliated if

‚ its image is a product Id ˆ Jd where I and J are two intervals of R;
‚ @x P U , F pT˚πpxqM X Uq “ F1pxq ˆ J

d.

Definition. An isotopy pφtq of conformally symplectic diffeomorphisms of M
twists the vertical if at every point pt0, x0q P RˆM, there exists

‚ ε ą 0;
‚ a vertically foliated chart F “ pF1, F2q : U Ñ R2d such that x0 P U ,
F pUq “ p´a, aqd ˆ p´a, aqd and F px0q “ 0

that satisfy for all t P pt0 ´ ε, t0 ` εq

‚ Gt :“ pφt ˝ φ
´1
t0 q

`

F´1pt0Rdu ˆ p´
a
2 ,

a
2 q
dq
˘

Ă U ;
‚ F pGtq is the graph of a function p ÞÑ q “ dgtppq where

(1) for t P rt0, t0 ` εq, gt is a convex function;
(2) for t P pt0 ´ ε, t0s, gt is a concave function2.

Example. Assume that a : I Ñ R and H : I ˆM Ñ R are smooth functions
and let us use the notation Htpxq “ Hpt, xq. We assume that the Hessian of H
restricted to every vertical fiber is positive definite3. We define the time-dependent
vector field Xt of M by

iXtω “ dHt ´ aptqλ.

Then the isotopy defined by Xt is conformally symplectic and twists the vertical,
see Proposition 2.5. A subclass of examples is the class of discounted Tonelli flows,
see e.g. [MS17a].

Remark. In Proposition 2.4 we will prove that, when the isotopy pφtq twists the
vertical, all the dynamical Maslov indices are non positive.

Theorem 1.2. Let L Ă M be a Lagrangian submanifold that is H-isotopic to a
graph. Let pφtq be an isotopy of conformally symplectic diffeomorphisms of M that
twists the vertical.

Then there exists a constant C P N˚ and a point x P L such that

@t P r0,`8q,DMIpTxL, pφsqsPr0,tsq P r´C,Cs .
In particular

DMI8px, pφtqq “ 0 .

Moreover, we deduce the following.

2We don’t assume the strict concavity or convexity.
3Observe that such a fiber is a linear space, hence the Hessian has an intrinsic meaning at

every point.
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Theorem 1.3. Let L Ă M be a Lagrangian submanifold that is H-isotopic to a
graph. Let pφtq be an isotopy of conformally symplectic diffeomorphisms of M that
twists the vertical and such that φ1`t “ φt ˝ φ1. Let x P L be the point given by
Theorem 1.2. Assume that the positive orbit of x is relatively compact. Then there
exists an ergodic φ1-invariant probability measure µ with compact support such that

DMIpµ, pφtqq “ 0 .

Moreover, the support of µ is contained in the ω-limit set of x.

Corollary 1.3 explains why this statement is reminiscent of Mañé and Mather
theory for invariant measures of Tonelli Hamiltonians flows.

Definition. A measure µ is minimizing for a Tonelli Hamiltonian flow if its dual
measure ν on TM is such that

ż

TM

Ldν “ inf
ρ

ż

TM

Ldρ ,

where L is the associated Lagrangian function and the infimum is taken over all
measures on TM invariant by the Euler-Lagrange flow.

Corollary 1.3. Let L ĂM be a Lagrangian graph. Let pφtq be a Tonelli Hamilton-
ian flow. The invariant measure µ with compact support of zero asymptotic Maslov
index given by Theorem 1.3 applied at L is a Mather minimizing measure.

Question. In the symplectic Tonelli case, when L is not a graph, especially when
its graph selector is not semi-concave, does Theorem 1.3 always give a minimizing
measure?

Question. Without the Tonelli hypothesis, can we characterize the invariant
measure of zero asymptotic Maslov index given by Theorem 1.3?

Example. At the beginning of this introduction, we dealt with the completely
integrable case, where M is foliated by invariant graphs and where there are mini-
mizing invariant measures in each of these graphs. But there are dissipative exam-
ples where there is only one measure with zero asymptotic Maslov index. In the
case of the damped pendulum, see e.g. [MS17a], there are only two invariant mea-
sures, one supported at a sink with non-zero asymptotic index and one measure
supported at a saddle hyperbolic fixed point, which has zero asymptotic Maslov
index. Moreover, the only points that have zero asymptotic Maslov index are the
points that belong to the stable manifold of this saddle point. In this case, the
Hausdorff dimension of the set of points with vanishing asymptotic Maslov index
is 1. The next statement explain why it cannot be less in this setting.

Corollary 1.4. Let pφtq be an isotopy of conformally symplectic diffeomorphisms
of M that twists the vertical. Assume that there exists n closed 1-forms η1, . . . , ηn
of M such that no non-trivial linear combination of them vanishes, i.e.

@pλ1, . . . , λnq P Rnzt0Rnu,@q PM,
n
ÿ

k“1

λkηkpqq “ 0 .

Then

dimH

´

tx PM; DMIpx, pφtqq “ 0u
¯

ě n,
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where dimHpUq denotes the Hausdorff dimension of a set U .

Remark. When M is the d dimensional torus, this statement allows to bound
from below by d the Hausdoff dimension of the set of points with zero asymptotic
Maslov index.

We now give a by-product of the proof of Theorem 1.1. This proof relies on
spectral invariants that come from the symplectic topology, in particular graph
selectors that were introduced by Chaperon and Sikorav, see [Cha91], [OV94] or
[PPS03]. We will see in the proof that the closed 1-form η and the Lipschitz function
u in Theorem 1.1 only depend on φ1pLq and not on the isotopy and will deduce,
after introducing in Section 5 the angular Maslov index, the following statement,
which expresses the independence of the dynamical Maslov index from the isotopy.

Proposition 1.1. Let pφ1,tq and pφ2,tq be two isotopies of conformally symplectic
diffeomorphisms of M such that φ1,0 “ φ2,0 “ IdM and φ1,1 “ φ2,1. Then for
every Lagrangian subspace L of TM such that L and Dφ1,1pLq are transverse to
the vertical foliation, we have

DMIpL, pφ1,tqtPr0,1sq “ DMIpL, pφ2,tqtPr0,1sq.

Remark. For ease of reading, we have chosen not to deal with angular Maslov
index in this introduction. The statement given in Section 5 is more precise, because
it deals with the angular Maslov index for every Lagrangian subspace of TM.

Organisation of the paper. Section 2 is devoted to the definition of the Maslov index
and the dynamical Maslov index. We show that the twist hypothesis forces the
index to be non positive. The invariance under symplectic reduction of the Maslov
index is discussed following [Vit87]. In Section 3 we prove that any Lagrangian
path contained in a Lagrangian submanifold and whose endpoints project on the
graph selector has zero Maslov index. This result is fundamental to prove Theorem
1.1, whose proof occupies Section 4. The angular Maslov index is introduced in
Section 5, where also its relation with the Maslov index is detailed. Finally, Section
6 is devoted to the proofs of the main outcomes presented in the introduction.

Acknowledgements. The authors are grateful to Patrice Le Calvez for pointing out
the link with Schwartzman’s article [Sch57].

2. On Maslov index

2.1. Some reminders on Maslov index. Let M be a 2d-dimensional symplectic
manifold that admits a Lagrangian foliation V. We denote by V pxq “ Vx :“ TxV
its associated Lagrangian bundle. Let p : TM Ñ M be the canonical projection.
Let ΛpMq be the Grassmanian of Lagrangian subspaces of TM. We recall that

ΛpMq is a smooth manifold with dimension 2d` dpd`1q
2 . The fibered singular cycle

associated to V is the set

ΣpMq “ tL P ΛpMq : LX VppLq “ t0uu.

Every fiber ΣxpMq of ΣpMq is a cooriented algebraic singular hypersurface of
ΛxpMq, see e.g. [MS17b], [RS93]. Hence ΣpMq is a cooriented singular hypersur-
face of ΛpMq.
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The singular locus of ΣpMq is then tL P ΛpMq : dimpL X VppLqq ě 2u and the
regular locus is

(1) Σ1 :“ tL P Λ : dimpLX VppLqq “ 1u.

Once a coorientation of ΣpMq is fixed, it is classical to associate to every continuous
loopΓ : TÑ ΛpMq its Maslov index MIpΓq, that satisfies the following properties:

‚ two homotopic loops have the same Maslov index;
‚ if Γ is a loop that avoids the singular locus and is topologically transverse to

the regular one of ΣpMq, then MIpΓq is the number of signed intersections
of Γ with ΣpMq with respect to the chosen coorientation;

‚ every loop is homotopic to a smooth loop that avoid the singular locus and
is transverse to the regular locus.

An arc in ΛpMq is an immersion Γ : r0, 1s Ñ ΛpMq. In particular, Γpr0, 1sq does
not have self-intersections. By smooth arc, we mean a C8 arc. When Γ : r0, 1s Ñ
ΛpMq is an arc whose endpoints are in ΛpMqzΣpMq, following Duistermaat [Dui76,
Page 183], we can concatenate Γ with an arc Γ1 that connects Γp1q to Γp0q in
ΛpMqzΣpMq. The Maslov index of Γ is the Maslov index of this loop, which is
independent from the choice of Γ1 since Γ1 is in ΛpMqzΣpMq.

Remark. If Γ : r0, 1s Ñ ΛpMq is an arc contained in ΛpMqzΣpMq, i.e. Γptq X
Σp˝Γptq “ t0u for every t, then its Maslov index MIpΓq is zero.

2.2. Coorientation of Σ1. We now give some details concerning the singular and
regular loci of ΣpMq and explain our choice of coorientation of ΣpMq. For more
details, see for example [Dui76]. For ease of reading, we denote ΣpMq (resp. ΛpMq)
by Σ (resp. Λ).

Then Σ is an algebraic subvariety of Λ that is the union of

‚ the regular locus that is the smooth submanifold of codimension 1 and is
defined in (1),

‚ the boundary of Σ1, i.e. the singular locus ΣzΣ1, that is a finite union of
submanifolds with codimension at least 3.

Since every loop is homotopic to a smooth loop avoiding the singular locus and
intersecting transversally the regular one and since two homotopic loops have the
same Maslov index, we just have to define the coorientation at points of Σ1. To do
that, we introduce the notion of height in a symplectic vector space pE2d,Ωq.
We fix a reference Lagrangian subspace V of E and denote by PV the canonical
projection on the quotient vector space E{V . If L1, L2 are two Lagrangian sub-
spaces of E that are transverse to V , we define the height of L1 above L2 with
respect to V , see [Arn08], as follows.

Definition. Let L1, L2 Ă E be two Lagrangian subspaces both transverse to V .
The height of L2 above L1 with respect to V is the quadratic form

QV pL1, L2q : E{V Ñ R

defined by

@v P E{V,QV pL1, L2qpvq :“ ΩppPV |L1
q´1pvq, pPV |L2

q´1pvqq.
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With the hypotheses of this definition, the kernel of QV pL1, L2q is isomorphic
to L1 X L2. In particular, L1 is transverse to L2 if and only if QV pL1, L2q is non
degenerate.
We have

‚ If L1, L2, L3 are Lagrangian subspaces in E, all transverse to V , it holds,
see [Arn08],

(2) QV pL1, L3q “ QV pL1, L2q `QV pL2, L3q.

‚ if V , K, L are Lagrangian subspace of E such that each of them is transverse
to the two others, then QV pK,Lq ˝ P

V |L “ ´QKpV,Lq ˝ P
K |L and then

QV pK,Lq and ´QKpV,Lq have the same signature.
Let us prove that QV pK,Lq ˝ P

V |L “ ´QKpV,Lq ˝ P
K |L. For ` P L, there

exists a unique pair of vectors v P V, k P K such that ` “ v ` k. then we
have
‚ QV pK,Lq ˝ P

V p`q “ Ωpk, `q “ Ωpk, vq;
‚ ´QKpV,Lq ˝ P

Kp`q “ ´Ωpv, `q “ ´Ωpv, kq “ Ωpk, vq.
‚ if L and K are Lagrangian subspaces that are transverse to V and if φ :
E ý is a symplectic isomorphism, then QV pK,Lq has same signature as
QφpV qpφpKq, φpLqq.

We now describe the local coorientation of Σ1 that we will use. Let us fix L0 P Σ1

and let x0 :“ ppL0q. We have dim pL0 X Vx0
q “ 1. We fix a Darboux chart

F “ pF1, F2q : U Ñ R2d at x0 such that U is a small neighborhood of x0 in M,
F pUq “ ra, bsd ˆ ra, bsd and DF2|L0

is injective and

@x P U , F pVpxq X Uq “ F1pxq ˆ ra, bs
d.

Let us explain why such a chart exists. Using Theorem 7.1 of [Wei71], we can
map locally the foliation V onto the vertical foliation of R2d by a symplectic chart
pU,Φq. Then, composing with a symplectic isomorphism ψtpx, yq “ px, y ` txq of
RdˆRd, for some t P R, we obtain a new chart F “ pF1, F2q that maps V onto the
vertical foliation such that DF pL0q is transverse to t0u ˆ Rd and then DF2|L0

is
injective.

We denote by K the Lagrangian foliation with leaves F´1pra, bsd ˆ ty0u). Then
it is transverse to the vertical bundle V . Moreover, Tx0K and L0 are transverse,
since DF2|L0

is injective. We denote by K the tangent bundle to K. Because
dim pL0 X V q “ 1, the kernel of QKpV,L0q is 1-dimensional. We denote by n the
index4 of QKpV,L0q. We define

P1 “ tL P ΛzΣ; ppLq P U , L&K, indexQKpV,Lq “ nu

and

P2 “ tL P ΛzΣ; ppLq P U , L&K, indexQKpV,Lq “ n` 1u.

Observe that P1 and P2 are connected and that P1 Y P2 Y Σ1 is a neighbourhood
of L0 in Λ. Hence P1 and P2 define locally a coorientation5 of Σ1 at L0. To be
sure that we obtain a global coorientation of Σ, we have to prove that this local
coorientation is independent from the choice of our foliation K. We just have to

4The index of a quadratic form is the maximum dimension of a subspace of E on which the

quadratic form is negative definite.
5Let γ Ă P1 YP1 YΣ1 be a path from P2 to P1, crossing Σ1 transversally once at γptq. Then

γ1ptq P R`N , where N is a normal vector field to Σ1 and determines a coorientation of Σ1 at L0.
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look at what happens in the fiber Λx0
for different choices of Kx0

. In other words,
we will prove a result in a fixed symplectic vector space pE,Ωq.

