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3 Institut de Physique Théorique, DRF-INP, UMR 3680, CEA, Orme des Merisiers Bât 774, 91191 Gif-sur-Yvette, France
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ABSTRACT
Supermassive black holes dominate the gravitational potential in galactic nuclei. In these
dense environments, stars follow nearly Keplerian orbits and see their orbital planes relax
through the potential fluctuations generated by the stellar cluster itself. For typical astrophys-
ical galactic nuclei, the most likely outcome of this vector resonant relaxation (VRR) is that
the orbital planes of the most massive stars spontaneously self-align within a narrow disc. We
present a maximum entropy method to systematically determine this long-term distribution
of orientations and use it for a wide range of stellar orbital parameters and initial conditions.
The heaviest stellar objects are found to live within a thin equatorial disk. The thickness of
this disk depends on the stars’ initial mass function, and on the geometry of the initial clus-
ter. This work highlights a possible (indirect) novel method to constrain the distribution of
intermediate mass black holes in galactic nuclei.

Key words: Diffusion - Gravitation - Galaxies: kinematics and dynamics - Galaxies: nuclei

1 INTRODUCTION

Supermassive black holes (BHs) are ubiquitous in external galax-
ies (Magorrian et al. 1998; Genzel et al. 2010; Kormendy & Ho
2013) and their induced feedback plays a critical role in regulating
galaxy formation through cosmic ages (Heckman & Best 2014).
The unique proximity of our Galactic centre is an extraordinary op-
portunity to study and constrain the long-term evolution of galactic
nuclei and the stellar clusters orbiting within. Recent developments
in that realm include detailed census of stellar populations around
SgrA* (Ghez et al. 2008; Gillessen et al. 2017), the observation of a
cool accretion disc (Murchikova et al. 2019), as well as the observa-
tion of the relativistic precession of S2 (Gravity Collab. et al. 2020).
Similarly, the origin of the observed clockwise stellar disc (Bartko
et al. 2009; Yelda et al. 2014) has triggered a lot of interest, as its ex-
istence may impact the merger rate of the intermediate mass black
holes (IMBHs) population (Portegies Zwart & McMillan 2002).

As already pointed in Rauch & Tremaine (1996), the steep po-
tential well generated by the central BH allows for efficient secular
orbit-averaged interactions between stars, driving their relaxation
through an intricate hierarchy of dynamical processes (Alexander
2017). In this paper, we focus on the process of vector resonant re-
laxation (VRR) during which stars undergo a random reshuffling

? nathan.magnan@maths.cam.ac.uk

of their orbital orientations through long-term coherent torques be-
tween the finite number of stellar orbital planes (Kocsis & Tremaine
2015). Given that VRR occurs on a timescale shorter than the stel-
lar ages (see fig. 1 in Kocsis & Tremaine 2011), one may expect
that their observed distribution of orientations corresponds to some
statistical equilibrium.

Determining the outcome of this long-term rearrangement has
been the focus of recent efforts (Roupas et al. 2017; Takács & Koc-
sis 2018; Szölgyén & Kocsis 2018; Touma et al. 2019; Tremaine
2020a,b; Gruzinov et al. 2020) that jointly offer new clues on
the fascinating properties of these long-range interacting systems,
such as negative temperatures or phase transitions. In particu-
lar, Szölgyén & Kocsis (2018), using an ingenious Monte–Carlo
approach, have shown that in systems with a wide range of stellar
populations (i.e. various masses and semi-major axes), VRR can
lead to the spontaneous formation of a disc through the angular
segregation of the most massive stars and IMBHs.

This is the issue that we further investigate in this work. We
develop and implement an explicit and efficient optimisation pro-
cedure to find maximum entropy solutions compatible with an ini-
tial configuration, so as to infer the thermodynamical equilibria of
a given galactic nucleus. In the particular context of VRR, this
roadmap was already started out by Roupas et al. (2017) in the
limit of a single-population system with a quadrupolar interaction,
and later improved in Takács & Kocsis (2018) which, while still re-
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stricting themselves to a single-population system, considered har-
monic expansion beyond the quadrupole. Here, we expand these
works to multi-population clusters by emphasising the critical role
played by the diversity of stellar orbits and masses to allow for non-
trivial anisotropic statistical equilibria, as unveiled in Szölgyén &
Kocsis (2018).

The paper is organised as follows. In §2, we briefly review
the process of VRR in galactic nuclei. We also present the numer-
ical optimisation method used to determine the thermodynamical
equilibria. In §3, we use this approach to carefully investigate the
details of equilibrium configurations that appear in systems com-
posed of multiple stellar populations, as well as the impact of the
initial mass function and the geometry of the formation scenario.
Finally, we conclude in §4.

2 VRR MODEL

Let us first set up the framework in which to quantify the long-term
effect of VRR on a population of orbital planes.

2.1 Interaction of Keplerian annuli via VRR

We consider an isolated cluster ofN�1 stars orbiting a supermas-
sive BH of mass M•. Following a double orbit-average over all the
stars’ Keplerian motion and in-plane precession, the VRR Hamil-
tonian takes the form1 (Kocsis & Tremaine 2015)

Htot = −
N∑
i<j

〈
Gmimj

|ri(t)− rj(t′)|

〉
t,t′
, (1)

where the sum over (i, j) runs over all the pairs of particles, and
the double orbit-average 〈 · 〉t,t′ operates over the fast Keplerian
motions and in-plane precessions of both particles, with ri(t) and
rj(t

′) describing their trajectories.
Using the Legendre expansion of the Newtonian interaction,

and the addition theorem for spherical harmonics, one can rewrite
equation (1) as (see, e.g., Fouvry et al. 2019b)

Htot = −
N∑
i<j

`max∑
`=2

∑̀
m=−`

H`
[
Ki,Kj

]
Y`m(L̂i)Y`m(L̂j), (2)

where L̂i stands for the unit vector aligned with the instantaneous
orientation of the star’s orbital plane and the real spherical harmon-
ics, Y`m(L̂), are normalised so that

∫
dL̂Y`mY`′m′ =δ``′δmm′ . In

equation (2), a Keplerian annulus (see Fig. 1) is fully characterised
by its conserved quantities

K = (m,a, e), (3)

with m the star’s individual mass, a its semi-major axis, and e its
eccentricity. We stress that, owing to orbit average, each Ki are
taken to be fixed throughout the VRR dynamics. Finally, in equa-
tion (2), we introduced the (symmetric) coupling coefficient

H`
[
Ki,Kj

]
= Gmimj

4π

2`+1

∣∣P`(0)
∣∣2

×
∫ π

0

dMi

π

∫ π

0

dMj

π

Min[ri, rj ]
`

Max[ri, rj ]`+1
, (4)

with P` the Legendre polynomial of order ` and Mi the mean
anomaly of the orbit Ki (see, e.g., Murray & Dermott 1999).

1 We also assume that
∑N
i=1mi�M• (Roupas 2020).

Figure 1. Illustration of the process of VRR in a galactic nucleus. Following
an orbit-average over the fast Keplerian motion induced by the central BH
and the in-plane precessions (due to both the stellar mean potential and the
relativistic corrections), stars are replaced by massive annuli (here quasi-
circular) which can torque one another (see also fig. 1 in Giral Martı́nez
et al. 2020). This leads ultimately to the relaxation of the stellar orbital
orientations with possibly the spontaneous formation of aligned discs.

