Mathieu Flament
email: mathieu.flament@onera.frwilliam.boitier@onera.fr

William Boitier

Julien Floquet
email: julien.floquet@onera.fr

Continuous System Integration in DEVS Formalism

Keywords: Simulation de systèmes à temps continu, systèmes aérospaciaux, P-DEVS, QSS Continuous system simulation, Aerospace systems, P-DEVS, QSS

Dans cet article, nous décrivons d'implémentation des algorithmes classiques d'intégration numérique (Euler, Heun, Runge-Kutta 4) dans le formalisme DEVS, en utilisant la bibliothèque Artis-star. Ce travail nous a permis de les comparer aux méthodes de type QSS (Quantized-State Systems), dans un environnement commun de simulation basé sur DEVS et sur les mêmes cas tests, dont un exemple réaliste d'un système aéronautique.

Introduction

Through the years, Onera has developed many simulation tools to help the design and the performance assessment of various aerospace systems. These simulations integrate flight dynamics models together with guidance, navigation and control (GNC) models and command logic, in order to reproduce the behaviour of a real flight. Most of the physical and GNC models can be written as continuous-time models described by ordinary differential equations. The mature field of numerical integration methods provide a large choice of solutions for continuous system simulations. The Runge-Kutta 4 (RK4) method (fixed step or adaptative) is a very classical algorithm to simu-late aerospace systems and provides a good balance between stability, accuracy and computational cost. For less demanding needs, Euler, Adams-Bashford (AB), Adams-Bashford-Moulton (ABM) methods can also be used. Different books explain these integration methods as in [START_REF] Jedrzejewski | Introduction aux méthodes numériques[END_REF][START_REF] Isaacson | Analysis of numerical methods, john wiley and sons[END_REF].

To ensure the exactness of the computations, the numerical integration of a system of interconnected continuous-time models should be performed as a unique continuous-time model which aggregates the state of all subsystems. In terms of software architecture, this constraint comes into conflict with modularity : it's much simpler to associate a local integrator to each continuous-time sub-model and then connect them as discrete-time models. But, especially for control-loop stability analysis, where delays are critical, this trivial solution is not acceptable. RK4, ABM, and more generally, all predictor/corrector integration methods require an exchange of updated state values between submodels after each derivative evaluation.

In this context, our interest in DEVS formalism is twofold : first, a DEVS-based architecture could ease the sequencing of classical numerical integration methods distributed over a system of interconnected continuous-time models ; and second, the Quantized-State System methods (QSS), which have been developed jointly with DEVS formalism, make the difficulties inherent to classical methods simply vanish. The first formalization of QSS was done by Kofman and Junco in [START_REF] Kofman | Quantized-state systems : A devs approach for continuous system simulation[END_REF]. The research field of Discrete Event Simulation (DEVS) has advanced significantly since its early years in 1976 when B. Zeigler sets its first formalism down. However, the theory is still unexploited by the majority of Modelling & Simulation (M & S) software. For our concern, DEVS formalism, and Parallel DEVS (PDEVS) formalism even more, have potential in the M & S field. The first one has been proven as a common denominator for multi-formalism simulation [START_REF] Prähofer | System theoretic formalisms for combined discrete-continuous system simulation[END_REF][START_REF] Bernard | Embedding dev&dess in devs[END_REF][START_REF] Vangheluwe | Devs as a common denominator for multi-formalism hybrid systems modelling[END_REF], while the second one was written to guarantee distributed simulation.

The developments of DEVS formalism have brought many new integration methods [START_REF] Nutaro | A second order accurate adams-bashforth type discrete event inte-gration scheme[END_REF][START_REF] Migoni | Linearly implicit discrete event methods for stiff odes[END_REF][START_REF] Nutaro | Constructing multi-point discrete event integration schemes[END_REF], including the well-known Quantized-State System methods (QSS) presented also in [START_REF] Kofman | Quantization-based simulation of differential algebraic equation systems[END_REF]. We have performed a benchmark of these methods compared to classical ones, both in terms of numerical accuracy and computational efficiency.

In section 2, we briefly recall the classical numerical integration methods in comparison to the Quantized-State System methods. In section 3, we describe our implementation of the benchmarked integrators using the Artis-star library [START_REF] Ramat | Artis* : Devs modern c++ library[END_REF], and present the results for two applications : a simple test-case model (a linear second-order system) and a real-life aerospace system (Boeing 747 flight dynamics and its vertical autopilot).

