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Abstract. The homogenization of microstructured interfaces requires solving specific problems posed on
semi-infinite bands. To tackle these problems with existing FFT-based algorithms, a reformulation of these
band problems into fully periodic cell problems, posed on bounded domains, is established. This is per-
formed thanks to a Dirichlet-to-Neumann operator and a decomposition of the solution involving a bound-
ary corrector, in a Fourier framework. A fixed-point algorithm and an example choice of corrector are pro-
posed. Comparisons with other computational methods support this proposition.
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1. Introduction

Homogenization of microstructured interfaces that are periodic along one direction, as proposed
for antiplane shear waves by [1], results in non-standard transmission conditions across effective
interfaces, see also [2]. These conditions are governed by a set of effective coefficients, that are the
counterpart of well-known effective properties of fully-periodic materials. In the latter case, effec-
tive properties are obtained by solving so-called cell problems on representative cells with peri-
odicity conditions on all boundaries, see e.g. [3] and the references therein. For microstructured
interfaces, the effective coefficients are determined by solving what we call here a band prob-
lem, i.e. a problem posed on a semi-infinite band with periodicity conditions on its boundaries.
Accurately solving this band problem is therefore crucial for the effective model to approximate
the microstructured configuration, and numerical efficiency is required when multiple compu-
tations are performed, e.g. for topological optimization [2, 3].
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Figure 1. (a) Microstructured interface and homogenization principle and (b) representa-
tive band Y∞ and its partitioning.

The main difficulty, compared to fully-periodic cell problems, consists in dealing with un-
bounded domains. Such a problem is encountered in the literature in waveguides, and trans-
parent boundary conditions are proposed to restrain the computational domain to a bounded
subset of the guide [4, 5]. The “restrained” problem is found to be very similar to a cell problem,
except for the non-classical boundary conditions associated with the restriction.

This note shows how these tools can be applied to band problems, using classical cell prob-
lems solvers, namely FFT-based iterative solvers first proposed by [6] and now widely used and
improved [7]. Extending FFT-based solvers to non-periodic boundary conditions has been pro-
posed earlier, e.g. by [8] to account for Dirichlet conditions.

In Section 2, the band problem is first restrained to a bounded cell thanks to a Dirichlet-
to-Neumann (DtN) operator, following a classical methodology [4]. Then, the solution of this
problem is decomposed into a bi-periodic part (recovering the setting of cell problems) and a
boundary corrector accounting for the DtN conditions. Using Fourier series expansion, we then
build an explicit expression of the boundary corrector. An iterative FFT-based algorithm is then
proposed as an example of implementation in Section 3, and numerical comparisons with two
other methods are provided. Some perspectives conclude the paper.

2. Band problem and reformulation as a cell problem

In the two-dimensional plane, endowed with the classical Cartesian basis (e1,e2), we consider
the interaction of scalar waves (e.g. antiplane shear waves) with a periodically microstructured
interface (e.g. a row of inclusions, see Figure 1(a)). This interface is parallel to the e2-direction,
centered at x1 = 0, occupies the domain [−b/2,b/2]×R and is 1-periodic in x2, and supports
the variations of the normalized shear modulus µ, relatively to µ = 1 in the background domain
{|x1| > b/2}. The microstructure is therefore entirely characterized by the representative band
Y∞ =R×S with S = [−1/2,1/2], see Figure 1(b).

In [1] it is shown that for long wavelengths, the microstructure can be replaced by non-trivial
jump conditions on velocity and normal stress across an effective interface, see Figure 1(a). These
conditions are written in terms of vector-valued coefficients B = (B1,B2) and C = (C1,C2) that are
defined as:

B = lim
x1→+∞W − lim

x1→−∞W and C =
∫

Y∞
µ(x)∂2W (x)dx , (1)

in terms of the vector-valued field W = (W1,W2), solution of the following band problem:∣∣∣∣∣∣∣∣
∇· (µ[I +∇W ]) = 0 in Y∞,

W is 1-periodic in the x2 variable,

lim
x1→±∞∇W = 0,

(2)

where I is the second-order identity tensor.
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Remark 1. It can be seen that the two components (W1,W2) solve uncoupled problems. More-
over, it is shown in [1] that B2 =−C1.