Proposition 2.1. Let V , L0 be two Lagrangian subspaces of E such that dim pL0X

V q “ 1. Let K1, K2 be two Lagrangian subspaces of E that are transverse to L0

and V . We denote by ni the index of QKipV,L0q. There exists a neighbourhood U
of L0 in the Lagrangian Grassmannian of E such that
tL P U ; L&K1, indexQK1pV,Lq “ n1 ` 1u “

tL P U ; L&K2, indexQK2
pV,Lq “ n2 ` 1u

and

tL P U ; L&K1, indexQK1pV,Lq “ n1u “ tL P U ; L&K2, indexQK2pV,Lq “ n2u.

Proof. Because, for j “ 1, 2, V and Kj are transverse Lagrangian subspaces,
every basis pe1, . . . , edq of V can be completed in a symplectic basis pe, f jq “

pe1, . . . , ed, f
j
1 , . . . , f

j
dq of E such that f ji P Kj . Then, every Lagrangian subspace

L of E that is close enough to L0 is the graph in this basis of a d ˆ d symmetric
matrix SLj that continuously depends on L and is close to SL0

j . We identify V

with Rd via the basis peiq.

As dim kerSL0
j “ 1, we have Rd “ R`jpL0q`EjpL0q where kerSL0

j “ R`jpL0q and

EjpL0q “ pR`jpL0qq
K is the orthogonal of kerSL0

j for the usual euclidean scalar
product, i.e. the sum of the eigenspaces for the non-zero eigenvalues. Observe that
we can choose `1pL0q “ `2pL0q. For L in some neighbourhood U of L0, SLj has

a spectral gap with one eigenvalue λpSLj q close to 0 and the others far away from
0. Hence we can continuously extend `jpLq and EjpLq for L close to L0 in such a
way that `jpLq is an eigenvector for the eigenvalue that is close to 0, and EjpLq is
pR`jpLqqK. Moreover, the signature of the restriction of SLj to EjpLq remains equal
to its value for L “ L0 if U is small enough.
The matrix of QKj pV,Lq in the basis pPKj pe1q, . . . , P

Kj pedqq of E{Kj is SLj and

then to estimate the index of QKj pV,Lq, we only need to know the sign of λpSLj q.

We recall that when L P U is transverse to V , we have QKj pV,Lq ˝
`

PKj |L
˘´1

“

´QV pKj , Lq˝
`

PV |L
˘´1

. The matrix of´QV pKj , Lq in the basis pPV pf j1 q, . . . , P
V pf jdqq

is
´

SLj

¯´1

and thus we are reduced to estimate the sign of the eigenvalue of
´

SLj

¯´1

that has the largest absolute value. Observe that PV pf1
i q “ PV pf2

i q. We denote
by S the matrix of QV pK1,K2q in the same basis and we deduce from (2) that

(3) ´

´

SL1

¯´1

“ ´

´

SL2

¯´1

` S

Let us denote by } ¨ }2 the usual Euclidean norm on Rd and let us endow the set of
d-dimensional matrices with the associated norm defined by

}S} “ sup
}v}2“1

}Sv}2 .

Then if U is small enough, there exists C ą }S} such that for every L P U ,
`

λpSLj q
˘´1

is the only eigenvalue of
´

SLj

¯´1

whose absolute value is larger than 3C

and C is an upper bound of the modulus of all the other eigenvalues of
´

SLj

¯´1

.

Let us prove that λpSL1 q and λpSL2 q have the same sign. Let v P Rd be an
eigenvector of SL1 for the eigenvalue λpSL1 q. Then there exists v1, v2 P Rd that are
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mutually orthogonal such that v “ v1 ` v2, SL2 v1 “ λpSL2 qv1 and v2 is orthogonal
to the eigenspace of SL2 for λpSL2 q. Using (3), we obtain

`

λpSL1 q
˘´1

´
`

λpSL2 q
˘´1 }v1}

2
2

}v}22
“

vT2
}v}2

`

SL2
˘´1 v2

}v}2
´

vT

}v}2
S

v

}v}2

Observe that the absolute value of the right-hand term is less than 2C. If λpSL1 q
and λpSL2 q have different signs, then the absolute value of the left-hand term is

larger than the absolute value of
`

λpSL1 q
˘´1

, then larger than 3C, which provides
a contradiction. �

In order to define the Maslov index, we first introduce the notions of positive
(resp. negative) arc. Recall that K denotes the tangent bundle to K, where K is
the Lagrangian foliation with leaves F´1pra, bsd ˆ ty0uq.

Definition. With the same notation, an arc Γ : p´ε0, ε0q Ñ Λ such that

Γpp´ε0, ε0qq X Σ “ Γpp´ε0, ε0qq X Σ1 “ tΓp0qu “ tL0u

and that is topologically transverse to Σ1 is positive if there exists ε ą 0 such that

‚ for every t P p´ε, 0q, indexpQKpV,Γptqqq “ indexpQKpV,L0qq ` 1;
‚ for every t P p0, εq, indexpQKpV,Γptqqq “ indexpQKpV,L0qq.

Respectively, an arc Γ : p´ε0, ε0q Ñ Λ is negative if Γ ˝ p´Idq is positive.

Remark. This is equivalent to

‚ for every t P p´ε, 0q, indexpQV pK,Γptqqq “ d´ indexpQKpV,L0qq ´ 1;
‚ for every t P p0, εq, indexpQV pK,Γptqqq “ d´ indexpQKpV,L0qq.

Definition. Let Γ : ra, bs Ñ Λ be an arc.

‚ A t P ra, bs is a crossing for Γ if Γptq P Σ.
‚ The arc Γ is in general position with respect to Σ if Γpaq,Γpbq P ΛzΣ and

the path Γ is topologically transverse to Σ.
‚ The arc Γ is in D-general position with respect to Σ if Γpaq,Γpbq P ΛzΣ and

the path Γ is transverse (in the differentiable sense) to Σ.

Remark. If Γ : ra, bs Ñ Λ is in general position with respect to Σ, then each
crossing for Γ is isolated. Let ra, bs be fixed and let k P N˚ Y t8u. Then, the set of
Ck arcs Γ : ra, bs Ñ Λ that are in D-general position with respect to Σ is open for
the C1-topology.

Let Γ : ra, bs Ñ Λ be an arc in general position with respect to Σ. A crossing
t is called positive, respectively negative, if there exists ε ą 0 such that the arc
Γ|rt´ε,t`εs : rt´ ε, t` εs Ñ Λ is positive, respectively negative.

Definition. Let Γ : ra, bs Ñ Λ be an arc in general position with respect to Σ.
The Maslov index of Γ with respect to V or V is

MIpΓq :“

Cardtt : t is a positive crossing for Γu ´ Cardtt : t is a negative crossing for Γu .
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The notion of Maslov index can be extended to Lagrangian paths that are not
in general position.

Definition. Let Γ : ra, bs Ñ Λ be a path such that Γpaq,Γpbq P ΛzΣ (not

necessarily in general position with respect to Σ). Let Γ̃ : ra, bs Ñ Λ be a smooth
arc that is C1-close to Γ and is in general position with respect to Σ. Then

MIpΓq :“ MIpΓ̃q .

For the existence of the perturbation Γ̃ of Γ and for the independence of the
previous definition from the choice of Γ̃ we refer to [MBA72] or [CLM94].

Remark. Let φ be a conformally symplectic diffeomorphism on M. Let Γ : ra.bs Ñ
Λ be a smooth path such that Γpaq,Γpbq R Σ. Then

DφpΓq : ra, bs Q tÑ DφpΓptqq P Λ

is still a smooth path such that DφpΓqpaq, DφpΓqpbq do not belong to

tL P Λ : LXDφpV qppLq ‰ t0uu ,

where DφpV qx is the tangent bundle associated to the Lagrangian foliation φpVq.
Then the Maslov index MIpΓq, calculated with respect to the Lagrangian foliation V,
is equal to the Maslov index MIpDφpΓqq, calculated with respect to the Lagrangian
foliation φpVq.

Moreover, if φpVq “ V, then

MIpΓq “ MIpDφpΓqq .

In particular, for M “ T˚M , the Maslov index is invariant by vertical translations,
that is by any diffeomorphism of the form φppq “ p` η ˝ πppq, where η is a closed
1-form in T˚M .

2.3. Dynamical Maslov index. We now give the definition of dynamical Maslov
index.

Definition. Let pM, ωq be a symplectic manifold that admits a Lagrangian
foliation V. Let pφtq be an isotopy of conformally symplectic diffeomorphisms of
M. Let L P Λ and rα, βs Ă R be such that DφαpLq, DφβpLq R Σ. Then

DMIpL, pφtqtPrα,βsq :“ MIpΓq ,

where Γ is the Lagrangian path rα, βs Q t ÞÑ Γptq :“ DφtpLq P Λ and the Maslov
index MIpΓq is calculated with respect to the Lagrangian foliation V.

2.4. Twist and Maslov index. In this section, we work in T˚M and we denote
Vpxq “ T˚xM .

In the introduction, we gave the definition of an isotopy which twists the vertical.
We can enhance this in the following way (we adopt the same notations F , gt and
Gt as in the definition of twist of the vertical).

Definition. An isotopy pφtq of conformally symplectic diffeomorphisms of M
strictly twists the vertical if it twists the vertical and at every t0 P R

‚ for all t P pt0, t0 ` εq the image F pGtq is the graph of a function p ÞÑ q “
dgtppq where gt is a strictly convex function i.e. such that d2gt is positive
definite;
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‚ for all t P pt0 ´ ε, t0q the image F pGtq is the graph of a function p ÞÑ q “
dgtppq where gt is a strictly concave function i.e. such that d2gt is negative
definite.

Observe that the condition of convexity depends on the charts we choose (even
if the property of twisting the vertical is invariant by symplectic conjugation that
preserves the vertical foliation). This is a motivation to give a result of the twist
property that doesn’t use any chart.

Proposition 2.2. Let pφtq be an isotopy of conformally symplectic diffeomorphisms
of T˚M that twists the vertical. Let x P T˚M and let t0 P R. We denote xt “ φtpxq.
Let K be a continuous Lagrangian bundle that is defined in a neighbourhood of xt0
and is transverse to the vertical bundle. Then there exists ε ą 0 such that

‚ @t P pt0, t0 ` εq, QKpxtqpDφt ˝
`

Dφt0
˘´1

V pxt0q, V pxtqq is a negative semi-
definite quadratic form;

‚ @t P pt0 ´ ε, t0q, QKpxtqpDφt ˝
`

Dφt0
˘´1

V pxt0q, V pxtqq is a positive semi-
definite quadratic form.

Moreover, when pφtq strictly twists the vertical, the considered quadratic forms are
negative definite or positive definite.

Proof of Proposition 2.2. We fix ε ą 0 and a vertically foliated chart F “ pF1, F2q :
U Ñ R2d such that xt0 P U , F pxt0q “ 0 and for t P pt0 ´ ε, t0 ` εq

‚ Gt :“ pφt ˝ φ
´1
t0 q

`

F´1pt0Rdu ˆ p´
a
2 ,

a
2 q
dq
˘

Ă U ;
‚ F pGtq is the graph of a function p ÞÑ q “ dgtppq where

(1) for t P rt0, t0 ` εq, gt is a convex function;
(2) for t P pt0 ´ ε, t0s, gt is a concave function.

As previously, we denote by K the Lagrangian foliation with leaves F´1pr´a, asdˆ
ty0u) and by K its tangent bundle. For t P pt0, t0 ` εq (resp. pt0 ´ ε, t0q), the
quadratic form

QKpxtqpDpφt ˝ φ
´1
t0 qV pxt0q, V pxtqq “ ´QKpxtqpV pxtq, Dpφt ˝ φ

´1
t0 qV pxt0qq

expressed in the chart F is just ´D2gtpF2pxt0qq that is a negative (resp. positive)
semi-definite quadratic form because the isotopy twists the vertical.
When the isotopy strictly twists the vertical, we obtain in this case a negative (resp.
positive) definite quadratic form.

Observe that the bundle K that we use in the proof is not necessarily the same
bundle as in the statement. But because the two are transverse to the vertical
foliation and we consider the height between the vertical and Lagrangian subspaces
that are close to the vertical (ε is small), the two indices are the same (we can build
an isotopy between the two bundle that won’t change the signature). �

Proposition 2.3. Let pXtq be a conformally symplectic vector field that generates
an isotopy of conformally symplectic diffeomorphisms of T˚M . We assume that at
every x P T˚M , there exists a vertically foliated chart F “ pF1, F2q : U Ñ R2d such
that if we write the vector field X “ pXq, Xpq in this chart, then BpXq, which is
always symmetric because the vector field is symplectic, is positive definite.

Let x P T˚M and let us denote xt “ φtpxq. Let t0 P R. Let K be a continuous
Lagrangian bundle that is defined in a neighbourhood of xt0 and is transverse to the
vertical bundle. Then there exists ε ą 0 such that

‚ @t P pt0, t0 ` εq, QKpxtqpDφt ˝
`

Dφt0
˘´1

V pxt0q, V pxtqq is positive definite;



VANISHING MASLOV INDEX 13

‚ @t P pt0 ´ ε, t0q, QKpxtqpDφt ˝
`

Dφt0
˘´1

V pxt0q, V pxtqq is negative definite.

Proof of Proposition 2.3. As noticed in the proof of Proposition 2.2, we only need
to prove the result for the tangent space K to Lagrangian foliation K with leaves
F´1pr´a, asd ˆ ty0u).

In the chosen chart, the Jacobian matrix of X is

DXpxt0q “

ˆ

BqXqpxt0q BpXqpxt0q
BqXppxt0q BpXppxt0q

˙

and if we denote

Dφtpxq
`

Dφt0
˘´1
pxt0q “

ˆ

at bt
ct dt

˙

then we have

(4)

#

9bt “ BqXqbt ` BpXqdt
9dt “ BqXpbt ` BpXpdt .

Hence uniformly in x it holds dt “ 1d`opt´ t0q and bt “ pt´ t0qBpXqpxt0q`oppt´
t0q

2q, which gives btpdtq
´1 “ pt ´ t0qBpXqpxt0q ` oppt ´ t0q

2q. Because btpdtq
´1 is

the matrix of

QKpxtqpDφt ˝
`

Dφt0
˘´1

V pxt0q, V pxtqq

in the chart, this gives the wanted result. �

Proposition 2.4. Let pφtq be an isotopy of conformally symplectic diffeomorphisms
of T˚M that twists the vertical. Then if L P Λ and rα, βs Ă R are such that
DφαpLq, DφβpLq R Σ, then

DMIpL, pφtqtPrα,βsq ď 0.

