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ABSTRACT

Probabilistic µ-analysis was introduced 20 years ago as a control system validation means able to
quantify the probability of rare and potentially critical events. But for a long time, no practical
tool offering both good reliability and reasonable computational time was available, making this
technique hardly usable in an industrial context. The STOchastic Worst-case Analysis Toolbox
(STOWAT) was introduced a few years ago to bridge this gap between theory and practice. It has
been significantly improved since then, thanks to the addition of new features, but above all to
increasingly efficient implementations, resulting in a dramatic reduction in CPU time. However,
until recently, it could only be applied to small-scale models, with up to 4 or 5 uncertainties. In the
perspective of analyzing systems with a larger number of uncertain parameters, a time-consuming
and tedious process was carried out in the past months. This led to a complete rewrite of the
STOWAT, which is now optimized down to the sub-function level, and whose performance is as-
sessed in this paper on a series on benchmarks of increasing complexity with up to about 20 states
and 20 uncertainties. This work represents a new step towards the development of a consolidated
tool that could reasonably be integrated in the aerospace V&V process in a near future, finding
its place between Monte Carlo simulations – useful for quantifying the probability of sufficiently
frequent phenomena – and worst-case µ-analysis – relevant for detecting extremely rare events.

Keywords: Probabilistic µ-analysis; Computational tool; Aerospace V&V process

Nomenclature

AOCS = Attitude and Orbit Control System
B&B = Branch and Bound
LTI = Linear Time Invariant
MC = Monte Carlo
SMAC = Systems Modeling Analysis and Control
SMART = Skew Mu Analysis Robustness Tools
STOWAT = STOchastic Worst-case Analysis Toolbox
V&V = Verification and Validation
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1 Introduction
Due to their simplicity, MC simulations [1, 2] have long been the preferred validation means in the

aerospace industry. No analytical representation of the system is needed, and the probability that a whole
set of requirements are satisfied is easily computed from time-domain simulations, where the uncertain
parameters of the system are sampled based on their probability distributions. But such an approach is
generally time-consuming, provide only soft bounds [3] and may fail in detecting rare events. In contrast
with MC simulations, optimization-based techniques intelligently search the parameter space to find an
optimum, which makes them suitable for worst-case analysis problems where the aim is to identify rare
but possibly critical events. In this context, stochastic optimization methods such as Genetic Algorithms
or Cross Entropy based optimization [4] have been shown to perform well in a wide variety of complex
aerospace problems [5–7], although there are no formal convergence proofs. But their main drawback is
the lack of probabilistic bounds, such as the Chernoff bound, to characterize a confidence level.

On the other hand, less expensive deterministic and simulation-free alternatives exist and have
reached a good level of maturity, as is the case for µ-analysis [8–10]. But unlike MC simulations, if
worst-case scenarios are no longer missed, their probability of occurrence is also not measured. Thus,
for many problems the worst-case paradigm based on µ can be overly conservative [48] because of the
implicit assumption that each of the real uncertain parameters in the model has uniform probability dis-
tribution. This can invalidate a control system on the basis of very rare and therefore extremely unlikely
events [11–13]. So there is a real need to fill the gap between MC simulations (able to quantify the
probability of sufficiently frequent phenomena) and worst-case µ-analysis (relevant to detect extremely
rare events), while providing guaranteed bounds on the calculated probabilities which is not possible
with Genetic Algorithms or Cross Entropy based optimization. The ambition is to improve the current
industrial standard and to fasten the V&V process, which currently accounts for up to 80% of the AOCS
total development time in the space industry.

