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Abstract

We investigate numerically the transition to unsteadiness of natural convection in air filled
differentially heated cavities heated and cooled with uniform flux at their vertical boundaries.
This is done using both time integration of the nonlinear equations and of the linearized equa-
tions around a steady solution and computation of the leading eigenvalues of the Jacobian of
steady solutions. Results are given for values of the vertical aspect ratio ranging from 0.2 to 8.
In the square air filled cavity the transition occurs at a value of the flux Rayleigh number very
close to 4.5 × 1012. We characterize different groups of eigenmodes of the Jacobian. We show
that the modes responsible for the transition are characterized by a wavelike structure of con-
stant wavelength whose amplitude increases exponentially with height in the upward boundary
layer along the heated wall. We show that, at criticality, the wave characteristics are in fair
agreement with values of the linear stability analysis of the buoyancy layer. We also discuss
the evolution of the eigenvalues layout with the aspect ratio.

Keywords: natural convection, isoflux cavity, instability, unsteadiness, time integration,
eigenmodes computation

Nomenclature

(H,L) Cavity height and width

(N,M) Number of grid points in horizontal and vertical directions respectively

(p, q) Parameters for Gill’s solution

(U,W ) Scalings for horizontal and vertical velocity components

(u,w) Horizontal and vertical velocity components

1Most of this work was performed before LIMSI was merged with LRI changing its name to LISN
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(x, z) Horizontal and vertical coordinates

β Coefficient of thermal expansion

∆T Scale of temperature difference

δT Thermal boundary layer thickness

κ Thermal diffusivity

λ Thermal conductivity

µ Basic Brunt-Väisälä frequency (=
√
BS)

ν Kinematic viscosity

φ Boundary heat flux

ψ Pressure increment

σ Complex shift used in Arpack’s shift-and-invert algorithm

Θ Dimensionless temperature

B Coefficient of buoyancy term in dimensionless equations

g Acceleration of gravity

P Pressure

Pe Peclet number (= W H
κ

)

Pr Prandtl number (= ν
κ
)

Ra Flux Rayleigh number (= gβφH4

νκλ
)

RaH Rayleigh number based on H

Re Reynolds number (= W H
ν

)

S Vertical stratification

AR Aspect Ratio (= H
L
)
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1. Introduction

Buoyancy-induced flows abound in nature or in industrial configurations and the study of
their many specific configurations has been and is still the object of intense research. Among the
many configurations, the so-called isothermal differentially heated cavity has become one of the
most classical problems of the heat transfer literature. The determination of the flow structure,
corresponding heat transfer, loss of stability, transition to turbulence have been investigated for
more than 60 years now. One specific problem which has resisted years of investigation is the
transition to unsteadiness in an air filled cavity differentially heated (and cooled) at uniform
heat flux at its vertical boundaries. This is the subject of the present paper.

After a historical journey in the field, I will first address the scaling issue, showing that it is
not a good idea to perform the time integration of the unsteady equations in the usual way, that
is starting from a value obtained at a lower value of Ra as initial condition, unless one assumes
a scaling that removes the dependence of the stratification on the Rayleigh number. Second I
will determine the critical value of the Rayleigh number in a square cavity through both time
integration and computation of the leading eigenvalues of the spectrum of steady solution. I
will discuss the physics of various groups of eigenmodes, and perform a grid independence test
that shows the requirements needed in terms of spatial resolution. I will also discuss the spatial
structure of the most unstable eigenmode and fluctuating solution. I will then determine upper
and lower bounds of the critical Rayleigh number for values of the aspect ratio in the range
0.2 to 8 and show that the traveling waves in the boundary layers have similar characteristics
than those resulting from blending the linear stability analysis of the buoyancy layer with the
analytical solution. I will finally show how the leading eigenvalues evolve with aspect ratio.

2. A historical perspective

For one of the simplest configurations i.e. the flow adjacent to a heated vertical plate in
an infinite ambient medium, literature abounds with analysis of analytical solutions for various
types of thermal boundary conditions solutions on the plate or in the ambient medium (see
e.g. [1]).

Whereas early studies considered the case of uniform wall temperature, the case of uniform
heat flux was apparently first considered in [2]. Let us first recall the basic scalings of the
isoflux natural convection boundary layer. Consider a fluid of kinematic viscosity ν, thermal
conductivity λ, and thermal diffusivity κ along a vertical plate of height H heated at a uniform
flux φ in an isothermal environment at T∞.

The governing equations under both the boundary layer and Boussinesq approximations
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read :

∂u

∂x
+
∂w

∂z
= 0 (1)

u
∂w

∂x
+ w

∂w

∂z
= ν

∂2w

∂x2
+ g β (T − T∞) (2)

u
∂T

∂x
+ w

∂T

∂z
= κ

∂2T

∂x2
(3)

where u and w are the velocity components in horizontal and vertical directions, respectively,
and T the temperature. Classical scaling analysis [3] results in the following characteristic
scales for the velocity magnitude W and boundary layer thickness δT :

δT ∝ HRa−1/5 (4)

W ∝ κ

H
Ra2/5 (5)

where Ra is the flux Rayleigh number (Ra = gβφH4

νκλ
). The temperature difference across the

boundary layer scales as

∆T ∝ φH

λ
Ra−1/5 (6)

and the entrainment velocity U like κ
H
Ra1/5. In terms of local vertical height z, the thermal

boundary layer thickness δT thus increases like z1/5, the vertical velocity like z3/5, ∆T like z1/5

and the entrainment velocity decreases like z−1/5.
These evolutions can be compared with those characterizing the flow along an isothermal

plate for which the boundary layer thickness δT increases like z1/4, the vertical velocity like
z1/2, and the entrainment velocity decreases like z−1/4. Compared to the isothermal case, the
vertical velocity in the isoflux boundary layer thus increases more rapidly and the boundary
layer thickness less rapidly with altitude, which is due to the constant input of buoyancy flux.

A sub category of thermally buoyancy-induced flows are those which occur in enclosures
when the walls are maintained at different temperatures. We will concentrate here on those
induced by horizontal thermal gradients, idealized as the so-called differentially heated cavity, a
configuration consisting of a rectangular cavity whose vertical opposite walls are maintained at
different constant temperatures, the horizontal ones being either adiabatic or perfectly conduct-
ing. The first attempt to elucidate its flow structure and related heat transfer is presumably
due to Batchelor [4]. As precisely described in [5], Batchelor hypothesized that the core of the
cavity would be isothermal, from which he derived that the flow in the core would be rotating
like a solid body. Later experiments ([6],[7]) showed that, for sufficiently large values of the
Rayleigh number, the core was not isothermal but thermally stratified instead. This led to the
identification of the boundary layer regime whose first analytical investigation was performed
by Gill [8] for large values of the Prandtl number. The free constant that appears in the general
solution was set requiring that the vertical velocity be zero at both horizontal walls. This was
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revisited by Quon some time later [9] and improved by Bejan [10] who required that the con-
stant be determined requiring the vertical heat flux be zero, leading to a much better agreement
with the numerical solutions available.