These coupling coefficients fully encode the impact of the shape
of the two orbits on their relative torque and show significant diver-
sity (see, e.g., fig. 1 in Kocsis & Tremaine 2015)2.

Finally, we point out a few specificities of the multipole ex-
pansion from Eq. (2): (i) All odd ` harmonics have vanishing cou-
pling coefficients, H`=0, so that they can be dropped; (ii) The
Legendre expansion is truncated to the maximum order `6`max;
(iii) We do not account for the harmonics `=0 as it does not drive
any dynamics. With such a convention, spherically symmetric dis-
tributions have a vanishing mean total energy.

Describing the process of VRR amounts to describing the
long-term evolution of L̂i, as driven by the Hamiltonian from equa-
tion (2) (see §2.2 in Kocsis & Tremaine 2015, for the associated
equations of motion). We illustrate such a system in Fig. 1. One
can equivalently describe the instantaneous state of the stellar clus-
ter with its discrete distribution function (DF)

Fd(L̂,K, t) =

N∑
i=1

δD(L̂− L̂i(t)) δD(K−Ki), (5)

which follows the normalisation
∫

dL̂dKFd =N . Assuming that
particles with the same orbital parameters are indistinguishable,
this DF entirely describes the system’s state. Therefore, character-
ising the VRR dynamics amounts to characterising ∂Fd/∂t, using
the Klimontovitch equation (Klimontovich 1967).

2.2 Equilibrium configurations

Fortunately, the VRR dynamics (∼1 Myr for S2 around SgrA*,
see fig. 1 in Kocsis & Tremaine (2011)) is rapid compared to the
cluster’s age (∼10 Myr for the S-cluster, see Habibi et al. (2017)).
As such, if one is interested in sufficiently long timescales, rather

2 Following §A of Fouvry et al. (2019b), the present coupling
coefficients simply read H`[K,K′]=J`[K,K′]L(K), with L(K)
introduced in equation (12). In practice, following the notations
from §A of Fouvry et al. (2019b), the coupling coefficients were
pre-computed once, up to `max = 50 and on a 200×100×100 lin-
ear grid in (ln(ain/aout), ein, eout) with 10−26ain/aout61 and
06ein, eout60.99, to be subsequently interpolated.

MNRAS 000, 000–000 (0000)



Mass segregation and VRR 3

than describing the details of ∂Fd/∂t, one may solely focus on
characterising the expected equilibrium configurations reached at
late times. This is given by

Feq(L̂,K) = lim
t→+∞

〈
Fd(L̂,K, t)

〉
, (6)

with 〈 · 〉 standing for an ensemble average over independent real-
isations of the system – see §2.3 for the appropriate handling of
this ensemble average. Efficiently predicting these long-term equi-
librium DFs is the focus of the present work.

In such a late-time limit, the only information retained by the
cluster are its invariants. These are:

• The number density of stars with orbital parameters K

N(K) =

∫
dL̂Feq(L̂,K). (7)

• The total energy

Etot = 1
2

∫
dL̂dKFeq(L̂,K) ε(L̂,K), (8)

where ε(L̂,K) stands for the energy of a particle of orientation L̂
and orbital parameter K as

ε(L̂,K)=−
`max∑
`=2

∑̀
m=−`

∫
dK′H`

[
K,K′

]
M`m(K′)Y`m(L̂), (9)

with the magnetisations

M`m(K) =

∫
dL̂Y`m(L̂)Feq(L̂,K) (10)

defined as spherical harmonic moments of the DF.
• The total angular momentum

Ltot =

∫
dL̂dKL(K) L̂Feq(L̂,K), (11)

with the norm of the angular momentum vector

L(K) = m
√
GM• a (1− e2). (12)

As usually carried out in the microcanonical ensemble
(i.e. for an isolated cluster), for a given set of invariants
{N(K), Etot,Ltot}, the admissible equilibrium configurations are
obtained by maximising the Boltzmann entropy

S = −kB

∫
dL̂dKFeq(L̂,K) ln

[
Feq(L̂,K)

]
, (13)

with kB the Boltzmann constant, under the previous conservation
constraints. Such a maximisation generically yields (see §A)

Feq(L̂,K) = N(K)
e−β ε(L̂,K)+L(K)γ·L̂∫

dL̂′ e−β ε(L̂
′,K)+L(K) γ·L̂′

, (14)

where β and γ are the Lagrange multipliers respectively associated
with the total energy and angular momentum conservation. We note
that equation (14) is very similar to its co-planar counterpart found
in the HMF model (Antoni & Ruffo 1995; Chavanis et al. 2005)
to capture bar formation (Pichon & Lynden-Bell 1993) as a phase
transition towards orbit alignment.

Gruzinov et al. (2020) recently used a similar mean-field ap-
proximation and maximum entropy method to determine the ther-
modynamical equilibria of black hole star clusters. It is therefore
no surprise that their equation (3) is so similar to the present equa-
tion (14). The main difference is that Gruzinov et al. (2020) consid-
ered the case of massive Keplerian elliptic wires, while we consider

the case of massive Keplerian annuli. Phrased differently, Gruzinov
et al. (2020) investigated the simultaneous equilibria of scalar reso-
nant relaxation (SRR) and VRR – i.e. the joint relaxation of eccen-
tricities and orientations – whereas we focus here on the equilibria
of VRR – i.e. the sole relaxation of orientations.

2.3 Axisymmetric assumption

For a given nuclear cluster, the total angular momentum vector Ltot

provides us with only one specific direction, taken to be the +z
axis throughout the paper. Unfortunately, this does not imply that
the thermodynamical equilibrium of VRR necessarily has an axial
symmetry around Ltot, as a spontaneous symmetry breaking could
occur (see, e.g., Kocsis & Tremaine 2011; Gruzinov et al. 2020).

For simplicity however, we assume that VRR does not exhibit
here any such symmetry breaking, and restrict ourselves to axisym-
metric DFs, i.e.

∀K, ∀ `, ∀m 6= 0, M`m(K) = 0. (15)

From there, we can make the simplifications Ltot→Ltot>0 and
γ→γ>0. This assumption greatly reduces the total number of
spherical harmonics to consider, therefore it significantly allevi-
ates the numerical complexity. However, let us stress that this as-
sumption is not always physically motivated. It is still legitimate
in some cases, as for single-population and single-harmonic clus-
ters (Roupas et al. 2017) or multi-population clusters with null
inverse temperatures (§C3), but it does not hold in some other
regimes, as emphasised by the finding of a warped VRR disc in
the simulations of Kocsis & Tremaine (2011) (see fig. 6 therein).
Overall, the axisymmetric assumption is an important limitation of
the present work, and needs to be challenged in future studies.

To comply with this approach, the ensemble average of equa-
tion (6) is carried out over realisations which are all rotated to have
their Ltot aligned along +z.

2.4 Self-consistency

Of course, one needs to impose self-consistency on equations (8)
and (11), as well as on equation (14). Indeed, Feq(L̂,K) involves
the one-particle energy ε(L̂,K) which, via equations (9) and (10),
involves Feq(L̂,K) itself. Within the present microcanonical en-
semble, imposing the cluster’s total energy, angular momentum and
orbital distribution ultimately sets up its temperature (via β), rate
of rotation (via γ), and shape (via M`0(K))3.