Researchers started in the 1990s to investigate probabilistic µ-analysis [3, 14, 15], which seeks
to combine worst-case bounds determined by µ-analysis with probabilistic information. But although
attractive from a theoretical perspective, this approach was far from being applicable at that time, as ac-
knowledged by [15]: It is still not clear how feasible probabilistic µ is. The first dedicated software was
developed more than twenty years later [11]. It was a major improvement, although still not sufficient to
address challenging industrial applications, as highlighted in [12]: In terms of algorithmic implementa-
tion, the situation is similar to when first appeared the preliminary implementations of deterministic µ .
That is, in some cases it takes prohibitively long and on average takes too long for standard use in the
control design cycle – although possibly still acceptable for limited model complexity during analysis in
conjunction with Monte Carlo campaigns. The last round began a few years ago, when [16] developed
a new Matlab software based on the SMART Library of the SMAC Toolbox, that implements state-of-
the-art µ-analysis based algorithms to compute robustness margins and performance levels [10]. Shortly
afterwards, the first version of the STOchastic Worst-case Analysis Toolbox (STOWAT) was released
by [13]. Better integrated with the SMART library, it has been significantly improved since then by [17],
thanks to the addition of new features, but above all to increasingly efficient implementations, result-
ing in a dramatic reduction in CPU time. However, until recently, it could only be reasonably applied
to small-scale models, with up to 4 or 5 uncertainties. In the perspective of analyzing systems with a
larger number of uncertain parameters, a time-consuming and tedious process was carried out in the past
months. This led to a complete rewrite of the STOWAT, which is now highly optimized down to the sub-
function level, and whose performance is assessed in this paper on a series on benchmarks of increasing
complexity. More generally, this work represents a new step towards the development of a consolidated
tool that could reasonably be integrated into the aerospace V&V process in a near future. To the best of
our knowledge, this is indeed the first time a realistic system with about 20 states and 20 uncertainties – a
flexible satellite with sloshing effects in the present case – can be analyzed by a probabilistic µ approach
in only a few minutes.
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The paper is organized as follows. Section 2 briefly outlines the µ-analysis framework, both from a
deterministic and probabilistic point of view. Section 3 presents the latest software tools and shows on a
series of benchmarks of increasing complexity how a prototype version limited to academic applications
has become in a few years mature enough to integrate an industrial V&V process. These tools are finally
applied in Section 4 to the aforementioned satellite benchmark and compared to MC simulations.

2 µ-analysis framework
Let us consider a continuous-time uncertain LTI system (usually including control laws):{

ẋ = A(δ )x+B(δ )u

y = C(δ )x+D(δ )u
(1)

where the parametric uncertainties δ = (δ1, . . . ,δN) ∈ RN are independent random variables with prob-
ability density functions f = ( f1, . . . , fN). It is assumed that A(δ ), B(δ ), C(δ ), D(δ ) are polynomial or
rational functions of the δi. As a result, system (1) can be transformed into a Linear Fractional Rep-
resentation (LFR) as in Fig. 1 (right): the uncertainties are separated from the nominal (closed-loop)
system M(s) and isolated in a block-diagonal operator ∆ = diag(δ1In1, . . . ,δNInN ), where Ini is the ni×ni
identity matrix. The set of matrices with the same block-diagonal structure as ∆ is denoted ∆∆∆. The subset
kB∆∆∆ ⊂ ∆∆∆ is then defined as kB∆∆∆ = {∆ ∈ ∆∆∆ : σ(∆)< k}= {∆ ∈ ∆∆∆ : |δi|< k, i ∈ [1,N]}, and the notation
B∆∆∆ is used in the particular case where k = 1.

Remark 1 This paper focuses on real parametric uncertainties, but complex parametric uncertainties
and neglected dynamics can be considered as well.

-

�
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-

�

- -u y
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Fig. 1 Standard interconnections for robust stability (left) and performance (right) analysis

With these notations in mind, two main problems can be solved either in a deterministic framework
using classical µ-analysis or in a probabilistic framework using probabilistic µ-analysis. Stability is
introduced first.

Problem 1.1 (Deterministic worst-case stability) Compute the largest value kwc such that the intercon-
nection of Fig. 1 (left) is stable for all ∆ ∈ kwcB∆∆∆.

Problem 1.2 (Probabilistic robust stability) Given a desired stability margin k ≥ kwc, compute the
probability P k

∆∆∆, f (M(s)) that the interconnection of Fig. 1 (left) is unstable when ∆ ∈ kB∆∆∆.

Remark 2 The δi are often normalized in practice, so that B∆∆∆ corresponds to the set of physically
meaningful uncertainties. In this case, a natural choice is k = 1 in Problem 1.2 and the associated
probability is simply denoted P∆∆∆, f (M(s)). This assumption is supposed to be verified in the sequel.