Kimura and Bejan [11] investigated the isoflux differentially heated cavity along the lines of
what Gill had done for the isothermal cavity [8] using the alternative proposed by Bejan [10] to
relate the vertical stratification in the core to the cavity characteristics. The general solution
depends on two parameters p and q, which are determined from symmetry properties of the
solution with respect to the cavity center. They found that the temperature of the walls rises
linearly with height at the same rate as the temperature in the core which is motionless. In the
reference quantities (4,5,6) the vertical velocity and temperature profiles across the boundary
layer read ;

w =
32

q3
exp(−q

4
x) sin(

q

4
x)

θ =
4

q
exp(−q

4
x) cos(

q

4
x)

(7)

where the key parameter q is linked to the cavity characteristics :

q9 = 8192
H

L
Ra

1/5
H (8)

This means that the dimensional vertical velocity behaves as Ra2/5 × Ra−1/15 i.e. like Ra1/3

and the boundary layer thickness scales like Ra−1/5 × Ra−1/45 i.e. like Ra−2/9. Likewise the
temperature difference across the boundary layer scales like φH

λ
Ra−2/9.

This is precisely the velocity scaling proposed by Kouroudis et al [12] 2, who derived their
scales using directly the thermal balance between upward convection and downward conduction
in the scaling analysis. This results in a slightly different scaling for temperature φH

λ
Ra−1/9.

They also provided scalings for the horizontal velocity and thickness of the horizontal boundary
layer and the top and bottom walls ( U ∝ WRa−1/18 and δ ∝ HRa−1/6, respectively). They
also addressed the transition to unsteadiness to which we will come back later on.

The flow structure in the isoflux cavity is thus made of two boundary layers whose thickness
is independent of height, a noticeable feature that is due to the fact that the equilibrium
temperature at the walls increases linearly with height as does the stratification in the core, both
at the same rate. A detailed comparison between the isothermal and isoflux cavity for values of
the aspect ratio ranging from 1/8 to 8 and two Prandtl values corresponding to air and water
was performed by [13] with particular emphasis on heat transfer. As shown by Prandtl [14] in
his study of katabatic winds, linear and identical variation of the wall and ambient temperatures
with height is indeed a (sufficient) condition for the existence of a one-dimensional solution of

2Apparently the work by Kimura and Bejan was unknown to these authors, as it is not referenced, although
it appears in the references of some papers they quote
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the Navier-Stokes equations, named the buoyancy layer which, in boundary layer units, reads :

w(x) = exp(−x) sin(x)

θ(x) = exp(−x) cos(x)
(9)

The linear stability of this solution was studied by Gill and Davey [15] who found a critical
Reynolds number of approximately 100 for a fluid of Prandtl number equal to that of air (0.72).
This stability analysis was further extended by Iyer [16] to the case of boundary layers at an
angle to the vertical. Iyer and Kelly [17] investigated the nature of the instability, carrying
out non-linear expansions of the 2D solution at second order. They found only supercritical
solutions to occur. This analysis was also carried out by True and Bruun Nielsen [18], who
found that the instability was supercritical for values of the Prandtl number smaller than 9.9

and subcritical for larger Prandtl values.
Desrayaud [19] extended the linear stability analysis to the case of homogeneous Neumann

boundary condition for the temperature fluctuation. He showed that changing this boundary
condition has a substantial effect on the critical parameters for small values of the Prandtl
number. In particular for a Prandtl number of 0.71, the critical Reynolds number drops from 101
to 44, corresponding to a critical wave number and wave speed of 0.387 and 0.319 respectively.
Mc Bain et al [20] further extended the stability analysis which they corroborated through direct
numerical simulations of the buoyancy layer along a vertical plate. They used a finite difference
algorithm assuming periodicity in the streamwise direction for two Prandtl numbers of 7 and 0.1

and Reynolds numbers of 9 and 135, respectively. They observed the development of traveling
waves in good agreement with the linear stability results and confirmed the supercritical nature
of the bifurcation.

A related configuration is the flow between two vertical walls of infinite vertical extension
whose temperatures increase linearly with height. In this configuration, the governing equations
admit a family of 1D analytical solutions that depend on the ratio of the imposed stratification
to the temperature difference across the slot, known as the stratification parameter. For suffi-
ciently large value of this parameter, and assuming zero net vertical flux, the solution reduces to
two buoyancy layers, one upward and one downward, whose expression was given by Elder [7].
The linear stability of the whole family of solutions was investigated by Bergholz [21]. Weakly
nonlinear effects as well as numerical simulations for large supercritical values of Ra showing
the development of soliton-like structures were investigated in [22].

Owing to its well posedness natural convection flow in differentially heated cavities has
become one of the most popular test cases for testing the efficiency and accuracy of numerical
methods to solve the incompressible Navier-Stokes equations. It was proposed as a benchmark
problem in the 1980’s [23] for the case of air (Pr = 0.71) for values of the Rayleigh number
limited to 106. Using Richardson extrapolation G. de Vahl Davis provided the first accurate
solutions for values of Rayleigh number in the range 103 − 106 [24], although his solution for
Ra = 106 was later found to be a few percents off ([25, 26]). Continuous improvements in
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numerical algorithms, in particular Chebyshev spectral methods which proved ideally suited
for this configuration ([27],[25]) and available computer resources have increased the benchmark
solutions up to values of Rayleigh number of 108 [28] close to the end of existence of stable
steady state solutions. The accuracy of the solution for Ra = 108 has been recognized many
times since (see e.g. [29], [30], [31], [32])

These solutions have allowed to study the flow structure in detail, and in particular that the
boundary layer regime in an air-filled cavity is characterized by a quasi linearly stratified core
with a vertical gradient very close to 1 in units of ∆T

H
(see eg [33], [34]). One notable feature

is that this stratified core is thus able to support internal gravity waves, as was first shown by
Imberger and Patterson [35] in their study of the transients for the flow establishment following
a sudden imposition of the temperature difference across of the cavity. They showed that these
waves originate from the intrusion layers emanating from the boundary layers piling-up against
the opposite walls and that it is the time needed to damp these waves that characterizes the
time to achieve steady state.

Predicting the transition to unsteadiness in differentially heated cavities and the subse-
quent route to chaos has drawn considerable interest and efforts in the mid 80’s and early
90’s ([36], [37], [38], [39], [29], [40]). Methodologies to determine the transition to unsteadiness
have proceeded along two main streams initially quite closely related to the type of numerical
approximation and methods to solve the governing equations. The use of finite element ap-
proximation was generally related to solving directly the steady state equations using inversion
of the discretized equations coupling directly the momentum and continuity equations. The
availability of the jacobian in matrix form thus allowed for computing its spectrum directly
providing the leading eigenvalues and eigenvectors characterizing the stability of the solution.
One of the early works along this line was carried out by Winters [41] who determined the loss
of stability of the square differentially heated cavity with perfectly conducting top and bot-
tom walls. He computed a critical Rayleigh number close to 2.1×106, in good agreement with
the value determined experimentally by Briggs and Jones [42]. As problems got harder and
necessitated the use of larger spatial resolutions, direct methods faced numerical difficulties in
particular memory requirements which grow very rapidly. This promoted the development of
matrix-free methods either to solve the steady state equations either stable or unstable through
Newton’s iterations or to get the leading eigenvalues responsible for the loss of stability of the
corresponding solutions ([43], [44], [45]).