To effectively solve such a generic problem, we discretise
the distribution as a finite set of stellar populations, indexed by
k and described by the orbital parameters Kk. We then write
Feq(L̂,K)=

∑
kFk(L̂) δD(K−Kk) with Fk(L̂) the distribution

of orientation of the kth population and Nk=
∫

dL̂Fk(L̂) its num-
ber of stars (see equation 7). After this discretisation, a cluster’s
configuration is fully characterised by its set of order parameters

θ =
(
β, γ, {M`,k}

)
, (16)

with M`,k=
∫

dL̂Y`0(L̂)Fk(L̂) the axisymmetric `-magnetisation
of the kth population (see equation 10).

For a given initial condition, i.e. a given (Etot, Ltot, {Nk}),

3 In principle, there are infinitely many harmonics `, but in practice we
found it acceptable to stop at `max=10, see §D2.

MNRAS 000, 000–000 (0000)
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the cluster’s equilibrium configurations are obtained for the param-
eters θ that are joint roots of the consistency functions

CE =
(
Etot − Etot

[
Feq(θ)

])
/Etot,

CL =
(
Ltot − Ltot

[
Feq(θ)

])
/Ltot,

∀ `, ∀ k, CM`,k =
(
M`,k−M`,k

[
Feq(θ)

])
/(Nk y`), (17)

with y`=
√

(2`+1)/(4π) and Feq(θ) coming from equation (14).
Importantly, in order to place all the constraints from equation (17)
on equal footings, the consistency functions C=

(
CE , CL, CM`,k

)
are all dimensionless, and rescaled to be of order unity.

In order to find roots of the function θ 7→C[θ], we use
Newton–Raphson’s method (e.g., Press et al. 2007), follow-
ing Takács & Kocsis (2018). More precisely, starting from a con-
figuration θn, we compute

θn+1 = θn − J−1[θn]C[θn], (18)

to obtain the next iteration4, with J[θ]ij =∂Ci/∂θj the Jacobian
of the consistency function C at point θ. Given that C has a simple
analytical form in equation (17), so does its Jacobian, as detailed
in §B.

Equation (18) is the second important difference be-
tween Gruzinov et al. (2020) and the present work. Indeed,
Gruzinov et al. (2020) solves the self-consistency requirement
on their equation (3) by iteratively computing a sequence
ψ→F→ρ→ψ→· · ·, of potentials, DFs and densities, up to
convergence. Here, we directly ensure self-consistency in equa-
tion (14) by using Newton’s method.

2.5 Optimisation strategy

To finalise our algorithm, it only remains to specify our choice for
the starting point θ0 of the iteration process.

In §C1 we explore a first method where θ0 is initialised at
random. Such an agnostic approach allows us to recover a clus-
ter’s both stable, metastable and unstable equilibria, and to extend
the results of Takács & Kocsis (2018) to (axisymmetric) multi-
population clusters. Using this method, we recover all the qualita-
tive behaviours of the single-population clusters reported in Roupas
et al. (2017) and Takács & Kocsis (2018), and confirm that the
branch that goes through β=0 (see Fig. C1) always has the high-
est entropy. Unfortunately, as one increases the number of stellar
populations, the efficiency of this protocol drastically drops.

Dealing with systems with many stellar populations therefore
requires improvements to the initialisation process. To alleviate
most of these difficulties, we restrict ourselves, and predict only the
clusters’ global thermodynamical equilibria, and none of the other
possible equilibria, should they be unstable or metastable. Benefit-
ing from the insight of Fig. C1, we obtain these global equilibria by
iteratively moving along the series of equilibria associated with the
branch that has a solution for β=0 (see §C2). Of course, the main
drawback of this approach is that it cannot be used to determine
any of the unstable thermodynamical equilibria.

4 Note that in practice, it is faster and numerically more stable to solve the
linear equation Jx = −C for the unknown x=θn+1−θn, rather than to
explicitly compute the inverse matrix, J−1.

Figure 2. Illustration of a cluster’s typical initial condition. It consists of
Ndisc=16 dense patches of stars scattered uniformly on the unit sphere,
and associated with distinct episodes of star formation or infall events. Each
patch is made of Npart=512 stars distributed uniformly within a small
angular section around the patch’s centre. Each star is coloured according
to the norm of its angular momentum vector, with the smallest norm in blue
and the largest one in red. Clearly, stars with small angular momenta are the
most numerous.

3 THERMODYNAMICAL NUCLEAR EQUILIBRIA

We can now make use of our entropy optimisation algorithm to
investigate the typical equilibrium distribution of orientations in
galactic nuclei. Benefiting from the efficiency and versatility of this
method, we will also use it to explore the (large) parameter space
describing possible initial stellar clusters.

3.1 Parametrisation of the stellar population

Let us first parametrise the distribution of the orbital parameters
Kk, i.e., the distribution of masses, semi-major axes, and eccen-
tricities. Our fiducial model is the same as in Szölgyén & Kocsis
(2018). We assume that stars are formed through a series of dis-
tinct episodes of star formation or infall events. More precisely,
for a given realisation, we generate Ndisc =16 discs, each of them
composed of Npart =512 stars, so that the cluster’s total num-
ber of particles is N=Ndisc×Npart =8 192. For each disc, its
average orientation, L̂disc, is drawn uniformly on the the unit
sphere, while the orientations of the stars within that disc are drawn
uniformly within the small region L̂·L̂disc>0.994. Finally, for
each star, the orbital parameters K=(m,a, e) are drawn inde-
pendently from one another according to power law probability
distribution functions (PDFs) proportional to (m−2, a0, e) respec-
tively within the ranges mmax/mmin =100, amax/amin =100,
and (emin, emax)=(0, 0.3). In Fig. 2, we illustrate one typical re-
alisation of such a protocol. Following §2.3, we recall that the real-
isations are always rotated to have their Ltot aligned along +z.

Once an initial distribution has been drawn, one may compute
its two key invariants, Etot and |Ltot|. In practice, we keep track
of these two invariants through the two dimensionless quantities

E = − Etot

N2 Gm2
min/amin

; s =
|Ltot|∑
i L(Ki)

, (19)

which we respectively call the binding energy and spin of the stel-
lar cluster. In Fig. 3, we represent the typical distribution of (E, s)

MNRAS 000, 000–000 (0000)
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Figure 3. Distribution of the spin and binding energy of clusters drawn
following the fiducial protocol from §3.1, for 218 realisations of initial con-
ditions and `max=10.

for a large number of stellar clusters drawn from our fiducial proce-
dure. We find that clusters exhibit a wide range of binding energy
and spin, and in turn this somewhat impacts the diversity of ther-
modynamical equilibria.

3.2 A typical equilibrium distribution

In Fig. 3, we determined the distribution of the clusters’ invari-
ants (E, s). In order to characterise the properties of the asso-
ciated systems, we now investigate in detail the particular case
(E, s)=(2×10−3, 0.2), i.e. a typical cluster realisation. We de-
tail in §D1 our precise choices for the discretisation of the stellar
populations. By maximising the entropy, we determine this clus-
ter’s equilibrium configuration, Feq(L̂,K). This is first illustrated
in Fig. 4 in the (m, L̂z)-plane. The same cluster is alternatively rep-
resented in Fig. 5, where we present the stellar density distribution
on the sphere for two different mass bins.