Assuming now that kwc > 1, H∞ performance is considered next, where Tu→y(s,∆) denotes the transfer
from u to y.
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Problem 2.1 (Deterministic worst-case H∞ performance) Compute the smallest value γwc > 0 such
that ‖Tu→y(s,∆)‖∞ < γwc on Fig. 1 (right) for all ∆ ∈B∆∆∆.

Problem 2.2 (Probabilistic robust H∞ performance) Given a desired performance level γ ∈ [0 γwc],
compute the probability Pγ

∆∆∆, f (M(s)) that ‖Tu→y(s,∆)‖∞ > γ on Fig. 1 (right) when ∆ ∈B∆∆∆.

Once computed, the probabilities P k
∆∆∆, f (M(s)) and Pγ

∆∆∆, f (M(s)) can be confronted to a given tolerance
level ε , so as to validate or reject the considered control system, depending on whether they are lower or
higher than ε .

Remark 3 The uncertainties being bounded, their probability distributions must be supported on a
bounded interval. Uniform and truncated normal distributions are often used in practice.

The theory behind µ-analysis is not presented in this paper due to space limitations, but the interested
reader can for example refer to [8, 9, 18] and [13, 17] for the classical and the probabilistic versions
respectively. Only a few facts are briefly recalled below to facilitate the understanding of Sections 3
and 4. First, computing the structured singular value µ is NP-hard in general, so bounds on kwc and γwc
are usually determined in Problems 1.1 and 2.1 instead of the exact values. Much work has been done
in the past decades to reduce the gap between these bounds, and (almost) exact values of kwc and γwc are
now obtained in most cases with a reasonable computational time [19]. Then, probabilistic µ-analysis
relies on B&B algorithms to explore the whole uncertainty domain. For stability analysis, this leads to
the following partition of the normalized (see Remark 2) uncertainty domain Bδδδ = [−1 1]N :

Bδδδ = Ds∪Ds∪Dsu (2)

where Ds, Ds and Dsu are three sets of disjoint N-cubes corresponding to the domains where stability is
guaranteed, instability is guaranteed and stability is undetermined respectively, with probabilities p(Ds),
p(Ds) and p(Dsu). The domain Dsu stems from the aforementioned NP-hardness issue, but also from the
fact that B&B can only approximate Ds and Ds, and not compute them exactly. The probability p(Dsu)
can be reduced by increasing the number of iterations of the algorithm, at the price of an increase in the
CPU time. Guaranteed lower and upper bounds on the exact probability P∆∆∆, f (M(s)) of instability are
finally obtained as follows, thus solving Problem 1.2:

p(Ds)≤ P∆∆∆, f (M(s))≤ 1− p(Ds) = p(Ds)+ p(Dsu) (3)

Their accuracy depends on the chosen stopping criterion of the B&B algorithm, which allows to handle
the trade-off between accuracy and computational time. Performance analysis can be done in the same
way, leading to the following partition:

Ds = Dγ ∪Dγ ∪Dγu (4)

where Dγ , Dγ and Dγu correspond to the domains where performance is guaranteed (‖Tu→y(s,∆)‖∞ < γ),
non-performance is guaranteed (‖Tu→y(s,∆)‖∞ > γ) and performance is undetermined respectively,
with probabilities p(Dγ), p(Dγ) and p(Dγu). The following guaranteed bounds on the exact probability
Pγ

∆∆∆, f (M(s)) of non-performance follow:

p(Dγ)≤ Pγ

∆∆∆, f (M(s))≤ p(Ds)− p(Dγ) = p(Dγ)+ p(Dγu) (5)

The only difference with stability is that the investigated domain is limited to the domain of guaranteed
stability Ds, since performance analysis only makes sense for stable systems. The following partition of
the normalized uncertainty domain Bδδδ is finally obtained by combining (2) and (4):

Bδδδ = Dγ ∪Dγ ∪Dγu ∪Ds∪Dsu (6)
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3 Computational tools assessment
Problems 1.1 and 2.1 can be solved using the SMART Library of the SMAC Toolbox [10, 18], which

was introduced in 2013 and implements state-of-the-art µ-analysis based algorithms to compute robust-
ness margins and performance levels. Based on this library, the STOchastic Worst-case Analysis Toolbox
(STOWAT) allows to solve Problems 1.2 and 2.2 by computing guaranteed lower and upper bounds on
the probabilities P∆∆∆, f (M(s)) and Pγ

∆∆∆, f (M(s)) with the desired accuracy. Initially developed under ESA
contract RFP/3-16071/19/NL/CRS/hh since 2019, it will be integrated in a forthcoming version of the
SMAC Toolbox and made available on the SMAC website w3.onera.fr/smac.