2.1. Modal decomposition and Dirichlet-to-Neumann operator

In this section, the band problem is reduced to a cell problem thanks to a modal decomposition
in the homogeneous left and right halves of the band, and the introduction of the corresponding
Dirichlet-to-Neumann (DtN) operators [4,5]. The band is first decomposed into two parts Y ± and
an interior cell Yb as:

Y∞ = Y −∪Yb ∪Y +,

with Y − = ]−∞,−b/2] × S, Yb = [−b/2,b/2] × S and Y + = [b/2,+∞ [ × S, see Figure 1(b). The
variations of µ are supported in the interior cell Yb , so that the restriction of the solution to the
right half-band Y +, W + :=W |Y + , is harmonic and satisfies∣∣∣∣∣∣∣

∆W + = 0 in Y +,

W + is 1-periodic in the x2 variable,

lim
x1→+∞∇W + = 0.

Looking for W + as a separated variables function, and imposing the periodicity and condition at
infinity, one obtains a classical decomposition onto a modal basis, see e.g. [5] or [1, Appendix B]:

W +(x1, x2) = ∑
n∈Z

w+
n e−|kn |(x1−b/2)φn(x2), with φn(s) = eikn s and kn = 2nπ. (3)

The Fourier modes φn are orthonormal with respect to the L2 scalar product (·, ·)S on a vertical
section:

(φp ,φq )S = δpq with ( f , g )S :=
∫

S
f (x2)g (x2)dx2.

Looking at the section at x1 = b/2, the modal coefficients w+
n can be expressed as:

w+
n =

(
W +

(
b

2
, ·
)

,φn

)
S
=

∫
S

W +
(

b

2
, x2

)
φn(x2)dx2. (4)

Differentiating the modal decomposition (3) with respect to x1 and using the expression (4) of
the modal coefficients, one finally obtains the DtN operator Λ+ linking the trace of W and the
normal derivative ∂1W on the section S at x1 = b/2:

∂1W
(

b

2
, x2

)
=Λ+

[
W

(
b

2
, ·
)]

(x2), where Λ+[ f ](x2) :=− ∑
n∈Z

( f ,φn)S |kn |φn(x2), ∀x2 ∈ S.

Similarly, the restriction W − =W |Y − to the left half-band Y − can be decomposed as:

W −(x1, x2) = ∑
n∈Z

w−
n e|kn |(x1+b/2)φn(x2). (5)

The left DtN relation (using again the outer normal derivative i.e. −∂1W ) is then found similarly
for all x2 ∈ S as:

−∂1W
(
−b

2
, x2

)
=Λ−

[
W

(
−b

2
, ·
)]

(x2), where Λ−[ f ](x2) :=− ∑
n∈Z

( f ,φn)S |kn |φn(x2).

The DtN operator is found to be the same at both interfaces x1 =±b/2, therefore we simply note:

∂nW (±b/2, ·) =Λ[W (±b/2, ·)], where Λ=Λ+ =Λ−.

The band problem (2) can finally be rewritten as a cell problem on the bounded cell Yb , with
mixed periodic and DtN boundary conditions:∣∣∣∣∣∣∣

∇· (µ[I +∇W ]) = 0 in Yb ,

W is 1-periodic in the x2 variable,

∂nW (±b/2, ·) =Λ[W (±b/2, ·)].

(6)
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Remark 2. Introducing the above decompositions (3) and (5) into the definitions (1) of the
effective coefficients also provides alternative expressions for these coefficients:

B = w+
0 −w−

0 =
∫

S
[W (b/2, x2)−W (−b/2, x2)]dx2 and C =

∫
Yb

µ(x)∂2W (x)dx , (7)

that can be computed from the solution of problem (6).