As is clearly visible, heavy particles tend to have their unit an-
gular momentum vector L̂ oriented towards the North pole, mean-
ing that the associated stars tend to orbit near the equatorial plane, a
conclusion already reached by Szölgyén & Kocsis (2018) using an
alternative Monte–Carlo approach5, and by Gruzinov et al. (2020)
in the more general case of Keplerian elliptic wires. Having the
heavy particles, e.g., the IMBHs, orbit close to the same orbital
plane should drastically impact the rate of their pairwise mergers in
galactic nuclei. In practice, we also repeated the experiment from
Fig. 4 a hundred times by letting (E, s) explore the distribution
from Fig. 3. The associated ensemble-averaged DF was found to
be similar to the one from Fig. 4.

For the heaviest stars, we also note the presence of an addi-
tional over-density near the South pole indicating the presence of a
counter-rotating equatorial disc. However, owing to the conserva-
tion of angular momentum, this component is less populated than
the main prograde disc.

5 Note that even when accounting for the different normalisation, the de-
tails of the DF in (m, L̂z)-space obtained here in Fig. 4 somewhat differ
from the equivalent fig. 2 of Szölgyén & Kocsis (2018).
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Figure 4. Top panel: Illustration of the relaxed stellar density distribu-
tion, Feq(m, L̂z) (integrated over all semi-major axes and eccentrici-
ties), as a function of mass and orientation for a relaxed cluster with
(E, s)=(2×10−3, 0.2). See §D for the numerical details. Our normali-
sation allows for each mass bin to have its maximum equal to 1. Heavier
populations are much more segregated towards the poles. Bottom panel:
Same as the top panel, where each line corresponds to a different mass bin.

As one considers lighter particles, the anisotropy fades away
and the lightest particles do not show any strong sign of spon-
taneous orientation alignment. This concurs with Gruzinov et al.
(2020)’s results (see §6.3. therein), which found that light objects
follow a spherically symmetric distribution.

Having the full equilibrium distribution Feq(L̂,K) at our dis-
posal, one may also study its dependence w.r.t. the semi-major
axis and eccentricity. Limiting ourselves to particles of interme-
diate mass, we find that the disc is slightly thinner for intermediate
semi-major axes, as illustrated in Fig. 6. This is in agreement with
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Figure 5. Stellar density distribution on the unit sphere, after relaxation,
for the lightest particles (left, 16m/mmin61.25) and the heaviest ones
(right, 796m/mmin6100). We use the same normalisation and colouring
as in Fig. 4. Importantly, we note that the heavy particles are significantly
more segregated towards the poles, i.e. the corresponding heavy stars live
within a thin equatorial disc.
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Figure 6. Illustration of the relaxed stellar density distribution, Feq(a, L̂z)
(integrated over all eccentricities, but only intermediate masses in
26m/mmin616), as a function of semi-major axis and orientation, for
the same cluster as in Fig. 4. The normalisation allows for each mass bin to
have its maximum equal to 1. Populations with an intermediate semi-major
axis tend to segregate within a thinner disk.

the recent result from Máthé et al. (2022) (see fig. 7 therein).
As for eccentricities, we find that, in essence, Feq is indepen-

dent of e. This was expected given that the coupling coefficients,
H`[K,K′] (equation 4) and the norm of the angular momentum
L(K) (equation 12) only weakly depend on e, especially for the
chosen quasi-circular orbits 06e60.3.

3.3 Impact of the cluster’s binding energy and spin

As highlighted in Fig. 3, the clusters exhibit a significant diversity
in their binding energies and spins, given our generation protocol.
Let us therefore investigate the dependence of the equilibria w.r.t.
these invariants. In Fig. 7, we present series of equilibria (caloric
curves) giving the inverse temperature, β, as a function of the nor-
malised total energy,−E, for various total angular momentum (i.e.
various s). We observe that the temperature generically increases
with energy, except in a small region of negative specific heat. Also,
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Figure 7. Top panel: Illustration of the equilibrium inverse temperature β
as a function of the cluster’s normalised total energy,−E (equation 19) for
different values of spin. Each line is composed of 500 systems, all with
(m,a, e) drawn following the protocol of §3.1, and with binding ener-
gies distributed on a logarithmic grid ranging from 10−6 to 10−1. Bottom
panel: Illustration of the equilibrium angular frequency γ as a function of
the cluster’s spin for different binding energies. For each line, 100 systems
were simulated, with spins distributed on a linear grid ranging from 0 to 1.
See equation (C1) for the definitions of β0 and γ0. As one lowers the total
angular momentum, via s, thermodynamical equilibria can exhibit negative
specific heats, i.e. C=∂Etot/∂T <0 (Roupas et al. 2017). For a given
value of s, our approach to determine the series of equilibria is to start from
the (much) simpler problem at β=0 and move up to the target energy step
by step iteratively (see §C2).

for any value of the spin there exists a region of negative tempera-
ture. Both effects had already been reported in Roupas et al. (2017)
and Takács & Kocsis (2018), and are further discussed in §C1. Note
however that these behaviours arise forE . 10−4, i.e. well outside
of the astrophysical regime, E&10−3, found in Fig. 3. In the same
figure, we also present series of equilibria giving the angular fre-
quency γ as a function of the total angular momentum s, for fixed
values of the energy E. The angular frequency is found to always
increase with the cluster’s spin.

Within the domain of invariants spanned by Fig. 3, all equi-
libria are found to remain qualitatively similar but differ in the
strength of their anisotropy. To characterise the level of anisotropy
in the orbital distribution, we introduce a cluster’s segregation rate,
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SR, as

SR =

∫
m>mc

dK

∫
L̂z>L̂c

dL̂Feq(L̂,K)∫
m>mc

dK

∫
dL̂Feq(L̂,K)

, (20)

This quantity describes which fraction of heavy particles (i.e. with
m>mc) have an angular momentum vector that is well-aligned
with the cluster’s total angular momentum (i.e. have L̂z> L̂c). With
such a definition, we note that anti-aligned particles are not ac-
counted for. The larger SR, the stronger the anisotropic segrega-
tion of the heavy populations. In practice, guided by Fig. 4, we
consider the values mc =10mmin and L̂c =cos(20◦). We expect
that changing the values of mc does not qualitatively impact the
present conclusions.

In Fig. 8, we illustrate the clusters’ segregation rate as a func-
tion of the binding energy and spin (E, s). We observe the cru-
cial role played by these two invariants in driving the spontaneous
alignment of the orbital orientations of the heaviest particles. The
larger E and the larger s, the larger the proportion of heavy parti-
cles that are aligned near the equatorial plane.

To strengthen this conclusion, let us finally determine the an-
gular size, θc, of the northern polar cap that contains a fraction fc

of the heavy particles’ unit angular momentum vectors L̂. More
precisely, we define θc through the implicit constraint∫

m>mc

dK

∫
L̂z>cos(θc)

dL̂Feq(L̂,K)∫
m>mc

dK

∫
dL̂Feq(L̂,K)

= fc, (21)

noting once again that anti-aligned stars are not accounted for.
Equivalently, θc is also the angular size of the equatorial disk
that contains a fraction fc of the heavy particles. Using a fraction
fc =50%, the dependence of θc w.r.t. the clusters’ invariants is il-
lustrated in Fig. 8. Once again, the more bound the cluster, and the
larger its total angular momentum, the thinner the disc of heavy
particles in the relaxed equilibrium.

Interestingly, if equations (20) and (21) were to consider
both aligned and anti-aligned stars, through the replacement
L̂z>cos(θc)→|L̂z|>cos(θc), the dependence w.r.t. s in Fig. 8
would be significantly reduced. This result is expected since in
equation (8), the total energy is left invariant by the changes
L̂i→−L̂i, while in equation (11) the total angular momentum
changes sign.