The second methodology consists in integrating the time dependent equations and observing
the asymptotic nature of the solution, either steady or unsteady. This methodology places
additional constraints on the numerical algorithm which has to be accurate enough from a
time-space view point. This was generally done by progressively increasing the Rayleigh number
starting from an initial condition corresponding to the steady solution found for the immediately
smaller value of the Rayleigh number. Its efficiency relies on some a priori knowledge of the
time needed to reach to new asymptotic mean solution, and from this standpoint the fact that
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in the isothermal differentially heated cavity the thermal stratification remains quasi-constant
as the Rayleigh number increases results in the fact that the transient reduces to a "simple"
adjustment of the thickness of the boundary layers in a first stage, followed by the time needed
to damp the internal waves generated during the transient. Using this approach Le Quéré and
Alziary de Roquefort [46], using a second order time stepping method coupled to Chebyshev
spatial approximation, were able to determine bounds on the Rayleigh number corresponding
to the transition to unsteadiness for both adiabatic and perfectly conducting horizontal walls
for aspect ratios in the range 1 to 10 for perfectly conducting horizontal walls and 2 to 10
for adiabatic walls. It was shown that depending on the aspect ratio and thermal boundary
conditions on the top and bottom walls, three different instability mechanisms are responsible
for the transition to unsteadiness. For large values of the aspect ratio (say larger than 4), the
instability is of boundary layer type independently of the thermal boundary conditions on the
horizontal walls. For smaller values of the aspect ratio and adiabatic top and bottom walls the
instability originates at the base of the detached region that develops along the ceiling after
the boundary layer impinges on the ceiling and starts to flow horizontally. The crossover of
the two mechanisms correspond to a co-dimension 2 bifurcation. Using a Galerkin Chebyshev
approximation with a resolution of (32×50) the critical value of the aspect ratio corresponding
to the crossover was later determined by Yahata [47] to be equal to 3.41 3. Xin and Le Quéré [48]
showed that for values of the aspect ratio in the range 3-4 the branch of steady solutions has
two turning points, which they attributed to a sudden adjustment of the size of the detached
structure to the cavity width. For small values of the aspect ratio and perfectly conducting
walls, the instability is of thermal type, as the fluid is more and more heated from below as it
is drawn into the ascending boundary layer. It was also found that different instability modes
with different number of structures co-exist, with different symmetry properties, and that the
solution can saturate on either one of these modes. Hysteresis effects exist when increasing or
decreasing the Rayleigh number ([49],[50],[48]).

The results were later extended to square cavities with adiabatic horizontal walls ([50],
[39]) and the critical Rayleigh number corresponding to the transition to unsteadiness was
found to occur at 1.82×108. It was also found that the instability mechanism is linked to the
base of the detached region and that the first instability mode does not possess the centro-
symmetry property of the base flow. The accuracy of this critical value has been confirmed
many times since, either through direct numerical integration ([31],[51]) or through direct search
of the most unstable critical eigenvalue ([47],[48],[52]). Another noteworthy result reported
in [39] was that the fluctuating temperature field displayed inclined stripes in the stratified
core which were attributed to internal gravity waves due to the fact that the primary instability

3In his study [47] Yahata wrongly labeled some parts of the instability boundary as due to internal gravity
modes. In a stably stratified environment the internal gravity modes are always stable although they can
be part of the oscillating motion if the primary instability mechanism has a frequency lower that the cut-off
Brunt-Väisälä frequency as shown in [48]
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mechanism is characterized by a low frequency, smaller that the cut-off Brunt-Väisälä frequency
related to the stratification in the core. The stripes inclination’s angle was found to closely
match the analytical relationship between the angle and the ratio of the main frequency to
the Brunt-Väisälä frequency (see e.g. [53], pp. 208-211). This was later confirmed by Xin
and Le Quéré [48] who showed that the internal waves were intrinsically part of the spatial
structure of the most unstable eigenmode, which is consistent with the fact that the transition
corresponds to a Hopf bifurcation (see also [54], pp. 238-239). Critical values have progressively
become available for a wide range of aspect ratios and Prandtl numbers (see e.g. [55], [56], [57],
[52], [58], [48]).

Let us now come back to the isoflux cavity after this seemingly long, but hopefully not
totally useless, digression. On the basis of the results provided by Kimura and Bejan [11] and
of the stability analysis ([19], [20]), one can derive the value of the critical Rayleigh number
which would correspond to the loss of stability of the boundary layer and hence presumably
correspond to the transition to unsteadiness in a differentially heated isoflux cavity. This seems
particularly relevant for this configuration since, as the boundary layer is of constant thickness,
one could legitimately expect that the transposition of the stability results for the buoyancy
layer to the cavity would be particularly meaningful. In order to rescale the velocity and
boundary layer thickness to arrive at the expressions (9) the reference velocity should therefore
be taken as 32

q3
κ
H
Ra2/5 and the scaling for the boundary layer thickness as 4

q
HRa−1/5. Using

relation (8), one arrives at the relationship between the Reynolds number characterizing the
buoyancy layer and the cavity characteristics, first derived by Desrayaud [19],

Ra =
(Re× Pr)9

2048
(
H

L
)4 . (10)

Assuming a critical value of Rec = 44 [19] results in a critical Rayleigh number approximately
equal to 1.4×1010 a very large value compared to that found in a cavity with isothermal
walls. This large value places very severe constraints on the numerical requirements needed to
address the transition to unsteadiness. First of all, at the corresponding critical value of Ra,
the boundary layer thickness is less than one hundredth of the cavity width. From [19], the
wavelength in boundary layer units is equal to 2π

0.387
≈ 16.24 which corresponds to a wavelength

equal to 0.13×H, meaning that any numerical algorithm should have at least several hundreds
of grid points in each direction.

Second and may be more importantly, contrarily to the isothermal cavity for which the
stratification in the core does not change as the Rayleigh number is increased, this is not the
case for the isoflux cavity. It thus turns out that, integrating the equations from a previous
value of Ra, the time needed to reach the new asymptotic solution is very long, on the order
of the diffusive time scale on the cavity height ie H2

κ
, that is Ra2/5 time units in the natural

scales (4,5), all the more so due to the fact that there is no entrainment in or ejection from the
boundary layer to help speed up this diffusive process. Using time steps smaller than the CFL
limit for stability and accuracy reasons, one thus needs several hundreds of thousands of time
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steps, not to say millions, to reach the asymptotic solution.
Several hundreds of grid points in each direction, hundreds of thousands of time steps

placed this configuration in the category of hard problems in the 90’s. As reported in [50],
early attempts to predict the transition to unsteadiness in the isoflux cavity have proven quite
inconclusive. Integration of the governing equations in the range 1 to 2×1010 did not show
a hint of transition to unsteadiness casting some doubts on the pertinence of the analogy.
Increasing progressively the value of Ra, Le Quéré [50] was eventually able to approximately
locate the transition to take place in between 2×1012 and 4×1012, a value more than two orders
of magnitude larger that the alleged critical value. This order of magnitude corresponding to the
transition to unsteadiness was recently confirmed by Kouroudis et al [12] who performed time
integrations of the unsteady equations with a finite element approximation with biquadratic
elements for velocity and temperature and bilinear approximation for pressure. They used
spatial resolution of 301× 601 up to 401× 601 nodes for the higher Ra number of 4× 1014 and
a Prandtl number of 1. They report that they found the transition to occur at a critical Ra
around 3× 1012. They also checked that the scaling they have proposed is valid over the entire
range of Ra numbers investigated, that is up to 4 × 1014, two orders of magnitude above the
onset of unsteadiness.