2.2. Introducing a bi-periodic function as the new unknown

As stated in the introduction, we aim at using existing solvers designed to address cell problems
with periodic boundary conditions. To account for the (non-periodic) DtN conditions in the
horizontal direction, we introduce the following decomposition:

W =W ]+W B, (8)

where

• W ] is a bi-periodic function, that admits a Fourier series expansion:

W ](x1, x2) = ∑
m∈Z

∑
n∈Z

w mnφ
b
m(x1)φn(x2), with φb

m(x1) :=φm(x1/b) = eikm x1/b . (9)

• W B is a corrector introduced so that the sum W ] + W B satisfies the DtN boundary
conditions (6). This corrector being periodic in the x2 variable, it is natural to look for
it as a Fourier series expansion in this variable:

W B(x1, x2) = ∑
n∈Z

ψn(x1)φn(x2), (10)

in terms of Fourier modes φn and yet-to-be-chosen functions ψn .

Writing the boundary conditions (∂n −Λ)W B = −(∂n −Λ)W ] at x1 = ±b/2, recalling that
Λφn = −|kn |φn and projecting each equation onto the modes φn , one shows that the functions
ψn satisfy two uncoupled Robin boundary conditions:

x1 =−b

2
: (−∂1ψn +|kn |ψn)(−b/2) = s(2)

n /b −|kn |s(1)
n ,

x1 = b

2
: (∂1ψn +|kn |ψn)(b/2) =−s(2)

n /b −|kn |s(1)
n ,

(11)

where the terms s(1)
n and s(2)

n are weighted sums of the Fourier coefficients of W ]:

s(1)
n = ∑

m∈Z
(−1)m w mn and s(2)

n = i
∑

m∈Z
(−1)mkm w mn . (12)

Note that if W ] is a real-valued function, then w mn = w (−m)n , so that s(1)
n and s(2)

n are also real.
As two conditions must be satisfied by each function ψn , one may look for linear combina-

tions of two scalar-valued functions (ψ−
n ,ψ+

n ), i.e. ψn = z+
nψ

+
n + z−

nψ
−
n , with z±

n being constant
vector-valued coefficients. These functions must be chosen to ensure that the conditions (11)
turn into an invertible linear system satisfied by the coefficients z±

n for each n. An example is
given in Section 3.2 below. As a consequence, the corrector W B is explicitly determined by the
Fourier coefficients of the periodic function W ], i.e. there is a linear mapping B such that:

W B =BW ]. (13)

Finally, injecting the decomposition (8) and the mapping (13) into the original problem (6),
the new unknown function W ] satisfies the PDE:

∇· (µ[I +∇(W ]+W B)]) = 0, i.e. ∇· (µ[I +∇(I +B)W ]]) = 0 in Yb , (14)

along with bi-periodic boundary conditions, i.e. the initial band problem (2) has been reformu-
lated into a (fully-periodic) cell problem on the periodic part W ] of the solution.
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3. Example of implementation

Solving the new cell problem requires a numerical scheme to address the non-classical PDE (14),
in which the “boundary correction” operator B has to be chosen as discussed above (i.e. the
functionsψ±

n must be chosen). The choice of this operator may strongly affect the properties of a
given solver (such as stability, convergence and efficiency).

In this part, an example of solver-corrector couple is proposed. A complete analysis of its
performance is deferred to future work, but numerical illustrations are provided to assess the
interest of the proposed choice.

3.1. Fixed-point algorithm

Following [6], a reference homogeneous medium with constant material property µ0 is intro-
duced, as well as the material fluctuation δµ = µ−µ0. Then (14) is rewritten in terms of a polar-
ization field τ:

∇· (µ0∇W ]+τ) = 0, with: τ= δµ∇W ]+µ(I +∇BW ]). (15)

When the polarization τ is known, the first of these equations admits the following solution,
equivalently expressed in space and in the Fourier domain:

W ](x) = (γ0τ)(x) ⇔ Ŵ ](ξ) = γ̂0(ξ) · τ̂(ξ), (16)

where f̂ is the Fourier transform of a function f , ξ is the Fourier variable, and γ0 is the Green
operator for the displacement field in a bi-periodic cell associated with the reference medium µ0.
This is a convolution operator in space whose Fourier transform is written:

γ̂0(ξ) = iξ/(µ0|ξ|2) for ξ 6= 0 and γ̂0(0) = 0.