3.4 Impact of the mass and semi-major axes distributions

Let us now step out and explore the impact of the distribution of
the orbital stellar parameters themselves on the clusters’ thermal
equilibria. Following §3.1, we now vary the PDFs w.r.t. which the
stars’ masses and semi-major axes are drawn, keeping all other pa-
rameters the same. More precisely, we still draw (m,a) pairs ac-
cording to power law distributions, (mγm , aγa), but this time vary
the power law indices (γm, γa) between different realisations.

The impact of changing these two parameters on the average
segregation rate of the heavy particles, 〈θc〉, is illustrated in Fig. 9.
We find that the slope γm has the strongest effect with clusters
containing fewer heavy stars segregating in a disk twice thinner
than the fiducial cluster. The semi-major axis power law index also
has an impact on the segregation angle: clusters with larger semi-
major axes tend to display a stronger mass segregation.

0.1 0.2 0.3 0.4 0.5

0.5

1.0

2.0

3.0

4.0

5.0

s

E
[×
10

3
]

SR

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

0.5

1.0

2.0

3.0

4.0

5.0

s

E
[×
10

3
]

θc [°]

0

20

40

60

80

Figure 8. Top panel: Segregation rate of the relaxed clusters (equation 20),
within the range of spins and binding energies expected for typical astro-
physical clusters (see Fig. 3). Bottom panel: Same domain as the top panel
but for the segregation angle θc (equation 21). Clusters with large binding
energies and spins exhibit the strongest segregation of their heavy particles
within the equatorial disc.

These dependencies may possibly be used in the future to es-
timate indirectly the stellar and compact objects’ initial mass func-
tion in galactic centres. Indeed, the rate of pairwise IMBH mergers
should be measurable using gravitational waves, and could serve
as an indirect probe for the width of the segregated massive disc,
which we just have shown is linked to the IMBHs’ initial mass
function.

3.5 Impact of the dispersion of disc orientations

A cluster’s long-term equilibrium distribution is fully characterised
by its three invariants: the binding energy, E, the spin, s, and
the distribution of orbital parameters, N(K). Unfortunately, while
dynamically relevant, such parameters do not translate easily in
terms of astrophysical observables. As such, let us finally switch to
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Figure 9. Average segregation angle, 〈θc〉, as a function of the power
law indices of the initial distributions in semi-major axes and masses.
Here, for each value of (γa, γm), the average has been computed over
128 realisations of a cluster. The fiducial case from Fig. 4 corresponds to
(γa, γm)=(0,−2). Interestingly, both power law indices are found to im-
pact the relaxed segregation angle.

parametrisations more closely related to the underlying formation
process of the galactic centre’s stellar cluster, such as the geometry
of the initial distribution.

Building upon Fig. 2, rather than drawing the initial orienta-
tions of the discs uniformly on the unit sphere, we may draw them
along some biased direction, for example to reflect the preferen-
tial infall of new star-forming gas along specific directions, e.g.,
imposed by the geometry of past gaseous accretion events. More
precisely, we assume that the average orientation of each disc is
drawn according to a Von Mises–Fisher PDF (Wood 1994) of the
form

P (L̂) =
κ

4π sinh(κ)
eκL̂z , (22)

with κ the PDF’s concentration. Here, κ=0 corresponds to the
isotropic case considered in Fig. 2. The larger κ, the smaller the
spread of the PDF on the unit sphere, as in Fig. 10 for κ=5.

Keeping all other stellar parameters as in §3.1, we may now
study the impact of the concentration parameter κ on the shape of
the relaxed distributions. This is first illustrated in Fig. 11, where
we show the dependence of the invariants (E, s) with κ. As ex-
pected, we recover that the more concentrated the distribution of
the discs’ initial orientations, the larger the value of s and E. In
Fig. 12, we subsequently illustrate the dependence of the average
segregation angle, 〈θc〉 (equation 21), as a function of κ. Narrower
initial distributions of orientations lead to stronger segregation of
the heavy stars at equilibrium. This is expected, since Fig. 8 showed
that the segregation strength correlates positively with both binding
energy and spin. To emphasise this conclusion, Fig. 12 also illus-
trates the thickness of the asymptotic massive disc as a function of
the initial mass function slope. Similarly to Fig. 9, at fixed initial
anisotropy, the steeper the slope, the stronger the mass segregation.
Overall, investigations as in Fig. 12 should ultimately prove useful
to place some constraints on the origin of SgrA*’s surrounding stel-

Figure 10. Same as Fig. 2, but assuming that the orientations of the discs
are drawn from a von Mises–Fisher PDF with concentration κ=5 (equa-
tion 22).
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Figure 11. Typical distribution of the spin and binding energies as one
varies the concentration κ of the initial discs. Coloured points correspond
to the mean values of (s, E), while black error bars are standard deviations
in both parameters. Statistics are computed from 104 realisations. As ex-
pected, the more concentrated the discs’ orientations, the more packed the
initial distributions, and therefore the larger the spins and binding energies.

lar cluster, in particular in the light of the “paradox of youth” (Ghez
et al. 2003; Genzel et al. 2010).

4 CONCLUSION

In the spirit of Roupas et al. (2017); Takács & Kocsis (2018), we
relied on maximum entropy methods to assess the internal stellar
structure of galactic nuclei and their underlying distribution of or-
bital orientations. We expanded their approach to multi-populations
clusters and showed how to jointly account for the constraints of en-
ergy, angular momentum, and orbital parameters conservations to
efficiently characterise a cluster’s expected thermodynamical equi-
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Figure 12. Average segregation angle, 〈θc〉, as a function of the concentra-
tion parameter κ, for three different mass distributions. The solid lines rep-
resent the average segregation angle, and the dashed lines represent the stan-
dard deviation. The statistics are estimated from 210 realisations – though
∼10% of the realisations for (κ, γm)=(5,−2.5) failed because of numer-
ical overflows encountered with very strongly anisotropic DFs. The more
anisotropic a cluster initially, the higher its binding energy and spin, and
therefore the more segregated at equilibrium.

libria. In particular, as already pointed out in Szölgyén & Kocsis
(2018), we recovered the spontaneous alignment of the heavier stel-
lar components, such as IMBHs (Fig. 4). The more bound the clus-
ter and the larger its spin, the thinner the asymptotic disc (Fig. 8).

Benefiting from the versatility of the present method, we used
it to explore the dependence of these structures w.r.t. the clus-
ter’s initial conditions of formation, such as the intrinsic power law
spectra in mass and semi-major axis (Fig. 9), or the initial spread
in orientations (Fig. 12). Small modifications to the present algo-
rithm would also make it possible to confirm that the final equi-
librium does not depend on the specific sequence of star formation
events (Szölgyén & Kocsis 2018).

Of course, this work is but one step towards the systematic ex-
ploration of the remaining imprints of a galactic nucleus’ initial for-
mation on the cluster’s long-term distribution of orientations. Let us
conclude by listing a few possible venues for future works.