The large difference between between the critical values resulting from linear stability theory
of the boundary layer solution and the bifurcation to unsteadiness in the closed cavity, either
isothermal or isoflux, has been logically ascribed to the difference between the concepts of
convective and absolute instability [50], [59]. It has motivated several studies of wave properties
[60] or convective-absolute stability analysis of various similarity solutions of boundary layers
adjacent to vertical walls, [61], [62], [63], [64]. Although Tao [64] has been able to confirm
quantitatively and relate the results from a convective-absolute linear stability theory to the
existence of a global instability with sustained oscillations in the numerical simulation of a two
dimensional flow developing along a vertical plate in a stratified environment, none of these
studies have succeeded in thoroughly explaining the relationship between the instability studies
of the buoyancy layer and the transition to unsteadiness in the isoflux cavity.

As was said above, one difficulty when dealing with time integration of the unsteady equa-
tions lies in the fact that the stratification changes with Rayleigh number. There are two ways
to get around the stratification issue. One can think of building an initial condition as close
as possible from the asymptotic solution at a given value of Ra. This is quite simple owing
to particular structure of the flow, 1D except in the ends, and linear stratification everywhere.
To this end one needs the stratification whose dimensional value was reported by Kimura and
Bejan [11] in the conclusion of their paper as follows :

(
dT

dz
)core =

(8192)1/9

64

κν

gβH4
(
H

L
)4/9Ra8/9 (11)

It turns out that the coefficient in this equation is wrong as it should read instead :
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dT

dz
)core =

(8192)4/9

64

κν

gβH4
(
H

L
)4/9 Ra8/9 4 (12)

For the sake of completeness computation of the stratification is reported in annex A.
The magnitude of this vertical stratification can be appreciated by comparing the resulting

vertical temperature difference ∆TH to the temperature difference across the cavity ∆TL =
8
q
φH
λ
Ra−1/5. This ratio reads :

∆TH
∆TL

=
(2)2/9

4
(
H

L
)5/9 Ra1/9 (13)

In a square cavity at Ra = 109, ∆TH is approximately 3 times larger that ∆TL, a stratification
much larger than that found in the isothermal differentially heated cavity. This ratio increases
with Ra and for Ra = 1012, it reaches 6.3, a very large stratification that obviously helps
strongly stabilize the flow.

Another way to circumvent the stratification issue is to use a scaling which removes the Ra
dependence of the core stratification, that is, as equation (12) shows, to define a temperature
scale such as

∆T =
κν

gβH3
Ra8/9 (14)

or, equivalently :

∆T =
φH

λ
Ra−1/9 (15)

which is precisely the temperature scale proposed in [12].

3. Governing equations

3.1. Scalings

We now review and discuss the different scalings to address these questions. We assume
that the flow is governed by the Navier-Stokes equations under the Boussinesq approximation.

∂u

∂x
+
∂w

∂z
= 0 (16)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂P

∂x
+ ν ~∇2u (17)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂P

∂z
+ ν ~∇2w + gβ(T − T0) (18)

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
= κ ~∇2θ (19)

4Since a good agreement between the analytical value and numerical simulations was reported in [11] (see
their figure 6), comparison of the two expressions (11) and (12) strongly suggests there was a misprint in the
expression reported in the conclusion of [11]. The exponent should have been 4

9 and not 1
9 , as confirmed by A.

Bejan and S. Kimura (personal communication)
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The equations are made dimensionless using a length scale L̃, a reference velocity Ṽ , and a
temperature scale ∆̃T , yielding :

∂u

∂x
+
∂w

∂z
= 0 (20)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂P

∂x
+
Pr

Pe
~∇2u (21)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂P

∂z
+
Pr

Pe
~∇2w +B θ (22)

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
=

1

Pe
~∇2θ (23)

where the three dimensionless parameters are respectively the Prandtl number Pr = ν
κ
, the

Peclet number Pe = L̃Ṽ
κ

and B = gβ ∆̃T L̃

Ṽ 2 . It is noted that Pr
Pe

= 1
Re

where Re = L̃Ṽ
ν
.

Table 1 presents the values of parameters Pe and B, of the temperature boundary condition
and resulting stratification for different choices of scalings (it is assumed that L̃ = H).

Scaling Reference quantities Pe = L̃Ṽ
κ

B = gβ ∆̃T L̃

Ṽ 2

∂θ
∂x

Stratification S
(in units of ∆̃T

H
)

I Ṽ = κ
H
Ra2/5

Ra2/5 Pr Ra1/5 (8192)4/9

64
Ra4/45 (H

L
)4/9

∆̃T = φH
λ
Ra−1/5

II Ṽ = κ
H
Ra1/3

Ra1/3 Pr ×Ra1/9 Ra2/9 (8192)4/9

64
Ra1/9 (H

L
)4/9

∆̃T = φH
λ
Ra−2/9

III Ṽ = κ
H
Ra1/3

Ra1/3 Pr ×Ra2/9 Ra1/9 (8192)4/9

64
(H
L

)4/9

∆̃T = φH
λ
Ra−1/9

Table 1: Scaling I is the natural scaling along an isoflux boundary layer; scaling II results from Kimura and
Bejan’s analysis; scaling III corresponds to a constant stratification. This is the scaling used in [12] 5

In order to illustrate the effect of using these different scalings on the numerical computation
of the solution at a given Ra number, the following test cases are performed with a numerical
algorithm which we briefly describe.

3.2. Numerical algorithm

The dimensionless equations are integrated in unsteady form. The time stepping algorithm
is based on the incremental prediction-projection method ([65], [66]). The prediction step
consists in obtaining an intermediate velocity field V? = (u?, w?), assuming a known pressure
field P n. The time discretization combines an implicit treatment of the linear viscous terms

5Note however that their dimensionless equations (9,10,11) are not consistent with these scalings
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whereas the convective terms are treated by a second order extrapolation. This scheme reads:

3u? − 4un + un−1

2∆t
+ 2Vn · ∇un −Vn−1 · ∇un−1 = −∂P

n

∂x
+
Pr

Pe
∇2u? (24)

3w? − 4wn + wn−1

2∆t
+ 2Vn · ∇wn −Vn−1 · ∇wn−1 = −∂P

n

∂z
+
Pr

Pe
∇2w? +B θn+1 (25)

which yields two independent Helmholtz problems for each of the components u? and w?. These
Helmholtz problems are solved using an incremental ADI solver.

The second step consists in projecting V? onto the space divergence free vector fields with
null normal trace, yielding Vn+1. This is carried out by defining a scalar variable ψ such as:

Vn+1 −V? = ∆t∇ψ (26)

ψ is determined by taking the divergence of equation (26) which yields,

∇2ψ = −(∇ ·V?)/∆t (27)

This elliptical equation for ψ is associated with boundary condition ∂ψ/∂n = 0. This equation
is solved using a multigrid algorithm. The final velocity is obtained from:

Vn+1 = V? + ∆t∇ψ (28)

The variable ψ can be seen as a pressure correction and one has:

P n+1 = P n + 3/2 ψ (29)

The spatial discretization makes use of the classical staggered grid arrangement. The discretized
equations are obtained by a finite volume formulation, which guarantees conservative properties.
Both the viscous and convective terms are treated by finite centered differences. We use a grid
of N ×M grid points with a cosine mesh in x and a uniform mesh in z.