The value γ̂0(0) is set here to impose a null mean to the field W ]: this is just a convenient
choice one can make since W and therefore W ] are defined up to a constant irrelevant to the
computation of the effective properties (B ,C ), see (7).

Then, using the property γ0(µ0∇u) =−u, we rewrite formally (15) and (16) as:

(i) W ] =W ]+γ0S[W ]], (ii) S[W ]] =µ(I +∇(I +B)W ]),

where (i) stands for the equilibrium of the antiplane stress S and (ii) for the constitutive relation
that defines this stress. Finally, the original problem is solved by applying standard fixed-point
iterations to these equations, and alternating back and forth between space and Fourier domains
to avoid any convolution product. The final algorithm is as follows:

Initialisation: W (0)
]

= 0, S(0) =µI ,

Iterate i +1: Ŵ
(i )
] and Ŝ

(i )
are known

(a) Ŵ
(i+1)
] = Ŵ

(i )
] + γ̂0 · Ŝ

(i )

(b) ∇W (i+1)
]

=F−1(iξ⊗Ŵ
(i+1)
] )

(c) ∇BW (i+1)
]

is computed analytically from Ŵ
(i+1)
]

(d) S(i+1) =µ(I +∇W (i+1)
]

+∇BW (i+1)
]

)

(e) Ŝ
(i+1) =F (S(i+1))

(f) Stopping criterion: exit if ‖W (i+1) −W (i )‖L2(Yb )/‖W (i )‖L2(Yb ) < εFP

(17)

where F and F−1 denote the Fourier transform and its inverse, and εFP is a user-defined
tolerance. Note that the chosen criterion (f) assumes that the algorithm converges, which is not
established yet, as discussed now.
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Remark 3. The result of the iterations can be written as the Neumann series

W ( j )
]

= ∑
i< j

(N0)i (γ0µI ), with N0 = [I +γ0(µ∇(I +B))]

which is convergent only if ρ(N0) < 1, where ρ denotes the spectral radius. For “classical” cell
problems, i.e. when B = 0, this condition is enforced by choosing adequately the reference
medium. In particular, choosing µ0 = (minµ+maxµ)/2 ensures convergence, and even some-
times optimal convergence rate, see [9] and the references therein. Extending this analysis to the
present case with B 6= 0 is crucial to the complete validation of the proposed methodology, but is
outside the scope of this note and will be considered in future work.

3.2. An example of corrector

We now propose a specific choice for the corrector W B given by (10). By choosing ψ0 as a linear
function, written explicitly in terms of the coefficient B according to the definition (7), and the
other functions ψ±

n for n 6= 0 as exponentials as in expressions (3) and (5), one defines:

W B(x1, x2) = B
x1

b
+ ∑

n 6=0

(
z−

n e|kn |(x1+b/2) + z+
n e−|kn |(x1−b/2)

)
φn(x2). (18)

Injecting this form into the Robin boundary conditions (11), one finds:

B =−s(2)
0 , z−

n = e−|kn |b

2

(
− 1

b|kn |
s(2)

n − s(1)
n

)
, and z+

n = e−|kn |b

2

(
1

b|kn |
s(2)

n − s(1)
n

)
, (19)

with the sums s(1)
n and s(2)

n given by (12).

Remark 4. Linear functions and exponential functions for all functionsψ±
n were also considered

to build the corrector. The results are omitted here for brevity, but the choice above was clearly
superior in terms of convergence speed of the fixed-point scheme, in the configuration of
numerical tests presented below.