The present approach could first benefit from various exten-
sions on the theoretical and analytical front. (i) We have assumed
from the start that stellar eccentricities were conserved through-
out the VRR evolution. This amounts to neglecting the process of
SRR (Rauch & Tremaine 1996), whose signature is clearly visible
in the S-cluster distribution (see, e.g., Tep et al. 2021). As already
recently hinted in Szölgyén et al. (2021), allowing for the eccentric-
ities to also vary during the orientations’ relaxation might impact
the system’s VRR equilibria. This deserves careful study. Similarly,
stars can also change their semi-major axis through non-resonant
relaxation (NR), whose impact on the outcome of VRR should also
be investigated. (ii) We recovered here that VRR may lead to highly
non-spherical distribution of orientations. Such an end-state distri-
bution is expected to impact in turn the rate of orientation diffusion

of a given test star and the efficiency with which newly formed
stellar discs can dilute (see, e.g., Giral Martı́nez et al. 2020).

The stochastic process of spontaneous alignment is not lim-
ited to the axisymmetric relaxation of Keplerian annuli around su-
permassive BHs. As such, at a significantly larger numerical cost,
one could extend the present approach to non-axisymmetric distri-
butions, as was already done in Roupas et al. (2017) in the limit of a
single-population system with a quadrupolar interaction. Similarly,
it would be of interest to investigate the distinction between the
present global equilibria and the other possible metastable ones6:
do they also exhibit a disc-like structure? Finally, one should in-
vestigate whether there exist astrophysically relevant regimes with
negative temperatures or heat capacities (Figs. 7 and C1).

In equation (1), we assumed that we could average the clus-
ter’s Hamiltonian over the in-plane precessions. We could lift this
assumption and determine the equilibrium distributions of Keple-
rian elliptic wires (see, e.g., Gruzinov et al. 2020; Tremaine 2020b).
Finally, since the mean potential remains on average spherically
symmetric, all these investigations could also be performed in glob-
ular clusters, where stellar metallicities or ages could be used as
additional tracers of the mixing of stellar orientations.

In the present work, we restricted ourselves to predicting the
end-state of VRR, i.e. its thermodynamical equilibrium. By de-
sign such an approach cannot provide any estimate of the ex-
pected relaxation time required for this asymptotic distribution to
be reached. There are, at least, two possible venues to quantify such
relaxation time: (i) One could use direct time integrations of the
equations of motion to get the equilibrium distributions, a goal al-
ready pursued in Kocsis & Tremaine (2015). Building upon Fouvry
et al. (2020), one can expect that efficient multipole methods may
be designed to perform such direct numerical simulations with a
computational complexity scaling linearly with the total number of
particles; (ii) In the limit of sufficiently symmetric orbital distribu-
tions, e.g., axisymmetric (Fouvry et al. 2019a), one could alterna-
tively derive an explicit kinetic theory for the cluster, from which
the relaxation time would naturally follow. Interestingly, we report
that the axisymmetric equilibrium recovered in Fig. 4 generically
exhibits a monotonic profile of latitudinal precession frequency
for all stellar populations. This may induce a situation of “kinetic
blocking” and play a critical role in defining the efficiency with
which these systems may relax (Fouvry et al. 2019a).

Finally, benefiting from the planned upgrade on VLTI (Eisen-
hauer 2019; Gravity Collab. et al. 2021), as well as the future thirty-
meter class telescopes such as ELT (Pott et al. 2018; Davies et al.
2018) and TMT (Do et al. 2019), we will soon have a wealth of
orbitally-resolved stars around SgrA* along with their stellar ages.
Building upon the present work, a detailed characterisation of their
orbital distribution should prove paramount to place constraints on
the properties of the (likely present) un-observed IMBHs, and the
impact of their effective distribution of orientations on their overall
in-situ merger rates.

6 For systems with long-range interactions, metastable states have a very
long lifetime scaling as eN (see, e.g., Chavanis 2006), because a system
trapped in a metastable state (local entropy maximum) has to cross a huge
barrier of potential to reach the fully stable equilibrium (global entropy
maximum).
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APPENDIX A: THERMODYNAMICAL EQUILIBRIUM

Following Roupas et al. (2017), we derive the generic expression
of the DF of thermodynamical equilibria, Feq, from equation (14).
This DF maximises the Boltzmann entropy (equation 13), under
three joint constraints: the conservation of orbital parameters (equa-
tion 7), the conservation of energy (equation 8) and the conserva-
tion of angular momentum (equation 11).

Following the double orbit-average from equation (1), we
stress that the Hamiltonian of VRR (equation 2) is such that (i)
the phase space domain for L̂ is of finite volume and (ii) for a fi-
nite `max, there is no divergence of the pairwise VRR interaction
for L̂i= L̂j . As such, the VRR dynamics is simplified and does
not present the typical peculiarities of the statistical mechanics of
self-gravitating systems such as the evaporation of stars, the forma-
tion of binaries, the gravothermal instability, and the absence of a
true statistical equilibrium (see, e.g., Chavanis 2006). In the present
case, we essentially deal with the dynamics of self-interacting spins
on a sphere, a system which possesses well-defined statistical equi-
libria in all cases.

Let us consider Feq a local extremum of entropy. Lagrange
multipliers then guarantee the existence of a function α(K), a
scalar β and a vector γ that ensure the differential equality

DFeqS+

∫
dKα(K)DFeqN(K)−βDFeqEtot+γ ·DFeqLtot =0.

(A1)
In that expression, the differentials are given by the linear forms

DFeqS : δF 7→ −kB

∫
dL̂dK

[
1+ln

(
Feq(L̂,K)

)]
δF (L̂,K),

DFeqN(K) : δF 7→
∫

dL̂ δF (L̂,K),

DFeqEtot : δF 7→
∫

dL̂dK ε(L̂,K) δF (L̂,K),

DFeqLtot : δF 7→
∫

dL̂dKL(K) L̂ δF (L̂,K), (A2)

where we used the symmetry H`[K,K′]=H`[K′,K′] (see equa-
tion 4) to compute DFeqEtot. Injecting these relations into equa-
tion (A1), we find

∀ δF,
∫

dL̂dK
{
− kB

[
1 + ln

(
Feq(L̂,K)

)]
+ α(K) (A3)

− β ε(L̂,K) + L(K)γ ·L̂
}
δF (L̂,K) = 0,

Since this integral must vanish whatever the small displacement δF
considered, we have

∀ L̂, ∀K, − kB

[
1 + ln

(
Feq(L̂,K)

)]
+ α(K)

+ β ε(L̂,K) + L(K)γ ·L̂ = 0. (A4)

Inverting this relation, we find that the equilibrium DF is necessar-
ily of the form

Feq(L̂,K) = exp
[(
α(K)−1

)
−β ε(L̂,K)+L(K)γ ·L̂

]
, (A5)
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where, for convenience, the factor kB has been absorbed in the def-
inition of α, β and γ. Following equation (7), we impose the num-
ber density of stars with orbital parameters K to be N(K), and we
finally recover equation (14).