4. Reaching steady state through time integration

4.1. Which scaling to use ?

Figure 1 presents the time traces of the temperature at a point located in the core for Ra =

109 starting from rest and uniform temperature. The three time traces, although computed with
different time steps, are virtually indistinguishable which confirm the correctness of the scalings
proposed in table 1 (if needed). They also show that the time needed to reach steady state
is on the order of 1000 time units in the time unit H2

κ
Ra−2/5. The high frequency oscillations

observed up to a time of 200 are due to the internal waves. This figure confirms that in this case
it is the diffusive time scale on the cavity height which governs the steady state, and not the
time needed to damp the internal waves, contrarily to the isothermal cavity. As can also be seen
in figure 2, the period of the internal waves decreases with increasing time, as a consequence of
the fact that the core stratification increases with time.
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Figure 1: Evolution of the temperature at point (0.16, 0.62) for the 3 different scalings, Ra = 109, AR = 1.
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Figure 3: Evolution of the temperature at point (0.16, 0.49) ; Ra = 1010 ; AR = 1

In order to further illustrate the effect of using these different scalings on the numerical
computation of the solution at a given Ra number, the following test case is performed. The
solution for Ra = 1010 is computed for different scalings or initial conditions. Figure 3 presents
the time evolution of the temperature at a given point for the following conditions. Time trace
(a) corresponds to the integration of the governing equations using scaling I starting from an
initial solution for Ra = 109 as initial condition. For time trace (b) the initial condition is
the manufactured solution6 corresponding to Ra = 1010 using scaling I form of the governing
equations. Time trace (c) corresponds to the use of scaling III starting from an initial solution
for Ra = 109 as initial condition. The three time traces show that the asymptotic solution is
steady, but one clearly sees that one can conclude much more rapidly on the asymptotic nature
of the solution either starting from the manufactured initial condition or using scaling III. All
the computations reported below have been performed using scaling I.

4.2. Internal gravity waves

As recalled in section 2, it was shown in [35] that the stratified core is able to sustain internal
gravity waves. A characteristic angular frequency of these waves is the Brunt-Väisälä frequency
µ based on the stratification in the core (µ =

√
BS with the notations of Table 1). In linearly

stratified enclosures Thorpe [67] showed that the spectrum of the standing waves is discrete

6i.e. initializing a centro-symmetric solution made of two buoyancy layers (7) along each wall with corre-
sponding parameters (8, 12)
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Figure 4: Density power spectrum of the evolution of the Nusselt number across the vertical mid-plane in the
time evolution leading to steady state. Ra = 2.2 × 1012 ; AR = 0.2. The basic Brunt-Väisälä frequency µ is
equal to 0.307

and quantified according to

τ 2
n,m = µ2 m2/L2

m2/L2 + n2/H2
= µ2 1

1 + n2

m2
1

AR2

(30)

where µ is the basic angular Brunt-Väisälä frequency, and n and m are the number of half
wavelengths in the vertical and horizontal directions respectively, showing that the basic Brunt-
Väisälä frequency is an upper bound of the waves frequency. In shallow cavities (AR << 1),
the spectrum thus extends from µ down to ≈ µ×AR as can be seen from figure 4 that presents
the spectrum of the Nusselt number across the vertical mid-plane, known to be a good indicator
of the internal wave activity, in a cavity of AR = 0.2 for Ra = 2.2×1012. The spectrum clearly
shows different peaks corresponding to odd values of m, that match the analytical formula to
better than 1 0/00. That n should be taken equal to 1 is evidenced by figure 5 which shows
that at a given abscissa the crests and troughs of the fluctuations are all in phase.

5. Transition to unsteadiness in a square cavity

5.1. Transition through time integration

Transition to unsteadiness was first determined in the brute force way, by setting the value
of Ra to a specified value and observing the asymptotic response. To avoid the stratification
issue we used the first strategy presented above, i.e., starting the time integration from the
initial manufactured condition previously described at the given Ra number.
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Figure 5: Isovalues of the fluctuating temperature field during the transient regime for Ra = 2.5×1012, AR = 0.2
; isovalues ; ±5e− 5,±4e− 5,±3e− 5, (N,M) = (512, 256)

For instance figure 6a presents the time evolution of the temperature at several points
located in the boundary layer in a square cavity for Ra = 3 × 1012. It can be seen that, right
after the beginning of time integration, a wave packet develops and travels upward as time
increases but the solution eventually reaches a steady state. The situation is very similar to
what was reported in [59] for the isothermal cavity. A close up of the evolution is displayed in
figure 6b which shows that the front and rear of the wave packet progress linearly with time
but not at the same speed, resulting in a spreading of the wave packet. This indicates that the
boundary layer has become convectively unstable but the asymptotic solution is still steady.

When the Ra number is increased to Ra = 4.2× 1012, the time traces of the temperatures
in figure 7b and 7a show that after the initial wave packet has left the boundary layer, the
solution at the two uppermost points continues to display time oscillations, first characterized
by several frequencies, which slowly give way to a time periodic solution, as confirmed by the
power spectrum of the signal for the uppermost point displayed in figure 8.

Figure 9 presents a snapshot of the evolution of the temperature fluctuation (θ̃ = θ(x, z, t)−
θ̄(x, z)) in the upward boundary layer as a function of altitude. It shows that the amplitude of
the fluctuation grows exponentially with z in the upper middle part of the cavity.

To confirm this we have computed the most unstable eigenmode of the steady state solution
at this value of the Rayleigh number. The (unstable) steady solution was obtained using the
procedure proposed by Tuckerman et al in a series of papers [68, 69, 70] that we implemented
successfully in [71]. The unsteady linearized equations around that steady solution are then
integrated in time starting from an initial random temperature field. The equations are inte-
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(a) Evolution of the temperature very close to the heated wall x ≈ 0.0001 and
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Figure 6: Time traces of temperature: Ra = 3× 1012; (N,M) = (512, 512)
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Figure 8: Density power spectrum: FFT performed on a sampling of 8192 points over a time interval of 409.6:
fundamental frequency is 1.538
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when |θ̃2| reached 104

grated long enough in time to let the solution polarize along the most unstable eigenmode. As
this may require very long time integration, the solution was periodically rescaled to prevent
overflow as shown in figure 10.

Figure 11 displays the evolution of the amplitude of the eigenmode along the same vertical
line as in figure 9. It shows that the eigenmode possesses a spatial structure that evolves
exponentially with z with an amplification of almost 10 orders of magnitude from the bottom to
the top. This figure also helps realizing the difficulty to numerically approximate this problem
accurately as the eigenmode shows there is room for at least 20 wavelengths all along the
boundary layer. Assuming that one needs approximately 30 points per wavelength to accurately
represent the time evolution of the solution results in the fact that one should have on the order
of 500 to 1000 grid points in the vertical direction. It also shows that a uniform equidistant
mesh in the vertical direction is probably the best way to approximate this solution.