Many improvements have been brought to the STOWAT since the first version presented in [13].
But until recently, it could only be reasonably applied to small-scale models. It generally gave good
results in the presence of 4 or 5 uncertainties, but beyond that the computation time increased rapidly if
a satisfactory accuracy was required. In the perspective of analyzing systems with a larger number of
uncertain parameters, a time-consuming and tedious process was carried out in the past months. This
led to a complete rewrite of the Matlab code, which is now optimized down to the sub-function level.
This tedious work is the price to pay to be competitive with, or even outperform, simulation-based
approaches. The result seems to be well worth the effort, as evidenced by the following comparison
between the successive versions of the tool.

Let us consider the following simple example extracted from [16]:
ẋ =

[
0 1

−a1(δ1) −a2(δ2)

]
x+

[
0
1

]
u

y =
[
1 0

]
x

(7)

where a1(δ1), a2(δ2) are two uncertain parameters defined as:{
a1(δ1) = 1+2δ1

a2(δ2) = 0.8+δ2
(8)

and δ1, δ2 are two normalized real parametric uncertainties with a uniform distribution on [−1 1]. Four
probabilistic µ codes are compared, all implemented with Matlab:

1) the tool described in [16], which is the first to rely on the SMART Library of the SMAC Toolbox,
2) the prototype version (V0) of the STOWAT introduced in [13], which proposes a totally new

implementation as well as additional features such as the determination of Ds and Dγ in addition
to Ds and Dγ ,

3) the first consolidated version (V1) of the STOWAT used in [17], directly inspired from the pro-
totype one, but further optimized and robustified,

4) the most recent version (V2) of the STOWAT assessed in the present paper, which consists of a
brand new code optimized down to the sub-function level as highlighted above.

Codes #1 and #2 have been kindly provided by D. Alazard and S. Thai respectively, while codes #3 and
#4 have been implemented by C. Roos and J-M. Biannic.

The four codes are first applied to solve Problem 1.2 (probabilistic robust stability), and results are
presented in Fig. 2 and Table 1, where it can be checked that p(Ds)+ p(Ds̄)+ p(Dsu) = 100% according
to equation (2). A drastic reduction of CPU time is observed. The curve in Fig. 2 is indeed almost linear
on a logarithmic scale and reveals that the computational effort is divided by about 10 from one version
to the next. In particular, the CPU time has been divided by:

• 20 between codes #3 and #4, which shows the relevance of the complete rewrite,
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• 1200 since the introduction of the STOWAT in 2019, which makes the most recent version now
applicable in an industrial context (see also Table 3 and Section 4).

In the meantime, accuracy has also been improved. Code #1 is not able to quantify p(Ds̄) and p(Dsu).
Code #2 can do it, but p(Dsu) remains a bit large for such a simple example. Finally, codes #3 to #4
allow to drastically reduce p(Dsu) from 0.47% to 0.01%, which means that 99.99% of the uncertainty
domain can now be categorized in less than 1s.

1 2 3 4

100

101

102

103
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 ti

m
e 

[s
]

Fig. 2 CPU time for the successive versions of the tool (stability)

Table 1 Numerical results for the successive versions of the tool (stability)

Code # 1 2 3 4
CPU time [s] 1208 144 20 <1

p(Ds) [%] 92.52 92.59 92.79 92.79
p(Ds̄) [%] - 6.94 7.20 7.20
p(Dsu) [%] - 0.47 0.01 0.01

The four codes are applied next to solve Problem 2.2 (probabilistic robust performance), and results
are summarized in Table 2, where it can be checked that p(Dγ)+ p(Dγ̄)+ p(Dγu) = p(Ds) according to
equation (4). The trend is the same as before, and a drastic reduction of CPU time is observed. In the
meantime, accuracy is also improved, with p(Dγu) decreasing from one version to the next. The decrease
in computational time allows to go further in the analysis by choosing a refined stopping condition for
the B&B algorithm. This is illustrated in the last column of Table 2, which shows that p(Dγu) can be
divided by almost 6 with a CPU time of only 18s, and in Fig. 3, where the domains of undetermined
stability Dsu or performance Dγu are hardly visible.