Proof of Proposition 2.4. Let us first assume that pφtq is an isotopy that satisfies the
conclusion of Proposition2.2 (with definite quadratic forms) in a neighborhood of
pDφtLqtPrα,βs. Perturbing L, we can assume that pDφtLqtPrα,βs intersects Σ eventu-
ally only at the regular locus Σ1. We will prove that this implies that pDφtLqtPrα,βs
is actually topologically transverse to Σ and that the Maslov index is non-positive.

Let t0 P rα, βs be such that Dφt0L P Σ1. We introduce x0 “ ppLq and xt :“
φtpx0q. LetK be a continuous Lagrangian bundle that is defined in a neighbourhood
of xt0 and is transverse to the vertical bundle. Then by hypothesis there exists ε ą 0
such that

‚ @t P pt0, t0 ` εq, QKpxtqpDφt ˝
`

Dφt0
˘´1

V pxt0q, V pxtqq is positive definite;

‚ @t P pt0 ´ ε, t0q, QKpxtqpDφt ˝
`

Dφt0
˘´1

V pxt0q, V pxtqq is negative definite.

Then, for t P rt0, t0 ` εq, if Lt “ DφtL, we have

QKpxtqpLt, V pxtqq “

QKpxtqpDpφt ˝ φ
´1
t0 qLt0 , Dpφt ˝ φ

´1
t0 qV pxt0qq `QKpxtqpDpφt ˝ φ

´1
t0 qV pxt0q, V pxtqq.

Then:

‚ because of the invariance by symplectic diffeomorphisms, the signature of
QKpxtqpDpφt ˝ φ

´1
t0 qLt0 , Dpφt ˝ φ

´1
t0 qV pxt0qq is equal to the signature of

QDpφt0˝φ
´1
t q´1Kpxtq

pLt0 , V pxt0qq and if we chose ε small enough, this sig-

nature is equal to the signature of QKpxt0 q
pLt0 , V pxt0qq;
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‚ the quadratic form

QKpxtqpDpφt ˝ φ
´1
t0 qV pxt0q, V pxtqq “ ´QKpxtqpV pxtq, Dpφt ˝ φ

´1
t0 qV pxt0qq

is negative definite because we assume that the isotopy pφtq strictly twists
the vertical.

As the index of the sum of a quadratic form Q and a negative definite quadratic
form is at least the sum of the index and the nullity of Q, we deduce that for
t P pt0, t0 ` εq the index of QKpxtqpLt, V pxtqq is at least the sum of 1, which is
the nullity of QKpxt0 q

pLt0 , V pxt0qq, and the index of QKpx0qpLt0 , V px0qq. More-

over, as the quadratic form ´QKpxtqpV pxtq, Dpφt ˝ φ
´1
t0 qV pxt0qq is close to 0 for

ε small enough and because of the continuous dependence of the eigenvalues on
the quadratic form, the index of QKpxtqpLt, V pxtqq is exactly the sum of 1 and the
index of QKpx0qpLt0 , V px0qq. A similar argument gives that for t P pt0 ´ ε, t0q, the
index of QKpxtqpLt, V pxtqq is exactly the index of QKpx0qpLt0 , V px0qqThis proves
that pLtqtPrα,βs intersect Σ1 topologically transversally and in the negative sense
and that the Maslov index is non-positive.
Let now pφtq be an isotopy that twists the vertical (with no further assumptions).
Consider the Lagrangian path pDφtLqtPrα,βs.

Claim 2.1. There exists an isotopy pφ̃tq of conformally symplectic diffeomorphisms
of M such that

‚ pDφ̃tLqtPrα,βs is a smooth perturbation of pDφtLqtPrα,βs, and in particular,

MIppDφtLqtPrα,βsq “ MIppDφ̃tLqtPrα,βsq;

‚ pφ̃tq is an isotopy that satisfies the conclusion of Proposition2.2 (with defi-

nite quadratic forms) in a neighborhood of pDφ̃tLqtPrα,βs.

The claim immediately implies that the Maslov index of pDφtLqtPrα,βs is non-
positive, as desired.
Let us now prove the claim. Because pφtq twists the vertical, we deduce from
Proposition 2.2 that there exists ε ą 0 such that

‚ @t P pt0, t0 ` εq, QKpxtqpDφt ˝
`

Dφt0
˘´1

V pxt0q, V pxtqq is a negative semi-
definite quadratic form;

‚ @t P pt0 ´ ε, t0q, QKpxtqpDφt ˝
`

Dφt0
˘´1

V pxt0q, V pxtqq is a positive semi-
definite quadratic form.

If the vector field associated to pφtq is written in the chart as X “ pXq, Xpq, we
deduce from equations (4) that

d

dt

`

btpdtq
´1

˘

“ BqXqbtpdtq
´1 ` BpXq ´ btpdtq

´1BqXpbtpdtq
´1 ´ btpdtq

´1BpXp .

Because btpdtq
´1 is the matrix of QKpxtqpDφt ˝

`

Dφt0
˘´1

V pxt0q, V pxtqq that is zero
for t “ t0, we deduce that

d

dt

`

btpdtq
´1

˘

|t“t0
“ BpXq .

and then that BpXq is a positive semi-definite quadratic form. We now add to X
a small Hamiltonian vector-field Y that is associated to a Hamiltonian H that is
strictly convex in the fiber direction. This implies that BpYq is positive definite and
so is BppX ` Y q. By Proposition 2.3, the isotopy that is associated to X ` Y is the

wanted isotopy pφ̃tq. �
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Proposition 2.5. Assume that a : I Ñ R and H : IˆT˚M Ñ R are smooth func-
tions and let us use the notation Htpxq “ Hpt, xq. We assume that the Hessian of
H restricted to every vertical fiber is positive definite. We define the time-dependent
vector field Xt of T˚M by

iXtω “ dHt ´ aptqλ.

Then the isotopy defined by Xt is conformally symplectic and strictly twists the
vertical.

Proof of Proposition 2.5. For pt0, x0q P I ˆ T˚M , we choose a vertically foliated
Darboux chart F “ pF1, F2q : U Ñ Rd ˆ Rd such that F px0q “ 0 and F pUq “
p´a, aqd ˆ p´a, aqd.
We now work in this chart and denote by H the Hamiltonian in this chart, which
has a positive definite Hessian in the p direction. We chose ε0 ą 0 such that
for all t P pt0 ´ ε0, t0 ` ε0q, Gt :“ pφt ˝ φ

´1
t0 q

`

F´1pt0Rdu ˆ p´
a
2 ,

a
2 q
dq
˘

Ă U and

F pGtq6 is the graph of a function p ÞÑ q “ dgtppq. We deduce from the Hamilton
equations that there exists ε P p0, ε0q such that uniformly for y P p´a

2 ,
a
2 q
d and

t P pt0 ´ ε, t0 ` εqztt0u if we use the notation φtp0, yq “ pqt, ptq then

D2gtpptq “ pt´ t0q
`B2H

Bp2
pt0, 0, yq `Opt´ t0q

¯

.

This gives the (strict) twist property. �

2.5. Maslov index and symplectic reduction. On a cotangent bundle, the
Maslov index is invariant by symplectic reduction. The result is due to C. Viterbo
[Vit87]. For sake of completeness, we recall here Viterbo’s proof.

Let us start by showing the invariance of the Maslov index by symplectic re-
duction on a symplectic vector space. Let pV, ωq be a symplectic vector space of
dimension 2d. Denote by ΛpV q the set of Lagrangian subspaces in V and, for
every subspace U Ă V , by ΛU pV q the set of Lagrangian subspaces L such that
LX U “ t0u.

Fix L0 P ΛpV q7. Let W Ă V be a coisotropic (not Lagrangian) vector subspace
such that

WK Ă L0 ĂW ,

where WK denotes the symplectic orthogonal with respect to ω. Consider the
quotient map

ΠWK :W ÑW {WK

v ÞÑ rvs ,

where rvs “ rus if and only if v ´ u P WK. Observe that ΠWK is a surjective
linear map. Then, the quotient space inherits a symplectic 2-form ωW from ω, and
pW {WK, ωW q is still a symplectic vector space. In particular, for every Lagrangian
subspace L of V the image ΠWKpL XW q is still a Lagrangian space in W {WK.
Denote by

PWK : ΛpV q ãÑ ΛpW {WKq

L ÞÑ ΠWKpLXW q .

The following holds.

6F pGtq is Lagrangian.
7L0 is the Lagrangian subspace with respect to which we calculate the Maslov index in pV, ωq.
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Claim 2.2. The map PWK restricted to ΛWKpV q is a submersion.

Proof of the claim. Let us fix L P ΛWKpV q and let L1 P ΛpV q be such that WK Ă

L1 Ă W and L X L1 “ t0u. The set U “ tL̃ P ΛpV q : L̃ X L1 “ t0uu is an open

neighbourhood of L. If L̃ P U , then there exists a unique linear map B “ BL̃ : LÑ
L1 such that

L̃ “ tv `Bv; v P Lu

and B satisfies the symmetry condition

(5) @`, `1 P L, ωp`, B`1q ` ωpB`, `1q “ 0.

Moreover, if B : L Ñ L1 satisfies the symmetry condition (5), then the set L̃ “
tv `Bv; v P Lu is a Lagrangian subspace of V that is transverse to L1.
We denote by B the set of linear maps from L to L1 that satisfy the symmetry
condition (5). It is a finite dimensional vector space that is the image of the chart

L̃ P U ÞÑ BL̃ P B.

Similarly, if L “ PWKpLq and L
1
“ PWKpL1q, the set

V “ tL̃ P ΛpW {WKq; L̃X L
1
“ t0uu

is an open neighbourhood of L in ΛpW {WKq. The map that associate to every

L̃ P V the linear map BL̃ : LÑ L
1

such that L̃ “ t``BL̃`; ` P Lu is a chart whose

image is the finite dimensional vector space B of linear maps B : LÑ L
1

such that

@`, `1 P L, ωW p`, B`
1q ` ωW pB`, `

1q “ 0.

In these charts, the map PWK is read Φ : B Ñ B where

ΦpBq “ ΠWK ˝B|LXW ˝ pΠWK |LXW q
´1.

Hence Φ is a linear map. This is then a submersion onto its image that is a linear
subspace of B. If we prove that ΦpBq “ B, we will deduce that PWK is a submersion.
Thus, let B0 P B and let L0 be the graph of B. We choose a linear subspace L11 of
L1 that is transverse to WK and define B1 : LXW Ñ L11 as

@v P LXW,B1pvq “ ΠWK |
´1
L11
˝B0 ˝ΠWKpvq.

When v, w P LXW , we have

ωpv,B1wq ` ωpB1v, wq “ ωpv,ΠWK |
´1
L11
˝B0rwsq ` ωpΠWK |

´1
L11
˝B0rvs, wq

“ ωW prvs, B0rwsq ` ωW pB0rvs, rwsq “ 0 .

Hence B1 : LXW Ñ L11 satisfies the symmetry condition and then its graph L2 is
an isotropic subspace of pLXW q`L1 ĂW such that L2XL

1 “ t0u. We can choose

a Lagrangian subspace L̃ of V that contains L2 and is transverse to L1: L̃ is then
the graph of a map B2 : LÑ L1 that satisfies the symmetry condition and contains
L2. Then the graph of ΦpB2q is a Lagrangian subspace of W {WK that contains L0,
hence is equal to L0 and we deduce that ΦpB2q “ B0 and Φ is surjective. �

Denote by i : ΛWKpV q ãÑ ΛpV q the standard inclusion. This is a submersion.
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Lemma 2.1. Let t P r0, 1s ÞÑ γptq P ΛWKpV q be an arc such that γp0q X L0 “

γp1q X L0 “ t0u. Then
MIpi ˝ γq “ MIpPWK ˝ γq ,

where

‚ the Maslov index MIpi ˝ γq is calculated with respect to L0 in ΛpW q;
‚ the Maslov index MIpPWK ˝ γq is calculated with respect to PWKpL0q in

ΛpW {WKq.

Proof. Up to slightly perturb the path, we can assume that γ is in D-general position
with respect to Σ :“ tL P ΛpV q; L X L0 ‰ t0uu. The subspace L10 :“ PWKpL0q

of W {WK is Lagrangian and we denote Σ “ tL1 P ΛpW {WKq; L1 X L10 ‰ t0uu.
Observe that P´1

WKpΣq Ă Σ because WK Ă L0.
Since the maps i and PWK are submersions, we have

‚ the path i ˝ γ is in D-general position with respect to Σ;
‚ the path PWK ˝ γ is in D-general position with respect to Σ.

Moreover, the choice of a coorientation of Σ determines a coorientation both on
i´1pΣ1q and on PWK ˝ i´1pΣ1q. Following [Vit87], we claim that

Claim 2.3.
i´1pΣq “ P´1

WKpΣq X ΛWKpV q .

Proof of the claim. We first observe that on one side

i´1pΣq “ tL P ΛpV q : LXWK “ t0u and LX L0 ‰ t0uu .

On the other side we have

P´1
WKpΣqXΛWKpV q “

tL P ΛWKpV q; ppLXW `WKq{WKq X ppL0 XW `WKq{WKq ‰ t0uu ;

since WK Ă L0 ĂW , we have L0 “ L0XW `WK and any L P P´1
WKpΣqXΛWKpV q

is so that
ppLXW `WKq{WKq X pL0{W

Kq “

pLX L0 XW `WKq{WK “ pLX L0 `W
Kq{WK ‰ t0u .

Since LXWK “ t0u

pLX L0 `W
Kq{WK ‰ t0u ô LX L0 ‰ t0u .

We so conclude that

P´1
WKpΣqXΛWKpV q “ tL P ΛpV q : LXWK “ t0u and LX L0 ‰ t0uu

“ i´1ptL P ΛpV q : LX L0 ‰ t0uuq .

�

Since i is a submersion, the number of crossings of γ with i´1pΣq is equal to
the number of crossings of i ˝ γ with Σ. Since also PWK is a submersion and since
PWKpΣq “ Σ̄, we conclude that the number of crossings of γ with i´1pΣq is equal
to the number of crossings of PWK ˝ γ with Σ.

Since the coorientation on i´1pΣq and on PWK ˝ i´1pΣq is determined by the
coorientation of Σ, we conclude that actually the number of positive (resp. negative)
crossings of i ˝ γ corresponds to the number of positive (resp. negative) crossings
of PWK ˝ γ. By the definition of Maslov index, we obtain the sought result. �
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We want now to prove the invariance of the Maslov index by symplectic reduction
on the cotangent bundle M, endowed with the symplectic form ω. Let V be the
lagrangian foliation whose fibers of the associated tangent Lagrangian bundle are
the vertical Lagrangian subspaces. Let W ĂM be a coisotropic submanifold and
let iW : W Ñ M be the canonical injection; the characteristic foliation of W,
denoted by WK, admits for tangent bundle TxpWKq “kerpi˚Wωqpxq “ pTxWqK.