APPENDIX B: CONSISTENCY FUNCTIONS AND
JACOBIAN

We detail here the expressions of the consistency functions from
equation (17). In order to shorten the notations, let us first write the
exponential factor from equation (14) as

e[L̂,K] = exp
[
−β ε(L̂,K) + γ L(K) L̂z

]
. (B1)

We may then introduce the four angular integrals

I(K) =

∫
dL̂ e[L̂,K],

Iε(K) =

∫
dL̂ ε(L̂,K) e[L̂,K],

IL(K) =

∫
dL̂L(K) L̂z e[L̂,K],

I`(K) =

∫
dL̂Y`0(L̂) e[L̂,K]. (B2)

The consistency functions from equation (17) then simply read

CE =
1

Etot

{
Etot − 1

2

∫
dKN(K)

Iε(K)

I(K)

}
,

CL =
1

Ltot

{
Ltot −

∫
dKN(K)

IL(K)

I(K)

}
,

CM`,k =
1

Nky`

{
M`,k −Nk

I`(K)

I(K)

}
. (B3)

As required by equation (18), it is straightforward to compute
the gradients of (CE , CL, {CM`,k}) w.r.t. the order parameters
(β, γ, {M`,k}). All these expressions are analytical and involve an-
gular integrals similar to the ones present in equation (B2). In prac-
tice, having discretised the stellar populations (see §D1), the inte-
grals w.r.t. dK simply become

∑
k. In addition, benefiting from

the assumption of axisymmetry (see §2.3), the integrals w.r.t. dL̂
become integrals w.r.t. dL̂z , which are computed using a Gauss–
Legendre quadrature (see, e.g., Press et al. 2007) with 100 nodes.

APPENDIX C: OPTIMISATION STRATEGIES

In this Appendix, we present our two main approaches to solving
the iteration problem from equation (18).

C1 Random initialisations

A first approach to initialise equation (18) is to consider starting
points θ0 taken at random. More precisely, we draw the initial order
parameters independently from one another and uniformly within
the domains

0 6 β 6 20β0 with β0 = 1/
(
N Gm2

min/amin

)
,

0 6 γ 6 2 γ0 with γ0 = 1/
(
mmin

√
GM•amin

)
,

|M`,k| 6 y`Nk, (C1)

with y`=
√

(2`+1)/(4π). The main advantage of such an agnostic
approach is that it allows us to recover a cluster’s both stable and
unstable equilibria.

Figure C1. Inverse temperature β as a function of the normalised total en-
ergy,−E (see equation 19), for various spins s, when considering a cluster
composed of 5 populations of different individual masses interacting with
`max=10. This figure was obtained without restricting ourselves to the
global thermodynamical equilibria (see C1), as emphasised by the second
set of (red and blue) solutions at high β.

In Fig. C1, we use this protocol for a multi-population
and a multi-harmonic cluster with (Nm, Na, Ne)=(5, 1, 1), and
`max =10 – see §D for details on the cluster’s properties. In a
sense, this figure is similar to the top panel of Fig. 7, except that
in Fig. C1, we do not restrict ourselves solely to the global ther-
modynamical equilibria. Interestingly, it also appears that all the
qualitative behaviours reported in Roupas et al. (2017) and Takács
& Kocsis (2018) are still present in the multi-population case, as
can be seen by comparing with Figs. D3 and D4.

We first note that for any spin s, there exists a region of the
caloric curve where equilibria have negative temperatures. Nega-
tive temperatures occur when the total volume of phase space is fi-
nite (which is the case for VRR), as first shown by Onsager (1949)
in the context of 2D vortex dynamics. However, in the present con-
text, the negative temperature states do not seem to have any partic-
ular impact and, furthermore, the region β<0 is found to be outside
of the astrophysically relevant regime (see Fig. 3).

For some binding energies and spins, there can exist sev-
eral solutions to equation (14). Indeed, the Lagrange multipliers
method finds all local extrema of the entropy. These could be lo-
cal minima, saddle points, metastable local maxima, or the one
global maximum. In the present context, the turning point method
of Poincaré (see, e.g., Lynden-Bell & Wood 1968; Katz 1978) states
that along a continuous branch in the (Etot, β)-plane, there can be
a loss of stability around a given solution in the microcanonical en-
semble (i.e. fixed Etot and Ltot) only if Etot 7→β(Etot) exhibits
an infinite derivative there. In Fig. C1, no such turning points are
observed. Given that the solution for β=0 is always found to be
stable (see §C3), we can conclude that the branch of solutions that
goes through β=0 are always, at least, metastable. In practice, we
systematically computed the entropy of the various branches, and
the one going through β=0 was always found to correspond to
the global (axisymmetric) maxima. This justifies our choice in §C2
to limit ourselves to only determining the equilibria along β=0,
therefore significantly alleviating the numerical burden.
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In Fig. C1, we also recover that low-spin multi-population
clusters can exhibit negative specific heats at small energies. How-
ever, when considering invariants (E, s) provided by the protocol
from §3.1, none of the realisations considered were found to fall
within that domain. Finally, we note that the region of negative
specific heat is delimited by a pair of equilibrium points where the
function Etot 7→β(Etot) has a vanishing derivative. The Poincaré
turning point method can be used to show that the series of equilib-
ria in between these two points of vanishing derivative is unstable
in the canonical ensemble (fixed β and γ). This leads to a situation
of ensemble inequivalence – since equilibria with negative specific
heats are allowed in the microcanonical ensemble but forbidden in
the canonical ensemble – characteristic of systems driven by long-
range interactions (see, e.g., Chavanis 2006). Given the similarities
of Fig. C1 with the results already presented in Roupas et al. (2017);
Takács & Kocsis (2018), we refer to these previous works for de-
tailed discussions of these canonical phase transitions. We stress,
however, that the relevant ensemble considered in the main text is
the microcanonical one since our system is assumed to be isolated.

C2 Iterative resolutions

When dealing with systems with a much larger number of stellar
populations, the random initialisation from equation (C1) is not ef-
ficient anymore. Indeed, because the total number of order param-
eters scale like O(Npop `max) (see equation 16), the likelihood of
starting sufficiently close to one equilibrium for equation (18) to
converge drastically drops. As such, benefiting from the insight of
Fig. C1, we limit ourselves to predicting the cluster’s global ther-
modynamical equilibrium, i.e. predicting the equilibrium that lies
on the branch that goes through β=0.

More precisely, assuming that the cluster at hand is charac-
terised by the two invariants (Etot, Ltot), we first determine the
energy E(0)

tot and order parameters θ(0) associated with the ther-
modynamical equilibrium at temperature β=0 and total angular
momentum Ltot. We highlight in §C3 how such a problem is sig-
nificantly easier to solve, as it does not involve any self-gravitating
contribution, therefore making equation (14) explicit.

From this initial configuration, we use θ(0) as an initial con-
dition to solve a new self-consistency problem for the invariants
(E

(1)
tot , Ltot), with E

(1)
tot lying between E

(0)
tot and the final target

Etot. Provided that E(1)
tot is close enough to E

(0)
tot the Newton

method from §2.4 is expected to converge rapidly and to provide us
with a new configuration θ(1), solution of the problem with invari-
ants (E

(1)
tot , Ltot). This new solution may then be used as an appro-

priate initial condition to solve the problem (E
(2)
tot , Ltot), getting

us closer to our target energyEtot. Repeating this iterative process,
we can ultimately solve the problem truly at hand, i.e. the one asso-
ciated with the invariants (Etot, Ltot). In practice, we generically
used a total of 50 different energies E(i)

tot spread logarithmically
between E(0)

tot and the target total energy Etot.

C3 Equilibria for β = 0

We derive the DF that solves the entropy maximisation problem,
without any constraint on energy. This DF is the starting point of
our optimisation strategy with small steps in total energy (see §C2).