Table 2 Numerical results for the successive versions of the tool (performance)

Code # 1 2 3 4
CPU time [s] 3370 132 27 <2 18

p(Dγ) [%] 41.30 41.30 41.33 41.57 42.30
p(Dγ̄) [%] - 48.68 49.40 49.39 50.18
p(Dγu) [%] - 2.61 2.06 1.82 0.32

Codes #3 (V1) and #4 (V2) of the STOWAT are now applied to a series of study cases of increasing
complexity extracted from the SMAC Toolbox [19]. Only probabilistic stability analysis (Problem 1.2)
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Fig. 3 Partition of the uncertainty domain with a refined stopping criterion

is investigated here, but the same trend can be observed for performance analysis. These test cases are
characterized by various fields of application, system dimensions and structures of the uncertainties.
Some of them contain poorly damped modes, which usually produce extremely sharp peaks on the µ

plot, while others have large state vectors as well as numerous and/or highly repeated uncertainties. All
results are gathered in Table 3, whose second column deserves some explanation:

• 3/3 means that ∆ is composed of 3 non-repeated uncertain parameters,
• 4/5 means that ∆ is composed of 3 non-repeated uncertain parameters and 1 repeated twice,
• the drive-by-wire vehicle has 2 non-repeated uncertain parameters and 7 repeated twice,
• the reentry vehicle has 3 non-repeated uncertain parameters and 2 repeated 4 and 6 times,
• the hard-disk drive has 19 non-repeated uncertain parameters and 4 repeated twice.

In each case, the stopping criterion is a requested value of p(Dsu) given in column 4, below which the
uncertainty domain is no longer divided and the B&B algorithm is interrupted. Note that this threshold
is not the smallest that can be reached. It is just selected to have a CPU time of about 10s with code
#4. Lower values could probably be reached at the price of an increase of the computational effort, as
illustrated for example in Table 2 (see also below).

The results are consistent with those obtained previously on the academic model (7)-(8). Columns
5 and 6 indeed show that the CPU time is divided by about 10 on average thanks to the complete rewrite.
It remains low even for high-order systems, and a good accuracy – measured here by the value of p(Dsu)
in column 4 – is obtained in all cases but one. The case of the bank-to-turn missile should be further
investigated and reminds us that improvements are probably still possible. Nevertheless, additional tests
reveal that values of 6%, 4% and 2% for p(Dsu) can be reached in 11.2s, 24.1s and 112.3s respectively,
which remains reasonable. In view of all these results, it appears that the new version of the STOWAT
has reached a good level of maturity, which makes it possible to use it on realistic industrial applications,
as shown in Section 4.
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Table 3 Application of the STOWAT to study cases of increasing complexity

Benchmark
Nb of uncertainties Nb of Requested CPU time [s] CPU time [s]

and size of ∆ states p(Dsu)[%] Code #3 Code #4
Inverted pendulum 3/3 4 0.8 32.3 1.9
Anti-aliasing filter 4/5 2 0.05 116.7 9.9

Bank-to-turn missile 4/4 6 8 102.8 7.4
Cassini spacecraft 4/4 17 0.06 35.1 3.2

Drive-by-wire vehicle 9/16 4 0 17.5 3.9
Reentry vehicle 5/13 7 0 19.7 2.5
Space shuttle 9/9 34 0.5 50.7 5.3