Numerical integration methods

Classical methods

In the family of single-step methods, the solutions are based on approximation of derivatives until an order p using s stages. For instance, the Euler's method performs an approximation of first-order derivatives using one stage, making the assumption that this derivative is constant. Additional stages allow to evaluate higher-order derivatives. It is accepted that a single step method of order p needs a number of stage s ≥ p (until fifth order where the condition is strictly s > p). For instance, the classical form of Runge-Kutta is a fourth-order derivative composed of four stages.

For the multi-step methods, the solutions result from interpolation using multiple points. Those methods have the advantage to be computed in one stage. The family is represented by the AB and ABM methods declined for each order and in some case combined to create predictorcorrector (or PECE : Predict-Evaluate-Correct-Evaluate) algorithm.

Quantized-State System integration methods

The development of DEVS formalism has brought new kinds of integration method based on discrete state rather than discrete time.

A first approach was proposed by B. Zeigler and Lee in [START_REF] Zeigler | Theory of quantized systems : formal basis for DEVS/HLA distributed simulation environment[END_REF] called quantized system, though quickly put aside when Kofman and Junco proposed the quantized-state system (QSS) methods in [START_REF] Kofman | Quantized-state systems : A devs approach for continuous system simulation[END_REF] and advanced QSS method are proposed in [START_REF] Migoni | Linearly implicit discrete event methods for stiff odes[END_REF]. The DEVS description of order 1 QSS is described in numerous papers [START_REF] Zeigler | Theory of modeling and simulation[END_REF][START_REF] Kofman | Quantization-based simulation of differential algebraic equation systems[END_REF], though for the sake of clarity we will recall the behaviour of such method.

QSS =X = (x) Y = (y) S = ((z, ż), q) δ int (S, q, σ) = (z + σ ż, ż), z + σ ż, |∆Q/ ż| δ ext (S, q, X, e) = (z + e ż, x), q, σ λ(S, q, σ) = z + σ ż ta(S, q, σ) = σ
with X the set of input events ; Y is the set of output events ; S is the set of sequential states ; δ int is the internal transition function ; δ ext is the external transition function ; λ is the output function ; ta is the time advance function ; q the quantum state ; e the elapsed time since the last event ; z and ż the value of state and the associated derivative ; σ the elapsed time from the initial time of simulation ; ∆Q is the quantum size and

σ =            q -∆Q -(z + e ż) x if x < 0 q + ∆Q -(z + e ż) x if x > 0 ∞ otherwise
The properties of convergence and stability are already proven [START_REF] Kofman | A second-order approximation for devs simulation of continuous systems[END_REF][START_REF] Kofman | An approach for discrete event simulation of physical systems[END_REF], and specifically the stability property has to be noted (stability region is the entire negative plan) to compare with previously discussed methods. Under certain conditions, the error is known to be bounded [START_REF] Kofman | A second-order approximation for devs simulation of continuous systems[END_REF]. For a continuous system written in the state space form : ẋ = Ax + Bu, the error bound at time t, named E(t), can be derived (for QSS1, 2 and 3) by the following formula :

|E(t)| = |V ||Re(Λ) -1 Λ||V -1 |∆Q (1) With : V -1 AV = Λ
V and Λ being respectively the eigenvectors and matrix of eigenvalues of A.

3 Benchmark of integration methods with DEVS Some benchmarks between QSS and classical algorithms have already been performed [START_REF] Floros | Automated simulation of modelica models with qss methods : The discontinuous case[END_REF], but the CPU utilization of the different methods was not always measured with the same simulation engine. Here, thanks to the Artis-star environment developed by E.Ramat [START_REF] Ramat | Artis* : Devs modern c++ library[END_REF], we are able to implement all the evaluated integration algorithms in a common framework.

Integrator Mapping

Our C++ implementation of integrators using the Artis-Star environment is based on the following components (see figure 1). First, the continuous-time model (ODE) is described in a class that implements an interface AbstractODEModel with two main methods :

derivative() : returns

Ẋ = AX + Bu; (2)
-computeOutput() : returns

Y = CX + Du; (3)
with X the state vector, u the input vector, Y the output vector. Note that for reusability, the implementation of continuous-time models is independent of the simulation engine (DEVSbased or not).

Second, the integration algorithm (classical ones or QSS-based ones) is coded as an atomic DEVS model, by implementing the artis::pdevs::Dynamics interface. It is responsible for the different steps of calculations specific to a given algorithm. One integrator is associated with each continuous-time model of the system.

Third, in the case of a system composed of multiple interconnected continuous-time model, these integrators are coupled through a coordinator, which ensures the necessary communication between the different integrators.