Comparison of figures 9 and 11 shows that the fluctuating temperature differs from the
eigenmode in the half lower part of the boundary layer where the fluctuation are on the order
of 10−4 whereas the amplitude of the eigenmode continues to decrease exponentially. This is
due to small albeit unavoidable nonlinear effects that mask the shape of the eigenmode.

Grid independence was performed increasing the spatial resolution to (N,M) = (512, 1024).
The unsteady solution obtained for Ra = 4.2× 1012 with (N,M) = (512, 512) was interpolated
to the finer mesh and time integration was resumed. The time signal showed that the solution
converged to a steady state. We had to increase the Rayleigh number to Ra = 4.5 × 1012
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Figure 11: Evolution of log(|θ̃|) with z ; Ra = 4.2× 1012; (N,M) = (512, 512) ; full line corresponds to positive
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to observe an asymptotic time periodic solution as shown in figure 12a. The corresponding
frequency is 1.550 as shown in figure 12b.

5.2. Unsteadiness via spectrum computation
5.2.1. Methodology

One way to confirm the previous results is to compute the evolution of the spectrum of the
Jacobian of the steady solution of the equations. As recalled in the introduction, computation
of the spectrum requires being able to compute first the corresponding steady solution. Since
the time needed to reach the steady state solution diverges as the Rayleigh number approaches
the critical value computation of steady solutions require the use of iterative algorithms. Since
most fixed point methods more or less mimic unsteady algorithms and therefore encounter the
same convergence difficulties, there is no really other choice than to resort to Newton’s iteration.

Given a non-linear equation
F (u) = 0

Newton’s iteration consists in repeating iteratively until convergence

DF (uk) δuk = −F (uk) (31)

uk+1 = uk + δuk

where DF (uk) is the Jacobian of F on the current iterate uk. It requires solving equation (31)
which rises several difficulties. The Jacobian belongs to the class of large sparse matrices. Its
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Figure 12: Time trace of temperature: Ra = 4.5× 1012; (N,M) = (512, 1024)

order is on the order of 4NM as it is made of writing the discrete linearized equations linking the
discrete values of (u,w, P, T ). Ranking each variable in lexicographic order, figure 13a displays
the typical Jacobian pattern showing its sparsity pattern and typical bandwidth. These features
make direct methods intractable and has motivated the development of alternative approaches
such as those proposed by Tuckerman and co-workers ([68], [43], [69], [70]). The basis of
the method consists in using a time stepping algorithm which relies on a classical implicit
discretization of the linear terms coupled to an explicit discretization of the non-linear terms
as a means of getting iteratively the action of the Jacobian on a given vector, requiring the use
of a matrix free method to solve (31). Although effective at moderate spatial resolutions, this
solution procedure was found to suffer convergence difficulties for spatial resolutions required
for the present configuration.

We have thus decided to resort to direct resolution of (31) via LU-factorisation. This
procedure will also allow us to use the Arpack package to compute the leading eigenvalues in
the shift and invert mode which requires being able to compute efficiently (DF − σI)−1 where
σ is a complex shift.

As said above, dealing with the Jacobian in the form depicted in figure 13a is intractable.
Two manipulations are needed, on the one hand to handle the sparsity and on the other to
reduce the bandwidth. We have developed a hand-made renumbering algorithm which basically,
without going in too much detail, consists in grouping together the unknowns pertaining to
a given cell which reduces the bandwidth to approximately 4N (see figure 13b). Storage and
manipulation is done under the CSR (Compressed Sparse Row) format, using routines from
the Sparskit tool box ([72]). It is also well known that the Jacobian has to be regularized since
its kernel is at least of dimension 1. This fundamental mode in incompressible flow is related
to the fact that a constant pressure results in a null velocity field. The regularization thus
consists in imposing a value of pressure at a given point replacing the corresponding divergence
equation. In the case of the isoflux cavity, the dimension of the Jacobian’s kernel is at least 2
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(a) (u,w,P,T) and corresponding equations
ranked in natural lexicographic order ; the fig-
ures on the left correspond to the numbering of
the equations; the 500 first lines are the equa-
tions for u, the lines from 500 to 1000 are those
for w, the next 500 are those for the divergence
and the last 500 are those for Θ

(b) after reordering

Figure 13: Pattern of Jacobian ; resolution N = 16,M = 32; Jacobian is of order ≈ 2000

since with Neumann boundary conditions at all 4 walls, the temperature field is determined up
to a constant. It is thus necessary to drop one temperature equation and replace it by setting
a given value at one point or any linear combination to make the Jacobian non singular. In
order to maintain the centro-symmetry of the solution a linear combination linking the 4 points
around the cavity center was used, which also requires starting the iterations with an initial
guess that shares this property. The resulting regularized Jacobian is then solved (31) using
the PARDISO package ([73, 74, 75]).

Putting this altogether enables us to compute steady solution of the governing equations
starting increasing progressively the Rayleigh number value step by step. Usually 6 to 8 iter-
ations are required to bring the residual of the steady equations down to machine accuracy.
Increments of 10 are taken up to Ra of 109, increments of 2 to 3 for larger values.

In order to reach Ra values of 1012 and above, we had to increase the spatial resolution
up to (N,M) = (512, 512). This corresponds to a Jacobian of order ≈ 106. Our reordering
algorithm results in a bandwidth of ≈ 2500. Figure 14 presents the corresponding temperature
field and stream function for Ra = 1012. Its vertical stratification and temperature difference
across the cavity are 9.88 and 1.591 which, not surprisingly, are in very close agreement with
the analytical ones (9.99 and 1.593).

5.2.2. Spectrum computation
The spectrum of a given steady solution was computed using the Arpack library ([76],[77]).

Since one anticipates that the loss of stability be due to a Hopf bifurcation, the eigenvalues of
interest are those of maximum real part with an imaginary part corresponding to the frequency
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(a) Temperature (b) Stream function

Figure 14: Solution for Ra = 1012

of the observed unsteadiness, making the algorithm genuinely complex. We have used the
generalized eigenvalue problem

DF (u) x = λ M x (32)

where M is the identity matrix with zeros on the diagonal elements corresponding to the
enforcement of the incompressibility condition. The procedure is very similar to what has been
done by others ([57],[52]). We have found by trial and error that the shift-invert algorithm
generally converges when requiring a few tenths eigenvalues. Getting a global view of the
spectrum thus requires repeating the procedure with different shifts σ judiciously scattered in
the complex plane.