Hard-disk drive 23/27 29 1 102.3 19.1

Let us now analyze Table 3 a little further. As expected, good results are obtained even for systems
with large state vectors. µ-analysis is indeed a frequency-domain approach, and the size of the frequency
response does not depend on the order of the system. It is more surprising that there is no significant
increase of the computational time or decrease of the accuracy when the number of uncertainties in-
creases. The most likely explanation is that the B&B algorithm implemented in the STOWAT divides
the uncertainty domain along the directions corresponding to the highest µ-sensitivities [20], i.e. to the
uncertainties with the greatest influence on stability. It also shows that the limiting factor of the proposed
approach is not the total number of uncertainties as one might think, but the number of uncertainties that
most impact stability or performance. It is therefore preferable to have a system with 20 uncertainties,
only 4 of which have a high sensitivity, than a system with 8 uncertainties of equivalent sensitivity. For-
tunately, it seems that the first case is more frequent than the second one in practice, even if it must be
kept in mind that an unfavorable configuration will inevitably occur at some point, which will put the
analysis tools in trouble.

4 Application to a challenging satellite benchmark

4.1 Open-loop satellite modeling
Without a significant loss of generality, since coupling effects are reduced in our context, a single-

axis satellite model is considered next. Let us then denote θ the attitude angle of the satellite about
the considered axis and J = 1000kg.m2 its main moment of inertia. The rigid dynamic equation simply
reduces to:

Jθ̈ = TW +TS +TF +TD (9)

where TW is the control input torque (produced by the reaction wheel system), TS is the torque produced
by the propellant slosh effects, TF is induced by the flexible modes of the solar arrays attached to the
main body and finally, TD captures all remaining disturbance torques (possibly produced by the solar
pressure but also by an embedded robotic arm dedicated to on-orbit services). In this work, as is usual
in the literature, slosh and flexible effects are represented by poorly damped second-order linear models.
The following generic expression is then obtained:

TS +TF = ∑
i

Lis2

s2 +2ξiωis+ω2
i

θ̈ (10)
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where the parameters Li, ωi and ξi respectively denote the magnitude, the frequency and the damping of
each mode. The nominal values are presented in Table 4 and the corresponding open-loop Bode plot of
the transfer from TW to θ is visualized in Fig. 4.

Table 4 Slosh & flexible modes coefficients (nominal values)

Mode #i 1 2 3 4 5
Li [kg.m2] 30 40 50 300 100
ωi [rad/s] 0.1 0.2 0.3 0.6 1

ξi 5×10−3 4×10−3 3×10−3 1×10−3 1×10−3

Remark 4 As is further detailed in [21], a more realistic control-oriented representation of the slosh
effects is obtained with implicitly time-varying frequency and damping characteristics. The latter gener-
ally depend indeed on the angular velocity and acceleration of the satellite. Such variations have been
omitted here to generate an uncertain but invariant model as imposed by the µ-analysis framework.
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Fig. 4 Bode plot of the nominal open-loop transfer function of the satellite model from the control input
torque TW to the attitude angle θ (with 3 slosh modes and 2 flexible modes)

Finally, as mentioned above, the control input torque TW is generated by a reaction wheel, which
can be approximated by a first-order linear model whose uncertain time constant τ ∈ [0.445 , 0.555] will
be fixed to its nominal value 0.5 in the design process:

TW =
1

1+ τs
TC (11)

Note that this actuator is also rate and magnitude limited. These properties are taken into account in the
design phase but not introduced here since the considered maneuvers are assumed to be saturation free.
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4.2 Structured H∞-based robust controller design
A robust attitude tracking controller is designed for the above satellite model. As illustrated in Fig. 5,

a second-order reference model R(s) with desired frequency ωr = 0.05rad/s and damping ξr = 0.75 is
introduced. This model delivers reference signals θr and θ̇r which are compared to the outputs of the
plant. As is clearly visible on the diagram, an extended PID structure is imposed on the controller K(s)
which minimizes the H∞ norm of the weighted transfer from the exogenous inputs w1 = θc and w2 = TD
to the exogenous outputs z1 = ε = θr−θ , its integral z2 and z3 = TC. The weighting functions are tuned
so that:

• the optimized controller exhibits good robustness properties against actuator delay (delay margin
should be above 0.45s),
• the H∞ norm of the transfer TD(s) = TTD→ε(s) from disturbance torque inputs TD to the attitude

error ε should ideally not exceed 0.01.