FIGURE 1 -ODE as sub-module of atomic block

Implementation of classical integrators. The Euler's algorithm implementation is quite trivial : its state is composed of the current state of the continuous-time model and a discrete variable that corresponds to the calculation phase WAIT, SEND. The lifetime of these phases are respectively the integration timestep δh and 0.

On the WAIT to SEND transition, each integrator evaluates the model state derivative and updates its own state by Euler's formula, given the outputs of the other models. On the SEND to WAIT transition, each integrator computes its outputs from the updated state and publishes a message containing these outputs.

Through the coupling, this message is received by the other ones. For the classical integrator, the coupling is done by the generic coordinator already implemented in the Artis-star library (artis::pdevs::Coordinator).

The Heun's algorithm is the simplest predictorcorrector algorithm (PEC) (see figure 3), and needs a slightly more complex implementation, as the integration step are divided in two substeps. An intermediate exchange of state values between coupled integrators is required after the prediction sub-step. To do so, the Heun's integrator phases are WAIT, SEND-P, SEND-C, with respective lifetime of h, 0 and 0. On the WAIT to SEND-P transition, each integrator performs the computation of the predicted state t i + h ; on the SEND-P to SEND-C transition, they publish a message containing the outputs corresponding to the predicted state and compute the corrected state (final evaluation) at t i + h ; on the SEND-C to WAIT transition and send a message containing the outputs corresponding to the corrected state.

Prediction :

X p k+1 = X k + h.f (t k , X k , u k) Correction :    X p k+1 = X k + h.f (t k+1 , X p k+1 , u k+1) X k+1 = 1 2 X p k+1 + X p k+1)
with f (t, X, u) the derivative at time t (f (t, X, u) = A.X + B.u for LTI systems)

FIGURE 2 -Heun's algorithm

These implementation principles for Heun's algorithm can be easily extended to higher orders of PEC integration algorithms, by adding stages of prediction. We used this property to imple-ment the RK4. Althought the RK4 algorithm is not a PEC algorithm is its traditional formulation, it could be rewritten with strict equivalence in the form of a PEC algorithm with three prediction stages [START_REF] Edward | A modification of the Runge-Kutta fourth-order method[END_REF]. So, the RK4 integrator phases are WAIT, SEND-P1, SEND-P2, SEND-P3, SEND-C, and follows the same sequencing as the Heun's integrator.

Prediction 1 :

       p = h.f (t k , X k , u k) X p k+1 = X k + 1 2 p q = p Prediction 2 :            p = h.f (t k + h/2, X p k+1 , u k+1/2) X p k+1 = X p k+1 + 1 2 (p -q) q = 1 6 q
Prediction 3 :

           p = h.f (t k + h/2, X p k+1 , u k+1/2) - 1 2 p X p k+1 = X p k+1 + 1 2 (p -q) q = q -p Correction :    p = h.f (t k + h, X p k+1 , u k+1) -2p X k+1 = X p k+1 + q + 1 6 p with f (t, X, u) the derivative at time t (f (t, X, u) = A.X + B.u for LTI systems) FIGURE 3 -modified RK4 algorithm
Implementation of QSS 1 and 2. Althought the Artis-star library already offers a QSS1 implementation, we had to re-implement QSS1 and QSS2 to match our integrator mapping architecture described above.

For the QSS1 and QSS2 integrator, we followed the work of Kofman in [START_REF] Kofman | Quantization-based simulation of differential algebraic equation systems[END_REF] with an implementation in two atomic models : one Derivative module and one Integrator-Quantifier (I-Q) module. Although, our Derivative module is supporting multi-dimensional states. As for the I-Q block, we managed to create one simple block which handles multi-dimensional states (with their respective quanta). This allows a clear separation of the tasks : the Derivative block calls the Derivative() function of the model, while the I-Q block calls the ComputeOutput() function.

Results

Simulation with a simple test-case. For testing purpose, we started with a simple a linear second-order system (Model 1) which is a common model of many dynamic processes :

(M1) ẋ = -2 ω 0 x -ω 2 0 (y -sw); (4) (M2) ẏ = x;
With sw being the input signal. This model has the advantage of simplicity while allowing testing the "coupling property" of our integration implementation. We called the "coupling property" the equivalence, in terms of numerical results, between the two following simulation graphs :

-a unique integrator attached to the 2dimensional (M1+M2) model (Figure 4), -two integrators attached each to the 1dimensional M1 and M2 models, coupled by a coordinator (Figure 5). Our first simulation plot (Figure 6) verify the correctness of our QSS1 and QSS2 implementation, in comparison to a reference result We have also checked that the "coupling property" is verified by Euler, Heun, RK4 and QSS1 integrators. This property has a great practical interest : a complex continuous-time system can be hierarchically divided in an arbitrary manner while keeping the same simulation results.