Assume that, for every x PW it holds

pTxWqK Ă TxV Ă TxW .

We assume that the symplectic reduction of W is a true symplectic manifold that
we denote by R : W ÑW{WK. When x PW and L P ΛTxWKpTxMq, we denote

PpLq “ DRpxqL “ pL` TxWKq{TxWK P ΛpW{WKq.

Then P is a submersion from ΛWKpMq|W to ΛpW{WKq.

We denote ΣpMq :“ tL P ΛpMq; L X TppLqV ‰ t0uu and ΣpW{WKq “ tL P

ΛpW{WKq;LX TppLqPpVq ‰ t0uu .

Lemma 2.2. Let Γ : ra, bs Ñ ΛpMq be a smooth arc such that

‚ Γpaq,Γpbq R ΣpMq;
‚ Γ is in D-general position with respect to the fibered singular cycle ΣpMq;
‚ at every point the path has trivial intersection with the tangent bundle of

the characteristic foliation of W, i.e.

Γptq X pTppΓptqqWqK “ t0u @t P ra, bs .

Then

MIpΓq “ MIpP ˝ Γq ,

where

‚ the Maslov index MIpΓq is calculated with respect to TV in ΛpMq;
‚ the Maslov index MIpP ˝Γq is calculated with respect to PpVq in ΛpW{WKq.

Proof. Since P is a submersion and P´1pΣpW{WKqq X ΛTWKpMq “ ΣpMq|W ,

also the path P ˝ Γ is in D-general position with respect to ΣpW{WKq. In order
to conclude, it is then sufficient to calculate the Maslov index of a sub-path of Γ,
around a (isolated) crossing t. Let U ĂM be a neighborhood of p ˝ Γptq and let

Γ|rt´ε,t`εs : rt´ ε, t` εs Ñ ΛpUq ,

be a Lagrangian path with only an isolated, transverse crossing at t. Let us trivialise
ΛpUq as U ˆ ΛpTp˝ΓptqMq. Similarly, trivialise the image PpΛpUqq as PpUq ˆ
ΛpTp˝ΓptqW{pTp˝ΓptqWqKq. Up to restrict the neighborhood U , the Maslov index of
the path Γ|rt´ε,t`εs with respect to V corresponds to the Maslov index of Γ|rt´ε,t`εs,
seen as a Lagrangian path in the symplectic vector space Tp˝ΓptqM thanks to the
trivialization, with respect to Tp˝ΓptqV. Similarly, the Maslov index of the path
PpΓ|rt´ε,t`εsq with respect to PpVq is actually the Maslov index of the Lagrangian

path PpΓ|rt´ε,t`εsq, seen in Tp˝ΓptqW{pTp˝ΓptqWqK through the trivialization, with
respect to PpTp˝ΓptqVq. Applying then Lemma 2.1, we conclude. �
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3. Maslov index along a Lagrangian submanifold that admits a
generating function

Let L Ă T˚M be a Lagrangian submanifold. The goal of this Section is to prove
that every arc Γ : ra, bs Ñ TL whose endpoints project on T˚M on the so-called
graph selector of L has zero Maslov index.

3.1. The relation between the Maslov index and the Morse index. Let
us recall the definition of generating function for a Lagrangian submanifold L of
T˚M .

Definition. A Cr function with r ě 2 function S : M ˆ Rk Ñ R generates a
Lagrangian submanifold L of T˚M if

‚ using the notation

CS “
!

pq, ξq PM ˆ Rk :
BS

Bξ
pq, ξq “ 0

)

,

at every point of CS , the map BS
Bξ is a submersion; in this case, CS is a

d-dimensional submanifold of M ˆ Rk;
‚ the map jS : CS ãÑ T˚M defined by jSpq, ξq “

BS
Bq pq, ξq is an embedding

such that jSpCSq “ L.

The generating function S is quadratic at infinity (GFQI) if there exists a compact
subset K ĂM ˆ Rk and a non-degenerate quadratic form Q : Rk Ñ R such that

@pq, ξq R K,Spq, ξq “ Qpξq.

The generating function quadratic at infinity S is of index m if the non-degenrate
quadratic form Q has index m.

A result due to Sikorav [Bru91, Sik87], asserts that every H-isotopic8 to the zero
section submanifold of T˚M admits a GFQI.

Notation. If we denote as before the Liouville form on T˚M by λ and the Liouville
form on T˚pRkq by λ1, the product manifold N “ T˚M ˆT˚pRkq is endowed with
the symplectic form Ω “ ´p˚1dλ ´ p˚2dλ1 where pi is the projection on the i-th
factor.

Theorem 3.1. Let L Ă T˚M be a Lagrangian submanifold that admits a generating
function Spq, ξq : M ˆ Rk Ñ R. Let pqi, ξiq PM ˆ Rk, i “ 1, 2 be such that

‚ BS
Bξ pqi, ξiq “ 0, i.e. pqi, ξiq P CS;

‚ if we use the notation pi “
BS
Bq pqi, ξiq, the submanifold L is transverse to

the vertical fiber T˚q M at pi in T˚M .

Then, ker B
2S
Bξ2 pqi, ξiq “ t0u and for every arc γ0 joining γ0p0q “ p1 to γ0p1q “ p2 in

L, the Maslov index of t P r0, 1s ÞÑ Tγ0ptqL with respect to the vertical is equal to

the difference of the Morse indices index
`

B
2S
Bξ2 pq2, ξ2q

˘

´ index
`

B
2S
Bξ2 pq1, ξ1q

˘

.

Proof of Theorem 3.1.

Lemma 3.1. Let p “ BS
Bq pq, ξq P L. Then L is transverse to T˚q M at p if and only

if ker
`

B
2S
Bξ2 pq, ξq

¯

“ t0u.

8This means Hamiltonianly isotopic
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Proof of Lemma 3.1. Let us fix p P L and let δp P TppT
˚Mq. We use the notation

q “ πppq PM and δq “ dπppqδp P TqM .
Then δp belongs to TpL if and only if there exists δξ P Rk such that

‚ D
`

BS
Bξ

˘

pδq, δξq “ B
2S
BqBξ pq, ξqδq `

B
2S
Bξ2 pq, ξqδξ “ 0;

‚ DjSpδq, δξq “δp “
B

2S
Bq2 pq, ξqδq `

B
2S
BξBq pq, ξqδξ.

Observe that π
´

BS
Bq pq, ξq

¯

“ q and then

(6) Dπ
´

B2S

Bq2
pq, ξqδq

¯

“ δq and Dπ
´

B2S

BξBq
pq, ξqδξ

¯

“ 0.

We deduce

δξ P ker
´

B2S

Bξ2

¯

zt0u ðñ p0, δξq P ker
´

D
`BS

Bξ

˘

¯

zt0u

ðñ DjSp0, δξq P TLzt0u ðñ
B2S

BξBq
δξ P TLzt0u.

Using (6), we conclude that ker
´

B
2S
Bξ2 pq, ξq

¯

‰ t0u if and only if L is not transverse

to T˚q M at BS
Bq pq, ξq. �

In N “ T˚M ˆ T˚pRkq, endowed with the symplectic form Ω“ ´p˚1dλ´ p
˚
2dλ1,

we consider the coisotropic foliation into submanifolds

Wχ “ T˚M ˆ Rk ˆ tχu

for χ P Rk. The characteristic leaves of Wχ are the submanifolds WK
pp,χq “ tpu ˆ

Rk ˆ tχu with p P T˚M .
We will use also the Lagrangian foliation F of N with leaves Fq,χ “ T˚q MˆRkˆ

tχu. Then we have WK
pp,χq Ă Fpπppq,χq Ă Wχ. We denote by Fpp,ξ,χq the tangent

space to the leaf Fpπppq,χq at the point pp, ξ, χq.
The graph G “ graphpdSq Ă N of dS is a Lagrangian submanifold of N that is
transverse to W0 and such that G XW0 is diffeomorphic to L by the map

R : pp, ξ, 0q PW0 ÞÑ p.

Observe that R is the symplectic reduction of W0. We denote by R the restriction
of R to G XW0.

We use for γ0, qi, pi, ξi the same notations as in Theorem 3.1. Then Γ0 “ R´1˝γ0

is an arc on G XW0 such that Γ0p0q “ pp1, ξ1, 0q and Γ0p1q “ pp2, ξ2, 0q. We have

Lemma 3.2. Let Γptq “ ppptq, ξptq, χptqq P G be an arc in G such that at Γp0q and

Γp1q, the quadratic form B
2S
Bξ2 is non-degenerate. The Maslov index of the arc of

Lagrangian subspaces t P r0, 1s ÞÑ TΓptqG with respect to the fibered singular cycle
associated to F is

index
´

B2S

Bξ2
pqp1q, ξp1qq

¯

´ index
´

B2S

Bξ2
pqp0q, ξp0qq

¯

.

Proof of Lemma 3.2. Up to a small perturbation, there is no loss of generality in
assuming that S is smooth. The proof is divided into two steps. First of all, we
will perturb the Lagrangian submanifold L (i.e., its generating function) and Γ on
it in such a way that Γ is in D-general position with respect to the fibered singular
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cycle associated to F . Then we will prove the lemma.

First step. As TΓp0qG and TΓp1qG are transverse to FΓp0q, FΓp1q respectively, there
exists ε ą 0 such that for all t P r0, εs Y r1 ´ ε, 1s, TΓptqG is transverse to FΓptq.

We use the notation t ÞÑ ζptq :“ pπ ˝ pptq, ξptqq P M ˆ Rk. We now choose a
neighbourhood U of ζprε, 1´ εsq in M ˆRk and a diffeomorphism ψ : U Ñ RdˆRk
such that

@t P rε, 1´ εs, ψpζptqq “ pt, 0, . . . , 0q.

Let s : ψpUq Ñ R defined by spyq “ S ˝ ψ´1pyq. Then in the neighborhood of
pε, 0 . . . , 0q and p1´ε, 0, . . . , 0q, we know that graphpD2sq andDψpF q are transverse.
We can slightly perturb the path of matrices t P rε, 1 ´ εs ÞÑ D2spt, 0, . . . , 0q in a
path t ÞÑ Aptq of symmetric matrices such that

‚ Aptq “ D2spt, 0, . . . , 0q in a neighbourhood of ε and 1´ ε;
‚ the path t ÞÑ graphpAptqq is in D-general position

We now define for x1 in a neighborhood of rε, 1´ εs

‚ δpx1q “
şx1

ε
pApσq ´D2spσ, 0, . . . , 0qqp1, 0, . . . , 0qdσ;

‚ vpx1q “
şx1

ε
δpσqp1, 0, . . . , 0qdσ;

‚ in a neighbourhood of rε, 1´ εs ˆ t0Rd´1ˆRku,

upx1, . . . , xd`kq “ spx1, . . . , xd`kq ` vpx1q ` δpx1qp0, x2, . . . , xd`kq

`
1

2
pApx1q ´D

2spx1, 0, . . . , 0qqpp0, x2, . . . , xd`kq, p0, x2, . . . , xd`kqq.

Then u is C2 close to s and we have

@x1 P rε, 1´ εs, D
2upx1, 0, . . . , 0q “ Apx1q.

We then use a bump bunction η with support in a neighbourhood of rε, 1 ´ εs ˆ
t0Rd´1ˆRku and that is equal to 1 in a smaller neighbourhood of rε, 1 ´ εs ˆ
t0Rd´1ˆRku. We define

s̃px1, . . . , xd`kq “

p1´ ηpx1, . . . , xd`kqqspx1, . . . , xd`kq ` ηpx1, . . . , xd`kqupx1, . . . , xd`kq.

As s̃ is equal to u in rε, 1 ´ εs ˆ t0Rd´1ˆRku, D
2s̃ is in D-general position with

respect to DψpF q along the lift of this arc in graphDu. In addition, as s̃ is C2-close
to s, D2s̃ is transverse to DψpF q along the lift of

`

r0, εs Y r1´ ε, 1s
˘

ˆ t0Rd´1ˆRku
in graphDs̃.

Finally, define the function S̃ to be equal to S outside ψ´1pUq and to s̃ ˝ ψ

in ψ´1pUq. Thus, S̃ is C2 close to S, DS̃ ˝ ζ is C1 close to DS ˝ ζ “ Γ and

t ÞÑ DS̃ ˝ ζptq is in D-general position with respect to the fibered singular cycle

associated to F . As the new generating function S̃ is C2 close to S, the number

index
`

B
2S
Bξ2 pqp1q, ξp1qq

˘

´ index
`

B
2S
Bξ2 pqp0q, ξp0qq

˘

does not change.

This will allow us to assume that the path t ÞÑ TΓptqG is in D-general position
with respect to the fibered singular cycle associated to F .

Second step. We then look at what happens at a crossing Γpt̄q. We choose a chart
close to BS

Bq pqpt̄q, ξpt̄qq and we assume that we work in coordinates : q P U Ă Rn

and pp1, . . . , pnq are the dual coordinates defined by pq,
ř

pidqiq P T
˚U .
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In these coordinates for pq, pq “ pq, BS
Bq pq, ξqq P U ˆ Rn, we use the linear and

symplectic change of coordinates

pδq, δpq ÞÑ
´

δQ “ δp`
`

1n ´
B2S

Bq2
pq, ξq

˘

δq, δP “ ´δq
¯

.

In the extended space TN with linear coordinates pδQ, δP, δξ, δχq, the equation of
FΓptq is pδP, δχq “ p0, 0q, i.e. FΓptq is the graph the zero function. The equation of
TG is

(7)

#

δP “ ´δQ` B
2S
BξBq δξ

δχ “ B
2S
BqBξ δQ`

´

B
2S
Bξ2 ´

B
2S
BqBξ

B
2S
BξBq

¯

δξ

and this is also a graph. We compute then the change of Maslov index with respect
to FΓptq with the help of the height of TG above the vertical L with respect to F ,
i.e. QF pL, TGq, where L has equation pδQ, δξq “ p0, 0q. Observe that, for t close to
t̄, F and L are transverse and the projection pF : TN Ñ TN {F restricted to L is
an isomorphism. So we can take pδP, δχq as coordinates in TN {F . Also, for t “ t̄
close to t̄, F and TG are transverse, because crossings of a path in general position
are isolated. Moreover, note that, for t close to t̄, L and TG are transverse. If we
introduce the matrix

(8) Mptq “

˜

´1n
B

2S
BξBq

B
2S
BqBξ

´

B
2S
Bξ2 ´

B
2S
BqBξ

B
2S
BξBq

¯

¸

pqptq, ξptqq,

as the equation of TG is (we write in coordinates)
ˆ

δP
δχ

˙

“Mptq

ˆ

δQ
δξ

˙

,

the matrix Mptq is invertible for t “ t̄ and we have

QF pL, TGqpδP, δχq “ Ω
´

p0, 0, δP, δχq, ppδP, δχq.pMptq´1qT , δP, δχq
¯

.