Figure 15 presents a global view of the spectrum for Ra = 1012 for a spatial resolution
(N,M) = (512, 512). One can distinguish several groups of eigenvalues and corresponding
eigenmodes. The eigenvalues of imaginary part larger than 7 correspond to boundary layer
modes (fig. 16a). At this Ra value they are still very stable and we will come back to them
later. The second group of modes is characterized by eigenvalues of imaginary part in the range
3 to 5. They correspond to short wavelength traveling waves along the ceiling and floor of the
cavity connected with long wavelength waves along the vertical walls (fig. 16b). The third group
of modes correspond to eigenvalues smaller that the cut-off Brunt-Väisälä frequency which is
equal to 2.66. These are internal gravity modes, whose typical structure is displayed in fig.16c.
As can be seen they are characterized by inclined stripes. The eigenmode which is shown
corresponds to an imaginary part equal to 2.22 and the stripes angle to the horizontal is very
close to 57◦, which agrees with the theoretical inclination arcsin(2.22

2.66
) to better than 1◦. The
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Figure 15: Global view of the most unstable part of the spectrum for Ra = 1 × 1012; spatial resolution
(N,M) = (512, 512) ; (+) group I modes ; (×) group II; (∗) group III; (�) group IV. Only half of complex
plane with positive imaginary part is shown.

fourth group of modes are those of null imaginary part. They are characterized by horizontal
stripes as shown in fig. 16d. From now on, we will concentrate on the eigenvalues of imaginary
part larger than 8, taking for granted, unless proven wrong, that they are responsible for the
transition to unsteadiness.

As can be seen the boundary layer modes lie on two parabola-like curves open to the
left. They come in pairs with nearly identical imaginary parts. Those located on the right-
most parabola have the anti centro-symmetry property (ACS) of the base flow (ie θ(x, z) =

−θ(−x,−z) assuming the origin is at the cavity center), whereas those on the leftmost parabola
have the opposite symmetry (CS) (ie θ(x, z) = θ(−x,−z)). From this standpoint the situation
is different from that in the isothermal cavity where both families of modes ACS and CS were
found to lie on the same parabola [71]. As Ra increases, figure 17 shows that the eigenvalues
of imaginary part around 8 move to the right until one of them will eventually cross the imag-
inary axis which is about to happen for Ra = 4 × 1012. As can be seen the imaginary part of
most dangerous eigenvalues also increases with Ra, which is due to the fact that the boundary
layer gets thinner with increasing Ra and therefore the wavelength decreases, resulting in an
increased frequency.

Figure 18 shows part of the spectrum for Ra = 4 × 1012 and 4.2 × 1012 showing that
for the latter value, one eigenvalue has just crossed the imaginary axis. From this spectrum
it could be concluded that for a spatial resolution (N,M) = (512, 512) the critical Rayleigh
number corresponding to the transition to unsteadiness lies in between Ra = 4 × 1012 and
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Figure 16: Real part of temperature component of eigenmodes. The interface line between yellow and dark blue
is the zero amplitude contour. Amplitude is arbitrary
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Figure 19: Evolution of part of spectrum for Ra = 4.4 × 1012; spatial resolution : (+)(N,M) = (512, 512) ;
(×)(N,M) = (512, 768) ; (∗)(N,M) = (512, 1024)

Ra = 4.2× 1012, very close to Ra = 4.2× 1012.
The spectrum for Ra = 4.2× 1012 also helps understand some of the characteristic features

of time signals shown previously. The two most unstable eigenvalues are (1.52×10−3, 9.65) and
(−2.85× 10−3, 9.87). The difference between the two angular frequencies (= 0.22) correspond
approximately to a time length of ≈ 28 which is precisely the period of the low frequency
modulation that is seen at the beginning of the time signal shown in figure 7b. The low
frequency modulation observed during the transients before reaching a time-periodic evolution
is thus a beat frequency between the most unstable modes. On the other hand the small
difference between the real parts ≈ 4.3 × 10−3 explains the long time needed to separate the
most unstable eigenmodes. Getting completely rid of the second most unstable mode while
integrating the linearized equations would require on the order of log(1015)

4.3×10−3 ≈ 8000 time units.
Grid refinement tests are shown in figure 19 that displays the evolution of the spectrum

for Ra = 4.4 × 1012. The figure clearly shows that increasing spatial resolution has a stabi-
lizing effect on the solution. Whereas the solution for (N,M) = (512, 512) is unsteady with 3
eigenmodes unstable, that for (N,M) = (512, 768) is just marginally unstable while that for
(N,M) = (512, 1024) is definitively stable. It is also seen that increasing spatial resolution has
a substantial effect on the frequency of oscillation. One can conclude that a spatial resolution
of (N,M) = (512, 512) is not sufficient enough to accurately approximate this solution. Finally
figure 20 shows that for (N,M) = (512, 1024) transition to unsteadiness takes place slightly
below Ra = 4.5 × 1012 which is consistent with the results from time integration presented
earlier. The imaginary part of the most unstable is equal to 9.735 which corresponds to a
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Figure 20: Evolution of part of spectrum for Ra = 4.4×1012(+) , 4.5×1012(×) , 4.6×1012(∗); spatial resolution
: (N,M) = (512, 1024)

frequency of 1.549 which agrees to better than 1 0/00 with the dominant frequency of the time
signal (1.550) in figure 12.

Figure 21 displays the amplitude of the θ-component of the most unstable eigennmode
along a vertical line parallel to the heated wall showing the exponential increase of the mode
amplitude as a function of altitude. This figure is in very good agreement with the most
unstable eigenmode obtained through integration of the linearized equations shown in figure 11,
validating both approaches.

6. Global results

Table 2 presents the results of many hours of computation corresponding to determinations
of lower and upper bounds for the transition to unsteadiness using both time integration and
Jacobian’s spectrum computation, which are very complementary. As said above, computation
of part of the spectrum is performed using ARPACK in the shift-and-invert mode requiring a
few tens of eigenvalues. The outcome of the procedure thus yields eigenmodes corresponding
to eigenvalues in the vicinity of the shift. Good guessed values for the shift, in particular its
imaginary part, is provided by time integration. It also provides a good bracket of the lower
and upper bounds, thus helping reduce both the number of solutions computed with Newton’s
method as well as the number of calls to ARPACK with different shifts.

The steady-unsteady transition curve given in figure 22, the value which is plotted is deter-
mined by linear interpolation. This figure shows that the critical values obtained by blending
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Figure 21: Evolution of log 10(|Θ|) in z ; spatial resolution (N,M) = (512, 1024)

the linear stability analysis with the isoflux cavity characteristics are not relevant. The transi-
tion to unsteadiness occurs at a value of Ra more than two orders magnitude larger that the
predicted value. Likewise the aspect ratio dependence is not followed. This shows that the
isoflux cavity has its own stability characteristics which are not those of the vertical boundary
layers it houses despite the fact that the boundary layers being of constant thickness and that,
due to the large number of wavelengths, one could imagine that the enclosure effect would be
negligible. However comparison of the rightmost columns shows that at criticality the charac-
teristic values that characterize the traveling waves agree reasonably well with those inferred
from from blending the linear stability results from [19] and the analytical values from [11].
In particular for large values of the aspect ratio the critical wave-speeds agree to within a few
percents.