3.3. Numerical results

As proofs of concept for the proposed algorithm and choice of corrector, we compare the
solutions obtained with the present approach to the ones given by two other methods, namely
(i) the mode-matching method described in [1, Appendix B] and (ii) the finite element method on
truncated bands. Two distinct microstructures are studied. Qualitative comparisons are provided
by displaying chosen solutions, while quantitative comparisons are made on the evaluation of
the homogenized coefficients for various material contrasts.

3.3.1. Discretisation of the proposed method

The various fields that intervene in algorithm (17) are discretized on a regular grid mapping
the inner cell Yb and the Fourier transforms are performed using standard FFT libraries. In
particular, the Fourier transform Ŵ ] is discretized onto the set of coefficients w mn introduced in
(9) and that are used to compute W B =BW ] in step (c) of (17). With the proposed corrector (18),
the coefficient B is explicitly given by (19), while the integral that defines C in (7) is computed
numerically as a discrete version of (7).

3.3.2. Rectangular inclusion: comparison with the mode-matching method

When the microstructured interface is made of rectangular inclusions aligned with the frame
(e1,e2), the mode-matching (MM) method can be used to solve the original band problem (2)
and compute the homogenized coefficients as described in [1, Appendix B].
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Figure 2. (a) Periodic part, (b) corrector and (c) total fields (W1,W2) on a 1292 pixel grid,
and (d) reference solution obtained with the mode matching method (MM) with 65 modes,
for a stiff rectangular inclusion of size 0.8×0.5 and material property µi = 10.

Table 1. Iterations until convergence of the fixed-point scheme, for the rectangular inclu-
sion and a tolerance εFP = 10−4 for the stopping criterion. The reference medium is cho-
sen as µ0 = (minµ+ maxµ)/2, except for µi = 0.001 (indicated by (?)), for which fixing
µ0 = maxµ= 1 allowed convergence

Inclusion stiffness µi 0.001 0.01 0.1 10 100 1000
Iterations 24 (?) 12 9 20 14 13

To tackle this configuration with the proposed framework, we consider a rectangular inclusion
of lengths (`1,`2) = (0.8,0.5) embedded in a square interior cell Yb = [−0.5,0.5]2. Both the
inclusion and surrounding medium are homogeneous, with properties µi = 10 and µm = 1,
respectively.

Figure 2(a–c) display the fields obtained with the proposed iterative algorithm on a square
1292 pixels grid. We observe that (i) for W1, the corrector is dominated by its linear part as seen
from the amplitude of the fields and on their cross-sections displayed in Figure 3, and (ii) for W2,
there is no linear part since B2 = 0 for such a symmetric configuration, see [1], and the corrector
amplitude is much lower than this of the “periodic” part.

Moreover, the solution obtained with the MM method, using 65 modes and restricted to Yb ,
is also plotted in Figure 2(d). An excellent qualitative agreement is observed. Figure 4 then
provides a more quantitative comparison: for different material contrasts ranging from 10−3 to
103, the homogenized coefficients are computed with both methods and compared. The relative
difference stays below 5% in all cases. More surprisingly, the proposed iterative scheme converges
in very few iterations, see Table 1, while the fixed-point scheme initially proposed by [6] and
adapted to the present context is known to converge slowly for large material contrasts, see [9].
Without further convergence analysis, see Remark 3, we can only speculate that this might be a
geometrical effect.
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Figure 3. Cross-sections of the field W1 displayed in Figure 2(a–c) for (a) x2 = 0 (i.e. through
the rectangular inclusion) and (b) x2 =−1/2 (through the matrix).

Figure 4. Relative errors made on the homogenized coefficients B1 and C2 corresponding
to a rectangular inclusion and for various material contrasts, with the mode matching
method taken as a reference.