First, for a given non-zero value of Ltot (taken to be along
+z), the solution of the optimisation problem without energy
constraint must be axisymmetric. Indeed, if F (φ, L̂z,K) satis-
fies the constraints from equations (7) and (11), then so does

F∆ : (φ, L̂z,K)→F (φ+∆, L̂z,K). Given that equation (11) is
linear w.r.t. F ,

F : (φ, L̂z,K)→
∫ 2π

0

d∆

2π
F∆(φ, L̂z,K) = F (L̂z,K) (C2)

also meets the constraints on Ltot. We note that F is a barycentre
of the phase-shifted DFs, which all have the same entropy (equa-
tion 13). Given that s : x 7→x ln(x) is a convex function, Jensen’s
inequality gives S[F ]>S(F ). As such, in the absence of any con-
straint on energy, the entropy maximum must be axisymmetric.

Given this axisymmetry and remembering that β=0 since
there is no constraint on the energy, equation (14) becomes

Feq(L̂,K) = N(K)
exp
[
L(K) γ L̂z

]∫
dL̂′ exp

[
L(K) γ L̂′z

] . (C3)

Equation (C3) is much simpler than equation (14) because its r.h.s.
does not contain Feq anymore, i.e. the equation becomes explicit.

To find a value of γ for which Feq meets the constraint on
Ltot, we compute the integral on the r.h.s. of equation (11). We get

L(K)

∫
dL̂ L̂z exp

[
L(K) γ L̂z

]
= 2π L(K)

∫ +1

−1

dz z eL(K)γ z

=
4π

γ

{
cosh[L(K) γ]− sinch[L(K) γ]

}
, (C4)

and ∫
dL̂ exp

[
L(K) γ L̂z

]
= 2π

∫ +1

−1

dz eL(K)γ z

= 4π sinch[L(K) γ], (C5)

with sinch(x)=sinh(x)/x. Therefore, equation (11) finally gives

Ltot(γ) =

∫
dKN(K)

{
L(K) cotanh[L(K) γ]− (1/γ)

}
. (C6)

This is a strictly increasing function of γ, so that there exists at most
one solution γ for a given value of Ltot. Although not analytical,
such a solution is straightforward to obtain by dichotomy.

APPENDIX D: NUMERICAL APPLICATIONS

We briefly detail some of our choices in the effective numerical im-
plementation of the method of entropy optimisation from §2.4 We
also validate it in single-population systems by reproducing previ-
ous published results.

D1 Discretisation of the stellar populations

As explained in §2.4, in order to be effectively implemented the
entropy optimisation requires a discretisation of the stellar popula-
tions. Each population is associated with an index k and is charac-
terised by some orbital parameters Kk and a particle number Nk.

In §3.1, we assumed that (m,a, e) are drawn independently
from one another, so that they may be discretised independently as
well. For the stellar mass, the considered range mmin6m6mmax

is discretised in Nm logarithmic bins. Similarly, for a we use Na
logarithmic bins, and Ne linear bins for e. As a consequence, the
effective number of populations is set by Npop =NmNaNe. Then,
for a given population, the number of particles Nk is simply set by
the value of the sampling power-law PDFs in the centre of the bins,
multiplied by the volumes of the bins. Similarly, the value of the
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Figure D1. Illustration of the dependence of (E, s) as a function of `max

for the protocol from §3.1. For a given value of `max, the two plotted con-
tours correspond to 33% (dashed) and 66% (solid) of the PDF’s maximum.
As already pointed out in Takács & Kocsis (2018), for `max&10, the val-
ues of the two invariants (E, s) can be considered as converged.

population’s orbital parameter, Kk, is set by the value of K in the
centre of the bin. As such, all our integrals over dK are formally
approximated by Riemann sums using the midpoint rule.

To obtain Figs. 4 and 5, we used (Nm, Na, Ne)=(20, 10, 5).
For the subsequent sections, we considered the simpler regime
(Nm, Na, Ne)=(10, 10, 3). We checked that such choices of pop-
ulation numbers did not affect the results. Given that the numerical
complexity scales like O(N3

pop), this greatly eases the overall pa-
rameter exploration.

D2 Convergence w.r.t. `max

In practice, the Hamiltonian from equation (2) has to be truncated
to some finite harmonic order `max. While Roupas et al. (2017) lim-
ited themselves to the quadrupolar case `max =2, Takács & Koc-
sis (2018) lifted this restriction in single-population systems and
showed that an effective truncation at `max =10 is sufficient to
get converged results. This is what we briefly explore for multi-
population clusters in this section.

First, in Fig. D1, considering the same initialisation protocol
as in §3.1, we illustrate the dependence of the invariants (E, s) as
a function of `max. In that figure, we recover that the typical value
of E increases with `max, while, of course, the average value of
s is independent of it. In addition, we note that restricting oneself
to `max =2 seems insufficient, while `max =10 offers reasonably
well converged values of the binding energy.

In addition to affecting the values of the cluster’s invariants,
increasing the value of `max might also impact the overall shape
of the reconstructed anisotropic equilibria DF. This is what we ex-
plore in Fig. D2, where we compute the relative error in the re-
constructed DF between `max =10 and `max =50. Given that the
maximum relative error is ∼7% for the present clusters, we sys-
tematically truncated the pairwise interaction at `max =10 in all
the figures presented in the main text. As the complexity of the en-

Relative error [%]

0 2 4 6 8 10

1 10 100
-1.0

-0.5

0.0

0.5

1.0

m / mmin

L z

Figure D2. Relative error in Fig. 4 as one increases the harmonic truncation
from `max=10 to `max=50. The maximum relative error is ∼7%.

Figure D3. Inverse temperature β as a function of the energy ERoupas,
for various fixed total angular momentum, s, for a single-population
cluster with `max=2. This figure reproduces fig. 11 of Roupas et al.
(2017). For low s, the cluster can exhibit a negative specific heat, i.e.
∂βRoupas/∂ERoupas>0.

tropy optimisation scales likeO(`3max), this significantly alleviates
the numerical difficulty of the computations.

D3 Validation in single-population systems

We validate our implementation of entropy maximisation by recov-
ering previous results from the literature.

First, in Fig. D3, we recover the caloric curve presented in
fig. 11 of Roupas et al. (2017) for a single-population system in-
teracting only through `=2. In order to exactly match our present
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Figure D4. Same as Fig. D3 but considering `max=58. This figure re-
produces fig. 4 of Takács & Kocsis (2018). In addition to the presence of
negative specific heats for low s, we recover for weakly bound clusters the
presence of more than one equilibrium solutions. Configurations with the
smallest β were always found to have the highest entropy, hence correspond
to the cluster’s (axisymmetric) global statistical equilibria.

normalisation convention with the ones from Roupas et al. (2017),
one has to consider

βRoupas =β 3
8
NGm2/a; ERoupas =Etot/

(
3
8
N2Gm2/a

)
. (D1)

In this figure, it is interesting to recall that clusters with sufficiently
small total angular momentum can present a negative specific heat.

In Fig. D4, we recover fig. 4 from Takács & Kocsis (2018),
for a single-population system coupled beyond the quadrupo-
lar interaction. To exactly match the normalisation conventions
from Takács & Kocsis (2018), one has to consider

βTakács = β NGm2/a; ETakács = Etot/
(
N2Gm2/a

)
. (D2)

In addition, following equation (2) of Takács & Kocsis (2018), we
also had to replace the coupling coefficients from equation (4) with
the simpler asymptotic scaling

HTakács
` =

Gm2

a

4π

`2 (2`+ 1)
. (D3)

For sufficiently small values of the total spin s, one recovers more
than one equilibrium solutions. The solutions with the smallest β,
i.e. the branch that goes through β=0, were always found to have
the largest entropy, hence corresponding to the (axisymmetric) ther-
modynamical equilibria.
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