Figure 23 shows comparisons of the amplitude of the eigenmode and of fluctuating temper-
ature in a cavity of AR = 5 for Ra = 5.1 × 1013. These evolutions display similar trends as
those already observed for the square cavity but with an increased number of wavelengths. The
corresponding wavelength is equal to ≈ 0.188, showing again the need to have at least 1000

grid points in z, and that a uniform mesh is indeed the best way to approximate this solution.
Les us conclude this section by reporting some surprising behaviors of the eigenvalues. As

said above for the square cavity the eigenvalues lie on two parabola open to the left, those
corresponding to modes having the anti-centro-symmetry (ACS) of the base flow on the right
most parabola and those having the opposite symmetry (CS) on the left one. The modes
on both parabolas have almost exactly identical imaginary parts (see figures 17 and 18 for
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Figure 22: Evolution of the critical Rayleigh number as function of aspect ratio
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Figure 23: Evolution of log 10(|Θ̃|) with z ; Ra = 5.1× 1013; AR = 5 ; (N,M) = (512, 1024)
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H
L

N ×M Rainf Rasup σi λ c = λσi
2π

σthi λth cth

0.2 1024× 512 1.7× 1012 1.9× 1012 10.50 0.0630 0.105 15.37 0.054 0.132
0.25 1024× 512 1.9× 1012 2× 1012 10.12 0.0628 0.101 14.75 0.052 0.122
0.5 1024× 512 2.4× 1012 2.7× 1012 9.57 0.052 0.079 13.20 0.0453 0.095
1 512× 1024 4.4× 1012 4.5× 1012 9.73 0.0435 0.067 12.39 0.0368 0.0726
2 512× 1024 8.8× 1012 9× 1012 10.15 0.032 0.052 11.81 0.0293 0.0551
3 512× 1024 1.6× 1013 1.8× 1013 10.66 0.0261 0.0442 11.94 0.0242 0.0461
4 512× 1024 3× 1013 3.1× 1013 11.17 0.0217 0.0386 12.25 0.0206 0.0403
5 512× 1024 5× 1013 5.2× 1013 11.66 0.0188 0.0349 12.64 0.0179 0.0361
6 512× 1024 8.1× 1013 8.2× 1013 12.12 0.0162 0.0313 13.05 0.0159 0.0329
8 256× 1536 2.0× 1014 2.1× 1014 13.36 0.013 0.0276 14.14 0.0125 0.0281

Table 2: Global values for 0.2 ≤ AR ≤ 8 ; σi, λ and c are the angular frequency of the first unstable mode,
its wavelength (measured graphically), and corresponding wave-speed, respectively ; σth

i , λth and cth are the
theoretical values obtained from blending the linear stability results from [19] and the analytical values from [11]

instance), corresponding to the fact that they have the same spatial structure, same number
of wavelengths, with opposite symmetry. This is no longer true for other values of the aspect
ratio. For instance in tall cavities figure 24 shows that the eigenvalues lie on a single parabola
and we have checked that the modes with increasing imaginary part have alternatively ACS and
CS symmetry. The situation is analogous to what was found in isothermal cavities ([71],[48])
presumably due to a coupling of both boundary layers eigenmodes through the small horizontal
extension of the boundary layer eigenmodes which is apparent in figure 16a. This characteristic
(all eigenvalues on the same parabola) extends to values of the aspect ratio down to 3.

Intermediate plots of the eigenvalues location rearrangement can be seen in figure 25 for
AR = 2 which shows that the single parabola found for large values of the aspect ratio has
started to split into two parabolas, the eigenmodes with ACS lying on the rightmost one and
those with CS on the leftmost. The imaginary parts of the CS modes remain approximately half
way between the two neighboring ACS modes. With decreasing aspect ratio, the two parabolas
move further apart (see figure 26 for AR = 1.2). The rearrangement of the imaginary parts
takes place on a very narrow range of aspect ratios (1−1.1), as shown in figure 27, just after the
two parabolas have started to move back towards one another. As the aspect ratio continues to
decrease, the two parabolas get very close, giving rise to pairs of nearby eigenvalues, as can be
seen from figure 28 for AR = 0.5. For smaller values of the aspect ratio this process continues,
giving rise to eigenvalues of multiplicity two (to better than 10−5), corresponding to the fact
that there is no reason why two eigenmodes of identical spatial structure only distinct in their
ACS or CS symmetry should have different stability properties. What remains unexplained is
what is seen for nearly square cavities. Why modes with different symmetries have so different
stability criteria ?
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Figure 24: Evolution of part of spectrum for AR = 8 ; Ra = 2 × 1014 (+) ; Ra = 2.05 × 1014 (×); Ra =
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Figure 25: Evolution of part of spectrum for AR = 2 ; Ra = 8.6 × 1012 (+) ; Ra = 9 × 1012 (×); (N,M) =
(512, 1024)
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Figure 26: Evolution of part of spectrum for AR = 1.2 ; Ra = 5 × 1012 (+) ; Ra = 6 × 1012 (×); (N,M) =
(512, 1024)
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Figure 27: Evolution of part of spectrum for Ra = 5 × 1012 with AR ; AR = 1.1 (+) ; AR = 1.05 (×) ;
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35



 8

 8.5

 9

 9.5

 10

 10.5

 11

-0.25 -0.2 -0.15 -0.1 -0.05  0  0.05

Im
a
g
in

a
ry

 p
a
rt

Real part

Ra = 2.1 1012

Ra = 2.4 1012

Ra = 2.7 1012
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7. Conclusion

We have computed the transition to unsteadiness in air filled differentially heated isoflux
cavities for values of the aspect ratio in the range 0.2–8. Transition to unsteadiness was inves-
tigated using three different approaches : through time integration which required revisiting
scaling issues ; through time integration of the linearized equations, and finally from direct
computation of the most dangerous part of the Jacobian of steady solutions, either stable or
unstable. It was found that for a square cavity filled with air (Pr = 0.71), transition occurs for
a Rayleigh number very close to 4.5× 1012 a very large value which requires that the solution
be computed with at least 1000 grid points in the vertical direction. We have discussed the
nature of eigenmodes, showing that they belong to four different groups corresponding to dif-
ferent physical phenomenology. We have shown that the modes responsible for the transition
are characterized by a wavelike structure of constant wavelength whose amplitude increases
exponentially with height in the upward boundary layer along the heated wall (and symmet-
rically along the cooled wall). We have shown that these cavities possess their own stability
characteristics, although, at criticality, the traveling waves in the boundary layers have similar
characteristics than those resulting from blending the linear stability analysis of the buoyancy
layer with the analytical solution. We have finally discussed the evolution of the spectrum
pattern observed for different values of the aspect ratio and the way the leading eigenvalues
corresponding to eigenmodes with alternate symmetry which lie on a single parabola for large
values of the aspect ratio eventually merge in eigenvalues of multiplicity 2 at small aspect ratio.
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What remains unexplained is the reason for which the critical value of the Rayleigh number for
the buoyancy layer and the isoflux cavity differ so widely.
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Appendix A

Computation of the stratification comes from balancing the vertical conduction of heat with
the heat transported by convection in the boundary layers, that is :∫ L

0

λ(
dT

dz
)coredx = 2×

∫ L/2

0

Cpw(x)θ(x)dx (33)

where L is the cavity width. In the boundary layer regime, using the results from [[11]], this
expression reduces to :

λL(
dT

dz
)core = 2 Cp
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The integral in the expression above is exactly 1
2q
, which results in :

dT

dz
)core =

128

q5

φ
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H
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(35)

and upon replacing q5 from (8), the dimensional stratification finally reads :

dT

dz
)core =

128
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κν

gβH4
(
H

L
)4/9 Ra8/9 (36)

or equivalently, since 8192 = 213 :

dT

dz
)core =

(8192)4/9
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