Hence the matrix of QF pL, TGqpδP, δχq in coordinates pδP, δχq is Mptq´1. The
change of signature of Mptq´1 at t̄ is exactly the same as the change of signature
of Mptq.

Let us introduce the matrix

Pptq “

˜

1n
B

2S
BξBq pqptq, ξptqq

0 1k

¸

.

Then we have

PptqTMptqPptq “

˜

1n 0
B

2S
BqBξ pqptq, ξptqq 1k

¸

Mptq

˜

1n
B

2S
BξBq pqptq, ξptqq

0 1k

¸

“

˜

´1n 0

0 B
2S
Bξ2 pqptq, ξptqq

¸

.

Hence the change of signature of Mptq at t “ t̄ along the path Γ is equal to the

change of signature of B
2S
Bξ2 . This is exactly the Maslov index of the arc of Lagrangian

subspaces t P rt̄´ ε, t̄` εs ÞÑ TΓptqG with respect to FΓptq. �
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We deduce that the Maslov index of TG along the arc Γ0 with respect to F is

index
`

B
2S
Bξ2 pq2, ξ2q

˘

´ index
`

B
2S
Bξ2 pq1, ξ1q

˘

.

We have noticed that WK
pp,χq Ă Fpπppq,χq Ă Wχ. Also, because G is Lagrangian

and transverse to W0, at every point of intersection, the intersection of the tangent
subspaces to G and WK

pp,0q is t0u. The path t ÞÑ Γptq can be put in D-general

position with respect to F , as done in the first step of the proof of Lemma 3.2.
Thus, we can apply the results concerning the Maslov index that are given in
section 2 of [Vit87], see here Lemma 2.2 and Subsection 2.5.
As the curve Γ0 is contained in GXW0, the Maslov index of TG along Γ0 with respect
F is equal to the Maslov index of pT pGXW0qq{TWK

0 with respect to F {TWK
0 . We

have pT pG XW0qq{TWK
0 “ TRpGq “ TL and F {TWK

0 pΓptqq “ Tγ0ptqqpT
˚
π˝γ0ptq

Mq

is the vertical Vγ0ptq. This proves the theorem.
�

3.2. Maslov index along graph selectors. Let us assume that the Lagrangian
submanifold L of T˚M admits a generating function quadratic at infinity. We
recall the construction of a graph selector u : M Ñ R. Such a graph selector was
introduced by M. Chaperon in [Cha91] (see [PPS03] and [Sib04] too) by using the
homology. Here we will use the cohomological approach (see e.g. [AV17]). We now
explain this.

Notations. Let S : M ˆ Rk Ñ R be a function that generates a Lagrangian
submanifold, q PM and a P R is a real number, we denote the sublevel with height
a at q by

Saq “ tξ P Rk; Spq, ξq ď au

and we use the notation Sq “ Spq, .q.

When S is quadratic at infinity with index m, there exists N ě 0 such that all
the critical values of S are in p´N,Nq. Observe that, since S is a GFQI, S´Nq is
the sublevel of a non-degenerate quadratic form of index m. Thus (see for example
[Mil63]), the De Rham relative cohomology space H˚pRk, S´Nq q is isomorphic to

H˚pRmq “

#

R if ˚ “ m,

0 if ˚ ‰ m.

We denote by αq a closed m-form of Rk such that αq|S´Nq “ 0 and 0 “ rαqs P

HmpRk, S´Nq q.

If a P p´N,Nq, we use the notation ia : pSaq , S
´N
q q ãÑ pRk, S´Nq q for the inclusion

and then i˚a : HmpRk, S´Nq q Ñ HmpSaq , S
´N
q q. The graph selector u : M Ñ R is

then defined by:

upqq “ supta P R; ri˚aαqs “ 0u “ infta P R; ri˚aαqs “ 0u.

The following result is classical (see [AV17] for a proof in our setting).

Proposition 3.1. Let L Ă T˚M be a Lagrangian submanifold admitting a GFQI
S : M ˆ Rk Ñ R of regularity Cr with r ě 2 and let u : M Ñ R be the graph
selector for S which is a Lipschitz function. Then u is Cr on the open set

U :“ tq PM, ξ ÞÑ Spq, ξq is Morse excellent9u

9An excellent function is by definition a function whose every critical value is attained at at
exactly one critical point.
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which has full measure, and for all q in U , the following hold:

‚ dupqq P L;
‚ upqq “ S ˝ j´1

S pdupqqq.

Remark. Let L be a Lagrangian submanifold admitting a generating function
S : M ˆ Rk Ñ R. Then for all C1 path γ : r0, 1s Ñ L,

S
`

j´1
S pγp1qq

˘

´ S
`

j´1
S pγp0qq

˘

“

ż

γ

λ.

As a consequence we may describe the open set U without mentioning the gener-
ating family:

U “
 

q PM, T ‹qM&L and for all path γ : r0, 1s Ñ L

with distinct endpoints in T ‹qM&L,
ż

γ

λ ‰ 0.
(

Indeed, the transversality condition is equivalent to the fact that pq, ξq Ñ Spq, ξq is
Morse, and the condition on the path gives that the values of S above two different
critical points of the generating family are necessarily distinct.

From Theorem 3.1 and the latter proposition, we deduce

Proposition 3.2. We use the same notations as in the previous proposition. Then
if q1, q2 P U and if γ : r0, 1s Ñ L is a continuous arc joining dupq1q to dupq2q, the
Maslov index of the arc of Lagrangian subspaces t ÞÑ TγptqL with respect to the
vertical is zero.

Proof of Proposition 3.2. We recall some well-known facts about Morse functions.
Let f : Rk Ñ R be a Morse function quadratic at infinity such that its critical points
have different critical value. We use the notation fa “ tx P Rk, fpxq ď au for the
sublevels of f . Then, for every critical point c such that D2fpcq has index p, for
ε ą 0 small enough, the De Rham relative cohomology space H˚pffpcq`ε, ffpcq´εq
is isomorphic to R for ˚ “ p and trivial if ˚ “ p.

Let now consider q P U . As Spq, .q is Morse such that different critical points
correspond to different critical values, there is only one ξq P Rk that is a critical
point of Spq, .q such that Spq, ξqq “ upqq. By definition of u, we have

‚ for every ε ą 0, 0 “ ri˚upqq`εαqs P H
mpS

upqq`ε
q , S´Nq q;

‚ for every ε ą 0, 0 “ ri˚upqq´εαqs P H
mpS

upqq´ε
q , S´Nq q.

We recall the notation for maps of pairs in relative cohomology. The notation
f : pM,Nq Ñ pV,W q means that f : M Ñ V with fpNq ĂW .

We introduce the maps associated to the inclusion S´Nq Ă S
upqq´ε
q Ă S

upqq`ε
q .

More precisely, we denote by j1 : pS
upqq`ε
q , S´Nq q ãÑ pS

upqq`ε
q , S

upqq´ε
q q and j2 :

pS
upqq´ε
q , S´Nq q ãÑ pS

upqq`ε
q , S´Nq q the two inclusion maps. We now use the exact

cohomology sequence that is induced by these maps, see [God71], that is

HmpSupqq`εq , Supqq´εq q
j˚1
ÝÑ HmpSupqq`εq , S´Nq q

j˚2
ÝÑ HmpSupqq´εq , S´Nq q.

Then ri˚upqq`εαqs is a non-zero element of HmpS
upqq`ε
q , S´Nq q and its image by j˚2 is

0. Because the sequence is exact, ri˚upqq`εαqs is a non zero element of the image of
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j˚1 . This implies that HmpS
upqq`ε
q , S

upqq´ε
q q “ t0u, and then that the index of the

critical point ξq of Spq, .q is m.

Hence we have proved that for every q P U , if dupqq “ BS
Bq pq, ξqq where BS

Bξ pq, ξqq “

0, the index of B
2S
Bξ2 pq, ξqq is m. We deduce from Theorem 3.1 the wanted result.

�

4. Dynamical Maslov index, graph selectors and proof of
Theorem 1.1

4.1. Graph selector techniques adapted to conformal symplectic isotopies
of the zero section. Let pφtq be a Cr`1 isotopy of conformally symplectic diffeo-
morphisms of T˚M with r ě 2 such that φ0 “ IdT˚M . We want to apply the
results of section 3.2 to the images φtpL0q of the zero-section and obtain results for
the dynamical Maslov index

DMIpTxL, pφsqsPr0,tsq.

As every φt is conformally symplectic, there exists aptq Ps0,`8r such that φ˚t ω “
aptqω. Then the form βt “ φ˚t λ ´ aptqλ is closed. The projection π : T˚M “

M Ñ M inducing an isomorphism in cohomology, we can choose in a Cr way a
closed 1-form ηt on M such that π˚ηt ´ βt is exact and η0 “ 0. If the symplectic
diffeomorphism ft : MÑM is defined by ftppq “ p´ ηt, we have

f˚t λ “ λ´ π˚ηt.

If pψtq is the isotopy of conformally symplectic diffeomorphisms defined by ψt “
ft ˝ φt, then we have

ψ˚t λ “ φ˚t pλ´ π
˚ηtq “ aptqλ`

´

βt ´ φ
˚
t π
˚ηt

¯

.

The action of φt on cohomology is trivial because φt is homotopic to IdM. As
π˚ηt ´ βt is exact, we deduce that ψ˚t λ ´ aptqλ is exact. Hence the image by
ψt of every H-isotopic to the zero-section submanifold L is also H-isotopic to the
zero-section, see [AF21, Corollary 3]. It admits a generating function quadratic at
infinity St : M ˆ Rk Ñ R and a Lipschitz continuous graph selector ut : M Ñ R.

Remark. The generating function St is not unique. For every segment ra, bs of
R, we can choose an integer k P N uniformly in t P ra, bs and in a Cr way a Cr

generating function St : M ˆ Rk Ñ R for Lt “ ψtpLq. Then the associated graph
selector10 ut also depends in a Cr way on t.

As in Proposition 3.1, we define Ut :“ tq P M, ξ ÞÑ Stpq, ξq is Morse excellentu,
which is an open set of M with full Lebesgue measure, on which ut is Cr and

(9) @q P Ut, dutpqq P ψtpL0q i.e. ηtpqq ` dutpqq P φtpL0q.

Proposition 4.1. The set U “
Ť

t
Ut ˆ ttu is an open set of M ˆ R, on which the

function pq, tq ÞÑ utpqq is Cr.

10It can be proved that up to a constant, ut is independent of the chosen generating function
St of ψtpLq.
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Proof. The set W “ tpq, tq P M ˆ R;T ‹qM&Ltu is open thanks to Thom transver-
sality theorem. Hence for every pq0, t0q P U , there exists an open subset U of W
that contains pq0, t0q, an integer N ě 1 and N Cr´1-maps xi : U Ñ T˚M such
that

‚ π ˝ xipq, tq “ q;
‚ @i ‰ j;xipq, tq ‰ xjpq; tq;
‚ T˚q M X Lt “ tx1pq, tq; . . . ;xN pq, tqu.

As S depends in a Cr way on pq, tq, the map Y : W Ñ RN that is defined by

Y pq, tq “
`

St
`

j´1
S px1pq, tqq

˘

, . . . , St
`

j´1
S pxN pq, tqq

˘ ˘

.

is continuous and then

U X U “ tpq, tq P U ;@i ‰ j, St
`

j´1
S pxipq, tqq

˘

‰ St
`

j´1
S pxjpq, tqq

˘

u

is open because it is the backward image by Y of an open subset of RN . We have
then proved that U is open.

Let q0 P Ut0 for some t0. By definition of the graph selector there exists ξ0 such

that ut0pq0q “ St0pq0, ξ0q and
BSt0
Bξ0
pq0, ξ0q “ 0. Since St0pq0, ¨q is Morse, we may

apply the implicit function theorem to get a Cr function pq, tq ÞÑ ξpq, tq solving
BSt
Bξ pq, ξpq, tqq “ 0 on an open connected neighbourhood of pq0, t0q in U . By conti-

nuity of pt, qq ÞÑ utpqq and since we excluded the case where Stpq, ¨q attains a critical
value more than once, we also have utpqq “ Stpq, ξpt, qqq on this neighbourhood.
Thus pt, qq ÞÑ utpqq is Cr at pt0, q0q, hence on the whole set U . �

4.2. Proof of Theorem 1.1. Let us begin with the case where L is the zero
section, denoted by L0. With the notations that we introduced in the previous
paragraph, we are reduced to prove that DMIpTxL0, pψsqsPr0,tsq “ 0 for every x P

ψ´1
t pgraphpdut|Utqq. This is a result of the two following lemmata for which we

provide proofs.

Lemma 4.1. There exists an integer nt such that

@x P ψ´1
t pgraphpdut|Utqq DMIpTxL0, pψsqsPr0,tsq “ nt.

Lemma 4.2. The map t ÞÑ nt is locally constant.

Proof of Lemma 4.1 . We fix t P R. Let γ : r0, 1s Ñ ψtpL0q be a path such that
for i “ 0, 1, qi “ πpγpiqq P Ut and γpiq “ dutpqiq. For τ P r0, 1s, we define a loop
Γ “ Γτ by

‚ @s P r0, 1s,Γτ psq “ Tψ´1
t pγpsτqqL0;

‚ @s P r1, 2s,Γτ psq “ Dψps´1qt

´

Tψ´1
t pγpτqqL0

¯

;

‚ @s P r2, 3s,Γτ psq “ Tγpp3´sqτqψtpL0q;

‚ @s P r3, 4s,Γτ psq “ Dψp4´sqt

´

Tψ´1
t pγp0qqL0

¯

.

Along Γ|r0,1s, the Maslov index is zero because the path is on the zero section

L0. Along Γ|r1,2s, the Maslov index is MI
´

`

DψspTψ´1
t pγpτqqL0

˘

sPr0,ts

¯

. Along Γ|r2,3s

the Maslov index is ´MI
´

`

TγpsqψtpL0q
˘

sPr0,τs

¯

. Along Γ|r3,4s, the Maslov index is

´MI
´

`

DψspTψ´1
t pγp0qqL0q

˘

sPr0,ts

¯

. Hence the total Maslov index along Γτ is

MI
´

`

DψspTψ´1
t pγpτqqL0

˘

sPr0,ts

¯

´MI
´

`

TγpsqψtpL0q
˘

sPr0,τs

¯

´MI
´

`

DψspTψ´1
t pγp0qqL0q

˘

sPr0,ts

¯

.
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Figure 1. The loop Γτ .