3.3.3. Elliptic inclusion: comparison with the finite element method

For a second example, and to show the present method interest for non-rectangular geome-
tries (where the mode matching method is not applicable), we consider an elliptic inclusion of
semi-axes (a1, a2) = (0.5,0.2), whose major axis is tilted with an angle θ = 40° w.r.t. e1, and with
material property µi = 10. Figure 5(a–c) display the fields obtained with the proposed iterative
algorithm on a square 1292 pixels grid. Since the cell is not symmetric with respect to the vertical
axis x1 = 0, there is one additional non-zero effective coefficient B2 =−C1 6= 0, and the correctors
(dominated by their linear part associated with B ) are of the same magnitude than the periodic
part for both components (W1,W2).

A finite element solution is also displayed in Figure 5(d), obtained thanks to the platform
FreeFEM++ [10] on a truncated band YL = [−L/2,L/2]×S (with L = 10 for the displayed examples).
Homogeneous Neumann boundary conditions ∂1W = 0 are imposed at the boundaries x1 =±L/2



Rémi Cornaggia et al. 305

Figure 5. (a) Periodic part, (b) corrector and (c) total fields (W1,W2) on a 1292 pixel grid,
and (d) solution obtained with the finite element method (FE), for a stiff elliptic inclu-
sion of semi-axes (a1, a2) = (0.5,0.2), tilted with an angle θ = 40° and material property
µi = 10.

Figure 6. Relative errors made on the homogenized coefficients B1, B2 = −C1 and C2

corresponding to an elliptic inclusion and for various material contrasts, with the finite
element method taken as a reference.

to approach the decaying condition limx1→±∞∇W = 0. We refer to [2, Section 4.3.1.4] for more
detail on this approach.

Again, a very good qualitative agreement between both methods is observed in the moder-
ate contrast case µi = 10. For various material contrasts, Figure 6 shows a reasonable discrep-
ancy between both methods, although the error on the coefficient B2 = −C1 increases for stiffer
inclusions. In Table 2 are presented the iterations needed to reach convergence. This time the
expected characteristic slow-down of the fixed-point scheme is clearly observed for high con-
trasts, either for stiffer or softer inclusions. In the latter case, the choice of the reference prop-
erty µ0 = (maxµ+minµ)/2 fails to ensure convergence, but the choice µ0 = maxµ works. These
preliminary observations confirm the need for a detailed convergence analysis as discussed
in Remark 3.
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Table 2. Iterations until convergence of the fixed-point scheme, for the elliptic inclusion
and a tolerance εFP = 10−4 for the stopping criterion. The reference medium is chosen as
µ0 = (minµ+maxµ)/2, except for µi = 0.001 and µi = 0.01 (indicated by (?)), for which
fixing µ0 = maxµ= 1 allowed convergence

Inclusion stiffness µi 0.001 0.01 0.1 10 100 1000
Iterations 183 (?) 64 (?) 11 20 66 266

4. Conclusion

The main purpose of this note was to present a reformulation of semi-infinite band problems
into fully periodic cell problems. This is performed thanks to a Dirichlet-to-Neumann operator
and a decomposition involving a boundary corrector, in a Fourier-based framework, having
in mind a FFT-based implementation. As proofs of concept, a fixed-point algorithm and an
example choice a corrector are given. The resulting procedure produces relevant results and is
successfully employed for topological optimization of microstructured interfaces in [2, Chap. 4].
The established framework (modal decomposition, DtN operator, Fourier representation) should
be easily extended to other material or geometrical configuration where similar band problems
are of interest.

The key point of the convergence of the fixed-point algorithm is not settled yet. An analysis
tackling this point is necessary, and should also pave the way on extensions to other algorithms,
using the rich literature on the FFT-based algorithms, see e.g. [9] or the recent review [7].

Finally, other problems posed on domains with non-fully-periodic boundary conditions, aris-
ing in other homogenization procedures, could be considered. One may think e.g. to problems
posed on a half-band to account for a rigid wall or void (Dirichlet or Neumann boundary condi-
tion) [11], band problems arising when looking for transmission conditions between microstruc-
tured materials [12, Chap. 4], or more classical Dirichlet or Neumann boundary conditions on
bounded cells, where our approach based on a corrector function should be compared to alter-
native propositions [8].
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