The last objective which ensures good tracking performance despite perturbations is hard to achieve si-
multaneously with the delay margin constraint. After a reasonably short tuning process, a fifth-order
controller K(s) was yet obtained with the systune routine from the Matlab control toolbox. This con-
troller exhibits a very good delay margin (0.45s) and acceptably meets the performance requirement
with ‖TD(s)‖∞ = 1.01×10−2.

Fig. 5 H∞ design model

Moreover, parametric robustness properties against possible variations of the inertia, the actuator
time constant and the 15 parameters of Table 4 are partly ensured via a multi-model design approach.
There is however no guarantee that the whole uncertainty domain is cleared. It is indeed numerically
impossible here to include all parametric variations in the design process since there are two many
parameters. A validation phase to be performed a posteriori is then required.

4.3 Control system validation
Let us now evaluate the pointing performance properties of the closed-loop system by confronting

the latest version of the STOWAT (code #4 in Section 3) to a classical MC-based approach. Real para-
metric uncertainties are introduced on the inertia J of the satellite and the time constant τ of the reaction
wheel, as well as the magnitudes Li, damping factors ξi and frequencies ωi of the 5 slosh and flexible
modes. An uncertain system with 21 states and 17 uncertainties is therefore obtained.

Problem 1.1 is solved first using the SMART Library, which shows that stability is guaranteed when
all uncertainties are allowed to vary independently of each other by ±11.34% around their nominal
values. The main objective is now to determine if the pointing performance degradation with respect
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to the nominal case is acceptable when the uncertain parameters vary by ±11%. For this, the transfer
TD(s,∆) between the external disturbance torque TD and the attitude error ε is considered. The nominal
H∞ norm without uncertainties is 1.01× 10−2, which indicates a good rejection of the perturbation.
Robust performance is first analyzed using random sampling. 100000 samples are generated for each
uncertain parameter, following a uniform distribution on an interval of±11% around their nominal value.
The highest H∞ norm among these 100000 samples is 1.11× 10−2 and is achieved near the frequency
ωs = 0.5rad/s. This suggests that performance is only minimally affected by the uncertainties. The
Bode plots of the nominal system and the 100 samples with the highest H∞ norm are shown in red and
blue respectively in Fig. 6. There is a fairly large dispersion on the frequency, but much less on the
magnitude, which is consistent with the previous results. All computations are performed in 1300s.
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Fig. 6 Bode plot of the transfer TD(s,∆) between the external disturbance torque and the attitude error
(red = nominal, blue = 100 worst samples, yellow = worst-case identified by µ-analysis)

The SMART Library is now used to solve Problem 2.1, i.e. to compute a lower bound on the
worst-case H∞ norm of the transfer TD(s,∆). 100 initial frequencies are considered to cover the whole
frequency range, and are then optimized during the analysis process to find the highest possible lower
bounds corresponding to worst-case uncertainty combinations. The results are obtained after only 9s and
are partially reproduced in Table 5. It can be seen that in most cases, a lower bound of about 1.1×10−2

is obtained close to ωs, which is in line with the results obtained previously by sampling. But iteration
93 reveals a much higher bound of 2.89×10−2 at the frequency ωc = 2.346rad/s, which is missed by
the sampling approach despite the fact that 100000 cases are considered. The Bode plot of this worst-
case configuration is plotted in yellow in Fig. 6. It is worth noting that ωc is quite different from ωs.
Moreover, it does not coincide with any frequency of the slosh and flexible modes (0.1, 0.2, 0.3, 0.6
and 1rad/s). It was therefore not possible before applying µ-analysis to anticipate this phenomenon,
which can have a significant impact on the pointing performance. Let us indeed consider a sinusoidal
disturbance TD(t) = sin(wc t). The resulting pointing error is plotted in Fig. 7 with the same color code
as above. For the worst-case configuration identified by the SMART Library, it is about 15 times and 30
times larger than for the worst random sample and the nominal configuration respectively.
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Table 5 Worst-case performance analysis results

Grid point Initial frequency [rad/s] Final frequency [rad/s] Lower bound on ‖TD(s,∆)‖∞