As τ ÞÑ Γτ is an homotopy, the total Maslov index along Γτ doesn’t depend on τ .
Observe that

‚ for τ “ 0, this index is 0;

‚ thanks to Proposition 3.2, we have MI
´

`

TγpsqψtpL0q
˘

sPr0,1s

¯

“ 0. Hence

the total Maslov index along Γ1 is

0 “ MI
´

`

DψspTψ´tpγp1qqL0

˘

sPr0,ts

¯

´MI
´

`

DψspTψ´1
t pγp0qqL0q

˘

sPr0,ts

¯

.

�

Proof of Lemma 4.2. Let us fix pq0, t0q P U . By Proposition 4.1 and continuity of
pψsq, there exists ε ą 0 such that

@t P pt0 ´ ε, t0 ` εq, pπpψt ˝ ψ
´1
t0 pdut0pq0qqq, tq P U .

We denote γptq “ ψt ˝ψ
´1
t0 pdut0pq0qq and Lt “ ψtpL0q. Then the arc t P pt0´ε, t0`

εq ÞÑ TγptqLt doesn’t intersect the singular cycle. Hence t P pt0 ´ ε, t0 ` εq ÞÑ nt is
constant.

�

Observing that n0 “ 0, we combine the two lemmata for t “ 1 to get that
DMIpTxL0, pψsqsPr0,1sq “ 0 for all x P ψ´1

1 pgraphpdu1|U1
qq “ φ´1

1 pgraphppη1 `

du1q|U1
qq. Since ψ is obtained by composing φ by a vertical translation (see para-

graph 4.1), the Maslov index is the same for φt and ψt (see Remark at the end
of section 2.2), and Theorem 1.1 is proved in the case where L is the zero section,
taking u “ u1, η “ η1 and U “ U1.

Let us now assume only that L is a Lagrangian graph, i.e., the graph of a closed
1-form ν. We recall that all the diffeomorphisms Tt : M ý defined by Ttppq “ p`tν
are symplectic.
Using pTtq and pφtq, we will define an isotopy pFtqtPr0,1s such that F0 “ IdM and
F1pL0q “ φ1pLq. Let α : r0, 1s Ñ r0, 1s be a smooth non-decreasing function such
that αp0q “ 0, αp1q “ 1 and α is constant equal to 1

2 when restricted to some

neighbourhood of 1
2 . We the introduce pFtq by

‚ for t P r0, 1
2 s, Ft “ T2αptq;
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‚ for t P r 12 , 1s, Ft “ φ2αptq´1 ˝ T1.

The isotopy pFtq is an isotopy of conformally symplectic diffeomorphisms such that
F0 “ IdM. Applying the first case of this proof, there exist a closed 1-form η of M
and a Lipschitz map u : M Ñ R that is Cr on an open subset U of M with full
Lebesgue measure such that

graphpη ` duq|U Ă F1pL0q “ φ1pLq
and

@x P F´1
1

`

graphpη ` duq|U
˘

, DMIpTxL0, pFtqtPr0,1sq “ 0.

Observe that the path pDFtTxL0qtPr0, 12 s
“ pDT2αptqqtPr0, 12 s

has zero Maslov index

since all these Lagrangian subspaces are transverse to the vertical. Hence

DMIpTxL0, pFtqtPr0,1sq “ DMIpTT1pxqL, pFtqtPr 12 ,1sq.

The isotopy pFtqtPr 12 ,1s is just a reparametrization of the isotopy pφtqt inr0,1s, hence

we obtain finally

@q P U, p :“ φ´1
1 pηpqq ` dupqqq P L and DMI

´

TpL, pφsqsPr0,1s
¯

“ 0.

5. Angular Maslov index

There are different approaches to Maslov index, at least three of these are con-
tained in [BG92]. To prove some of our results, we will use the second approach
that we explain now.

5.1. Definition of the angular Maslov index. In this section as in sub-section
2.1, we assume that pM, ωq is a 2d-dimensional symplectic manifold that admits
a Lagrangian foliation V. We denote by V pxq “ Vx :“ TxV its associated La-
grangian bundle. We endow M with an almost complex structure J : TM ý that
is compatible with ω. We briefly recall that this means that

‚ for every x PM, Jx : TxM ý is linear and J2 “ ´IdTM;
‚ every Jx is symplectic;
‚ for every x PM, the symmetric bilinear form ωp., Jx.q is positive definite.

We denote g :“ ωp., J.q.

The complex structure is then defined on every TxM by

@pλ “ λ1 ` iλ2, vq P Cˆ TxM, λv “ λ1v ` λ2Jv.

The equality

@x PM,@u, v P TxM,Θpu, vq “ gpu, vq ` iωpu, vq

define a positive definite Hermitian form on TxM. We denote by UpMq the fiber
bundle whose fibers UxpMq are the unitary transformations of TxM. Observe that
a real d-dimensional linear subspace L of the complex space TxM is Lagrangian if
and only if the Hermitian form Θx restricted to L is real (and then Θx is a real
scalar product). Hence the group UpMq acts on the Lagrangian Grassmannian Λ.
It is classical (see [BW97, Lemma 3.10] or [Aud03]) that the action of UxpMq on
Λx is transitive.
If Stabx is in the stabilizer of V pxq, then Stabx preserves the scalar product that is
the restriction of Θx to V pxq, i.e. is an orthonormal transformation of V pxq. More-
over, every orthogonal transformation of V pxq can be extended to a unique unitary
transformation of TxM . We denote by OpMq the fiber bundle whose fibers OxpMq
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are these transformations that we call orthogonal transformations of TxM. There is
a natural bijection between UxpMq{OxpMq and Λx that maps Stabx on Vx. This bi-
jection sends each rφs P UxpMq{OxpMq to the Lagrangian space φpVxq P Λx, where
φ P UxpMq is a representative of rφs. We denote by Rx : Λx Ñ UxpMq{OxpMq its
inverse bijection.

The map δx : UxpMq Ñ C˚ defined by δxpϕq “
`

detϕ
˘2

is a morphism of
groups whose kernel contains OxpMq and whose range is the set Up1q of complex
numbers with modulus 1. Hence we can define δ̄x : UxpMq{OxpMq Ñ Up1q and
then ∆ “ δ̄ ˝R : Λ Ñ Up1q.

Definition. Let Γ : ra, bs Ñ Λ be a continuous map. Let θ : ra, bs Ñ R be any
continuous lift of ∆ ˝ Γ, i.e. such that

@t P ra, bs, exppiθptqq “ ∆pΓptqq.

Then the angular Maslov index of Γ is

(10) αMIpΓq :“
θpbq ´ θpaq

2π
.

Definition. Let pφtq be an isotopy of conformally symplectic diffeomorphisms of
M. Let L P ΛpMq and t ą 0. Define the path

s P r0, ts ÞÑ DφsL P ΛpMq.

The dynamical angular Maslov index of L at time t is

DαMIpL, pφsqsPr0,tsq “ αMIppDφsLqsPr0,tsq.

Whenever the limit exists, the asymptotic angular Maslov index of L, is

DαMI8pL, pφsqsPr0,`8sq :“ lim
tÑ`8

DαMIpL, pφsqsPr0,tsq

t
.

Remark. In fact, the existence of a Lagrangian foliation implies that the bundle
Λ is trivial, diffeomorphic to Mˆ Updq{Opdq where Updq and Opdq are the groups
of d ˆ d unitary and orthogonal matrices respectively, see e.g. [CGIP03, Section
1.2].

Remark. Observe that the angular Maslov index is continuous with respect to
the path Γ. Thus, the dynamical Maslov index at a fixed time t is continuous with
respect to L P ΛpMq, as long as the isotopy pφtq is at least C1.

The following result is classical, see [CGIP03, Lemma 2.1].

Proposition 5.1. Let pφtq be an isotopy of conformally symplectic diffeomorphisms
of M. Let x PM and let L1, L2 P Λx. Then, for every t ą 0,

|DαMIpL1, pφsqsPr0,tsq ´DαMIpL2, pφsqsPr0,tsq| ă 8d.

In particular, whenever the asymptotic angular Maslov index at x exists, it does not
depend on the chosen Lagrangian subspace L P Λx.

That is why we will often mention the asymptotic Maslov index at a point.
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Proposition 5.2. Let pφtq an isotopy of conformally symplectic diffeomorphisms
of M such that φ0 “ IdM and φt`1 “ φt ˝φ1 (resp. pφtqt is a flow). If µ is a Borel
probability measure with compact support that is invariant by φ1 (resp. by pφtqt),
then the asymptotic Maslov index exists at µ-almost every point x PM.

Proof. The proof uses methods of [Sch57, Section 4]. We assume that µ is ergodic:
if not, using ergodic decomposition theorem, see e.g. [Mn87], we deduce the result
for µ from the result for ergodic measures.

Let us begin with the case when pφtqt is a flow. The map Dφt : Λ Ñ Λ defines a
flow on Λ. Let x PM be a regular point for µ, i.e. such that the family of measures

rxsT defined by rxsT pfq “
1
T

şT

0
fpφtpxqqdt tends to

ş

M fdµ for every continuous
f : M Ñ R. Recall that µ-almost every point x P M is regular for µ. Let us fix
L0 P Λx and let ν be any limit point at infinity of the family of measures rL0sT

defined by

@F P C0pΛ,Rq, rL0sT pF q “
1

T

ż T

0

F pDφtL0qdt.

Then ν is an invariant measure for pDφtq, see [KB37], such that p˚ν “ µ, where
p : TM Ñ M is the canonical projection. We have defined on Λ the contin-
uous function ∆ : Λ Ñ Up1q. A direct result of [Sch57, Section 4], is that
DαMI8pL, pφsqsPr0,`8sq exists and is finite at ν-almost every point px, Lq P Λ.
Since the asymptotic angular Maslov index of L does not depend on the chosen
Lagrangian subspace (see Proposition 5.1), we conclude that it exists at p˚ν “ µ-
almost every point x PM.

When φt`1 “ φt ˝φ1, we define a flow pFtq on TˆΛ by Ftps, Lq “ pt` s,DφtLq.
Then we apply Schwartzman’s result to the function pt, Lq ÞÑ ∆pLq, this gives the
wanted result.

�

5.2. The angles of a Lagrangian subspaces. Let pM, ωq be a 2d-dimensional
symplectic manifold that admits a Lagrangian foliation V. Let J be an almost
complex structure compatible with ω. We introduce the notion of angles of a
Lagrangian subspace L P Λ with respect to JV. For details, we refer to [LMS03].

Notation. For every x PM, we denote by JV pxq the image by the isomorphism
Jx of the Lagrangian subspace V pxq “ TxV.

Proposition 5.3 (Section 1.4 in [LMS03]). Let pE2d, ωq be a symplectic vector
space, endowed with a complex structure compatible with ω. Fix a Lagrangian sub-
space H Ă E. For every Lagrangian subspace L Ă E there exists a unique unitary
isomorphism of E denoted by ΦH,L such that

‚ ΦH,LpHq “ L ;
‚ ΦH,L is diagonalizable relatively to a unitary basis of E whose vectors are

in H, with eigenvalues of the form eiθj , j “ 1, . . . , d, with

θj P
ı

´
π

2
,
π

2

ı

for j “ 1, . . . , d .

In the sequel, we apply Proposition 5.3 to each symplectic vector space pTxM, ωxq,
endowed with the almost complex structure J . The fixed Lagrangian subspace H
in each TxM is JV pxq.
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Definition. Let L P Λx. The angles of L with respect to JV pxq is the equivalence
class

pθ
JV pxq,L
1 , . . . , θ

JV pxq,L
d q{ „ ,

where

‚ pθ
JV pxq,L
1 , . . . , θ

JV pxq,L
d q Ps ´ π

2 ,
π
2 s
d is the d-uplet composed by arguments

of the d eigenvalues given by Proposition 5.3 applied at TxM with respect
to JV pxq and L;

‚ „ is the equivalence relation obtained from permutations over the d-entries.

Let us denote by

te1pxq, . . . , edpxqu

a unitary basis of TxM that is contained in JV pxq and given by Proposition 5.3.
We have

Ce1pxq ‘ ¨ ¨ ¨ ‘ Cedpxq “ TxM ,

where TxM is seen as a complex vector space. In particular,

te1pxq, . . . , edpxq, Jxe1pxq, . . . , Jxedpxqu

is a symplectic basis of TxM, seen as a real vector space of dimension 2d.
Observe that for every x P M and every v P TxM it holds Jxv “ iv “ ei

π
2 v.

Refering then to notations introduced in Subsection 5.1, the image RxpJV pxqq is
the equivalence class of Jx P UxpMq. Thus, for L P Λx we have that RxpLq is the
equivalence class of the unitary transformation ΦJV pxq,L ˝ Jx. Consequently, since

∆x “ δ̄x ˝Rx, it holds

(11) ∆xpLq “
`

det
`

ΦJV pxq,L ˝ Jx
˘˘2

“ exp
´

2i
d
ÿ

j“1

θ
JV pxq,L
j

¯

exppi dπq .

Let Γ : ra, bs Ñ Λ be a continuous map.

Notation. To ease the notation, for every t P ra, bs, we denote the angles of Γptq
(with respect to JV pp ˝ Γptqq) as

´

θJV,Γ1 ptq, . . . , θJV,Γd ptq
¯

{ „ .

The angular Maslov index αMIpΓq differs by an integer from the angular quantity

(12)
1

π

˜

d
ÿ

j“1

´

θJV,Γj pbq ´ θJV,Γj paq
¯

¸

,

since the angular Maslov index is a continuous lift of the function ∆ and because
of Equation 11. We will see in the next paragraph that this integer is actually MIpΓq.

Remark. We have that dimpL X V pxqq “ k, for some 0 ď k ď n, if and only if
exactly k angles of L with respect to JV pxq are equal to π

2 .
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5.3. Relation between Maslov index and angular Maslov index. The fol-
lowing proposition clarifies the relation between Maslov index and angular Maslov
index.

Proposition 5.4. Let Γ : ra, bs Ñ Λ be a smooth path such that

Γpaq X V pp ˝ Γpaqq “ Γpbq X V pp ˝ Γpbqq “ t0u .

Then

(13) αMIpΓq “
1

π

˜

d
ÿ

j“1

pθJV,Γj pbq ´ θJV,Γj paqq

¸

`MIpΓq .