Nevertheless, the coupling property is not verified with our QSS2 implementation. The investigation is still ongoing. The QSS 2 with the slope's approximation of Kofman [START_REF] Kofman | Quantization-based simulation of differential algebraic equation systems[END_REF] is a difficulty for our implementation, as our QSS2 integrators only exchange their state estimates, and not the derivative estimates. A first analysis shows that for the "coupling property" to be verified with QSS of order n ≥ 2, the integrator blocks also have to exchange derivative estimates up to order (n-1).

Simulation with an aircraft dynamics model. We have simulated a more complex model representing the longitudinal control of a Boeing 747 (figure 7). This model includes a linearised flight dynamics model at an altitude of 40,000 ft and cruise speed of 774 ft/s, an altitude PIDcontroller and a thrust PID-controller. The system is split in 7 sub-models and their associated integrators, with a total state dimension of 12.

The testing scenario consists of simulating the aircraft response to a flight-level change during 60s.

For the fixed-step integration algorithms, the steptime is set to 0.2s. For the QSS1 and QSS2, a quantum value has to be chosen for each of the 12 variables that composed the total state of the system. These variables represent heterogeneous physical quantities (rotation rates, angles, velocity, positions) with different orders of magnitude. A first rule of thumb is to set each quantum relatively to the desired accuracy on the associated variable. A second rule of thumb is to choose smaller quanta for inner loops (fast dynamics) than for outer loops (slower dynamics). After a trial-and-error tuning of the quanta, we have obtained the altitude response in Figure 8. Using the RK4 outputs as a reference, the QSS2 gives quite a close result, while the QSS1 inhibits some significant deviation. Also, some instabilities have been observed on pitch angle using QSS2.

All of these QSS1 and QSS2 results are nevertheless highly dependent on the quantum choice.

Efficiency benchmark. The table 1 shows the numbers of integration steps performed by the different algorithms. This number is related to the number of evaluations of the derivative functions, which could be a costly computation on complex models.

Taking into account that the RK4 performs four derivative evaluations per step against only one for QSS, RK4 and QSS1 have a comparable efficiency on the simple test case, though QSS1 still performs twice as many derivative evaluations than RK4. QSS2 needs fewer evaluations as expected. For the more complex B-747 simulation, RK4 appears to be more efficient, but once again, the results for QSS algorithms are highly dependent on the quantum choice. In order to achieve a more consistent evaluation of the accuracy-computation cost ratio, we consider a simple linear first-order model. A set of simulations have been performed, varying the integration time step for RK4 and the (unique) quantum for QSS methods. The meansquare error of the response versus computation time is presented on the figure 8. It shows that the QSS methods, and especially QSS2, can achieve a better accuracy for the same computation cost. Unfortunately, this comparison method cannot be easily extended to higher order models, that needs multidimensional quanta.

Conclusion

Our paper identifies the main methods for distributed and multi-physics simulation for future work at ONERA. On a practical point of view, we focused on Parallel DEVS using the Artisstar library and mapped classical integrator in this formalism. We presented our implementation and results of simulation using Euler, Heun, RK4 and QSS1&2 integration methods in the same framework.

Our implementation ensures that a complex continuous-time system can be hierarchically split into interconnected subsystems, with an integrator associated with each subsystem, while keeping the same simulation results. This property has been verified for Euler, Heun, RK4 and QSS1 integrators and is the key for modu-lar, scalable and distributed simulations of complex continuous-time systems. This work is still ongoing for QSS2.

Concerning the relative efficiency of the evaluated algorithm, we have shown on very simple models that QSS1 and QSS2 can compete favourably with classical fixed time step integration methods, as RK4.

Nevertheless, the application of QSS methods to more complex, real-life aerospace system model has revealed the issue of adjusting a set of quanta to achieve a desired global accuracy while maintaining an acceptable computational cost. Altought theoretical results exist on the relationship between quanta and error bounds, they are not directly usable in practice, and further work needs to be done on this issue.

FIGURE 4 -

 4 FIGURE 4 -Grouped ODE of Model 1

FIGURE 5 -FIGURE 6 -

 56 FIGURE 5 -Coupled ODE of Model 1 decomposed in M1 & M2

FIGURE 7 -FIGURE 8 -FIGURE 9 -

 789 FIGURE 7 -Longitudinal control model of a B-747

TABLE 1

 1

		-Number of integration steps
		{M1+M2)} Coupled Boeing 747
			M1 & M2	
	RK-4	502	502	2 999
	QSS1	3 920	3 920	39 450
	QSS2	825	2 763	28 921