1 0.000 0.475 1.10×10−2

2 0.004 0.483 1.10×10−2

91 1.772 0.489 1.10×10−2

92 2.070 0.484 1.10×10−2

93 2.418 2.346 2.89×10−2

94 2.825 0.476 1.10×10−2

99 6.141 0.491 1.11×10−2

100 7.173 0.499 1.11×10−2
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Fig. 7 Pointing error in the presence of a sinusoidal disturbance TD(t) = sin(wc t) (red = nominal, blue =
100 worst samples, yellow = worst-case identified by µ-analysis)

In this context, a critical issue is to compute the probability of observing such a performance degra-
dation, so as to decide whether the proposed control system is reliable enough or not. The latest version
of the STOWAT introduced in Section 3 is therefore applied. As with the previous sampling approach,
all uncertainties follow a uniform distribution. But the frequency range on which performance is in-
vestigated is now limited to the interval [2 3] rad/s (represented by vertical dashed lines in Fig. 6) to
focus on the worst-case peak identified above. Problem 2.2 is solved with a desired performance level
γ = 1.01×10−2, which corresponds to the H∞ norm of the nominal system. In other words, the objec-
tive is to compute guaranteed probabilities that the H∞ norm is lower or higher between 2 and 3rad/s
than its nominal value on the whole frequency range (represented by a horizontal green line in Fig. 6).
The probability of undetermined performance below which the B&B algorithm should be interrupted
is fixed to p(Dγu) = 0.001%. After about 100s, the probabilities p(Dγ) = 99.999%, p(Dγ) = 0% and
p(Dγu) = 0.001% of guaranteed performance, guaranteed non-performance and undetermined perfor-
mance are obtained, which means that the probability that the H∞ norm is higher than 1.01× 10−2

between 2 and 3rad/s is upper bounded by 0.001%. A very large part of the uncertainty domain has
therefore been cleared in a very reasonable computational time. The results are even better if we con-
sider a more realistic case where the uniform distribution is replaced with a normal distribution with zero
mean and variance σ2. To illustrate this, all probabilities are quickly recomputed using the STOWAT
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for different values of σ2 between 0.1 and 5, without performing the whole analysis again. The re-
sults are plotted in Fig. 8 and show that p(Dγu) decreases when σ2 decreases, the uniform case being
recovered when σ → ∞. For example, if σ2 = 0.2, the probability of non-performance is no larger
than 1.8× 10−6 %. And results are even better if σ2 = 0.1, since the probability of non-performance
is bounded by 1.3× 10−9 %, which is negligible. The performance degradation shown in Fig. 6 and 7
is therefore very unlikely in these cases. To sum up, if the system is well enough identified to ensure
that σ remains quite small, there is certainly no need to invalidate the control system on the basis of
this extremely rare worst-case event. But if σ is larger, performance degradation cannot be ignored,
and either a better controller should be designed or the system should be better identified. This realistic
example clearly shows the added value of the probabilistic µ approach implemented in the STOWAT,
which is here faster and more reliable than MC simulations, but also less conservative than determin-
istic µ-analysis. Moreover, the computational time remains particularly low – a few minutes to build
Fig. 8 – considering the complexity of the model, which contains almost 20 uncertainties.
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Fig. 8 Probability of undetermined performance as a function of the variance σ2

5 Conclusion
The combination of state-of-the-art algorithms and a highly optimized implementation reveals the

interesting potential of probabilistic µ to evaluate the robustness properties of complex systems. The lat-
est version of the Matlab STOchastic Worst-case Analysis Toolbox indeed allowed to assess the pointing
performance of a flexible satellite subject to slosh effects in the presence of about twenty parametric un-
certainties, whereas previously existing tools could hardly handle more than 4 or 5. The implementation
effort reported in this paper paves the way to the integration of probabilistic µ in the aerospace V&V
process in complement to traditional MC-based techniques.

While it is always possible to further optimize the code, the effort tends to become inversely pro-
portional to the benefit, and it is questionable whether it is worth it. More promising directions to make
the analysis faster would be to use parallel computing, and to improve the B&B strategies to explore the
uncertainty domain more efficiently. Research is currently underway and suggests that by combining the
two, it should be possible to further reduce the computational time by a significant amount, leading to a
third generation of the STOWAT capable of handling even more complex systems.
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