Proof. Without loss of generality, assume that the path Γ is in general position with
respect to ΣpMq “ tL P ΛpMq : L X V pppLqq ‰ t0uu. Let t Psa, br be a crossing.
Since Γ is in general position, Γptq has exactly only one angle equal to π

2 with

respect to JV . Up to a permutation over angles, we can assume that θJV,Γ1 ptq “ π
2 .

Let ε ą 0 be small enough such that

‚ for s P rt´ ε, t` εszttu it holds Γpsq X V pp ˝ Γpsqq “ t0u;
‚ for s P rt´ ε, t` εs it holds that, for all j ą 1,

|θJV,Γ1 psq| ą |θJV,Γj psq| .

It will be sufficient to show that Equation 13 holds for the subpath Γ|rt´ε,t`εs.
Let us start by calculating the angular Maslov index of Γ|rt´ε,t`εs:

αMIpΓ|rt´ε,t`εsq “

θJV,Γ1 pt` εq ´ θJV,Γ1 pt´ εq

π
`

1

π

´

d
ÿ

j“2

θJV,Γj pt` εq ´ θJV,Γj pt´ ε
¯

` k,

where

k “

$

’

’

&

’

’

%

`1 if ´
π

2
ă θJV,Γ1 pt` εq ă 0 ă θJV,Γ1 pt´ εq ă

π

2
,

´1 if ´
π

2
ă θJV,Γ1 pt´ εq ă 0 ă θJV,Γ1 pt` εq ă

π

2
.

Let us now calculate MIpΓ|rt´ε,t`εsq. We can smoothly perturb the path Γ|rt´ε,t`εs
into a Lagrangian path Γ̃ : rt´ ε, t` εs Ñ ΛpMq such that

piq MIpΓ|rt´ε,t`εsq “ MIpΓ̃q;

piiq Γ̃ is in general position with respect to Σ, Γ̃ has a crossing at 0 with Σ and

Γ̃psq X V pp ˝ Γ̃psqq “ t0u for s P rt´ ε, t` εszttu ;

piiiq Γ̃ is in general position with respect to tL P ΛpMq : LX JV pppLqq ‰ t0uu

and Γ̃ptq X JV pp ˝ Γ̃ptqq “ t0u .

Conditions piq and piiq can be obtained easily, see Section 2, and they are stable
under small perturbations. Moreover, since being in general position is a dense and
open condition, we can assume, up to perturb Γ, that the initial path is also in
general position with respect to tL P ΛpMq : LX JV pppLqq ‰ t0uu.

To obtain Γ̃, we need to perturb Γ|rt´ε,t`εs so that the new path Γ̃ does not
intersect the horizontal JV at time t .

Two cases can happen.

p1q Γptq X JV pp ˝ Γptqq “ t0u. Then we conclude by defining Γ̃ “ Γ .
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p2q ΓptqX JV pp ˝Γptqq ‰ t0u. In this case, because of the general position assump-
tion, the subspace Γptq X JV pp ˝ Γptqq is 1-dimensional, generated by one vector
w. Let 0 ă θ ! 1, complete w to a unitary basis and consider the unitary trans-
formation R that rotates by eiθ the vector w and that is the identity on the other
vectors of the basis. Up to select θ small enough, the Lagrangian path Γ̃ :“ R ˝ Γ
is a small perturbation of Γ|rt´ε,t`εs. Up to select a subpath of Γ̃, the defined path
satisfies all the required conditions.

To calculate the Maslov index MIpΓ|rt´ε,t`εsq, we calculate then MIpΓ̃q, because
of condition piq. In particular, up to select a subpath, we can assume that

Γ̃ : rt´ ε, t` εs Ñ ΛpMq

is in general position with respect to Σ, it has a unique crossing with the vertical
at s “ t, for all j ą 1 and all s P rt´ ε, t` εs it holds

|θJV,Γ̃1 psq| ą |θJV,Γ̃j psq|

and Γ̃psq X JV pp ˝ Γ̃psqq “ t0u for all s P rt´ ε, t` εs .
For every s P rt ´ ε, t ` εs , by Proposition 5.3, we have a unitary basis of

TppΓ̃psqqM whose vectors are in JV pp ˝ Γ̃psqq

tv1psq, v2psq, . . . , vdpsqu

made up of eigenvectors relative to the eigenvalues eiθ
JV,Γ̃
j psq, j “ 1, . . . , d such that

peiθ
JV,Γ̃
j psqvjq, which is also a unitary basis of TppΓ̃psqqM, is a basis of Γ̃psq over R.

We want then to consider the variation of the index of the quadratic form

QJV pp˝Γ̃psqpV pp ˝ Γ̃psqq, Γ̃psqq .

Up to a sign change, we can work with the quadratic form

Q “QJV pp˝Γ̃psqpΓ̃psq, V pp ˝ Γ̃psqq .

In the sequel, we denote by Q both the quadratic form and the associated bilinear
form. We consider the basis

pEjq1ďjďd “pP
JV pp˝Γ̃psqqpeiθ

JV,Γ̃
j psqvjpsqqq1ďjďd

of Tp˝Γ̃psqM{JV pp ˝ Γ̃psqq. Then we have for all j, k

Q
`

Ej , Ek
˘

“
1

2

´

ωpeiθ
JV,Γ̃
j psqvjpsq, i sinpθJV,Γ̃k psqqvkq ` ωpe

iθJV,Γ̃k psqvkpsq, i sinpθJV,Γ̃j psqqvjq
¯

We deduce that pEjq1ďjďd is orthogonal for Q and that for all j P t1, . . . , du

QpEj , Ejq “ ωpeiθ
JV,Γ̃
j psqvjpsq, i sinpθJV,Γ̃j psqqvjq

“ ωpcospθJV,Γ̃j psqqvjpsq ` sinpθJV,Γ̃j psqJvjpsq, sinpθ
JV,Γ̃
j psqqJvjpsqqq

“ cospθJV,Γ̃j psqq sinpθJV,Γ̃j psqq “
1

2
sin

`

2θJV,Γ̃j psq
˘
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We can thus conclude that

MIpΓ|rt´ε,t`εsq “ MIpΓ̃q “

$

’

&

’

%

`1 if ´ π
2 ă θJV,Γ̃1 pt` εq ă 0 ă θJV,Γ̃1 pt´ εq ă π

2 ,

´1 if ´ π
2 ă θJV,Γ̃1 pt´ εq ă 0 ă θJV,Γ̃1 pt` εq ă π

2 .

�

From Proposition 5.4 we immediately obtain the following results.

Corollary 5.1. Let M be a 2d-dimensional symplectic manifold that admits a La-
grangian foliation. Let pφtq be an isotopy of conformally symplectic diffeomorphisms
of M. For every L P ΛpMq and t ą 0 it holds

(14) |DαMIpL, pφsqsPr0,tsq ´DMIpL, pφsqsPr0,tsq| ă d .

In particular, whenever the asymptotic angular Maslov index exists at x P M, it
does not depend on the chosen Lagrangian subspace and it holds

DαMI8px, pφtqq “ DMI8px, pφtqq .

5.4. Independence of the aymptotic Maslov index from the isotopy. The
index DαMI does not depend on the chosen conformally symplectic isotopy.

Proposition 5.5. Let φ be a conformally symplectic diffeomorphism isotopic to
the identity on M. Let pφtqtPr0,1s, pψtqtPr0,1s be isotopies of conformally symplectic
diffeomorphisms such that φ0 “ ψ0 “ IdT˚M and φ1 “ ψ1 “ φ. Then for every
L P Λ

DαMIpL, pφtqtPr0,1sq “ DαMIpL, pψtqtPr0,1sq .

Extend then each isotopy on r0,`8q by asking that φ1`t “ φt ˝φ and ψ1`t “ ψt ˝φ.
Thus, whenever the limit exists, the asymptotic angular Maslov index does not
depend on the chosen isotopy, i.e.

DαMI8pppLq, φq :“ DαMI8pppLq, pφtqq “ DαMI8pppLq, pψtqq .

Proof. Since φ1 “ ψ1 “ φ and from (12), for every L P Λ it holds

DαMIpL, pφtqtPr0,1sq “ DαMIpL, pψtqtPr0,1sq ` 2kL,

for some kL P Z. The function

L ÞÑ DαMIpL, pφtqtPr0,1sq ´DαMIpL, pψtqtPr0,1sq

is continuous. Therefore, the constant k “ kL P Z does not depend on L P Λ. To
conclude, it is sufficient to find L P Λ such that

(15) DαMIpL, pφtqtPr0,1sq “ DαMIpL, pψtqtPr0,1sq .

Consider then a Lagrangian graph L Ă M. By Theorem 1.1, with η, U and u
defined as in the statement of Theorem 1.1, for every x P φ´1pgraphppη ` duq|U qq
it holds

(16) DMIpTxL, pφtqtPr0,1sq “ DMIpTxL, pψtqtPr0,1sq “ 0.

Let then x̄ be a point in φ´1pgraphppη ` duq|U qq Ă L. From Proposition 5.4 and
from (16), it holds

DαMIpTx̄L, pφtqtPr0,1sq ´DαMIpTx̄L, pψtqtPr0,1sq “
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1

π

´

d
ÿ

j“1

θ
JV,DφtpTx̄Lq
j p1q´θ

JV,DφtpTx̄Lq
j p0q

¯

´
1

π

´

d
ÿ

j“1

θ
JV,DψtpTx̄Lq
j p1q´θ

JV,DψtpTx̄Lq
j p0q

¯

.

Since Dφ1pTx̄Lq “ Dψ1pTx̄Lq “ DφpTx̄Lq, the second term of the last equality is
zero, as required.

�

We may now deduce the

Proof of Proposition 1.1. Since the difference between the angular Maslov index
and the Maslov index in Proposition 5.4 only depends on Γpbq and Γpaq, the results
of Proposition 5.5 also hold for Maslov index. �

From Corollary 5.1 and Proposition 5.1, we deduce the following result.

Corollary 5.2. Let pφtq be an isotopy of conformally symplectic diffeomorphisms
of M. For every x PM the asymptotic Maslov index, whenever it exists, does not
depend on the chosen Lagrangian subspace L P Λx.

Moreover, the following holds.

Corollary 5.3. Let pφ1,tqt, pφ2,tqt be two isotopies of conformally symplectic dif-
feomorphisms of M such that φ1,0 “ φ2,0 “ IdM, φ1,1 “ φ2,1 and φi,1`t “ φi,t ˝φi,1
for i “ 1, 2. Then for every x PM, whenever the limit exists,

DMI8px, pφ1,tqq “ DMI8px, pφ2,tqq .

6. Applications and proofs of main outcomes

This section is devoted to the proofs of the main consequences presented in the
introduction and further interesting applications.

6.1. Proof of Corollary 1.1. Let pφtqtPR be a conformally symplectic isotopy of
M such that φ0 “ IdM and φt`1 “ φt ˝ φ1. Let L Ă M be a Lagrangian sub-

manifold that is Hamiltonianly isotopic to a graph and such that
ď

tPr0,`8q

φtpLq is

relatively compact.
More precisely, let L0 Ă M be a Lagrangian graph and let phtqtPr0,1s be a Hamil-
tonian isotopy such that h0 “ IdM and h1pL0q “ L. Let α : r0, 1s Ñ r0, 1s be a
smooth non-decreasing function such that αp0q “ 0 and α is constant equal to 1
when restricted to some neighborhood of 1. Let β : r0, 1s Ñ r0, 1s be a smooth
non-decreasing function such that β is constant equal to 0 on some neighborhood
of 0 and equal to the identity on some neighborhood of 1. Define then pψtqtPr0,`8q
as

ψt :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

hαptq for t P r0, 1s ,

φβpt´1q ˝ h1 for t P r1, 2s ,

φt´2 ˝ h1 for t P r2,`8q .

Then pψtq is an isotopy of conformally symplectic diffeomorphisms such that ψ0 “

IdM and ψtpL0q “ φt´2pLq for t ě 2.
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Applying then Theorem 1.1 to the Lagrangian graph L0 with respect to the
isotopy pψtq, for every t P r1,`8q there exists at least a point xt P L0 such that

(17) DMIpTxtL0, pψsqsPr0,tsq “ 0 .

By compactness of L0, by the relation between DMI and DαMI (see Corollary 5.1)
and by the continuity of the angular Maslov index, there exists a constant C ą 0
such that for every x P L0 it holds

(18) |DMIpTxL0, pψtqtPr0,1sq| ď C .

From (17) and (18), for every t P r0,`8q we have then a point zt :“ h1pxt`1q P

h1pL0q “ L such that

(19) |DMIpTztL, pφsqsPr0,tsq| ď C .

Consider then the sequence pznqnPN in L. For every n P N, we define the following
probability measure on ΛpMq:

µn :“
1

n

n´1
ÿ

i“0

δDφipTznLq ,

where δ˚ is the Dirac measure supported on ˚ P ΛpMq. Since
Ť

tPr0,`8q φtpLq
is relatively compact, we can extract a subsequence pµnkqkPN that converges to a
probability measure µ̄ on ΛpMq. The measure µ̄ is Dφ1-invariant. The projected
measure µ :“ p˚µ̄ is a φ1-invariant probability measure on M.

By Corollary 5.1 it holds

DMIpµ, pφtqq “
ż

M
DMI8px, pφtqq dµpxq “

ż

M
DαMI8px, pφtqq dµpxq .

Since the asymptotic angular Maslov index does not depend on the chosen La-
grangian subspace, we have that

ż

M
DαMI8px, pφtqq dµpxq “

ż

ΛpMq

DαMI8pppLq, pφtqq dµ̄pLq .

Birkhoff’s Ergodic Theorem, applied at the function L ÞÑ DαMIpL, pφtqtPr0,1sq and
at the probability measure µ̄ on ΛpMq, assures us that

ż

ΛpMq

DαMI8pppLq, pφtqq dµ̄pLq “

ż

ΛpMq

DαMIpL, pφtqtPr0,1sq dµ̄pLq .

Since pµnkqkPN converges to µ̄, it holds
ż

ΛpMq

DαMIpL, pφtqtPr0,1sq dµ̄pLq “ lim
kÑ`8

1

nk

nk´1
ÿ

i“0

DαMIpDφipTznkLq, pφtqtPr0,1sq

“ lim
kÑ`8

1

nk
DαMIpTznkL, pφtqtPr0,nksq .

From (19) and from Corollary 5.1, we have that for every k P N
|DαMIpTznkL, pφtqtPr0,nksq| ď C ` d .

Thus, we conclude that

DMIpµ, pφtqq “ lim
kÑ`8

1

nk
DαMIpTznkL, pφtqtPr0,nksq “ 0 ,
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as required. Observe that the support of the measure µ is contained in
č

TPr0,`8q

ď

tPrT,`8q

φtptzn : n P Nuq Ă
č

TPr0,`8q

ď

tPrT,`8q

φtpLq .

Let now pφtq be a conformally symplectic flow on M. We can then consider for
every t P r0,`8q the measure on ΛpMq

(20) µt :“ rztst “
1

t

ż t

0

δDφspTztLq ds .

Observe, as before, that, from the choice of zt, for every t it holds

(21) |DαMIpTztL, pφsqsPr0,tsq| ď C ` d .

Consider then an accumulation point µ̄ of pµtqtPr0,`8q in the space of measure on
ΛpMq, which exists because

Ť

tPr0,`8q φtpLq is relatively compact. More precisely,

let ptnqnPN be a sequence such that tn Ñ `8 and µtn á µ̄ as nÑ `8. The mea-
sure µ̄ is pDφtq-invariant. The projection µ “ p˚µ̄ is then a φt-invariant measure
on M.

We denote by F the derivative of the function ∆ that we introduced in section
5 in the direction of the vectofield χ, where χ is the vectorfield associated to the
flow pDφsq : ΛpMq ý. Then, for every L P ΛpMq and every t it holds

DαMIpL, pφsqsPr0,tsq “

ż t

0

F ˝DφspLq ds .

By Birkhoff Ergodic Theorem for flows (see [NS60, Page 459]), the following integral
exists µ almost everywhere

F̄ pLq :“ lim
tÑ`8

1

t

ż t

0

F ˝DφspLq ds “ DαMI8pppLq, pφtqq ,

and we have
ż

ΛpMq

F̄ pLq dµ̄pLq “

ż

ΛpMq

F pLq dµ̄pLq .

Following then the same calculus as for the previous case, it holds

DMIpµ, pφtqq “

ż

M
DMI8px, pφtqq dµpxq

“

ż

M
DαMI8px, pφtqq dµpxq

“

ż

ΛpMq

F̄ pLq dµ̄pLq “

ż

ΛpMq

F pLq dµ̄pLq .

Since µ̄ “ limnÑ8 µtn , because of (20) and from (21), we have that
ż

ΛpMq

F pLq dµ̄pLq “ lim
nÑ`8

1

tn

ż tn

0

F ˝DφspTztnLq ds

“ lim
nÑ`8

DαMIptztnL, pφsqsPr0,tnsq
tn

“ 0 .

Thus, we conclude that DMIpµ, pφtqq “ 0, as desired.
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6.2. Proof of Corollary 1.2. Let pφtq be a symplectic isotopy of T2d such that
φ0 “ IdT2d and φt`1 “ φt ˝ φ1. Using a covering Π : T˚Td Ñ T2d, we can lift the
symplectic isotopy pφtq on T2d to a symplectic isotopy pΦtq on T˚Td such that for
every t P R

Π ˝ Φt “ φt ˝Π .

Let Z0 Ă T˚Td be the zero section, which is a Lagrangian submanifold. By Theo-
rem 1.1 for every n P N there exists a point un P Z0 such that

DMIpTunZ0, pΦtqtPr0,nsq “ 0 .

Since the covering Π is a submersion, for every L P ΛpT˚Tdq we have

DMIpDΠpLq, pφtqtPr0,1sq “ DMIpL, pΦtqtPr0,1sq ,

where the Maslov index in T˚Td is calculated with respect to the vertical La-
grangian foliation V whose associated tangent bundle is TxT

˚Td, while the Maslov
index in T2d is calculated with respect to the image foliation ΠpVq. Observe that
the tangent bundle associated to ΠpVq is ker pdp1q, where p1 : T2d Ñ Td is the
projection of the first d-coordinates.

For every n P N define then Un :“ DΠpTunZ0q P ΛpT2dq and the probability
measure on ΛpT2dq

µn :“
1

n

n´1
ÿ

i“0

δDφipUnq .

Since ΛpT2dq is compact, we can extract from pµnqnPN a subsequence converging to a
Dφ1-invariant probability measure µ̄ on ΛpT2dq. Using the projection p : ΛpT2dq Ñ

T2d and repeating the calculus done in the proof of Corollary 1.1, the φ1-invariant
probability measure µ “ p˚µ̄ on T2d is then such that

DMIpµ, pφtqq “ 0 .

6.3. Existence of points and ergodic measures with vanishing asymptotic
Maslov index for conformally symplectic isotopies that twist the vertical.
In this subsection we are mainly concerned with the proof of Theorems 1.2 and 1.3.
Let us first recall that, in Proposition 2.4, we prove that, for an isotopy pφtqtPR
of conformally symplectic diffeomorphisms of M that twists the vertical, for every
L P ΛpMq and every rα, βs Ă R such that DφαpLq, DφβpLq R ΣpMq it holds

DMIpL, pφtqtPrα,βsq ď 0 .

Consequently, for every x PM we have

DMI8px, pφtqtPr0,`8qq ď 0 .

Moreover, from Corollary 5.1, we deduce that, for an isotopy pφtqtPR of conformally
symplectic diffeomorphisms on M “ T˚M that twists the vertical, for every L P Λ
and every x PM it holds

DαMIpL, pφtqtPr0,1sq ă d and DαMI8px, pφtqtPr0,`8qq ď 0 ,

where d “ dimpMq.

Proof of Theorem 1.2. Let pφtqtPR be a conformally symplectic isotopy of M such
that φ0 “ IdM. Let L Ă M be a Lagrangian submanifold that is Hamiltonianly
isotopic to a graph. Let L0 Ă M be a Lagrangian graph and let phtqtPr0,1s be a
Hamiltonian isotopy such that h0 “ IdM and h1pL0q “ L. Let α : r0, 1s Ñ r0, 1s
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be a smooth non-decreasing function such that αp0q “ 0 and α is constant equal
to 1 when restricted to some neighborhood of 1. Let β : r0, 1s Ñ r0, 1s be a smooth
non-decreasing function such that β is constant equal to 0 on some neighborhood
of 0 and equal to the identity on some neighborhood of 1. Define then pψtqtPr0,`8q
as

ψt :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

hαptq for t P r0, 1s ,

φβpt´1q ˝ h1 for t P r1, 2s ,

φt´2 ˝ h1 for t P r2,`8q .

Then pψtqtPr0,`8q is an isotopy of conformally symplectic diffeomorphisms such that
ψ0 “ IdM.

Apply then Theorem 1.1 to the Lagrangian graph L0 with respect to the isotopy
pψtqtPr0,`8q. That is, for every t P r0,`8q there exists at least a point zt P L0

11

such that

(22) DMIpTztL0, pψsqsPr0,tsq “ 0 .

From (22) and from the compactness of thspL0q : s P r0, 1su, there exists an
integer ρ ą 0 such that for every t P r0,`8q there exists a point xt :“ ψ1pzt`1q “

h1pzt`1q P L such that

DMIpTxtL, pφsqsPr0,tsq P r´ρ, ρs .

Moreover, as pφsq twists the vertical, we have in fact

(23) DMIpTxtL, pφsqsPr0,tsq P r´ρ, 0s .

By compactness of L, we can extract from pxtqtPr0,`8q a subsequence pxnqnPN
which converges to a point x P L.

Fix N P N and ε ą 0. By continuity of the angular Maslov index, there exists
n̄ P N such that for every n ě n̄ it holds

(24)
ˇ

ˇ

ˇ
DαMIpTxL, pφsqsPr0,Nsq ´DαMIpTxnL, pφsqsPr0,Nsq

ˇ

ˇ

ˇ
ă ε .

Since the isotopy twists the vertical, we claim that, for every n ě maxpn̄, Nq, it
holds

(25) DMIpTxnL, pφsqsPr0,Nsq P r´ρ, 0s .

Indeed, if this does not hold, then for some n ě maxpn̄, Nq from Proposition 2.4
we have that

DMIpTxnL, pφsqr0,Nsq ď ´ρ´ 1 .

From (23) and since

DMIpTxnL, pφsqr0,nsq “ DMIpTxnL, pφsqr0,Nsq `DMIpDφN pTxnLq, pφsqsPr0,n´Nsq ,

we contradict Proposition 2.4 because

DMIpTφN pxnqφN pLq, pφsqsPr0,n´Nsq ě 1 .

11Actually there exists an open set whose projection on M has full Lebesgue measure.



40 MARIE-CLAUDE ARNAUD:,;,˝, ANNA FLORIO˚,˝, VALENTINE ROOS`,˝

From (24), (25) and Corollary 5.1, we have that for every n ě maxpn̄, Nq
ˇ

ˇ

ˇ
DαMIpTxL, pφsqsPr0,Nsq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
DαMIpTxL, pφsqsPr0,Nsq ´DαMIpTxnL, pφsqsPr0,Nsq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
DαMIpTxnL, pφsqsPr0,Nsq

ˇ

ˇ

ˇ

ă ε` ρ` d ,

where d “ dimpMq. Letting εÑ 0 and again by Corollary 5.1, for every t P r0,`8q
we conclude that

DMIpTxL, pφsqsPr0,tsq P r´C,Cs ,
where C :“ ρ` 2d. In particular, we deduce also that DMI8px, pφtqtPr0,`8qq “ 0.

�

Proof of Theorem 1.3. Let pφtq be an isotopy of conformally symplectic diffeomor-
phisms of M such that φ1`t “ φt ˝ φ1. Observe that, if pφtq twists the vertical,
then, by Proposition 2.4, for every φ1-invariant measure with compact support µ
it holds

(26) DMIpµ, pφtqq “

ż

M
DMI8px, pφtqqdµpxq ď 0 .

As the function DMIp., pφtqq is measurable and non-positive, this implies that
DMIp., pφtqtPr0,`8qq P L

1pµq.
Let x P L be the point given by Theorem 1.2. The assumption that its positive
orbit is relatively compact enables us to find a φ1-invariant measure µ supported
on the closure of the orbit of x with vanishing asymptotic Maslov index.
By Ergodic Decomposition Theorem (see [Mn87]), for µ almost every y, the measure

µy “ lim
NÑ8

1

N

N
ÿ

n“0

δφnpyq

exists and is ergodic, we have DMIp., pφtqq P L
1pµyq and

0 “ DMIpµ, pφtqq “

ż

M
DMIpµy, pφtqqdµpyq .

As the function in the integral is non-positive by (26), we deduce that for µ almost
every y, the measure µy is ergodic and has vanishing Maslov index.

�

6.4. Autonomous and 1-periodic Tonelli Hamiltonian flow case. We can
consider the particular case of a Hamiltonian 1-periodic Tonelli flow on a cotangent
bundle T˚M , where M is a d-dimensional compact manifold. More precisely, let
H : T˚M ˆ R{Z Ñ R be a Tonelli 1-periodic Hamiltonian. Denote as pφHs,tq the
family of symplectic maps generated by the Hamiltonian vector field of H.

Using Weak KAM Theory, we can easily obtain Theorem 1.2 for a Lagrangian
graph. More precisely, let L Ă T˚M be a Lagrangian graph, that is there exists a
C1,1 function u : M Ñ R such that L “ graph du. Then, the existence of a point
x P L with zero asymptotic Maslov index can be deduced from Weak KAM theory.
Indeed, let v : M Ñ R be a Weak KAM solution of positive type. In particular, v is
semiconvex.Consider then the function v´u, which is still semiconvex. Let x0 PM
be a local maximum of the function v ´ u. Then, since v ´ u is semiconvex and x0

is a local maximum, actually the function v ´ u is differentiable at x0. We deduce
that dvpx0q “ dupx0q. Consequently, the Lagrangian submanifold L intersects the
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partial graph of dv in dupx0q. Since v is a weak KAM solution of positive type,
the orbit of a point lying in the partial graph of dv is minimizing on every interval
r0, ts, for t ą 0. In particular, the point dupx0q does not have conjugate points in
the future. This implies that the Maslov index on every interval r0, ts at dupx0q is
zero, and so dupx0q P L has zero asymptotic Maslov index.

Recall that an autonomous Tonelli Hamiltonian flow provides an isotopy of sym-
plectic diffeomorphisms that twists the vertical, see Proposition 2.5. By Theorem
1.3 there exists then an ergodic invariant measure of vanishing asymptotic Maslov
index. In the case of an autonomous Tonelli Hamiltonian flow on T˚M , we can
characterise the invariant measure of vanishing Maslov index given by Theorem 1.3.
That is, the given invariant measure is actually a Mather minimizing measure, as
stated in Corollary 1.3.

Proof of Corollary 1.3. Indeed it can be proved that the graph selector is unique
(see e.g. [AV17]). In this case, the graph selector can be built by using the Lax-
Oleinik semi-group, see [Jou91] or [Wei14]. Fathi, [Fat08], proved the convergence
of the Lax-Oleinik semi-group (that is the graph selectors in our case) to a weak
KAM solution. Arnaud proved in [Arn05] that the resulting pseudographs converge
to the pseudograph of a weak KAM solution for the Hausdorff distance. Hence the
supports of measures that are given by the last theorem are in the pseudograph of
a weak KAM solution and thus minimizing, see (3.14) in [Ber08]. �

6.5. Proof of Corollary 1.4. We endow M with a Riemannian metric.
We are assuming that

(27) @pλ1, . . . , λnq P Rnzt0Rnu,@q PM it holds
n
ÿ

k“1

λkηkpqq ‰ 0 .

This implies that the map I from M ˆ Rn to M “ T˚M that is defined by

Ipq, λ1, . . . , λnq “
n
ÿ

k“1

λkηkpqq

is a bi-Lipschitz embedding. Indeed, it is a fibered linear monomorphism from
M ˆ Rn to T˚M that continuously depends on the point q P M . We denote by
Q ĂM its image IpM ˆ Rnq. Then the map j : QÑ Rn that is defined by

j
`

n
ÿ

k“1

λkηkpqq
˘

“ pλ1, . . . , λnq

is Lipschitz.
For every pλ1, . . . , λnq P Rn we consider the Lagrangian graph Lpλ1,...,λnq :“

t
řn
k“1 λkηkpqq : q P Mu Ă M. As pφtq is an isotopy of conformally symplectic

diffeomorphisms that twists the vertical, from Theorem 1.2, there exists at least
one point x P Lpλ1,...,λnq with zero asymptotic Maslov index. In particular,

j
`

tp P Q : DMI8pp, pφtqtPr0,`8qq “ 0u
˘

“ Rn .

Because j is Lipschitz, this implies that

dimH

´

tp PM : DMI8pp, pφtqtPr0,`8qq “ 0u
¯

ě n .
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